DEFF Research Database (Denmark)
Jensen, Jonas
This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along th...
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
Plane waves in noncommutative fluids
Energy Technology Data Exchange (ETDEWEB)
Abdalla, M.C.B., E-mail: mabdalla@ift.unesp.br [Instituto de Física Teórica, UNESP, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2, Barra-Funda, Caixa Postal 70532-2, 01156-970, São Paulo, SP (Brazil); Holender, L., E-mail: holender@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropédica, RJ (Brazil); Santos, M.A., E-mail: masantos@cce.ufes.br [Departamento de Física e Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferarri S/N, Goiabeiras, 29060-900 Vitória, ES (Brazil); Vancea, I.V., E-mail: ionvancea@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropédica, RJ (Brazil)
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated.
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Curves along which plane waves can interfere
Energy Technology Data Exchange (ETDEWEB)
Karp, S.N.; Machover, M.
1977-07-01
Partial results are given on a conjecture in inverse scattering theory concerning the interference of two-dimensional plane waves. The conjecture states that an odd number of plane waves of the same frequency can only cancel each other at isolated points and not along a simple continuous curve. It is partially confirmed here for curves which are nearly flat at some point. An analysis is also made for various possible nodes for an even number of plane waves.
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
International Nuclear Information System (INIS)
Zhou Guo-Quan
2011-01-01
Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reﬂection of plane waves from the free ...
The memory effect for plane gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-09-01
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.
Blackfolds, plane waves and minimal surfaces
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)
2015-07-29
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Plane-Wave DFT Methods for Chemistry
Energy Technology Data Exchange (ETDEWEB)
Bylaska, Eric J.
2017-08-01
A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.
Plane wave fast color flow mode imaging
DEFF Research Database (Denmark)
Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik
2006-01-01
A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... deviation, sigma(est) of the velocity profile estimate is around 2% for beam to flow angles between 45 degrees and 75 degrees relative to the peak velocity, when the flow angle is known in advance. A study is performed to investigate how different parameters influence the blood velocity estimation...
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 29 April 2002; revised 17 July 2003. Abstract. The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous ...
Plane-wave least-squares reverse-time migration
Dai, Wei
2013-06-03
A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
New family of exact solutions for colliding plane gravitational waves
International Nuclear Information System (INIS)
Yurtsever, U.
1988-01-01
We construct an infinite-parameter family of exact solutions to the vacuum Einstein field equations describing colliding gravitational plane waves with parallel polarizations. The interaction regions of the solutions in this family are locally isometric to the interiors of those static axisymmetric (Weyl) black-hole solutions which admit both a nonsingular horizon, and an analytic extension of the exterior metric to the interior of the horizon. As a member of this family of solutions we also obtain, for the first time, a colliding plane-wave solution where both of the two incoming plane waves are purely anastigmatic, i.e., where both incoming waves have equal focal lengths
3D plane-wave least-squares Kirchhoff migration
Wang, Xin
2014-08-05
A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.
Traveling Wave Modes of a Plane Layered Anelastic Earth
2016-05-20
is unlimited poles of the anelastic modes in the complex plane . The complex plane is tiled with boxes, and contour integrals are performed numerically... complex modes of a plane layered fluid-elastic medium. Ivansson and Karasalo (1992, 1993) and Ivansson (1997) have published a numerical algorithm based...grant, “Coupled Modes in Elastic Bottoms” (1) is the publication “Traveling wave modes of a plane layered anelastic earth” accepted for
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin
2013-09-22
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.
Can plane wave modes be physical modes in soliton models?
International Nuclear Information System (INIS)
Aldabe, F.
1995-08-01
I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs
DLCQ and plane wave matrix Big Bang models
Blau, Matthias; O'Loughlin, Martin
2008-09-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
DLCQ and plane wave matrix Big Bang models
International Nuclear Information System (INIS)
Blau, Matthias; O'Loughlin, Martin
2008-01-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
Scattering of spinning test particles by gravitational plane waves
International Nuclear Information System (INIS)
Bini, D.; Gemelli, G.
1997-01-01
The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too
A differentiated plane wave as an electromagnetic vortex
Hannay, J. H.; Nye, J. F.
2015-04-01
Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here.
Reflection of plane micropolar viscoelastic waves at a loosely ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
micropolar viscoelastic solid half-space is employed to study the reflection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reflected and refracted waves are computed for a particular model for different values of.
Solitary plane waves in an isotropic hexagonal lattice
DEFF Research Database (Denmark)
Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth
1998-01-01
of these solitary waves is investigated numerically by their interactions with vacancies and lattice edges. Propagation of solitary plane waves through finite lattice domains with isotopic disorder is extensively studied. Comparison of these results with the soliton propagation in one-dimensional lattices with mass...
Reflection of plane waves in an initially stressed perfectly ...
Indian Academy of Sciences (India)
Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy.
Reflection of plane waves in an initially stressed perfectly ...
Indian Academy of Sciences (India)
Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios ...
Phase velocity and attenuation of plane waves in dissipative elastic ...
African Journals Online (AJOL)
Phase velocity and attenuation of plane waves in dissipative elastic media: Solving complex transcendental equation using functional iteration method. ... a solution at all. Then the absence of solution implies that the mathematical model used does not represent the propagation of defined wave in the medium considered.
Soft gravitons and the memory effect for plane gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-09-01
The "gravitational memory effect" due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with the analogue of "soft gravitons for this nonasymptotically flat system. We explain how the presence of the latter may be detected by observing the motion of freely falling particles or other forms of gravitational wave detection. Numerical calculations confirm the relevance of the first, second and third time integrals of the Riemann tensor pointed out earlier. Solutions for various profiles are constructed. It is also shown how to extend our treatment to Einstein-Maxwell plane waves and a midisuperspace quantization is given.
The Plane-Wave/Super Yang-Mills Duality
Energy Technology Data Exchange (ETDEWEB)
Sadri, D
2003-10-14
We present a self-contained review of the Plane-wave/super-Yang-Mills duality, which states that strings on a plane-wave background are dual to a particular large R-charge sector of N=4, D=4 superconformal U(N) gauge theory. This duality is a specification of the usual AdS/CFT correspondence in the ''Penrose limit''. The Penrose limit of AdS{sub 5} S{sup 5} leads to the maximally supersymmetric ten dimensional plane-wave (henceforth the plane-wave) and corresponds to restricting to the large R-charge sector, the BMN sector, of the dual superconformal field theory. After assembling the necessary background knowledge, we state the duality and review some of its supporting evidence. We review the suggestion by 't Hooft that Yang-Mills theories with gauge groups of large rank might be dual to string theories and the realization of this conjecture in the form of the AdS/CFT duality. We discuss plane-waves as exact solutions of supergravity and their appearance as Penrose limits of other backgrounds, then present an overview of string theory on the plane-wave background, discussing the symmetries and spectrum. We then make precise the statement of the proposed duality, classify the BMN operators, and mention some extensions of the proposal. We move on to study the gauge theory side of the duality, studying both quantum and non-planar corrections to correlation functions of BMN operators, and their operator product expansion. The important issue of operator mixing and the resultant need for re-diagonalization is stressed. Finally, we study strings on the plane-wave via light-cone string field theory, and demonstrate agreement on the one-loop correction to the string mass spectrum and the corresponding quantity in the gauge theory. A new presentation of the relevant superalgebra is given.
Zero-mass plane waves in nonzero gravitational backgrounds
International Nuclear Information System (INIS)
Chrzanowski, P.L.; Matzner, R.A.; Sandberg, V.D.; Ryan, M.P. Jr.
1976-01-01
The mathematical definition of what is intuitively called a ''plane wave'' on the curved background of a black hole is clarified and discussed from the viewpoints of potentials and fields. Because of the long-range Newtonian part of the gravitational field the asymptotic wave fronts of an incident ''plane wave'' (describing a radiative perturbation for a scattering experiment) are distorted in a manner analogous to the wave fronts of an electron beam in the quantum-mechanical Coulomb scattering problem. In addition, the electromagnetic and gravitational fields can be described with either a potential formalism (i.e., the vector potential and the metric perturbation) or a field formalism (i.e., the electromagnetic field tensor and the Riemann tensor). In this paper we present a distorted ''plane wave'' prescription, necessary for the calculation of the scattering cross sections of electromagnetic and gravitational waves off of a black hole, which agrees with the accepted prescription for a massless scalar field and satisfies the intuitive notions of what constitutes a ''plane wave'' in terms of potentials and fields
CONTINUOUS-WAVE MICROCHIP LASER GENERATION OF Tm:KLu(WO42 AND Tm:KY(WO42 CRYSTALS
Directory of Open Access Journals (Sweden)
O. P. Dernovich
2016-01-01
Full Text Available Diode-pumped solid-state lasers are attractive for a variety of practical applications in many fields of human activity due to their high efficiency, compactness, and long durability. For applications in remote sensing lasers emitting in the spectral range of about 2 microns are required. Materials doped with trivalent thulium ions are promising active media emitting in this spectral range. Potassium rare-earth tungstates are attractive materials among Tm-doped crystals due to their suitable characteristics, such as high values of absorption and stimulated emission cross sections, incignificant concentration quenching of luminescence, well-proven technology of the high quality crystals growth. The purpose of this paper was to compare lasing properties of lasers based on potassium lutetium and potassium yttrium tungstate crystals doped with thulium ions in continuous-wave regime. Experiments were carried out with a diode pumping in microchip cavity configuration. The maximum power of laser radiation at 1947 nm of 1010 mW was obtained with Tm:KY(WO42 crystal with the slope efficiency with respect to the absorbed pump power of 51 %. When Tm:KLu(WO42 crystal was utilized an output power of 910 mW at 1968 nm wavelength with the slope efficiency of 38 % was obtained. With Tm:KLu(WO42 laser a tuning range over 160 nm range was realized with a prism inserted into the laser cavity.
A differentiated plane wave: its passage through a slab
International Nuclear Information System (INIS)
Hannay, J H; Nye, J F
2013-01-01
Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen
2017-06-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.
Plane-Wave Imaging Challenge in Medical Ultrasound
DEFF Research Database (Denmark)
Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt
2016-01-01
Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate for this eff......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...... for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics....
Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces
Tcvetkova, S. N.; Kwon, D.-H.; Díaz-Rubio, A.; Tretyakov, S. A.
2018-03-01
In this paper theoretical and numerical studies of perfect/nearly perfect conversion of a plane wave into a surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous lossless boundary which would fully transform an incident plane wave into a surface wave propagating along the boundary is considered. An approximate field solution which produces a slowly growing surface wave and satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of great importance for the future development of such devices as perfect leaky-wave antennas and can potentially lead to many novel applications.
RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01
Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni
2018-01-01
RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.
Metaphysics of colliding self-gravitating plane waves
Energy Technology Data Exchange (ETDEWEB)
Matzner, R.A.; Tipler, F.J.
1984-04-15
We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.
Technique for measurements of plane waves of uniaxial strain
International Nuclear Information System (INIS)
Graham, R.A.
1977-01-01
The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed
Plane-wave electronic structure calculations on a parallel supercomputer
International Nuclear Information System (INIS)
Nelson, J.S.; Plimpton, S.J.; Sears, M.P.
1993-01-01
The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms
Reflection of plane micropolar viscoelastic waves at a loosely ...
Indian Academy of Sciences (India)
A solution of the ﬁeld equations governing small motions of a micropolar viscoelastic solid half-space is employed to study the reﬂection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reﬂected and refracted ...
Radiation of Electron in the Field of Plane Light Wave
International Nuclear Information System (INIS)
Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.
2006-01-01
Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
Measurement Verification of Plane Wave Synthesis Technique Based on Multi-probe MIMO-OTA Setup
DEFF Research Database (Denmark)
Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum
2012-01-01
Standardization work for MIMO OTA testing methods is currently ongoing, where a multi-probe anechoic chamber based solution is an important candidate. In this paper, the probes located on an OTA ring are used to synthesize a plane wave field in the center of the OTA ring. This paper investigates...... the extent to which we can approach the synthesized plane wave in practical measurement systems. Both single plane wave with certain AoA and multiple plane waves with different AoAs and power weightings are synthesized and measured. Deviations of the measured plane wave and the simulated plane wave field...
Scattering on plane waves and the double copy
Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan
2018-01-01
Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.
Plane-wave Least-squares Reverse Time Migration
Dai, Wei
2012-11-04
Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.
Stolt's f-k migration for plane wave ultrasound imaging.
Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy
2013-09-01
Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided.
Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine
2015-11-01
Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.
On the local plane wave methods for in situ measurement of acoustic absorption
Wijnant, Ysbrand H.
2015-01-01
In this paper we address a series of so-called local plane wave methods (LPW) to measure acoustic absorption. As opposed to other methods, these methods do not rely on assumptions of the global sound field, like e.g. a plane wave or diffuse field, but are based on a local plane wave assumption.
On the energy-momentum density of gravitational plane waves
International Nuclear Information System (INIS)
Dereli, T; Tucker, R W
2004-01-01
By embedding Einstein's original formulation of general relativity into a broader context, we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor T G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary spacetime. For plane-fronted gravitational waves helicity-2 polarized (graviton) states can be identified carrying non-zero energy and momentum
Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming
DEFF Research Database (Denmark)
Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt
2008-01-01
In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... Field H and a 7 MHz, 128-elements, linear array transducer with lambda/2-spacing. MV is compared to the conventional delay-and-sum (DS) beamformer with Boxcar and Hanning weights. Furthermore, the PW images are compared to the a conventional ultrasound image, obtained from a linear scan sequence...
Overmoded subterahertz surface wave oscillator with pure TM01 mode output
International Nuclear Information System (INIS)
Wang, Guangqiang; Zeng, Peng; Wang, Dongyang; Wang, Jianguo; Li, Shuang
2016-01-01
Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM 01 mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM 01 mode. Moreover, the modified device here has the same power capacity as the previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM 01 mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave
Augmented-plane-wave calculations on small molecules
International Nuclear Information System (INIS)
Serena, P.A.; Baratoff, A.; Soler, J.M.
1993-01-01
We have performed ab initio calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic structure of molecules, solids, and surfaces. It is based on the local-density approximation (LDA) for exchange and correlation and the nonlinear augmented-plane-wave method. Very accurate atomic forces are obtained directly. This allows for implementation of Car-Parrinello-like techniques to determine simultaneously the self-consistent electron wave functions and the equilibrium atomic positions within an iterative scheme. We find excellent agreement with the best existing LDA-based calculations and remarkable agreement with experiment for the equilibrium geometries, vibrational frequencies, and dipole moments of a wide variety of molecules, including strongly bound homopolar and polar molecules, hydrogen-bound and electron-deficient molecules, and weakly bound alkali and noble-metal dimers, although binding energies are overestimated
A numerical method for determining the radial wave motion correction in plane wave couplers
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni
2016-01-01
solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model......Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... calibration, carried out in plane wave couplers, is the most extended. Here plane wave propagation is assumed. While this assumption is valid at low and mid frequencies, it fails at higher frequencies because the membrane of the microphones is not moving uniformly, and there are viscous losses. An existing...
A physical solution for plane SH waves in anelastic media
Ursin, Bjorn; Carcione, José M.; Gei, Davide
2017-05-01
In a lossy medium with complex frequency-dependent wave speed both rays and plane waves at an interface should satisfy the dispersion relation (that is, the wave equation), the radiation condition (the amplitude should go to zero at infinity) and the horizontal complex slowness should be continuous (Snell's law). It is known that this may lead to a transmitted wave which violates the radiation condition and which also causes problems with the phase of the reflection coefficient. In fact, ray-tracing algorithms and analytical evaluations of the reflection and transmission coefficients in anelastic media may lead to non-physical solutions related to the complex square roots of the vertical slowness and polarizations. The steepest-descent approximation with complex horizontal slowness involves non-physical complex horizontal distances, and in some cases also a non-physical vertical slowness that violates the radiation condition. Similarly, the reflection and transmission coefficients and ray-tracing codes obtained with this approach yields wrong results. In order to tackle this problem, we choose the stationary-phase approximation with real horizontal slowness. This gives real horizontal distances, the radiation condition is always satisfied and the reflection and transmission coefficients are correct. This is shown by comparison to full-wave space-time modelling results by computing the reflection and transmission coefficients and respective phase angles from synthetic seismograms. This numerical evaluation is based on a 2-D wavenumber-frequency Fourier transform. The results indicate that the stationary-phase method with a real horizontal slowness provides the correct physical solution.
The effect of LH wave on the peripheral plasma of TM-1-MH tokamak
International Nuclear Information System (INIS)
Badalec, J.; Datlov, J.; Jakubka, K.; Kopecky, V.; Koerbel, S.; Kryska, L.; Magula, P.; Stoeckel, J.; Zacek, F.; Nanobashvili, S.
1983-01-01
The effect of lower hybrid waves on the parameters of peripheral plasma in the TM-1-MH tokamak is investigated in close connection with a previous study of lower hybrid heating of the plasma core. Radial profiles of the saturated ion current are reconstructed from measurements using a movable Langmuir probe. The enhancement of the saturated ion current observed in a limiter shadow is interpreted as the heating of peripheral ions due to absorption of decay waves generated in this region as a result of the nonlinear wave-plasma interaction. Langmuir probe measurements found no increase in electron temperature or electron density due to direct local absorption of the pump wave. (J.U.)
Linear augmented plane wave method for self-consistent calculations
International Nuclear Information System (INIS)
Takeda, T.; Kuebler, J.
1979-01-01
O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)
Interaction of plane gravitational and electromagnetic waves in an external gravitational field
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Interaction of gravitational and electromagnetic waves in an external gravitational field for two classes of metric gravitation theories is considered. As a result conditions for resonance interaction are determined, and possibility of continuous amplification of plane electromagnetic wave with plane gravitational wave is shown
Dispersive photonic crystals from the plane wave method
Energy Technology Data Exchange (ETDEWEB)
Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)
2016-03-01
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
Initial value problem for colliding gravitational plane waves. III
International Nuclear Information System (INIS)
Hauser, I.; Ernst, F.J.
1990-01-01
The development of a homogeneous Hilbert problem (HHP) approach to the initial value problem (IVP) for colliding gravitational plane waves with noncollinear polarization that began in two earlier papers [I. Hauser and F. J. Ernst, J. Math. Phys. 30, 872 (1989) and 30, 2322 (1989)] is continued. After formulating the HHP, the description of how one can apply it to generate a new family of solutions of the colliding wave problem that generalizes a three-parameter family constructed by Ernst, Garcia, and Hauser [J. Math. Phys. 29, 681 (1988)] using a double-Harrison transformation is given. Then the proof that the solution of the new HHP indeed solves the IVP that is posed is presented. A matrix Fredholm equation of the second kind that is equivalent to the HHP is also deduced. This will be used in a sequel to complete the proof of existence of solutions of the HHP and the proof that certain assumed differentiability hypotheses are in fact valid
Ochirbat, G
2000-01-01
A plane medium, whose dielectric tensor's principal values arbitrarily depend upon intensity, is considered. The problems of the TM and TE waves, within the problem of light scattering, are reduced to quadrature. A question of integrability of the full system of Maxwell equations is discussed. A closed equation has been obtained for an auxiliary variable for a nonlinearity of Kerr type. A scheme for integrating the full system of Maxwell equations by solving the equation over the auxiliary variable is suggested.
Stability of plane wave solutions in complex Ginzburg-Landau equation with delayed feedback
Puzyrev, D.; Yanchuk, S.; Vladimirov, A. G.; Gurevich, S. V.
2013-01-01
We perform bifurcation analysis of plane wave solutions in one-dimensional cubic-quintic Ginzburg-Landau equation with delayed feedback. Our study reveals how multistability and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values of the delay, bifurcation diagrams are obtained by a combination of analytical and numerical methods. For large delays, using an asymptotic approach we classify plane wave solutions into strongly unstable, weakly unstable, and ...
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Wave-Vector Dependence of the Jahn-Teller Interactions in TmVO4
DEFF Research Database (Denmark)
Kjems, Jørgen; Hayes, W.; Smith, S. H.
1975-01-01
The resonant Jahn-Teller coupling of the B2g acoustic phonon and the Zeeman-split ground doublet in TmVO4 has been studied by inelastic neutron scattering. Tuning of the magnetic field provides a means for investigating the wave-vector dependence of the interactions. We find that the coupling...... is constant in the region where the phonon dispersion is linear, up to 0.4 of the distance to the zone boundary. This agrees with the predictions of a Debye model....
Bistable states of TM polarized non-linear waves guided by symmetric layered structures
International Nuclear Information System (INIS)
Mihalache, D.
1985-04-01
Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)
Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering.
Perrey-Debain, E; Laghrouche, O; Bettess, P; Trevelyan, J
2004-03-15
Classical finite-element and boundary-element formulations for the Helmholtz equation are presented, and their limitations with respect to the number of variables needed to model a wavelength are explained. A new type of approximation for the potential is described in which the usual finite-element and boundary-element shape functions are modified by the inclusion of a set of plane waves, propagating in a range of directions evenly distributed on the unit sphere. Compared with standard piecewise polynomial approximation, the plane-wave basis is shown to give considerable reduction in computational complexity. In practical terms, it is concluded that the frequency for which accurate results can be obtained, using these new techniques, can be up to 60 times higher than that of the conventional finite-element method, and 10 to 15 times higher than that of the conventional boundary-element method.
Reflection of plane waves at the free surface of a fibre-reinforced ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. The propagation of plane waves in fibre-reinforced, anisotropic, elas- tic media is discussed. The expressions for the phase velocity of quasi-P (qP) and quasi-SV (qSV) waves propagating in a plane containing the reinforcement direction are obtained as functions of the angle between the propagation and rein-.
Ground penetrating radar antenna measurements based on plane-wave expansions
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2005-01-01
The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...
A new GTD slope diffraction coefficient for plane wave illumination of a wedge
DEFF Research Database (Denmark)
Lumholt, Michael; Breinbjerg, Olav
1997-01-01
Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...
Diffraction of love waves by two parallel perfectly weak half planes
International Nuclear Information System (INIS)
Asghar, S.; Zaman, F.D.; Ayub, M.
1986-04-01
We consider the diffraction of Love waves by two parallel perfectly weak half planes in a layer overlying a half space. The problem is formulated in terms of the Wiener-Hopf equations in the transformed plane. The transmitted waves are then calculated using the Wiener-Hopf procedure and inverse transforms. (author)
A numerical method for determining the radial wave motion correction in plane wave couplers
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni
2016-01-01
Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...
Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium
CSIR Research Space (South Africa)
Manara, G
1998-11-01
Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Reflection of plane waves in an initially stressed perfectly ...
Indian Academy of Sciences (India)
stress and magnetic field on the reflection coef- ficients and energy ratios of reflected waves in a perfectly conducting initially stressed transversely isotropic elastic solid half-space. The present work is supposed to be useful in further studies of wave propagation in the more realistic models which have been extensively ...
Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3
Correia, Simão; Figueira, Mário
2018-03-01
We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.
Diffraction of love waves by two staggered perfectly weak half-planes
International Nuclear Information System (INIS)
Asghar, S.; Zaman, F.D.; Sajida Asghar
1989-01-01
Love wave travelling in a layer of uniform thickness overlying a half-space is assumed to be incident on two parallel but staggered perfectly weak half-planes lying in the upper layer. The diffracted fields is calculated using the modified Wiener-Hopf technique and contour integration method. The diffracted waves satisfy the dispersion relations appropriate to different regions formed by the perfectly weak half-planes
Geometrical optics in the near field: local plane-interface approach with evanescent waves.
Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari
2015-01-12
We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.
Pupil Plane Array Based Millimeter-Wave Imaging Radiometer
National Research Council Canada - National Science Library
Clark, Stuart
2004-01-01
... real-time passive millimeter-wave camera (PMC). In addition, an imaging demonstration performed under this contract demonstrated the feasibility of building such a PMC and that it is possible to obtain near diffraction limited imagery...
Research on Band-limited Local Plane Wave Propagator and Imaging Method in TI Medium
Han, B.; Gu, H.; Liu, S.
2017-12-01
Traditional ray-based seismic wave propagators, under the infinite frequency assumption, are widely used in seismic wave propagation and imaging due to its efficiency and flexibility. Seismic wave is a typical band-limited signal; consequently, the high-frequency ray theory is difficult to accurately describe the propagation characteristics of the band-limited signals, and it cannot avoid ray shading zones and caustics. As for wave equation based operators, even though they can propagate band-limited waves accurately, they are computationally demanding. In this study, under the framework of traditional ray theory, a seismic wave propagator applicable to transverse anisotropic medium is proposed, which is based on the local plane wave assumption. The proposed band-limited local plane wave propagator not only preserves the advantages of conventional ray-based propagators but also propagates band-limited waves accurately. To be detailed, a band-limited Snell's Law is constructed by solving the Kirchhoff boundary integral in a local plane, which is perpendicular to the central ray. Then band-limited rays are traced following the band-limited Snell's Law, and equivalent ray parameters are calculated by averaging local plane wave parameters. Physically, band-limited Snell's Law depicts that the directions of band-limited wavefields with maximum energy rays in the first Fresnel zone. Finally, the band-limited beam migration method in TI medium is developed by combining the paraxial beams with the band-limited central rays. Numerical experiments show that the local plane wave propagator can enhance the illumination in shadow zone and the imaging qualities of complex structures, such as rugose salt boundaries. Compared to conventional beam migration, our method generates better angle domain common imaging gathers (ADCIGs).
The use of the plane wave fluid-structure interaction loading approximation in NASTRAN
Dawson, R. L.
1991-01-01
The Plane Wave Approximation (PWA) is widely used in finite element analysis to implement the loading generated by an underwater shock wave. The method required to implement the PWA in NASTRAN is presented along with example problems. A theoretical background is provided and the limitations of the PWA are discussed.
Dhawan, R.; Gunther, M. F.; Claus, R. O.
1991-01-01
Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.
Measuring oblique incidence sound absorption using a local plane wave assumption
Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
In this paper a method for the measurement of the oblique incidence sound absorption coefficient is presented. It is based on a local field assumption, in which the acoustic field is locally approximated by one incident- and one specularly reflected plane wave. The amplitudes of these waves can be
Plane waves in a rotating generalized thermo-elastic solid with voids ...
African Journals Online (AJOL)
Propagation of plane waves in a rotating thermo-elastic solid with voids has been studied. The theory for thermo-elastic materials with voids developed by Iesan in the context of thermo- elastic theory of Lord and Shulman has been employed for mathematical treatment. It has been found that there exist one transverse wave ...
Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal
Wang, Yi; Lan, Jinglong; Zhou, Zhiyong; Guan, Xiaofeng; Xu, Bin; Xu, Huiying; Cai, Zhiping; Wang, Yan; Tu, Chaoyang
2017-04-01
We report on a diode-pumped Tm:Gd3Ga5O12 (GGG) laser at 2004 nm operated in continuous-wave mode with two-mirror linear cavity configuration. The maximum output power reaches 0.58 W with laser threshold absorbed pump power of about 0.39 W and overall slope efficiency of about 18.4%, which is believed to be the highest output power for Tm:GGG laser up to now. The Tm:GGG laser shows obvious thermally induced saturation of the output power, which indicated that power and efficiency scaling could be furtherly realized by more efficient thermal removal of the laser crystal.
In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging
DEFF Research Database (Denmark)
Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm
2014-01-01
A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2015-02-01
The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
Generalized plane waves in Poincaré gauge theory of gravity
Blagojević, Milutin; Cvetković, Branislav; Obukhov, Yuri N.
2017-09-01
A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in the gauge field strength. The structure of the solution shows that the wave metric significantly depends on the spacetime torsion.
Weakly inhomogeneous plane waves in anisotropic, weakly dissipative media
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2008-01-01
Roč. 172, č. 2 (2008), s. 663-673 ISSN 0956-540X R&D Projects: GA ČR GA205/05/2182 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic attenuation * seismic anisotropy * wave propagation * theoretical seismology Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.219, year: 2008
Realistic full wave modeling of focal plane array pixels.
Energy Technology Data Exchange (ETDEWEB)
Campione, Salvatore [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Jorgenson, Roy E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Davids, Paul [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.; Peters, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.
2017-11-01
Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.
Plane waves in viscoelastic anisotropic media - 1. Theory
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2005-01-01
Roč. 161, č. 1 (2005), s. 197-212 ISSN 0956-540X R&D Projects: GA ČR GA205/04/1104; GA ČR GA205/05/2182; GA AV ČR IAA3012309; GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : attenuation * seismic anisotropy * seismic waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.826, year: 2005
Concept for the controlled plane wave exposure for animal experiments using a parabolic reflector
Tejero, S.; Schelkshorn, S.; Detlefsen, J.
2005-05-01
In this paper a low-cost concept for the controlled RF plane wave exposure for in vivo experiments is presented. The exposure setup is based on the use of a parabolic reflector to convert the incident spherical wavefront emanating from the primary source into a plane wave. The employed paraboloid is a common prime focus paraboloid used in satellite-TV links. The main problems of the focussed approach are identified and a solution based on a defocussed system is introduced. It results in a compact, cost-effective and still power-efficient setup for the RF exposure at microwave frequencies. Simulation results show a very good performance of the concept achieving a quasi-plane wave incident on the animals with minimum variations of the exposure dose.
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Balyan, M. K., E-mail: mbalyan@ysu.am [Yerevan State University, Faculty of Physics (Armenia)
2016-12-15
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
Plane-wave decomposition by spherical-convolution microphone array
Rafaely, Boaz; Park, Munhum
2004-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna
Klionovski, Kirill
2017-06-21
Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.
Trident pair production in plane waves: Coherence, exchange, and spacetime inhomogeneity
Dinu, Victor; Torgrimsson, Greger
2018-02-01
We study the trident process in inhomogeneous plane-wave background fields. We obtain compact analytical expressions for all terms in the probability, including the exchange part, for an arbitrarily shaped plane wave. We evaluate the probability numerically using complex deformation of light-front time integrals and derive various analytical approximations. Our results provide insights into the importance of the one-step and exchange parts of the probability relative to the two-step process, and into the convergence to the locally constant field approximation.
Accuracy and Precision of Plane Wave Vector Flow Imaging for Laminar and Complex Flow In Vivo
DEFF Research Database (Denmark)
Jensen, Jonas; Traberg, Marie Sand; Villagómez Hoyos, Carlos Armando
2017-01-01
In this study, a comparison between velocity fields for a plane wave 2-D vector flow imaging (VFI) method and a computational fluid dynamics (CFD) simulation is made. VFI estimates are obtained from the scan of a flow phantom, which mimics the complex flow conditions in the carotid artery. Furthe...
Band structure of thin films by the linear augmented-plane-wave method
DEFF Research Database (Denmark)
Jepsen, O.; Madsen, J.; Andersen, Ole Krogh
1978-01-01
We present a linear augmented-plane-wave method for solving the band-structure problem in thin crystalline films. The potential is separated into a muffin-tin potential inside the film, a potential depending exclusively on the normal coordinate outside the film, and corrections in both regions...
Czech Academy of Sciences Publication Activity Database
Polášek, M.; Čársky, Petr
2002-01-01
Roč. 181, č. 1 (2002), s. 1-8 ISSN 0021-9991 R&D Projects: GA ČR GA203/99/0839 Institutional research plan: CEZ:AV0Z4040901 Keywords : two-electron integrals * mixed plane wave Gaussian basis sets Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.553, year: 2002
Reflection of plane waves from free surface of a microstretch elastic ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The problem of reflection of plane waves from free surface of a microstretch elastic solid half-space is studied. The energy ratios for ... axis is taken normal to free surface in downward direction. The region z > 0 is occupied by linear ... Superposed dots on the right hand side of above equations denote the second partial ...
Flow features that arise due to the interaction of a plane shock wave with concave profiles
CSIR Research Space (South Africa)
MacLucas, David A
2012-10-01
Full Text Available The focus of the author's thesis was the aerodynamic flow field that develops as a result of the interaction of a moving plane shock wave with concave profiles. In this presentation, he discusses some of the interesting flow phenomena that arise...
Transverse plane wave analysis of short elliptical chamber mufflers: An analytical approach
Mimani, A.; Munjal, M. L.
2011-03-01
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations.
Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography
DEFF Research Database (Denmark)
Meincke, Peter
2004-01-01
in the forward model. The two inversion schemes include an accurate electromagnetic description of the GPR antennas through their plane-wave transmitting and receiving spectra. The performance of the FTM is investigated through a numerical example involving a 2.5-dimensional configuration in which the GPR...
Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2005-01-01
The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...
Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution
International Nuclear Information System (INIS)
Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Wang, Haixia; Zhao, Zhiguo; Pan, Liuzhan
2013-01-01
Stochastic electromagnetic plane-wave (SEPW) pulse with non-uniform correlation distribution is introduced. The realizability condition for such pulse is derived. It is found that the evolution properties of the intensity and the degree of polarization of an SEPW pulse with non-uniform correlation distribution in dispersive media are much different from those of an SEPW pulse with uniform correlation distribution.
Theory of Nonlinear Guided Electromagnetic Waves in a Plane Two-Layered Dielectric Waveguide
Directory of Open Access Journals (Sweden)
Valeria Yu. Kurseeva
2017-01-01
Full Text Available Propagation of transverse electric electromagnetic waves in a homogeneous plane two-layered dielectric waveguide filled with a nonlinear medium is considered. The original wave propagation problem is reduced to a nonlinear eigenvalue problem for an equation with discontinuous coefficients. The eigenvalues are propagation constants (PCs of the guided waves that the waveguide supports. The existence of PCs that do not have linear counterparts and therefore cannot be found with any perturbation method is proven. PCs without linear counterparts correspond to a novel propagation regime that arises due to the nonlinearity. Numerical results are also presented; the comparison between linear and nonlinear cases is made.
Imaging off-plane shear waves with a two-dimensional phononic crystal lens
International Nuclear Information System (INIS)
Chiang Chenyu; Luan Pigang
2010-01-01
A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.
Simplified description of out-of-plane waves in thin annular elastic plates
DEFF Research Database (Denmark)
Zadeh, Maziyar Nesari; Sorokin, Sergey
2013-01-01
of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes......Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...
Sum, K S; Pan, J
2007-07-01
Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.
Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis
Guo, Bowen
2017-08-28
Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the
All about Waves. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].
2000
Sound. Light. Heat. Even earthquakes! They all travel in waves. Waves are a transfer of energy and understanding them allows us to better understand the world around us. Discover the two ways in which waves move, and learn about the characteristics of waves; wavelength, amplitude and frequency. Students learn about the common characteristics of…
International Nuclear Information System (INIS)
Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu
2015-01-01
Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator
Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng
2018-04-01
The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.
Lock, James A.
2017-11-01
The formulas of ray theory and Airy theory for scattering of an electromagnetic plane wave by a radially inhomogeneous sphere are obtained from the generalization of exact Lorenz-Mie wave scattering theory using the WKB approximation to determine the radial portion of the partial wave scalar radiation potential, carrying out a Debye series expansion of it, approximating the sum over partial waves by an integral over an associated impact parameter, and approximately evaluating the integral using either the method of stationary phase or mapping it into one of the phase integrals that describe optical caustics. Various features of the results are commented on, and the procedure is extended to the merging of two rainbows in a given Debye series channel in the context of the longitudinal cusp caustic.
Generalized Plane Waves and Waveguide Modes in a Moving Isotropic Medium
DEFF Research Database (Denmark)
Aalund, Mogens; Johannsen, Günther
1971-01-01
The Lorentz transformation of plane-wave-like solutions and general waveguide modes is analyzed. A propagation and attenuation tensor is introduced. General Doppler equations and invariant phase quantities are shown to be simple consequences of the formalism. The concept of dispersion is discussed...... and a covariant condition connected with this concept is given. Covariant wave equations and dispersion relations are derived in a simple manner. The dispersion relations are used to analyze some special waveguide solutions including cutoff phenomena. ©1971 The American Institute of Physics...
Quantum mechanics of lattice gas automata: One-particle plane waves and potentials
International Nuclear Information System (INIS)
Meyer, D.A.
1997-01-01
Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society
High Frame Rate Vector Velocity Estimation using Plane Waves and Transverse Oscillation
DEFF Research Database (Denmark)
Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt
2015-01-01
This paper presents a method for estimating 2-D vector velocities using plane waves and transverse oscillation. The approach uses emission of a low number of steered plane waves, which result in a high frame rate and continuous acquisition of data for the whole image. A transverse oscillating field...... in a flow rig phantom is scanned at beam-to-flow angles of 90, 75, and 60◦ . The relative bias is between -1.4 % and -5.8 % and the relative std. between 5 % and 8.2 % for the lateral velocity component at the measured beam-to-flow angles. The estimated flow angle is 73.4◦± 3.6◦ for the measurement at 75...
Study of the characteristics about the digital holography with spherical and plane reference wave
Zhu, Meng; Bai, Jianming; Xiao, Maosen
2017-10-01
In order to design and optimize the optical system of digital holography, rebuild the object field with high quality, the characteristics of imaging system with spherical and plane reference wave are demonstrated respectively based on optical scalar diffraction theory. Based on the discrete Fresnel diffraction integral, recording and reconstruction of hologram with plane reference wave as well as the impact of CCD size and reconstructed distance on holographic imaging have been simulated with matlab. The simulation results show that: zero-order image and twin images are spatially separated when choosing the parameters of recording system properly; the quality of rebuild image suffers as CCD decreases in size and the reconstruction distance deviates from the recording distance.
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
Excitation of plane Lamb wave in plate-like structures under applied surface loading
Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun
2018-02-01
Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.
Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging
DEFF Research Database (Denmark)
Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt
2016-01-01
This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where...... image quality for a λ-pitch transducer is compared with a λ/2-pitch transducer. Grating lobe artifacts for λ-pitch transducers degrade the contrast in plane wave images, and the impact on frame rate is studied. Field II simulations of plane wave images are made for all combinations of the parameters...... at 9 mm (24λ). Using a λ/2-pitch transducer and only 21 emissions within the same angle range, the image quality is improved in terms of contrast, which is −37 dB. For imaging in regions deeper than 25 mm (66λ), only 21 emissions are optimal for both the transducers, resulting in a −36 dB contrast...
On the integrability of large N plane-wave matrix theory
International Nuclear Information System (INIS)
Klose, Thomas; Plefka, Jan
2004-01-01
We show the three-loop integrability of large N plane-wave matrix theory in a subsector of states comprised of two complex light scalar fields. This is done by diagonalizing the theory's Hamiltonian in perturbation theory and taking the large N limit. At one-loop level the result is known to be equal to the Heisenberg spin-1/2 chain, which is a well-known integrable system. Here, integrability implies the existence of hidden conserved charges and results in a degeneracy of parity pairs in the spectrum. In order to confirm integrability at higher loops, we show that this degeneracy is not lifted and that (corrected) conserved charges exist. Plane-wave matrix theory is intricately connected to N=4 super-Yang-Mills, as it arises as a consistent reduction of the gauge theory on a three-sphere. We find that after appropriately renormalizing the mass parameter of the plane-wave matrix theory the effective Hamiltonian is identical to the dilatation operator of N=4 super-Yang-Mills theory in the considered subsector. Our results therefore represent a strong support for the conjectured three-loop integrability of planar N=4 SYM and are in disagreement with a recent dual string theory finding. Finally, we study the stability of the large N integrability against nonsupersymmetric deformations of the model
Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets.
Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2011-06-02
Simple, yet predictive bonding models are essential achievements of chemistry. In the solid state, in particular, they often appear in the form of visual bonding indicators. Because the latter require the crystal orbitals to be constructed from local basis sets, the application of the most popular density-functional theory codes (namely, those based on plane waves and pseudopotentials) appears as being ill-fitted to retrieve the chemical bonding information. In this paper, we describe a way to re-extract Hamilton-weighted populations from plane-wave electronic-structure calculations to develop a tool analogous to the familiar crystal orbital Hamilton population (COHP) method. We derive the new technique, dubbed "projected COHP" (pCOHP), and demonstrate its viability using examples of covalent, ionic, and metallic crystals (diamond, GaAs, CsCl, and Na). For the first time, this chemical bonding information is directly extracted from the results of plane-wave calculations. © 2011 American Chemical Society
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction
International Nuclear Information System (INIS)
Dorca, M.; Verdaguer, E.
1997-01-01
Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)
2017-03-26
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.
DEFF Research Database (Denmark)
Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando
2008-01-01
A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), bas...
National Aeronautics and Space Administration — Photodetectors and focal plane arrays (FPAs) covering the middle-wave and longwave infrared (MWIR/LWIR) are of great importance in numerous NASA applications,...
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Simulation of Guided Wave Interaction with In-Plane Fiber Waviness
Leckey, Cara A. C.; Juarez, Peter D.
2016-01-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis
Czech Academy of Sciences Publication Activity Database
Čársky, Petr
2007-01-01
Roč. 107, č. 1 (2007), s. 56-62 ISSN 0020-7608 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413 Grant - others:European Science Foundation (EIPAM)(XE) PESC7-20; U.S. National Science Foundation(US) OISE-0532040 Institutional research plan: CEZ:AV0Z40400503 Keywords : two-electron integrals * mixed plane-wave and Gaussian basis sets * Coulomb integrals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.368, year: 2007
String interactions in a plane-fronted parallel-wave spacetime
International Nuclear Information System (INIS)
Gopakumar, Rajesh
2002-01-01
We argue that string interactions in a plane-fronted parallel-wave spacetime are governed by an effective coupling g eff =g s (μp + α ' )f(μp + α ' ) where f(μp + α ' ) is proportional to the light-cone energy of the string states involved in the interaction. This simply follows from generalities of a matrix string description of this background. g eff nicely interpolates between the expected result (g s ) for flat space (small μp + α ' ) and a recently conjectured expression from the perturbative gauge theory side (large μp + α ' )
DEFF Research Database (Denmark)
Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando
2014-01-01
techniques have been developed to cope with the low off - axis image quality when performing 2D (and in future 3D) motion estimation: cross correlation with directional beamforming (with or without RF (coherent) compounding) and displacement compounding. This study compares the precision of these techniques...... using linear array ultrasound data of a pulsating concentric homogeneous artery simulated using Field II . The transducer ( f c = 9 MHz, pitch = 197.9 μ m, 192 elements, f s = 180 MHz) transmitted plane waves at 3 sequentially alternating angles (0°, + θ , - θ ) at a PRF of 2 kHz. Simulations were...
Statistics for long irregular wave run-up on a plane beach from direct numerical simulations
Didenkulova, Ira; Senichev, Dmitry; Dutykh, Denys
2017-04-01
-975 (2011). [2] P. Denissenko, I. Didenkulova, A. Rodin, M. Listak, E. Pelinovsky. Experimental statistics of long wave runup on a plane beach. Journal of Coastal Research 65, 195-200 (2013). [3] I. Didenkulova, E. Pelinovsky, A. Sergeeva. Statistical characteristics of long waves nearshore. Coastal Engineering 58, 94-102 (2011). [4] D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. J. Comput. Phys. 230 (8), 3035-3061 (2011a). [5] D. Dutykh, C. Labart, D. Mitsotakis. Long wave run-up on random beaches. Phys. Rev. Lett. 107, 184504 (2011b).
Temperature elevation in the eye of anatomically based human head models for plane-wave exposures
International Nuclear Information System (INIS)
Hirata, A; Watanabe, S; Fujiwara, O; Kojima, M; Sasaki, K; Shiozawa, T
2007-01-01
This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112-0.147 deg. C kg W -1 ) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement
Rothenstein, Bernhard
2005-01-01
We show that the transformation equations for the parameters that characterize a plane acoustic wave: period, (frequency), wave vector, wave length and phase velocity can be derived without using phase invariance and Lorentz-Einstein transformation
Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates
International Nuclear Information System (INIS)
Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng
2015-01-01
Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)
Energy Technology Data Exchange (ETDEWEB)
Caballero, J.A. [Univ. de Sevilla (Spain). Dept. de Fisica Atomica, Molecular y Nucl.]|[Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Donnelly, T.W. [Centre for Theoretical Physics, Laboratory for Nuclear Science and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Moya de Guerra, E. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040 (Spain)
1998-03-23
The issue of factorization within the context of coincidence quasi-elastic electron scattering is revisited. Using a relativistic formalism for the entire reaction mechanism and restricting ourselves to the case of plane waves for the outgoing proton, we discuss the role of the negative-energy components of the bound nucleon wave function. (orig.). 30 refs.
Dautov, O. Sh.
2017-01-01
As one means to solving propagation problems are considered modeling of electromagnetic wave in inhomogeneous layered media. There are exact relations for the field exciting by the plane monochromatic electromagnetic wave in flat-layered one-dimensional inhomogeneous isotropic media is used in this paper for analysis field structure in media with linear dependence characteristic impedance along propagation directions.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Fast solution of elliptic partial differential equations using linear combinations of plane waves
Pérez-Jordá, José M.
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling
International Nuclear Information System (INIS)
Fischbacher, Thomas; Klose, Thomas; Plefka, Jan
2005-01-01
We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
[A new method to orthodontically correct dental occlusal plane canting: wave-shaped arch].
Zheng, X; Hu, X X; Ma, N; Chen, X H
2017-02-18
To introduce a technique of second order wave-shaped arch wire to orthodontically treat dental occlusal plane canting (DOPC) with left-right interactive anchorage, and to test its clinical efficacy. Among the permanent dentition malocclusion patients who showed no obvious facial asymmetry, we screened for patients who showed anterior occlusal plane canting (AOPC) after routine orthodontic examination, treatment planning, MBT fixed appliance installation and serial arch wires alignment. Each patient had been clinically appraised in frontal view by 2 orthodontists and the patient him/herself; if all 3 agreed that the AOPC was obvious, the patient was included. By this means, we included 37 patients, including 10 males and 27 females; the average age was (21.9±5.2) years. To correct AOPC, opposite direction equal curvature second order rocking-chair curve was bent on each side of 0.46 mm×0.56 mm stainless steel edgewise wire. With reference to normal occlusal plane, a curve toward the occlusal surface was made to extrude under-erupted teeth on one side while a curve toward the gingiva was made to intrude over-erupted teeth on the other side, so that the arch wire was made into a wave shape in vertical dimension. Before and after application of wave-shaped arch wire, frontal facial photographs were taken when the patient's mouth was open slightly with lips retracted to show anterior occlusal plane (AOP) clearly. An AOP was constructed by connecting the center of the slot in the medial edge of canine bracket on each side in the photograph. The angles between the bipupillary plane(BPP) and the constructed AOP were measured in ImageJ1-48v software and the angle differences before and after treatment were compared with paired Wilcoxon test in SPSS 10.0 software. The wave-shaped arch could correct AOPC effectively in 3 to 10 months time with an average of 5.5±1.7 months; the angles between AOP and BBP before treatment ranged from 2.90° to 6.12° with a median of 4.01
Stolt’s f-k migration for plane wave ultrasound imaging
Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy
2013-01-01
Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wavefronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF (radio-frequency) signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. In order to perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to sketch the advantages of PWI with Stolt’s f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt’s f-k migration was also compared with the Fourier-based method developed by J-Y Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a state-of-the-art dynamic focusing mode. This remained true even with a very small number of steering angles thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu’s and DAS migration schemes. Matlab codes of the Stolt’s f-k migration for PWI are provided. PMID:24626107
Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film
Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj
2016-06-01
In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-spacer-plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.
Simple Explosive Plane Wave Booster Designs for 1-D Shock Experiments
Svingala, Forrest; Giannuzzi, Paul; Sandusky, Harold
2017-06-01
The gold standard 1-dimensional shock wave source is a flyer plate driven by a gas or powder gun. However, not all experimenters have access to such a gun, and some experiments that require large input areas (>80 cm2) and high input pressures (>15 GPa) are out of reach for most of those that do. An attractive alternative to gun-driven flyers in these cases is an explosive plane wave booster (PWB). The PWB uses an explosive train to produce a 1-D wave that can throw a flyer plate or be used directly. Shock pressure levels can be adjusted as needed through the use of attenuator plates or an explosive booster pad on the output of the PWB. Unfortunately, traditional ``dual velocity'' PWBs using two explosives require precision machining of the energetics, and as such can be difficult to produce and prohibitively expensive to purchase. This work explores several PWB designs that use cast explosives to keep costs down, and are easily scalable to the size of the required experiment. Their relative simultaneity and peak pressures are quantified using streak photography and photon Doppler velocimetry (PDV), and compared with typical values for the dual velocity lens and gun driven flyers.
Integrable open spin chain in Super Yang-Mills and the plane-wave/SYM duality
International Nuclear Information System (INIS)
Chen Bin; Wang Xiaojun; Wu Yongshi
2004-01-01
We investigate the integrable structures in an N = 2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime. (author)
Analysis of TLM Air-vent Model Applicability to EMC Problems for Normal Incident Plane Wave
Directory of Open Access Journals (Sweden)
N. J. Nešić
2016-11-01
Full Text Available In this paper, the shielding properties related to a protective metal enclosure with airflow aperture arrays are numerically analyzed. As a numerical model, a TLM method, either in a conventional form based on fine mesh to describe apertures presence or enhanced with the compact air-vent model is employed. The main focus in the paper is on examining the limits of applying the compact air-vent model for EMC problems solving. Namely, various values for the distance between neighboring apertures in the TLM air-vent models as well as the air-vent thicknesses are analyzed. Specifically, the analyses are conducted for a normal incident plane wave, vertically and horizontally polarized.
Spin effects in nonlinear Compton scattering in a plane-wave laser pulse
International Nuclear Information System (INIS)
Boca, Madalina; Dinu, Victor; Florescu, Viorica
2012-01-01
We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
International Nuclear Information System (INIS)
Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang
2013-01-01
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP
DFT LCAO and plane wave calculations of SrZrO3
International Nuclear Information System (INIS)
Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E.; Kotomin, E.A.
2005-01-01
The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO 3 phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO 3 phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Progress in parallel implementation of the multilevel plane wave time domain algorithm
Liu, Yang
2013-07-01
The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.
Nonequilibrium dynamics of strings in time-dependent plane wave backgrounds
Energy Technology Data Exchange (ETDEWEB)
Nardi, R., E-mail: rnardi@cbpf.br [Centro Brasileiro de Pesquisas Fisicas (CBPF), R. Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Vancea, I.V., E-mail: ionvancea@ufrrj.br [Grupo de Fisica Teorica e Matematica Fisica, Departamento de Fisica, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropedica, RJ (Brazil)
2012-06-21
We formulate and study the nonequilibrium dynamics of strings near the singularity of the time-dependent plane wave background in the framework of the Nonequilibrium Thermo Field Dynamics (NETFD). In particular, we construct the Hilbert space of the thermal string oscillators at nonequilibrium and generalize the NETFD to describe the coordinates of the center of mass of the thermal string. The equations of motion of the thermal fields and the Hamiltonian are derived. Due to the time-dependence of the oscillator frequencies, a counterterm is present in the Hamiltonian. This counterterm determines the correlation functions in a perturbative fashion. We compute the two point correlation function of the thermal string at zero order in the power expansion.
Klionovski, Kirill
2017-10-25
Omnidirectional radiation pattern with minimum backward radiation is highly desirable for millimeter-wave telecommunication antennas. In this work, we propose a round, semitransparent ground plane of radius 0.8λ with uniform impedance distribution that can reduce the back radiation of a monopole antenna by 8.8 dB as compared with a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.
International Nuclear Information System (INIS)
Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.
1980-01-01
The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed
International Nuclear Information System (INIS)
Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-01-01
This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg -1 when the incident power density is at the reference level of ICNIRP guideline for general public environment. (note)
Directory of Open Access Journals (Sweden)
Maity N.
2017-06-01
Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.
Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods.
Soulairol, R; Fu, Chu-Chun; Barreteau, C
2010-07-28
Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data.
Magnetoelastic plane waves in rotating media in thermoelasticity of type II (G-N model
Directory of Open Access Journals (Sweden)
S. K. Roychoudhuri
2004-01-01
Full Text Available A study is made of the propagation of time-harmonic plane waves in an infinite, conducting, thermoelastic solid permeated by a uniform primary external magnetic field when the entire medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II (G-N model (1993 is used to study the propagation of waves. A more general dispersion equation is derived to determine the effects of rotation, thermal parameters, characteristic of the medium, and the external magnetic field. If the primary magnetic field has a transverse component, it is observed that the longitudinal and transverse motions are linked together. For low frequency (χ≪1, χ being the ratio of the wave frequency to some standard frequency ω∗, the rotation and the thermal field have no effect on the phase velocity to the first order of χ and then this corresponds to only one slow wave influenced by the electromagnetic field only. But to the second order of χ, the phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation and depend on the thermal parameters cT, cT being the nondimensional thermal wave speed of G-N theory, and the thermoelastic coupling εT, the electromagnetic parameters εH, and the transverse magnetic field RH. Also for large frequency, rotation and thermal field have no effect on the phase velocity, which is independent of primary magnetic field to the first order of (1/χ (χ≫1, and the specific energy loss is a constant, independent of any field parameter. However, to the second order of (1/χ, rotation does exert influence on both the phase velocity and the attenuation factor, and the specific energy loss is affected by rotation and depends on the thermal parameters cT and εT, electromagnetic parameter εH, and the transverse magnetic field RH, whereas the specific energy loss is independent of any field parameters to the first order of (1/χ.
Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen
2017-10-01
The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.
G W with linearized augmented plane waves extended by high-energy local orbitals
Jiang, Hong; Blaha, Peter
2016-03-01
Many-body perturbation theory in the G W approximation is currently the most accurate and robust first-principles approach to determine the electronic band structure of weakly correlated insulating materials without any empirical input. Recent G W results for ZnO with more careful investigation of the convergence with respect to the number of unoccupied states have led to heated debates regarding the numerical accuracy of previously reported G W results using either pseudopotential plane waves or all-electron linearized augmented plane waves (LAPWs). The latter has been arguably regarded as the most accurate scheme for electronic-structure theory for solids. This work aims to solve the ZnO puzzle via a systematic investigation of the effects of including high-energy local orbitals (HLOs) in the LAPW-based G W calculations of semiconductors. Using ZnO as the prototypical example, it is shown that the inclusion of HLOs has two main effects: it improves the description of high-lying unoccupied states by reducing the linearization errors of the standard LAPW basis, and in addition it provides an efficient way to achieve the completeness in the summation of states in G W calculations. By investigating the convergence of G W band gaps with respect to the number of HLOs for several other typical examples, it was found that the effects of HLOs are highly system-dependent, and in most cases the inclusion of HLOs changes the band gap by less than 0.2 eV. Compared to its effects on the band gap, the consideration of HLOs has even stronger effects on the G W correction to the valence-band maximum, which is of great significance for the G W prediction of the ionization potentials of semiconductors. By considering an extended set of semiconductors with relatively well-established experimental band gaps, it was found that in general using a HLO-enhanced LAPW basis significantly improves the agreement with experiment for both the band gap and the ionization potential, and overall
Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-04-01
Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and
Karami, Behrouz; Shahsavari, Davood; Li, Li
2018-03-01
A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.
Four-dimensional parameter estimation of plane waves using swarming intelligence
International Nuclear Information System (INIS)
Zaman Fawad; Munir Fahad; Khan Zafar Ullah; Qureshi Ijaz Mansoor
2014-01-01
This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte—Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise. (interdisciplinary physics and related areas of science and technology)
Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi
2018-04-01
Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.
International Nuclear Information System (INIS)
Kriegsmann, G.A.
1976-01-01
In this paper we apply the method of geometrical optics to study the scattering of plane electromagnetic waves off a cylindrically confined cold plasma. For simplicity, we assume two types of incident polarization. In both cases scalar second order elliptic partial differential equations describe the fields. These problems are studied in the asymptotic limit aω/c→infinity (where a is the radius of the cylinder, ω is the frequency of the incident plane wave, and c is the velocity of light in free space). We furthermore assume a quadratic plasma density. This allows us to calculate explicitly the rays, amplitudes, caustics, and other features which arise in the geometrical optics approach. The assumed density also gives rise to the interesting cutoff and resonance phenomenon. Thus the amplification of the electromagnetic fields is observed. This phenomenon may have applications in laser fusion
Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis
Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng
2016-01-01
Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinalâ...
Deringer, Volker L; George, Janine; Dronskowski, Richard; Englert, Ulli
2017-05-16
Molecular compounds, organic and inorganic, crystallize in diverse and complex structures. They continue to inspire synthetic efforts and "crystal engineering", with implications ranging from fundamental questions to pharmaceutical research. The structural complexity of molecular solids is linked with diverse intermolecular interactions: hydrogen bonding with all its facets, halogen bonding, and other secondary bonding mechanisms of recent interest (and debate). Today, high-resolution diffraction experiments allow unprecedented insight into the structures of molecular crystals. Despite their usefulness, however, these experiments also face problems: hydrogen atoms are challenging to locate, and thermal effects may complicate matters. Moreover, even if the structure of a crystal is precisely known, this does not yet reveal the nature and strength of the intermolecular forces that hold it together. In this Account, we show that periodic plane-wave-based density functional theory (DFT) can be a useful, and sometimes unexpected, complement to molecular crystallography. Initially developed in the solid-state physics communities to treat inorganic solids, periodic DFT can be applied to molecular crystals just as well: theoretical structural optimizations "help out" by accurately localizing the elusive hydrogen atoms, reaching neutron-diffraction quality with much less expensive measurement equipment. In addition, phonon computations, again developed by physicists, can quantify the thermal motion of atoms and thus predict anisotropic displacement parameters and ORTEP ellipsoids "from scratch". But the synergy between experiment and theory goes much further than that. Once a structure has been accurately determined, computations give new and detailed insights into the aforementioned intermolecular interactions. For example, it has been debated whether short hydrogen bonds in solids have covalent character, and we have added a new twist to this discussion using an orbital
Plane-parallel waves as duals of the flat background III: T-duality with torsionless B-field
Hlavatý, Ladislav; Petr, Ivo; Petrásek, Filip
2018-04-01
By addition of non-zero, but torsionless B-field, we expand the classification of (non-)Abelian T-duals of the flat background in four dimensions with respect to 1, 2, 3 and 4D subgroups of the Poincaré group. We discuss the influence of the additional B-field on the process of dualization, and identify essential parts of the torsionless B-field that cannot in general be eliminated by coordinate or gauge transformation of the dual background. These effects are demonstrated using particular examples. Due to their physical importance, we focus on duals whose metrics represent plane-parallel (pp-)waves. Besides the previously found metrics, we find new pp-waves depending on parameters originating from the torsionless B-field. These pp-waves are brought into their standard forms in Brinkmann and Rosen coordinates.
Boyd, John P.
1998-08-01
We describe two new numerical models for solving the nonlinear shallow water wave equations on the equatorial beta-plane. The finite difference code is eighth order in space and 4th order in time. The second model is a four-mode Hermite-Galerkin scheme in latitude combined with a Fourier pseudospectral algorithm in longitude and 4th order time-marching. As a first application, we test the Boyd-Ripa theory for Kelvin wave frontogenesis. The zeroth order strained coordinates approximation is good even for waves of nondimensional unit amplitude. The first order corrections grow. Even so, for small amplitude, the first order analytical approximations encapsulate most of the difference between the zeroth order approximation and the numerical solution if the longitudinal derivatives are interpreted as x-derivatives rather than as derivatives with respect to the strained coordinate ξ. The main discrepancy is that for moderate and large amplitude, the front curves westward with increasing latitude.
Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres
Directory of Open Access Journals (Sweden)
J. F. McKenzie
2009-11-01
Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.
Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres
Directory of Open Access Journals (Sweden)
J. F. McKenzie
2009-11-01
Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θ_{c} versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θ_{c}~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.
Czech Academy of Sciences Publication Activity Database
Farra, V.; Pšenčík, Ivan
2010-01-01
Roč. 183, č. 3 (2010), s. 1443-1454 ISSN 0956-540X R&D Projects: GA ČR GA205/08/0332 Institutional research plan: CEZ:AV0Z30120515 Keywords : body waves * seismic anisotropy * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.411, year: 2010
Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C
2009-04-01
A detailed analysis of the plane-wave diffraction by a finite-radius circular spiral phase plate (SPP) with integer and fractional topological charge and with variable transmission coefficients inside and outside of the plate edge is presented. We characterize the effect of varying the transmission coefficients and the parameters of the SPP on the propagated field. The vortex structure for integer and fractional phase step of the SPPs with and without phase apodization at the plate edge is also analyzed. The consideration of the interference between the light crossing the SPP and the light that undergoes no phase alteration at the aperture plane reveals new and interesting phenomena associated to this classical problem.
An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach
Directory of Open Access Journals (Sweden)
Ulrike Drähne
2015-12-01
Full Text Available This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation; experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions.
Plane-wave and common-translation-factor treatments of He2++H collisions at high velocities
International Nuclear Information System (INIS)
Errea, L.F.; Harel, C.; Jouin, H.; Maidagan, J.M.; Mendez, L.; Pons, B.; Riera, A.
1992-01-01
We complement previous work that showed that the molecular approach, modified with plane-wave translation factors, is able to reproduce the fall of charge-exchange cross sections in He 2+ +H collisions, by presenting the molecular data, and studying the corresponding mechanism. We test the accuracy of simplifications of the method that have been employed in the literature, and that lead to very simple calculations. We show that the common-translation-factor method is also successful at high nuclear velocities, provided that sufficiently excited states are included in the basis; moreover, it yields a simple picture of the mechanism and a description of ionization processes at high velocities
Czech Academy of Sciences Publication Activity Database
Čársky, Petr
2009-01-01
Roč. 109, č. 620 (2009), s. 1237-1242 ISSN 0020-7608 R&D Projects: GA ČR GA203/07/0070; GA ČR GA202/08/0631; GA AV ČR 1ET400400413; GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : Derivatives of Coulomb integrals * mixed Gaussian and plane-wave basis sets * electron scattering * computer time saving Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2009
Energy Technology Data Exchange (ETDEWEB)
Colavita, E. [Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, México, D.F., 09790 (Mexico); Hacyan, S., E-mail: hacyan@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, México D. F., 01000 (Mexico)
2014-03-15
We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.
Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.
2018-03-01
Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.
808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature
Urata, Yoshiharu; Wada, Satoshi
2005-05-01
A high-quality gadolinium vanadate (GdVO4) crystal with 7-at. % thulium as the starting material was grown by the Czochralski technique. The measured absorption spectra exhibited sufficient absorption coefficients for laser diodes (LDs) for neodymium laser pumping: 6.0 cm^-1 for pi polarization and 6.2 cm^-1 for sigma polarization at 808 nm. Laser oscillation was carried out with single-stripe 808-nm LDs in an end-pumping configuration. A slope efficiency of 28% and a threshold of 750 mW were exhibited with respect to the absorbed pump power. An output power of 420 mW was achieved at an absorbed power of 2.4 W. It was demonstrated that Tm:GdVO4 is a useful material for 2-μm lasers, particularly in a compact LD-pumped system.
Prediction of Vertical-Plane Wave Loading and Ship Responses in High Seas
DEFF Research Database (Denmark)
Wang, Zhaohui; Xia, Jinzhu; Jensen, Jørgen Juncher
2000-01-01
.From the rather extensive computations and comparisons, it is found that non-linear effects are significant in head and bow waes in the motion-wave resonant region for both heave and pitch motions, bow accelerations and vertical bending moments for two container ships considered, whereas not significant...
Boundary attenuation angles for inhomogeneous plane waves in anisotropic dissipative media
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2011-01-01
Roč. 76, č. 3 (2011), WA51-WA62 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional research plan: CEZ:AV0Z30120515 Keywords : attenuation angles * seismic waves * seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.418, year: 2011
Directory of Open Access Journals (Sweden)
V. T. Erofeenko
2017-01-01
Full Text Available The main idea of the article is the development of the method for solving the boundary-value problem of penetrating the plane monochromatic electromagnetic fields through the screen made from the material with space dispersion. The problem is based on the use of the differential mathematical model of the medium with space dispersion, classical boundary conditions of continuity of the tangential components of the fields and complementary boundary conditions on the face surfaces of the screen. The article gives an analytical solution of the boundary-value problem and examines the ratio of screen performance by the reduction of the field while passing through the screen.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Plane Wave-Perturbative Method for Evaluating the Effective Speed of Sound in 1D Phononic Crystals
Directory of Open Access Journals (Sweden)
J. Flores Méndez
2016-01-01
Full Text Available A method for calculating the effective sound velocities for a 1D phononic crystal is presented; it is valid when the lattice constant is much smaller than the acoustic wave length; therefore, the periodic medium could be regarded as a homogeneous one. The method is based on the expansion of the displacements field into plane waves, satisfying the Bloch theorem. The expansion allows us to obtain a wave equation for the amplitude of the macroscopic displacements field. From the form of this equation we identify the effective parameters, namely, the effective sound velocities for the transverse and longitudinal macroscopic displacements in the homogenized 1D phononic crystal. As a result, the explicit expressions for the effective sound velocities in terms of the parameters of isotropic inclusions in the unit cell are obtained: mass density and elastic moduli. These expressions are used for studying the dependence of the effective, transverse and longitudinal, sound velocities for a binary 1D phononic crystal upon the inclusion filling fraction. A particular case is presented for 1D phononic crystals composed of W-Al and Polyethylene-Si, extending for a case solid-fluid.
DEFF Research Database (Denmark)
Zwieb, Christian; Gorodkin, Jan; Knudsen, Bjarne
2003-01-01
manually, assisted by computational tools, to determine base pairs supported by comparative sequence analysis. The tmRNA alignment, available in a variety of formats, provides the basis for the secondary and tertiary structure of each tmRNA molecule. Three-dimensional models of the tm......Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html with mirror sites located at Auburn University, Auburn, Alabama (http://www.ag.auburn.edu/mirror/tm......RDB/) and the Bioinformatics Research Center, Aarhus, Denmark (http://www.bioinf.au.dk/tmRDB/). The tmRDB collects and distributes information relevant to the study of tmRNA. In trans-translation, this molecule combines properties of tRNA and mRNA and binds several proteins to form the tmRNP. Related RNPs are likely...
Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang
2018-02-01
A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.
Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field
International Nuclear Information System (INIS)
Ni Guyan; Yan Li; Yuan Naichang
2008-01-01
This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum–Liu–Tesche (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent. (the physics of elementary particles and fields)
Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing
Hewener, Holger J.; Tretbar, Steffen H.
Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.
International Nuclear Information System (INIS)
Balyan, M.K.
2014-01-01
Symmetrical Laue diffraction in a perfect crystal with a plane entrance surface is considered. The two dimensional curvature of the wavefront of the incident beam is taken into account. Using the corresponding Green function, a general expression for the amplitude of diffracted wave in the crystal is presented. Based on this expression, the concept of a locally plane wave, taking into account two-dimensional curvature of the wavefront, is analyzed, with use of which the rocking curve, depending not only on the angular deviation from the Bragg exact direction in the diffraction plane, but on the angular deviation in the direction perpendicular to the diffraction plane also. The obtained result is compared with the result of the standard dynamical diffraction theory
One-dimensional plane wave simulation of laser beam propagation and breakdown in the atmosphere
Energy Technology Data Exchange (ETDEWEB)
Mayhall, D.J.; Yee, J.H. [Lawrence Livermore National Lab., CA (United States); Sieger, G.E.
1994-12-31
For several years, numerical simulation of intense microwave and laser beam propagation in the atmosphere has been conducted at Lawrence Livermore National Laboratory. For very short pulses of 20 ns or less, full-wave electron fluid computer codes have investigated atmospheric propagation, as well as propagation in low-pressure, air-filled waveguides. These one- and two-dimensional codes solved time-dependent equations for electron number, momentum, and energy conservation self-consistently with Maxwell`s curl equations. Because of machine limitations, these codes, which resolve variations within a wave cycle, have been impractical for pulses longer than several hundred cycles. A one-dimensional, time-harmonic, envelope electron fluid code has been developed for calculation of long-pulse, cascade ionization microwave and laser beam effects in the atmosphere. In this investigation, the authors consider envelope code calculations for incident pulses from 0.1--100 ns in the laser wavelength regime for propagation in the lower atmosphere. Both CO{sub 2} and neodymium glass laser wavelengths are addressed. Square pulse breakdown electric field thresholds are calculated and compared with analytic predictions from the literature. Gaussian envelope thresholds are also calculated. Propagated and tail-eroded electric field waveshapes and electric density and energy profiles for several incident amplitudes, waveshapes, and pulse lengths will be presented.
Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-01-01
This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg-1 when the incident power density is at the reference level of ICNIRP guideline for general public environment.
320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging
Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.
2012-01-01
A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.
On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations
Energy Technology Data Exchange (ETDEWEB)
Diaz Vazquez, D.E.
2007-09-13
This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)
On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations
International Nuclear Information System (INIS)
Diaz Vazquez, D.E.
2007-01-01
This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)
A family of nonlinear Schrödinger equations admitting q-plane wave solutions
Nobre, F. D.; Plastino, A. R.
2017-08-01
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
A new standing-wave-type linear ultrasonic motor based on in-plane modes.
Shi, Yunlai; Zhao, Chunsheng
2011-05-01
This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization. Copyright © 2010 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived b...
Directory of Open Access Journals (Sweden)
Rajneesh Kumar
Full Text Available The problem of reflection and refraction phenomenon due to plane waves incident obliquely at a plane interface between uniform elastic solid half-space and microstretch thermoelastic diffusion solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the microstretch thermoelastic diffusion properties of the media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios have been computed numerically for a particular model. The variations of energy ratios with angle of incidence are shown for thermoelastic diffusion media in the context of Lord-Shulman (L-S (1967 and Green-Lindsay (G-L (1972 theories. The conservation of energy at the interface is verified. Some particular cases are also deduced from the present investigation.
International Nuclear Information System (INIS)
Bakker, J F; Paulides, M M; Van Rhoon, G C; Christ, A; Kuster, N
2010-01-01
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR wb ) and the peak 10 g spatial-averaged SAR (SAR 10g ). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR wb ) and 58% (SAR 10g ) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR wb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR 10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
Energy Technology Data Exchange (ETDEWEB)
Bakker, J F; Paulides, M M; Van Rhoon, G C [Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Section Hyperthermia, PO box 5201, NL-3008 AE, Rotterdam (Netherlands); Christ, A; Kuster, N, E-mail: j.bakker@erasmusmc.n [Foundation for Research on Information Technologies in Society (IT' IS) (Switzerland)
2010-06-07
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR{sub wb}) and the peak 10 g spatial-averaged SAR (SAR{sub 10g}). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR{sub wb}) and 58% (SAR{sub 10g}) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR{sub wb} is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR{sub 10g} values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
The D-instanton and other supersymmetric D-branes in IIB plane-wave string theory
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Green, Michael B.
2003-01-01
A class of D-branes for the type IIB plane-wave background is considered that preserve half the dynamical supersymmetries of the light-cone gauge. The D-branes of this type are the Euclidean (or instantonic) (0,0), (0,4), and (4,0) branes (where (r,s) denotes a brane oriented with r axes in the first four directions transverse to the +, - light-cone, and s axes in the second four directions). Corresponding Lorentzian D-branes are (+,-;0,0), (+,-;0,4), and (+,-;4,0). These are constructed in two ways. The first uses a boundary state formalism which implements appropriate fermionic gluing conditions and the second is based on a direct quantization of the open strings ending on the branes. In distinction to the D-branes considered earlier these have massless world-volume fermions but do not possess kinematical supersymmetries. Cylinder diagrams describing the overlap between a pair of boundary states displaced by some distance are evaluated. The open-string description of this system involves mode frequencies that are, in general, given by irrational solutions to transcendental equations. The closed-string and open-string descriptions are shown to be equivalent by a nontrivial implementation of the S modular transformation. A classical description of the D-instanton (the (0,0) case) in light-cone gauge is also given
National Research Council Canada - National Science Library
Boudreau, Brian R
2007-01-01
... displacement small water plane area trimaran design. The analysis explores eighteen different small water plane area side hull configurations to verify through a series of computational fluid dynamics calculations the total resistance and wake...
Oberhofer, Harald; Blumberger, Jochen
2010-12-28
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q(-)) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ()(1/2)=6.7 mH, is significantly higher than the value obtained for the minimum energy structure, |H(ab)|=3.8 mH. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q(-) in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Directory of Open Access Journals (Sweden)
C. T. Duba
2012-05-01
Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived...... of the numerical Method of Auxiliary Sources for a range of scattering configurations....... with their singularities at different positions away from the origin. The transformation necessitates a truncation of the wave transformation but the inaccuracy introduced hereby is shown to be negligible. The analytical Method of Auxiliary Sources solution is employed as a reference to investigate the accuracy...
Hutter, Jürg
2003-03-01
An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.
Energy Technology Data Exchange (ETDEWEB)
Ochi, Masayuki, E-mail: ochi@phys.sci.osaka-u.ac.jp; Arita, Ryotaro [RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198 (Japan); JST ERATO Isobe Degenerate pi-Integration Project, Advanced Institute for Materials Research (AIMR), Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yamamoto, Yoshiyuki [Department of Physics, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Tsuneyuki, Shinji [Department of Physics, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581 (Japan)
2016-03-14
We develop an iterative diagonalization scheme in solving a one-body self-consistent-field equation in the transcorrelated (TC) method using a plane-wave basis set. Non-Hermiticity in the TC method is well handled with a block-Davidson algorithm. We verify that the required computational cost is efficiently reduced by our algorithm. In addition, we apply our plane-wave-basis TC calculation to some simple sp-electron systems with deep core states to elucidate an impact of the pseudopotential approximation to the calculated band structures. We find that a position of the deep valence bands is improved by an explicit inclusion of core states, but an overall band structure is consistent with a regular setup that includes core states into the pseudopotentials. This study offers an important understanding for the future application of the TC method to strongly correlated solids.
Directory of Open Access Journals (Sweden)
O. W. Roberts
2014-12-01
Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
Yarne, Dawn A.; Tuckerman, Mark E.; Martyna, Glenn J.
2001-08-01
Mixed ab initio/empirical force-field simulation studies, calculations in which one part of the system is treated using a fully ab initio description and another part is treated using an empirical description, are becoming increasingly popular. Here, the ability of the commonly used, plane wave-based generalized gradient approximation to density functional theory is extended to model systems in which the electrons are assumed to be localized in a single small region of space, that is, itself, embedded within a large chemically inert bath. This is accomplished by introducing two length scales, so that the rapidly varying, short range, electron-electron and electron-atom interactions, arising from the region where the electrons are localized, can be treated using an appropriately large plane wave basis, while the corresponding, slowly varying, long range interactions of the electrons with the full system or bath, can be treated using a small basis. Briefly, a novel Cardinal B-spline based formalism is employed to derive a smooth, differentiable, and rapidly convergent (with respect to the small basis) expression for the total electronic energy, which explicitly contains the two length scales. The method allows reciprocal space based techniques designed to treat clusters, wires, surfaces and solids/liquids (open, and 1-D and 2-D periodic boundary conditions, respectively) to be utilized. Other plane wave-based "mixed" methods are restricted to clusters. The new methodology, which scales as N log N at fixed size of the chemically active region, has been implemented for parallel computing platforms and tested through applications to both model and realistic problems including an enzyme, human carbonic anhydrase II solvated in an explicit bath of water molecules.
International Nuclear Information System (INIS)
Montenegro, E.; Pinho, A.G. de; Baptista, G.B.
1981-01-01
An exact analytical expression for the energy differential K-shell ionisation cross section is obtained in the framework of the plane-wave Born approximation (PWBA). The excitation function I(eta, theta) is expressed in terms of elementary analytical functions plus a rapidly convergent power-series expansion. With a few terms of the power series the values obtained by numerical integration are reproduced within the precision inherent in the available tables. Starting from the same general formulation an exact algebraic equation for the 1s-n excitation for atomic hydrogen is also obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2016-04-15
An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.
Qiang, Bo; Brigham, John C.; McGough, Robert J.; Greenleaf, James F.; Urban, Matthew W.
2017-01-01
Shear wave elastography is a versatile technique that is being applied to many organs. However, in tissues that exhibit anisotropic material properties, special care must be taken to estimate shear wave propagation accurately and efficiently. A two-dimensional simulation method is implemented to simulate the shear wave propagation in the plane of symmetry in transversely isotropic viscoelastic media. The method uses a mapped Chebyshev pseudo-spectral method to calculate the spatial derivatives and an Adams-Bashforth-Moulton integrator with variable step sizes for time marching. The boundaries of the two-dimensional domain are surrounded by perfectly matched layers (PML) to approximate an infinite domain and minimize reflection errors. In an earlier work, we proposed a solution for estimating the apparent shear wave elasticity and viscosity of the spatial group velocity as a function of rotation angle through a low frequency approximation by a Taylor expansion. With the solver implemented in MATLAB, the simulated results in this paper match well with the theory. Compared to the finite element method (FEM) simulations we used before, the pseudo-spectral solver consumes less memory and is faster and achieves better accuracy. PMID:27221812
Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J
2014-03-20
The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
Dariescu, Marina-Aura; Dariescu, Ciprian
2012-10-01
Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.
Ahmad, Iftikhar; Maqbool, Muhammad
2014-11-01
Dielectric function, absorption coefficient, reflectivity, optical conductivity, energy loss spectra, index of refraction and extinction coefficient of AlGaX (X=P, As, Sb) in rocksalt phase, are calculated using full potential linearized augmented plane wave (FP-LAPW) method. All optical parameters are calculated in the incident photon energy range 0-25 eV. The maximum value of optical conductivity observed is 15 000 S. Index of refraction has a maximum value of 4.6. A decrease in the absorption coefficient and optical conductivity is observed when X is replaced by P, As and Sb. The extinction coefficient increases when P is replaced by As and Sb. The high value (n = 4.6) of the index of refraction shows that AlGaX is a suitable alloy to be used in making advanced optical devices.
International Nuclear Information System (INIS)
Riglet, Philippe
1979-01-01
After having recalled fundamental notions related to the dynamic theory which govern X ray propagation in perfect and deformed crystals, this research thesis addresses various problems and difficulties met in the separate study of epitaxy and substrate strain fields: firstly, to obtain a very slightly divergent, highly monochromatic and harmonic-free beam from a white synchrotron radiation; secondly, to realise topographies in plane wave on a two axis spectrometer; and thirdly, to elaborate, from previously presented theoretical notions, a programme of simulation of dislocation images for topographies in reflection on thin crystals (about a micron). Theoretical and experimental images are compared to validate elastic models, and notably to assess the influence of the very close free surface on the actual deformation field within the epitaxial layer
Drużbicki, Kacper; Mikuli, Edward; Pałka, Norbert; Zalewski, Sławomir; Ossowska-Chruściel, Mirosława D
2015-01-29
The polymorphism of resorcinol has been complementary studied by combining Raman, time-domain terahertz, and inelastic neutron scattering spectroscopy with modern solid-state density functional theory (DFT) calculations. The spectral differences, emerging from the temperature-induced structural phase transition, have been successfully interpreted with an emphasis on the low-wavenumber range. The given interpretation is based on the plane-wave DFT computations, providing an excellent overall reproduction of both wavenumbers and intensities and revealing the source of the observed spectral differences. The performance of the generalized gradient approximation (GGA) functionals in prediction of the structural parameters and the vibrational spectra of the normal-pressure polymorphs of resorcinol has been extensively examined. The results show that the standard Perdew, Burke, and Ernzerhof (PBE) approach along with its "hard" revised form tends to be superior if compared to the "soft" GGA approximation.
Energy Technology Data Exchange (ETDEWEB)
Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)
2015-10-28
Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.
2011-01-01
The adsorption of Ag, Au, and Pd atoms on benzene, coronene, and graphene has been studied using post Hartree–Fock wave function theory (CCSD(T), MP2) and density functional theory (M06-2X, DFT-D3, PBE, vdW-DF) methods. The CCSD(T) benchmark binding energies for benzene–M (M = Pd, Au, Ag) complexes are 19.7, 4.2, and 2.3 kcal/mol, respectively. We found that the nature of binding of the three metals is different: While silver binds predominantly through dispersion interactions, the binding of palladium has a covalent character, and the binding of gold involves a subtle combination of charge transfer and dispersion interactions as well as relativistic effects. We demonstrate that the CCSD(T) benchmark binding energies for benzene–M complexes can be reproduced in plane-wave density functional theory calculations by including a fraction of the exact exchange and a nonempirical van der Waals correction (EE+vdW). Applying the EE+vdW method, we obtained binding energies for the graphene–M (M = Pd, Au, Ag) complexes of 17.4, 5.6, and 4.3 kcal/mol, respectively. The trends in binding energies found for the benzene–M complexes correspond to those in coronene and graphene complexes. DFT methods that use empirical corrections to account for the effects of vdW interactions significantly overestimate binding energies in some of the studied systems. PMID:22076121
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-09-01
Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.
Energy Technology Data Exchange (ETDEWEB)
Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.
2009-12-14
The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe{sub 3} family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the resistivity of DyTe{sub 3} indicates that additional nesting of the reconstructed Fermi surface in the CDW state plays an important role in determining the magnetic structure.
Samir, Anthony E; Dhyani, Manish; Anvari, Arash; Prescott, Jason; Halpern, Elkan F; Faquin, William C; Stephen, Antonia
2015-11-01
To evaluate the diagnostic accuracy of shear-wave elastography (SWE) for the diagnosis of malignancy in follicular lesions and to identify the optimal SWE measurement plane. The institutional review board approved this HIPAA-compliant, single-institution, prospective pilot study. Subjects scheduled for surgery after a previous fine-needle aspiration report of "atypia of undetermined significance" or "follicular lesion of undetermined significance," "suspicion for follicular neoplasm," or "suspicion for Hurthle cell neoplasm," were enrolled after obtaining informed consent. Subjects underwent conventional ultrasonography (US), Doppler evaluation, and SWE preoperatively, and their predictive value for thyroid malignancy was evaluated relative to the reference standard of surgical pathologic findings. Thirty-five patients (12 men, 23 women) with a mean age of 55 years (range, 23-85 years) and a fine-needle aspiration diagnosis of atypia of undetermined significance or follicular lesion of undetermined significance (n = 16), suspicion for follicular neoplasm (n = 14), and suspicion for Hurthle cell neoplasm (n = 5) were enrolled in the study. Male sex was a statistically significant (P = .02) predictor of malignancy, but age was not. No sonographic morphologic parameter, including nodule size, microcalcification, macrocalcification, halo sign, taller than wide dimension, or hypoechogenicity, was associated with malignancy. Similarly, no Doppler feature, including intranodular vascularity, pulsatility index, resistive index, or peak-systolic velocity, was associated with malignancy. Higher median SWE tissue Young modulus estimates from the transverse insonation plane were associated with malignancy, yielding an area under the receiver operating characteristic curve of 0.81 (95% confidence interval: 0.62, 1.00) for differentiation of malignant from benign nodules. At a cutoff value of 22.3 kPa, sensitivity, specificity, positive predictive value, and negative predictive
Flesch, M; Pernot, M; Provost, J; Ferin, G; Nguyen-Dinh, A; Tanter, M; Deffieux, T
2017-06-07
4D ultrafast ultrasound imaging was recently shown using a 2D matrix (i.e. fully populated) connected to a 1024-channel ultrafast ultrasound scanner. In this study, we investigate the row-column addressing (RCA) matrix approach, which allows a reduction of independent channels from N × N to N + N, with a dedicated beamforming strategy for ultrafast ultrasound imaging based on the coherent compounding of orthogonal plane wave (OPW). OPW is based on coherent compounding of plane wave transmissions in one direction with receive beamforming along the orthogonal direction and its orthogonal companion sequence. Such coherent recombination of complementary orthogonal sequences leads to the virtual transmit focusing in both directions which results into a final isotropic point spread function (PSF). In this study, a 32 × 32 2D matrix array probe (1024 channels), centered at 5 MHz was considered. An RCA array, of same footprint with 32 + 32 elements (64 channels), was emulated by summing the elements either along a line or a column in software prior to beamforming. This approach allowed for the direct comparison of the 32 + 32 RCA scheme to the optimal fully sampled 32 × 32 2D matrix configuration, which served as the gold standard. This approach was first studied through PSF simulations and then validated experimentally on a phantom consisting of anechoic cysts and echogenic wires. The contrast-to-noise ratio and the lateral resolution of the RCA approach were found to be approximately equal to half (in decibel) and twice the values, respectively, obtained when using the 2D matrix approach. Results in a Doppler phantom and the human humeral artery in vivo confirmed that ultrafast Doppler imaging can be achieved with reduced performances when compared against the equivalent 2D matrix. Volumetric anatomic Doppler rendering and voxel-based pulsed Doppler quantification are presented as well. OPW compound imaging
Flesch, M.; Pernot, M.; Provost, J.; Ferin, G.; Nguyen-Dinh, A.; Tanter, M.; Deffieux, T.
2017-06-01
4D ultrafast ultrasound imaging was recently shown using a 2D matrix (i.e. fully populated) connected to a 1024-channel ultrafast ultrasound scanner. In this study, we investigate the row-column addressing (RCA) matrix approach, which allows a reduction of independent channels from N × N to N + N, with a dedicated beamforming strategy for ultrafast ultrasound imaging based on the coherent compounding of orthogonal plane wave (OPW). OPW is based on coherent compounding of plane wave transmissions in one direction with receive beamforming along the orthogonal direction and its orthogonal companion sequence. Such coherent recombination of complementary orthogonal sequences leads to the virtual transmit focusing in both directions which results into a final isotropic point spread function (PSF). In this study, a 32 × 32 2D matrix array probe (1024 channels), centered at 5 MHz was considered. An RCA array, of same footprint with 32 + 32 elements (64 channels), was emulated by summing the elements either along a line or a column in software prior to beamforming. This approach allowed for the direct comparison of the 32 + 32 RCA scheme to the optimal fully sampled 32 × 32 2D matrix configuration, which served as the gold standard. This approach was first studied through PSF simulations and then validated experimentally on a phantom consisting of anechoic cysts and echogenic wires. The contrast-to-noise ratio and the lateral resolution of the RCA approach were found to be approximately equal to half (in decibel) and twice the values, respectively, obtained when using the 2D matrix approach. Results in a Doppler phantom and the human humeral artery in vivo confirmed that ultrafast Doppler imaging can be achieved with reduced performances when compared against the equivalent 2D matrix. Volumetric anatomic Doppler rendering and voxel-based pulsed Doppler quantification are presented as well. OPW compound imaging
Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu
2013-07-22
To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.
Directory of Open Access Journals (Sweden)
Larry W. Burggraf
2013-07-01
Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
International Nuclear Information System (INIS)
Wimmer, E.; Krakauer, H.; Weinert, M.; Freeman, A.J.
1981-01-01
The linearized-augmented-plane-wave (LAPW) method for thin films is generalized by removing the remaining shape approximation to the potential inside the atomic spheres. A new technique for solving Poisson's equation for a general charge density and potential is described and implemented in the film LAPW method. In the resulting full-potential LAPW method (FLAPW), all contributions to the potential are completely taken into account in the Hamiltonian matrix elements. The accuracy of the method: already well known for clean metal surfaces: is demonstrated for the case of a nearly free (noninteracting) O 2 molecule which is a severe test case of the method because of its large anisotropic charge distribution. Detailed comparisons show that the accuracy of the FLAPW results for O 2 exceeds that of existing state-of-the-art local-density linear-combination-of-atomic-orbitals (LCAO)-type calculations, and that taking the full potential LAPW results as a reference, the LCAO basis can be improved by adding off-site functions. Thus the full-potential LAPW is a unified method which is ideally suited to test not only molecular adsorption on surfaces, but also the components of the same system separately, i.e., the extreme limits of the molecule and the clean surface
Dixit, Anant; Ángyán, János G; Rocca, Dario
2016-09-14
A new formalism was recently proposed to improve random phase approximation (RPA) correlation energies by including approximate exchange effects [B. Mussard et al., J. Chem. Theory Comput. 12, 2191 (2016)]. Within this framework, by keeping only the electron-hole contributions to the exchange kernel, two approximations can be obtained: An adiabatic connection analog of the second order screened exchange (AC-SOSEX) and an approximate electron-hole time-dependent Hartree-Fock (eh-TDHF). Here we show how this formalism is suitable for an efficient implementation within the plane-wave basis set. The response functions involved in the AC-SOSEX and eh-TDHF equations can indeed be compactly represented by an auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix. Additionally, the explicit calculation of unoccupied states can be avoided by using density functional perturbation theory techniques and the matrix elements of dynamical response functions can be efficiently computed by applying the Lanczos algorithm. As shown by several applications to reaction energies and weakly bound dimers, the inclusion of the electron-hole kernel significantly improves the accuracy of ground-state correlation energies with respect to RPA and semi-local functionals.
Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe
2013-02-01
According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg-1 with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings were confirmed
Vollmerhausen, Richard H.
This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not
International Nuclear Information System (INIS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-01-01
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH 3 , CO 2 , formic acid, and benzene
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-09-01
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.
Ab initio structures and stabilities of HeTM3+ (TM=Sc-Cu)
International Nuclear Information System (INIS)
Wilson, David J.D.; Marsden, Colin J.; Nagy-Felsobuki, Ellak I. von
2002-01-01
The electronic structure and molecular properties of triply charged transition metal helides, HeTM 3+ (where TM = Sc-Cu), have been investigated employing CCSD(T), MCSCF and MRCI methods. Dissociation energies and harmonic vibrational frequencies have also been determined. For all the triply charged helides, the ground state is dominated by the 3d n electronic configuration. In addition, states with configurations that have holes in the metal 3d σ orbital exhibit greater binding energies. The suitability of single-reference methods and diagnostics for this series has been investigated, with the MCSCF wave function being the most reliable diagnostic tool for the applicability of SCF methods
Thermal Microphotonic Focal Plane Array (TM-FPA).
Energy Technology Data Exchange (ETDEWEB)
McCormick, Frederick Bossert; Lentine, Anthony L.; Wright, Jeremy Benjamin; Watts, Michael R.; Shaw, Michael J.; Rakich, Peter T.; Nielson, Gregory N.; Peters, David William; Zortman, William A.
2009-10-01
The advent of high quality factor (Q) microphotonic-resonators has led to the demonstration of high-fidelity optical sensors of many physical phenomena (e.g. mechanical, chemical, and biological sensing) often with far better sensitivity than traditional techniques. Microphotonic-resonators also offer potential advantages as uncooled thermal detectors including significantly better noise performance, smaller pixel size, and faster response times than current thermal detectors. In particular, microphotonic thermal detectors do not suffer from Johnson noise in the sensor, offer far greater responsivity, and greater thermal isolation as they do not require metallic leads to the sensing element. Such advantages make the prospect of a microphotonic thermal imager highly attractive. Here, we introduce the microphotonic thermal detection technique, present the theoretical basis for the approach, discuss our progress on the development of this technology and consider future directions for thermal microphotonic imaging. Already we have demonstrated viability of device fabrication with the successful demonstration of a 20{micro}m pixel, and a scalable readout technique. Further, to date, we have achieved internal noise performance (NEP{sub Internal} < 1pW/{radical}Hz) in a 20{micro}m pixel thereby exceeding the noise performance of the best microbolometers while simultaneously demonstrating a thermal time constant ({tau} = 2ms) that is five times faster. In all, this results in an internal detectivity of D*{sub internal} = 2 x 10{sup 9}cm {center_dot} {radical}Hz/W, while roughly a factor of four better than the best uncooled commercial microbolometers, future demonstrations should enable another order of magnitude in sensitivity. While much work remains to achieve the level of maturity required for a deployable technology, already, microphotonic thermal detection has demonstrated considerable potential.
Magnetic Structure of Tb-Tm Alloys Studied by Neutron Diffraction
DEFF Research Database (Denmark)
Hansen, P.; Lebech, Bente
1976-01-01
Single crystals of Tb-Tm alloys with Tm contents of 12%, 40%, 55% and 65% were investigated by neutron diffractometry over the temperature range 4.2-300K. All these alloys order magnetically to a basal plane spiral below the Neel temperature. Below the Curie temperature the magnetic ordering...
Rivera, Andrea
2016-01-01
From moving ramps to playground slides, inclined planes are at work all over in our world today. Learn all about them in five easy-to-read chapters. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.
Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe
2013-02-21
According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings
2007-10-08
excitation of microwave spin waves.3,10,11 The analytical theory of spin-wave excitation in magnetic nanocontacts by spin-polarized current performed...linear theory ,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L... Oersted magnetic field, and/or by any other small interaction, neglected in the micromagnetic model. To make the excitation of subcritical modes12,15
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Translation-Memory (TM) Research
DEFF Research Database (Denmark)
Schjoldager, Anne Gram; Christensen, Tina Paulsen
2010-01-01
to be representative of the research field as a whole. Our analysis suggests that, while considerable knowledge is available about the technical side of TMs, more research is needed to understand how translators interact with TM technology and how TMs influence translators' cognitive translation processes....... It is no exaggeration to say that the advent of translation-memory (TM) systems in the translation profession has led to drastic changes in translators' processes and workflow, and yet, though many professional translators nowadays depend on some form of TM system, this has not been the object...... of much research. Our paper attempts to find out what we know about the nature, applications and influences of TM technology, including translators' interaction with TMs, and also how we know it. An essential part of the analysis is based on a selection of empirical TM studies, which we assume...
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)
2015-12-15
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...
International Nuclear Information System (INIS)
Nalegaev, S S; Petrov, N V; Bespalov, V G
2014-01-01
A numerical reconstruction of spatial distributions of optical radiation propagating through a volume of nonlinear medium at input and output planes of the medium was demonstrated using a scheme of digital holography. A nonlinear Schrodinger equation with Fourier Split-Step method was used as a tool to propagate wavefront in the volume of the medium. Time dependence of the refractive index change was not taken into account.
Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal
Xu, X. D.; Wang, X. D.; Lin, Z. F.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Gao, C. Q.; Gao, M. W.; Xu, J.
2009-11-01
Tm:Lu3Al5O12 (Tm:LuAG) crystal was grown by the Czochralski method. The segregation coefficient was measured by Inductively Coupled Plasma Atomic Emission Spectrometer. The cell parameters were analyzed with X-ray powder diffraction experiments. The absorption and fluorescence spectra of Tm:LuAG crystal at room temperature were investigated. With a 20 W fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Tm:LuAG crystal was demonstrated. The maximum output power at 2020 nm was obtained to be 3.04 W, and the slope efficiency was 25.3%.
Il'ichev, A. T.; Savin, A. S.
2017-12-01
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.
Directory of Open Access Journals (Sweden)
Abderraouf Messai
2013-01-01
Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.
International Nuclear Information System (INIS)
Finn, Lee Samuel; Thorne, Kip S.
2000-01-01
Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity Ω is 0.03∼ isco ≤1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass μ, with the distance to Earth chosen to be r o =1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and μ. Graphs are presented showing the range of the {M,a,μ} parameter space, for which S/N>10 at r 0 =1 Gpc during the last year of inspiral. The hole's spin a has a factor of ∼10 influence on the range of M (at fixed μ) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of ∼3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves
Covariant quantum mechanics on a null plane
International Nuclear Information System (INIS)
Leutwyler, H.; Stern, J.
1977-03-01
Lorentz invariance implies that the null plane wave functions factorize into a kinematical part describing the motion of the system as a whole and an inner wave function that involves the specific dynamical properties of the system - in complete correspondence with the non-relativistic situation. Covariance is equivalent to an angular condition which admits non-trivial solutions
DEFF Research Database (Denmark)
Rosenkilde, M M; Waldhoer, M; Lüttichau, H R
2001-01-01
expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....
Counting Tm dopant atoms around GaN dots using high-angle annular dark field images
International Nuclear Information System (INIS)
Rouvière, J-L; Okuno, H; Jouneau, P H; Bayle-Guillemaud, P; Daudin, B
2011-01-01
High resolution Z-contrast STEM imaging is used to study the Tm doping of GaN quantum dots grown in AlN by molecular beam epitaxy (MBE). High-angle annular dark field (HAADF) imaging allows us to visualize directly individual Tm atoms in the AlN matrix and even to count the number of Tm atoms in a given AlN atomic column. A new visibility coefficient to determine quantitatively the number of Tm atoms in a given atomic column is introduced. It is based on locally integrated intensities rather than on peak intensities of HAADF images. STEM image simulations shows that this new visibility is less sensitive to the defocus-induced blurring or to the position of the Tm atom within the thin lamella. Most of the Tm atoms diffuse out of GaN dots. Tm atoms are found at different positions in the AlN matrix, (i) Above the wetting layer, Tm atoms are spread within a thickness of 14 AlN monolayers (MLs). (ii) Above the quantum dots all the Tm are located in the same plane situated at 2-3 MLs above the apex of the GaN dot, i.e. at a distance of 14 MLs from the wetting layer, (iii) In addition, Tm can diffuse very far from the GaN dot by following threading dislocations lines.
Energy Technology Data Exchange (ETDEWEB)
Morrison, A. [Caneta Research Inc., Mississauga, ON (Canada)
2000-12-01
Ground heat exchangers that are not adequately sized lead to additional capital costs and increased circulation pump energy consumption, which in turn reduce the cost effectiveness of ground-source technology. The GS2000{sup TM}, Version 2.0 software program was developed to let the designer input important information such as monthly heat pump loads for the building, ground properties, heat exchanger configuration, geographic location and others that have an influence on the length of ground heat exchanger. The modelling of horizontal, slinky and vertical heat exchangers is possible using the GS2000{sup TM} Version 2.0 software, which is based on the cylindrical source heat transfer equation. The determination of the heat exchanger length needed to ensure the water/anti-freeze fluid temperature that enters the heat pumps remains within the minimum and maximum specified by the user is made by the software. Peak load analysis allowing for extreme conditions, and supplemental heat rejection allowing the modelling of cooling tower/heat exchanger hybrid systems are two of the other features offered by the software. The process followed for the design, using the GS2000{sup TM}, of a ground-source heat pump heat exchanger for an office building in Ottawa, Ontario is described in this paper. DOE 2.1E was used to determine the monthly space loads for the building. Grout selection and borehole spacing on the heat exchanger design was done using the GS2000{sup TM} software. It resulted in the drilling of shorter boreholes or fewer boreholes of equal depth. The information obtained allowed for a cost comparison with other alternatives. 2 refs., 2 tabs., 7 figs.
Observations of Obliquely Propagating Electron Bernstein Waves
DEFF Research Database (Denmark)
Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.
1981-01-01
Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....
Reciprocity Calibration in a Plane Wave Resonator.
1985-12-01
Korman, my thanks for your steadfast friendship when times were difficult, your encouragement, a ready smile , and good advice. To Dr. John Ertel and Lcdr...85/96 3280 ! 81-A(I,U7)/B6 ! XTRA 8290 RETURN 8300 ............. 8310 ! SUBROUTINE T, RELATE8320 ? MIC "B RECEIVED VOLTAGE TO 5204 INPUT 8325 IF...B2-AI(2.U7)/D6 7 XTRA 8390 RETURN -345 % .. . .. . . .. . . . . . .. . . . .........-- 4-." -... ll
International Nuclear Information System (INIS)
Takano, Mitsuo; Endou, Yukio; Nakayama, Hideo
1982-01-01
Development has been made of a black-and-white TV camera TM 1300 using an interline-transfer CCD, which excels in performance frame-transfer CCDs marketed since 1980: it has a greater number of horizontal picture elements and far smaller input power (less than 2 W at 9 V), uses hybrid ICs for the CCD driver unit to reduce the size of the camera, has no picture distortion, no burn-in; in addition, it has peripheral equipment, such as the camera housing and the pan and till head miniaturized as well. It is also expected to be widened in application to industrial TV. (author)
Equilibration in Transcendental Meditation (TM
Directory of Open Access Journals (Sweden)
Hossein Bagheri
2013-06-01
Full Text Available Today in the realm of theoretical and applied humanities, the main concern is the ways to attain inner equilibrium than prosperity and the ways to discover it. Equilibrium, in some way, evokes the development of tolerance and a peaceful life which is mostly, a controversial issue in Christianity and with a few differences, in sophism controversies. The present meaning seeking human or modern and post-modern human is testing different anti-progress and prophetic theories for peace and inner equilibrium to end his adversary and outer contradictions. By the massive advertisement on meditation and Transcendental Meditation (TM and its effects on health and equanimity which has been started since 1960s in Europe and continued to spread everywhere with the help of global networks, it seems necessary to study the roots, vitality, necessity, levels and related techniques and compare it with Islamic religious and cultural concepts and investigate the positive and negative aspects of these practices. The present study aims at discovering whether the equilibrium or peace attained through TM is genuine and beatific.
BIRADS{sup TM} mammography: Exercises
Energy Technology Data Exchange (ETDEWEB)
Balleyguier, Corinne [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: balleyguier@igr.fr; Bidault, Francois [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Mathieu, Marie Christine [Biopathology Department, Institut de Cancerologie Gustave-Roussy, 94805 Villejuif (France); Ayadi, Salma [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Couanet, Dominique [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Sigal, Robert [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)
2007-02-15
Some radiological cases are presented in this article to train the reader to the BIRADS{sup TM} classification in mammography. Each case is described according to Fourth American version of the BIRADS{sup TM} lexicon. Some classifications difficulties will also be presented, in order to show the complexity and the observer variability, commonly encountered in BIRADS{sup TM} 3 and 4 categories.
Windsor, Y. W.; Ramakrishnan, M.; Rettig, L.; Alberca, A.; Bothschafter, E. M.; Staub, U.; Shimamoto, K.; Hu, Y.; Lippert, T.; Schneider, C. W.
2015-06-01
We employ resonant soft x-ray diffraction to individually study the magnetic ordering of the Mn and the Tm sublattices in single-crystalline films of orthorhombic (o -) TmMn O3 . The same magnetic ordering wave vector of (0 q 0 ) with q ≈0.46 is found for both ionic species, suggesting that the familiar antiferromagnetic order of the Mn ions induces a magnetic order on the Tm unpaired 4 f electrons. Indeed, intensity variations of magnetic reflections with temperature corroborate this scenario. Calculated magnetic fields at the Tm sites are used as a model magnetic structure for the Tm, which correctly predicts intensity variations at the Tm resonance upon azimuthal rotation of the sample. The model allows ruling out a b c -cycloid modulation of the Mn ions as the cause for the incommensurate ordering, as found in TbMn O3 . The structural distortion, which occurs in the ferroelectric phase below TC, was followed through nonresonant diffraction of structural reflections forbidden by the high-temperature crystal symmetry. The (0 q 0 ) magnetic reflection appears at the Mn resonance well above TC, indicating that this reflection is sensitive also to the intermediate sinusoidal magnetic phase. The model presented suggests that the Tm 4 f electrons are polarized well above the ferroelectric transition and are possibly not affected by the transition at TC. The successful description of the induced order observed at the Tm resonance is a promising example for future element-selective studies in which "spectator" ions may allow access to previously unobtainable information about other constituent ions.
Electromagnetic cloaking devices for TE and TM polarizations
International Nuclear Information System (INIS)
Bilotti, Filiberto; Tricarico, Simone; Vegni, Lucio
2008-01-01
In this paper, we present the design of an electromagnetic cloaking device working for both transverse electric (TE) and transverse magnetic (TM) polarizations. The theoretical approach to cloaking used here is inspired by the one presented by Alu and Engheta (2005 Phys. Rev. E 72 016623) for TM polarization. The case of TE polarization is firstly considered and, then, an actual inclusion-based cloak for TE polarization is also designed. In such a case, the cloak is made of a mu-near-zero (MNZ) metamaterial, as the dual counterpart of the epsilon-near-zero (ENZ) material that can be used for purely dielectric objects. The operation and the robustness of the cloaking device for the TE polarization is deeply investigated through a complete set of full-wave numerical simulations. Finally, the design and an application of a cloak operating for both TE and TM polarizations employing both magnetic inclusions and the parallel plate medium already used by Silveirinha et al (Phys. Rev. E 75 036603) are presented.
van de Waerdt, J.W.
2006-01-01
I n this thesis, we present the TM3270 VLIW media-processor, the latest of TriMedia processors, and describe the innovations with respect to its prede- cessor: the TM3260. We describe enhancements to the load/store unit design, such as a new data prefetching technique, and architectural
Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm
International Nuclear Information System (INIS)
Liu Bin; Wang Qing-Guo; Tang Hui-Li; Wu Feng; Luo Ping; Zhao Heng-Yu; Shi Jiao-Jiao; He Nuo-Tian; Li Na; Li Qiu; Guo Chao; Wang Zhan-Shan; Xu Jun; Zheng Li-He; Su Liang-Bi; Liu Jun-Fang; Liu Jie; Fan Xiu-Wei; Xu Xiao-Dong
2017-01-01
The 4-at.% Tm:Sc 2 SiO 5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave (CW) laser output of (100)-cut Tm:SSO with the dimensions of 3 mm× 3 mm× 3 mm under laser diode (LD)-pumping is realized. The full width at half maximum (FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW. (paper)
DEFF Research Database (Denmark)
Cadogan, J.M.; Stewart, G.A.; Muños Pérez, S.
2014-01-01
We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and 169Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order...... to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The 169Tm hyperfine magnetic field...
Phase Plane Analysis Method of Nonlinear Traffic Phenomena
Directory of Open Access Journals (Sweden)
Wenhuan Ai
2015-01-01
Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.
Q-switched Ho:YLF laser pumped by a Tm:GdVO4 laser.
CSIR Research Space (South Africa)
Esser, MJD
2009-06-01
Full Text Available The authors have, through careful analysis of spectroscopic data, designed and demonstrated a diode-end-pumped, quasicontinuous wave Tm:GdVO4 laser operating at 1892 nm in order to pump a Q-switched Ho:YLF laser. The Ho:YLF maximum output energy...
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
International Nuclear Information System (INIS)
Scholl, M.S.; Trimmier, J.R.
1986-01-01
Two rare earth cations, thulium (Tm) and terbium (Tb) have been incorporated into a yttrium aluminum garnet (YAG) host material to obtain a blue phosphor. Thulium concentrations of up to 5% yield a saturated dark blue phosphor which exhibits a low efficiency. The highest efficiency for YAG:Tm occurs at a Tm concentration of 2%. A 0.5% concentration of terbium yields an unsaturated blue phosphor with an efficiency of approximately a factor of 15 times greater than that of Tm. The cathodoluminescence spectrum of YAG:Tm, Tb depicts features identifiable with YAG:Tb even at low Tb concentrations (0.5%). The light emitted by a Tb, Tm coactivated phosphor exhibits a clear shift toward the green region of the spectrum. There appears to be a resonant energy transfer from the 1 D 2 Tm 3+ state to the 5 D 4 Tb 3+ state. In the case of small concentrations of Tb in YAG, thulium behaves as a sensitizer for Tb cathodoluminescence
Cadogan, J M; Stewart, G A; Muñoz Pérez, S; Cobas, R; Hansen, B R; Avdeev, M; Hutchison, W D
2014-03-19
We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and (169)Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The (169)Tm hyperfine magnetic field at 5 K is 631(1) T.
ScoutTM, a portable MCA system
International Nuclear Information System (INIS)
Cheng, A.Y.; Ziemba, F.P.; Browning, J.E.; Szluk, N.
1998-01-01
Quantrad Sensor's hand-held multichannel analyzer (MCA), the Scout TM , has evolved considerably from the initial licensing from Pacific Northwest Laboratories (operated by Battelle Memorial Institute for the U.S. DOE). The Scout TM has grown into a flexible MCA system with alpha-, gamma-, X-ray and neutron detection capabilities with wide ranging applications. The development philosophy is discussed along with specific examples of design choices in areas such as manufacturability, upgradability, probe interchangability and software user interface. Recently introduced products include: software enhancements, additional probes, customized software and a second generation instrument, the Scout512 TM , that boasts increased capabilities. Future developments are also discussed. (author)
DEFF Research Database (Denmark)
Andersen, Ebbe Sloth; Rosenblad, Magnus Alm; Larsen, Niels
2006-01-01
in investigations of the tmRNP (a ribonucleoprotein complex which liberates stalled bacterial ribosomes) and the SRP (a particle which recognizes signal sequences and directs secretory proteins to cell membranes). The curated tmRNA and SRP RNA alignments consider base pairs supported by comparative sequence...... analysis. Also shown are alignments of the tmRNA-associated proteins SmpB, ribosomal protein S1, alanyl-tRNA synthetase and Elongation Factor Tu, as well as the SRP proteins SRP9, SRP14, SRP19, SRP21, SRP54 (Ffh), SRP68, SRP72, cpSRP43, Flhf, SRP receptor (alpha) and SRP receptor (beta). All alignments can...
Explicit TE/TM scheme for particle beam simulations
International Nuclear Information System (INIS)
Dohlus, M.; Zagorodnov, I.
2008-10-01
In this paper we propose an explicit two-level conservative scheme based on a TE/TM like splitting of the field components in time. Its dispersion properties are adjusted to accelerator problems. It is simpler and faster than the implicit version. It does not have dispersion in the longitudinal direction and the dispersion properties in the transversal plane are improved. The explicit character of the new scheme allows a uniformly stable conformal method without iterations and the scheme can be parallelized easily. It assures energy and charge conservation. A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for higher order azimuthal modes as it takes place for Yee's explicit method used in the most popular electrodynamics codes. (orig.)
The GEMnet (TM) global data communication
Yi, Byung K.; Chitty, Richard; Walters, Dave; Howard, Regan
1995-01-01
The GEMnet(TM) (Global Electronics Message network) will provide global digital data communications anywhere in the world at any time for minimum cost. GEMnet(TM) is an end-to-end Non-Voice Non-Geostationary Mobile Satellite (NVNG) (sometimes dubbed 'Little LEO') System which consists of a constellation of 38 low Earth orbiting small satellites and a ground segment. The GEMnet(TM) ground segment will consist of subscriber user terminals, gateway stations, a Network Operational Center(NOC), and a backbone network interconnecting the NOC and gateways. This paper will describe the GEMnet(TM) system concept including ground and space segments, system heritage, data communication services, and protocols.
Normative data for TM electrocochleography measures
Directory of Open Access Journals (Sweden)
Signe Schuster Grasel
2017-06-01
Conclusion: Normative data for TM ECochG parameters were established in 100 normal hearing subjects without MD. These data can be used to distinguish normal from pathological findings and in follow-up of MD patients.
International Nuclear Information System (INIS)
Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.
2016-09-01
The AP1000 TM plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)
SH-TM mathematical analogy for the two-layer case. A magnetotellurics application
Directory of Open Access Journals (Sweden)
J. Carcione
2017-02-01
Full Text Available The same mathematical formalism of the wave equation can be used to describe anelastic and electromagnetic wave propagation. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of two layers, considering the presence of anisotropy and attenuation -- viscosity in the viscoelastic case and resistivity in the electromagnetic case. The analogy is illustrated for SH (shear-horizontally polarised and TM (transverse-magnetic waves. In particular, we illustrate examples related to the magnetotelluric method applied to geothermal systems and consider the effects of anisotropy. The solution is tested with the classical solution for stratified isotropic media.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Propagation of Elastic Waves in Prestressed Media
Directory of Open Access Journals (Sweden)
Inder Singh
2010-01-01
Full Text Available 3D solutions of the dynamical equations in the presence of external forces are derived for a homogeneous, prestressed medium. 2D plane waves solutions are obtained from general solutions and show that there exist two types of plane waves, namely, quasi-P waves and quasi-SV waves. Expressions for slowness surfaces and apparent velocities for these waves are derived analytically as well as numerically and represented graphically.
Crystal growth, spectroscopic characterization and laser performance of Tm/Mg:LiNbO3 crystal
Zhang, P. X.; Yin, J. G.; Zhang, R.; Li, H. Q.; Xu, J. Q.; Hang, Y.
2014-03-01
A Tm, Mg co-doped LiNbO3 crystal was grown by the traditional Czochralski method. The room-temperature absorption, photo-luminescence spectra and fluorescence lifetime of Tm3+ ions in the crystal have been investigated. The experimental results show that the co-doped of MgO can lead to the lengthening of the measured fluorescence lifetime of the upper Tm3+:3F4 level. Based on the Judd-Ofelt approach, the intensity parameters Ω2,4,6 of Tm3+ were calculated to be Ω2 (6.29 × 10-20 cm2), Ω4 (0.54 × 10-20 cm2) and Ω6 (0.79 × 10-20 cm2). Other spectroscopic parameters that relate to laser performance were also obtained. Non-photorefractive continuous wave laser operation with a Tm, Mg:LiNbO3 single crystal is demonstrated at room temperature for the first time. We obtained 1.026 W output power at 1.885 μm with a slope efficiency of near 14%, which, to the best of our knowledge, is the largest output power and the highest slope efficiency obtained for this crystal thus far. The output power was observed to be stable, and the crystal showed no sign of photorefractive damage.
Tm:GGAG crystal for 2μm tunable diode-pumped laser
Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin
2016-04-01
The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.
MRI tracheomalacia (TM) assessment in pediatric patients
DEFF Research Database (Denmark)
Ciet, P.; Wielopolski, P.; Lever, S.
Purpose: TM is an excessive narrowing of the intrathoracic part of the trachea. TM is a common congenital pediatric anomaly, but it’s often not recognized due to its unspecific clinical presentation. The aims of our study are: 1) to develop cine-MRI sequences to visualize central airways in static...... 3mm3 voxels. “Dynamic” scans were performed with the same parameters but covering only the central thorax (1/3 volume), temporal resolution was 500 ms per volume using the TRICKS. In-house developed software for segmentation and analysis was used. Results: All subjects managed to follow the required...... breathing maneuvers. Images of central airways during static and dynamic conditions were acquired and could be analyzed. Three out of the 8 children had a TM just above the carina during forced expiration, confirmed by bronchoscopy. Conclusion: This pilot study shows that Dynamic-MRI is feasible...
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
A PC server ULTRASAVER{sub TM} MAGNIA{sub TM} 7010FR has been commercialized, with its reliability enhanced thanks to a newly installed failure-remedy function. In this field of business, it is the first high-performance CPU Pentium(reg sign) III Xeon-loaded server equipped with the quick rollback mechanism which is a failure remedy function. The design enables the system to return to the previous step for re-execution in case of a transient failure, and this in turn realizes a 50% reduction (according to Toshiba's survey) in server stoppage for the enhancement of reliability. The server is shipped with a MAGNIA{sub TM} RESCUE service (valid for one year) incorporated thereinto. This program has a log tracing function which collects information on failure and then automatically forwards the information to a maintenance center for log analysis for the assurance of prompt maintenance. (translated by NEDO)
Energy Technology Data Exchange (ETDEWEB)
Bharat, L. Krishna; Du, Peng; Yu, Jae Su, E-mail: jsyu@khu.ac.kr
2016-05-05
NaGdTiO{sub 4} (NGT) phosphors doped with different activator ions (Tm{sup 3+}, Dy{sup 3+}, and Eu{sup 3+}) were synthesized by a conventional solid-state reaction method in an ambient atmosphere. These phosphors were characterized by scanning electron microscope images, transmission electron microscope images, X-ray diffraction patterns, Fourier transform infrared spectra, and photoluminescence spectra. All the samples were crystallized in an orthorhombic phase with a space group of Pbcm (57). In Tm{sup 3+}/Dy{sup 3+} ions co-doped samples, white-light emission was observed under near-ultraviolet (NUV) excitation. In addition, the energy transfer between Tm{sup 3+} and Dy{sup 3+} ions was proved to be a resonant type via an electric dipole–dipole mechanism and the critical distance of energy transfer was calculated to be 19.91 Å. Furthermore, Tm{sup 3+}/Dy{sup 3+}/Eu{sup 3+} ions tri-doped NGT phosphors demonstrated warm white-light emission by appropriately tuning the activator content, based on the principle of energy transfer. These NUV wavelength excitable phosphors exhibit great potential as a single-phase full-color emitting phosphor for white light-emitting diode applications. - Highlights: • The pebble shaped NaGdTiO{sub 4} particles were prepared by solid-state reaction method. • Tm{sup 3+} and Dy{sup 3+} single doping gives respective blue and cool white light emission. • The Tm{sup 3+}/Dy{sup 3+} ions co-doped samples give CIE values near to standard white light. • Addition of Eu{sup 3+} ions shifts the CIE values towards warm white light region. • This single phase white light emitting phosphors have lower CCT values (<5000 K).
CSIR Research Space (South Africa)
Dhlamini, MS
2012-05-01
Full Text Available .physb.2011.09.091 Concentration effect of Tm3+ on cathodoluminescence properties of SiO2: Tm 3+ and SiO2:Ho 3+, Tm3+ systems M.S. Dhlamini, G.H. Mhlongo, H.C. Swart, O.M. Ntwaeaborwa, K.T. Hillie ABSTRACT: Cathodoluminescence (CL) properties of SiO...
EEM{sup TM} wireless supervision
Energy Technology Data Exchange (ETDEWEB)
Bilic, H. [Ericsson-Nikola Tesla d.d. Zagreb (Croatia)
2000-07-01
By adding the GSM network to the communication level of Energy Management systems, energy operating centres (EOC) can offer wireless access to the supervised equipment. Furthermore EOC can profit from rapid service development in the GSM networks. With implementation of GPRS to the GSM network EOC can instantly offer wireless access to external IP based networks such as Internet and corporate Intranets. The author describes architecture and key characteristic of Ericsson EnergyMaster{sup TM} (EEM{sup TM}) system for Energy Management, how and where to implement wireless supervision, wireless access to IP addresses and also how to implement new services provided by the GSM network. (orig.)
International Nuclear Information System (INIS)
Foda, Omar; Wheeler, Michael
2007-01-01
Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another
Energy Technology Data Exchange (ETDEWEB)
Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)
2007-01-15
Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.
Huang, Sha; Romanchuk, Gail; Pattridge, Katherine; Lesley, Scott A; Wilson, Ian A; Matthews, Rowena G; Ludwig, Martha
2007-08-01
The crystal structure of the Thermotoga maritima gene product TM0269, determined as part of genome-wide structural coverage of T. maritima by the Joint Center for Structural Genomics, revealed structural homology with the fourth module of the cobalamin-dependent methionine synthase (MetH) from Escherichia coli, despite the lack of significant sequence homology. The gene specifying TM0269 lies in close proximity to another gene, TM0268, which shows sequence homology with the first three modules of E. coli MetH. The fourth module of E. coli MetH is required for reductive remethylation of the cob(II)alamin form of the cofactor and binds the methyl donor for this reactivation, S-adenosylmethionine (AdoMet). Measurements of the rates of methionine formation in the presence and absence of TM0269 and AdoMet demonstrate that both TM0269 and AdoMet are required for reactivation of the inactive cob(II)alamin form of TM0268. These activity measurements confirm the structure-based assignment of the function of the TM0269 gene product. In the presence of TM0269, AdoMet, and reductants, the measured activity of T. maritima MetH is maximal near 80 degrees C, where the specific activity of the purified protein is approximately 15% of that of E. coli methionine synthase (MetH) at 37 degrees C. Comparisons of the structures and sequences of TM0269 and the reactivation domain of E. coli MetH suggest that AdoMet may be bound somewhat differently by the homologous proteins. However, the conformation of a hairpin that is critical for cobalamin binding in E. coli MetH, which constitutes an essential structural element, is retained in the T. maritima reactivation protein despite striking divergence of the sequences.
Wave resistance for high-speed catamarans
Energy Technology Data Exchange (ETDEWEB)
Moraes, H.B. [Para University, CEP (Brazil); Vasconcellos, J.M. [Federal University of Rio de Janeiro (Brazil). Naval Architecture Department; Latorre, R.G. [University of New Orleans, LA (United States)
2004-12-01
The object of this study was to investigate the wave resistance component for high-speed catamarans. Two methods were applied: the slender-body theory proposed by Michell [Philos. Mag. 45(5) (1898) 106] and a 3D method used by Shipflow{sup TM} (FLOWTECH, Shipflow{sup TM} 2.4, User Manual, 1988) software. Results were obtained for different types of twin hulls and attention was given to the effects of catamaran hull spacing. The study also included the effect of shallow water on the wave resistance component. Special attention was given to the height of waves generated by the craft to ascertain effect on river banks. (author)
Associations with Minspeak[TM] Icons
van der Merwe, Elmarie; Alant, Erna
2004-01-01
Although the Minspeak[TM] approach is used on communication devices worldwide, little research has been conducted on its applicability within specific cultural contexts. The impact that users' familiarity of symbols and associations can have on learnability necessitates more systematic research. This study was an investigation into the…
Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...
Indian Academy of Sciences (India)
c Indian Academy of Sciences. Error Analysis on Plane-to-Plane Linear Approximate Coordinate. Transformation. Q. F. Zhang1,∗, Q. Y. Peng1 & J. H. Fan2 ... In astronomy, some tasks require performing the coordinate transformation between two tangent planes in ... Based on these parameters, we get maxi- mum errors in ...
International Nuclear Information System (INIS)
Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi
2015-01-01
A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback
International Nuclear Information System (INIS)
Rensburg, E J Janse van; Ma, J
2006-01-01
We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models
Buckled cantilevers for out-of-plane platforms
International Nuclear Information System (INIS)
Johnstone, R W; Ma, A H; Sameoto, D; Parameswaran, M; Leung, A M
2008-01-01
In this paper, we show how surface-micromachined buckled cantilevers can be used to construct out-of-plane structures. We include the relevant theory necessary to predict the height and angle of plates attached to buckled cantilevers, as well as the mechanical stresses involved in assembly. These platforms can be assembled to any angle between 0° and 90° with respect to the substrate by changing the attachment point and the amount of deflection. Example devices were fabricated using PolyMUMPs(TM) and assembled. Using these devices, the deflection of the buckled cantilevers was verified, as well as the placement for raised platforms
Optical interconnections to focal plane arrays
Energy Technology Data Exchange (ETDEWEB)
Rienstra, J.L.; Hinckley, M.K.
2000-11-01
The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.
3D High Density mmWave Interconnects, Phase I
National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...
3D High Density mmWave Interconnects Project
National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...
3D High Density Wave Interconnects, Phase II
National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...
Double Structure Broadband Leaky Wave Antenna
Neto, A.; Dijk, R. van; Filippo, M.
2011-01-01
A leaky wave antenna contains a first and a second leaky wave antenna structure back to back against each other. Each antenna structure comprises a dielectric body and an elongated wave carrying structure, such as a slot in a conductive ground plane. In each leaky wave antenna structure the body and
Spectral wave characteristics off Gangavaram, Bay of Bengal.
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Dubhashi, K.K.; Nair, T.M.B.
is obtained. Eight consecutive spectra covering 1600 s are averaged and used to compute the half-hourly wave spectrum. Significant wave height (Hs) and mean wave period (Tm02) are estimated from the spectral moment. Definitions of wave parameters used... during data collection period. We thank the two anonymous reviewers for critical comments and suggestions which improved the quality of the paper. This work is NIO contribution No. ****. Annexure: Definition of wave parameters used...
DEFF Research Database (Denmark)
Manolova, Anna Vasileva; Ruepp, Sarah Renée
2010-01-01
. The applicability analysis carried out here focuses on the actual feasibility of the integration and the potential trade-offs which appear when two contradicting principles are combined. Taking advantage of the flexibility of the GMPLS control plane does not seem to be as easy and as straightforward as expected....... Thus, more than ten years later not many practical implementations of OBS networks with intelligent control can be found. The lack of active work in the ¯eld results in an incomplete set of proposals which address only few aspects of the integration challenge. Here, we analyze what is missing and why...... the existing solutions seem not to be able to provide the highly desirable strict QoS guarantees for the clients of the OBS networks....
TM01 mode accelerating cavity optimization
International Nuclear Information System (INIS)
Manca, J.J.; Knapp, E.A.
1978-08-01
The cost of an accelerator depends greatly upon the effective use of rf power for particle acceleration. Before completing an accelerator design, an optimization of the accelerating cells relative to the effective shunt impedance should be made to measure the structure's efficiency in providing a high and effective acceleration of particles for a given rf power. Optimization of the accelerating cell resonant at f/sub r/ = 1350 MHz (TM 01 mode) relative to the maximum effective shunt impedance ZT 2 was performed at the Los Alamos Scientific Laboratory using the computer program SUPERFISH. The study was parametric; one parameter was changed while the others were held constant. Frequency adjustments were made by changing the cavity radius. Results presented in this report can be used to design similar cavities at different resonant frequencies or to design a more complicated cavity (TM 02 mode) for the disk and washer structure
BIRADS{sup TM} classification in mammography
Energy Technology Data Exchange (ETDEWEB)
Balleyguier, Corinne [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France)]. E-mail: balleyguier@igr.fr; Ayadi, Salma [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Van Nguyen, Kim [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Vanel, Daniel [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Dromain, Clarisse [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Sigal, Robert [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France)
2007-02-15
The Breast Imaging Report and Data System (BIRADS) of the American College of Radiology (ACR) is today largely used in most of the countries where breast cancer screening is implemented. It is a tool defined to reduce variability between radiologists when creating the reports in mammography, ultrasonography or MRI. Some changes in the last version of the BIRADS{sup TM} have been included to reduce the inaccuracy of some categories, especially for category 4. The BIRADS{sup TM} includes a lexicon and descriptive diagrams of the anomalies, recommendations for the mammographic report as well as councils and examples of mammographic cases. This review describes the mammographic items of the BIRADS classification with its more recent developments, while detailing the advantages and limits of this classification.
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-10-01
PRIze{sup TM} 1.2 is a computer program that evaluates the improved oil recovery (IOR) potential of petroleum reservoirs including the use of horizontal wells. It was created in 1992 and has since been used in over 800 reservoir evaluations. The tool provides information on the feasibility of IOR processes based on reservoir parameters. PRIze{sup TM} makes predictions for chemical, gas injection and thermal IOR processes based on both vertical and horizontal wells. The program provides a uniform data entry screen that allows the user to input 42 average values of geological parameters, fluid properties and oil production mechanism information into a data file. The data can be used to provide a production forecast, and enable the user to establish, to a first order approximation, the economic viability of a given process.
International Nuclear Information System (INIS)
Xu, W.; Anderson, B.; Auberbach, L.; Averett, T.; Bertozzi, W.; Black, T.; Calarco, J.; Cardman, L.; Cates, G.D.; Chai, Z.W.; Chen, J.P.; Choi, S.; Chudakov, E.; Churchwell, S.; Corrado, G.S.; Crawford, C.; Dale, D.; Deur, A.; Djawotho, P.; Donnelly, T.W.; Dutta, D.; Finn, J.M.; Gao, H.; Gilman, R.; Glamazdin, A.V.; Glashausser, C.; Gloeckle, Walter; Golak, J.; Gomez, J.; Gorbenko, V.G.; Hansen, J.O.; Hersman, F.W.; Higinbotham, D.W.; Holmes, R.; Howell, C.R.; Hughes, E.; Humensky, B.; Incerti, S.; Jager, C.W. de; Jensen, J.S.; Jiang, X.; Jones, C.E.; Jones, M.; Kahl, R.; Kamada, H.; Kievsky, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Liang, M.; Liyanage, N.; LeRose, J.; Malov, S.; Margaziotis, D.J.; Martin, J.W.; McCormick, K.; McKeown, R. D.; McIlhany, K.; Meziani, Z.E.; Michaels, R.; Miller, G.W.; Mitchell, J.; Nanda, S.; Pace, E.; Pavlin, T.; Petratos, G.G.; Pomatsalyuk, R.I.; Pripstein, D.; Prout, D.; Ransome, R.D.; Roblin, Y.; Rvachev, M.; Saha, A.; Salme, G.; Schnee, M.; Shin, T.; Slifer, K.; Souder, P.A.; Strauch, S.; Suleiman, R.; Sutter, M.; Tipton, B.; Todor, L.; Viviani, M.; Vlahovic, B.; Watson, J.; Williamson, C.F.; Witala, H.; Wojtsekhowski, B.; Xiong, F.; Yeh, J.; Zolnierczuk, P.
2003-01-01
A high precision measurement of the transverse spin-dependent asymmetry A T in 3 (rvec H)e((rvec e),e(prime)) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q 2 , between 0.1 and 0.6 (GeV/c) 2 . A T is sensitive to the neutron magnetic form factor, G M n . Values of G M n at Q 2 = 0.1 and 0.2 (GeV/c) 2 , extracted using Faddeev calculations, were reported previously. Here, we report the extraction of G M n for the remaining Q 2 -values in the range from 0.3 to 0.6 (GeV/c) 2 using a Plane-Wave Impulse Approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target
Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO 4
Li, G.; Yao, B. Q.; Meng, P. B.; Duan, X. M.; Ju, Y. L.; Wang, Y. Z.
2011-04-01
Spectroscopic characterization of co-doped Tm,Ho:YVO 4 crystal grown by the Czochralski method has been performed including absorption spectrum, emitting spectrum and luminescence decay lifetime. The polarization emitting spectrum around 2 μm is accomplished by exciting a singly Ho 3+ doped YVO 4 crystal to exclude the influence of Tm 3+3F 4- 3H 6 transition and the emission cross section is deduced from both Fuchtbauer-Ladenburg (F-L) equation and reciprocity method (RM). In addition, we report up to 10.4 W continuous wave (CW) output with a conversion efficiency of 40% and 10.3 W Q-Switch output with 12.5 kHz pulse repetition rate of diode-pumped cryogenic Tm,Ho:YVO 4 laser. For Q-Switch operation, the minimum pulse width of 28.2 ns is obtained, all of which demonstrate that the Tm,Ho:YVO 4 is excellent laser material for 2 μm radiation.
Pujol, Pierre
2014-06-01
The use of customized combination mechanics with two auxillaries such as mini screws and Forsus(TM) Springs that up to now have been used independently, achieved unexpected results in the correction of a non-surgical skeletal Class II malocclusion. The use of mini implants to control the canting of the occlusal plane that is frequently reported during the use of hyperpropulsors with fixed appliances made it possible to achieve a better mandibular outcome. © EDP Sciences, SFODF, 2014.
Anisotropic magnetization and transport properties of RAgSb_{2} (R=Y, La-Nd, Sm, Gd-Tm)
Energy Technology Data Exchange (ETDEWEB)
Myers, Kenneth D. [Iowa State Univ., Ames, IA (United States)
1999-11-08
This study of the RAgSb_{2} series of compounds arose as part of an investigation of rare earth intermetallic compounds containing antimony with the rare earth in a position with tetragonal point symmetry. Materials with the rare earth in a position with tetragonal point symmetry frequently manifest strong anisotropies and rich complexity in the magnetic properties, and yet are simple enough to analyze. Antimony containing intermetallic compounds commonly possess low carrier densities and have only recently been the subject of study. Large single grain crystals were grown of the RAgSb_{2} (R=Y, La-Nd, Sm, Gd-Tm) series of compounds out of a high temperature solution. This method of crystal growth, commonly known as flux growth is a versatile method which takes advantage of the decreasing solubility of the target compound with decreasing temperature. Overall, the results of the crystal growth were impressive with the synthesis of single crystals of LaAgSb_{2} approaching one gram. However, the sample yield diminishes as the rare earth elements become smaller and heavier. Consequently, no crystals could be grown with R=Yb or Lu. Furthermore, EuAgSb_{2} could not be synthesized, likely due to the divalency of the Eu ion. For most of the RAgSb_{2} compounds, strong magnetic anisotropies are created by the crystal electric field splitting of the Hund's rule ground state. This splitting confines the local moments to lie in the basal plane (easy plane) for the majority of the members of the series. Exceptions to this include ErAgSb_{2} and TmAgSb_{2}, which have moments along the c-axis (easy axis) and CeAgSb_{2}, which at intermediate temperatures has an easy plane, but exchange coupling at low temperatures is anisotropic with an easy axis. Additional anisotropy is also observed within the basal plane of DyAgSb_{2}, where the moments are restricted to align along one of the <110> axes. Most of
Tm3+-doped CW fiber laser based on a highly GeO2-doped dispersion-shifted fiber
Dvoyrin, Vladislav; Sorokina, Irina T; Mashinsky, Valery M.; Ischakova, Lyudmila D.; Dianov, Evgenii M; Kalashnikov, Valdimir L; Yashkov, Mikhail V.; Khopin, Vladimir F.; Guryanov, Aleksey N.
2011-01-01
A novel all-fiber laser based on a highly GeO2-doped dispersion-shifted Tm-codoped fiber, pumped at 1.56 µm wavelength and lasing at 1.862 µm wavelength with a slope efficiency up to 37% was demonstrated. The single-mode Tm-doped fiber with the 55GeO2-45SiO2 core was fabricated for the first time by MCVD technique. The laser produces spectral side bands, resulting from the four-wave mixing owing to the shift of the zero-dispersion-wavelength of the fiber to the laser wavelength, thus, making ...
Absolute parametric instability in a nonuniform plane plasma ...
Indian Academy of Sciences (India)
The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.
Absolute parametric instability in a nonuniform plane plasma ...
Indian Academy of Sciences (India)
Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...
Designing broad phononic band gaps for in-plane modes
Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong
2018-03-01
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.
The effect of lower-hybrid waves on the propagation of hydromagnetic waves
International Nuclear Information System (INIS)
Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro
1988-01-01
Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)
A high power CW Ho,Tm:GdVO4 laser
Zhu, G. L.; Ju, Y. L.; Yao, B. Q.; Wang, Y. Z.
2012-04-01
In this paper, we report a 22.7 W continuous wave (CW) diode-pumped cryogenic Ho( at %), Tm(3 at %):GdVO4 laser. The pumping sources of Ho,Tm:GdVO4 laser are two fiber-coupled laser diodes with fiber core diameter of 0.4 mm, both of them can supply 42 W power laser operating near 802 nm. For input pump power of 64.7 W at 802.5 nm, the output power of 22.7 W in CW operation, optical-to-optical conversion efficiency of 35.1% at 2.05 μm has been attained. The M 2 factor was found to be 2.0 under an output power of 16.5 W.
International Nuclear Information System (INIS)
Nagaoka, Tomoaki; Togashi, Toshihiro; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Watanabe, Soichi
2007-01-01
The numerical dosimetry of pregnant women is an important issue in electromagnetic-field safety. However, an anatomically realistic whole-body pregnant-woman model for electromagnetic dosimetry has not been developed. Therefore, we have developed a high-resolution whole-body model of pregnant women. A new fetus model including inherent tissues of pregnant women was constructed on the basis of abdominal magnetic resonance imaging data of a 26-week-pregnant woman. The whole-body pregnant-woman model was developed by combining the fetus model and a nonpregnant-woman model that was developed previously. The developed model consists of about 7 million cubical voxels of 2 mm size and is segmented into 56 tissues and organs. This pregnant-woman model is the first completely anatomically realistic voxel model that includes a realistic fetus model and enables a numerical simulation of electromagnetic dosimetry up to the gigahertz band. In this paper, we also present the basic specific absorption rate characteristics of the pregnant-woman model exposed to vertically and horizontally polarized electromagnetic waves from 10 MHz to 2 GHz
Non-collinear wave mixing for a bulk wave phase velocity measurement in an isotropic solid
Demcenko, A.
2013-01-01
A measurement method is presented to estimate the bulk wave phase velocity in an isotropic solid when longitudinal or shear wave velocity is known. This method is based on the non-collinear plane wave interaction theory and it does not need to estimate the phase time-of-flight and wave propagation
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method
Directory of Open Access Journals (Sweden)
M Hosseini Farzad
2010-03-01
Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.
An overmoded relativistic backward wave oscillator with efficient dual-mode operation
International Nuclear Information System (INIS)
Xiao, Renzhen; Li, Jiawei; Bai, Xianchen; Song, Zhimin; Teng, Yan; Ye, Hu; Li, Xiaoze; Sun, Jun; Chen, Changhua; Zhang, Xiaowei
2014-01-01
A dual-mode operation mechanism in an overmoded relativistic backward wave oscillator is presented. The electron beam interacts with the −1st space harmonic of TM 01 mode synchronously in the slow wave structure. Then the backward propagating TM 01 mode is converted to the forward propagating TM 02 mode. As the phase velocity of the volume harmonic of TM 02 mode is about twice that of the surface harmonic of TM 01 mode, the TM 02 mode also plays an important role in the high-power microwave generation. Particle-in-cell simulation shows that an efficiency of 48% and a significant improvement of the power capacity have been obtained
Powernext Day-AheadTM. Powernext futuresTM. Activity report - 2004
International Nuclear Information System (INIS)
2004-01-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document is the 2004 activity report of Powernext SA, it presents the key figures of the power market and of Powernext in 2004: - Increasing volumes: Powernext Day-Ahead TM 's traded volumes increased by 89%, from 7.48 to 14.18 TWh. Powernext Futures TM kicks off to a promising debut with 12.86 TWh traded in less than 7 months. - Less volatile prices: During 2004, the base price averaged 28.13 euro/MWh, and the peak prices averaged 33.71 euro/MWh. Compared to 2003, these prices decreased by an average of 3.7% on base-load and 10.9% on peak-load. In comparison to the two previous years, the daily volatility has noticeably settled down with 27% on base-load and 37% on peak-load. - Increasing liquidity: 10 new members joined Powernext Day-Ahead TM in 2004. The activity level of the members remains very high as 89% of them trade on an actual daily basis during 2004. The market resiliency stays strong. In December, an additional market 50 MW order on each hour resulted in a balance price variation of only 0.16 euro/MWh, or 0.53% of this balance price. For a 100 MW order, the resiliency is 0.32 euro/MWh, or 1.07% of the balance price. Thus, in 2004, Powernext Day-Ahead TM consolidates its role as a short term reference price. Moreover, in 2004, Powernext launched a futures market, Powernext Futures TM . This new market segment proposes contracts tradable up to 2 years ahead of delivery
Optical Properties of Tm(3+) Ions in Alkali Germanate Glass
Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin
2006-01-01
Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.
Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power
Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong
2018-03-01
We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Characteristic wave fronts in magnetohydrodynamics
International Nuclear Information System (INIS)
Menon, V.V.; Sharma, V.D.
1981-01-01
The influence of magnetic field on the process of steepening or flattening of the characteristic wave fronts in a plane and cylindrically symmetric motion of an ideal plasma is investigated. This aspect of the problem has not been considered until now. Remarkable differences between plane, cylindrical diverging, and cylindrical converging waves are discovered. The discontinuity in the velocity gradient at the wave front is shown to satisfy a Bernoulli-type equation. The discussion of the solutions of such equations reported in the literature is shown to be incomplete, and three general theorems are established. 18 refs
Correlations in quantum systems and branch points in the complex plane
Rotter, I.
2001-01-01
Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...
MRI tracheomalacia (TM) assessment in pediatric patients
DEFF Research Database (Denmark)
Ciet, P.; Wielopolski, P.; Lever, S.
and dynamic conditions in patients that were able to follow specific breathing manoeuvres;2) to develop post-processing tools for image analysis. Methods and Materials: To date 10 subjects (7 males; 2 adults) were enrolled in the pilot study: mean age 15, (range 6 to 30yrs). Volunteers were trained to perform...... spirometry controlled breathing maneuvers (peak flow and coughing) using a MRI compatible spirometer. “Static” 13-second breath-hold scans covering the entire thoracic region were acquired at end-inspiration and end-expiration using a 3D GRE with TR/TE=1.2/0.5 ms, alpha = 2, sagittal isotropic volume (2.8) x...... breathing maneuvers. Images of central airways during static and dynamic conditions were acquired and could be analyzed. Three out of the 8 children had a TM just above the carina during forced expiration, confirmed by bronchoscopy. Conclusion: This pilot study shows that Dynamic-MRI is feasible...
The plane strain tests in the PROMETRA program
Energy Technology Data Exchange (ETDEWEB)
Cazalis, B., E-mail: bernard.cazalis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, F-13115 Saint-Paul Lez Durance BP3 (France); Desquines, J. [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, F-13115 Saint-Paul Lez Durance BP3 (France); Carassou, S.; Le Jolu, T. [Commissariat à l' Energie Atomique, CEA/DEN/DMN, F- 91191 Gif-sur-Yvette (France); Bernaudat, C. [Electricité de France, EDF/SEPTEN, F-69628 Villeurbanne (France)
2016-04-15
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO{sup ®} specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod. - Highlights: • A plane strain mechanical test performed on fuel rod claddings is described. • The tests are performed in the framework of the French PROMETRA program. • Fresh Zircaloy-4 and irradiated Zircaloy-4, M5 and ZIRLO specimens are tested. • The main analyses in support of these tests are detailed. • A synthesis of the interpretation of the PST tests is proposed.
The plane strain tests in the PROMETRA program
International Nuclear Information System (INIS)
Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.
2016-01-01
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO ® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod. - Highlights: • A plane strain mechanical test performed on fuel rod claddings is described. • The tests are performed in the framework of the French PROMETRA program. • Fresh Zircaloy-4 and irradiated Zircaloy-4, M5 and ZIRLO specimens are tested. • The main analyses in support of these tests are detailed. • A synthesis of the interpretation of the PST tests is proposed.
Laser spectrum of a high power Tm, Ho:GdVO4 laser
Wang, Y. Z.; Zhu, G. L.; Ju, Y. L.; Yao, B. Q.
2012-01-01
In this paper, we report a 18.8 W continuous wave and 18.4 W Q-switched diode-pumped cryogenic Tm(5 at %), Ho(0.5 at %):GdVO4 laser. The pumping source of Tm, Ho:GdVO4 laser is a fiber-coupled laser diode with fiber core diameter of 0.4 mm, supplying 42 W power at 802.5 nm. For input pump power of 41.9 W at 802.4 nm, the output power of 18.8 W in CW operation, optical-to-optical conversion efficiency of 45% at 2.05 μm and the average output power of 18.4 W in Q-switched operation, optical-to-optical conversion efficiency of 44% at 2.04 and 2.05 μm have been attained. The emission wavelengths of the Tm(5 at %), Ho(0.5 at %):GdVO4 laser were firstly compared when it worked in CW mode and Q-switched mode.
Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Gong, J.; Yu, T.; Chen, W. B.
2012-02-01
Laser crystal Tm3+ and Ho3+ codoped LiLuF4 with high optical quality was grown by Czochralski technique. Its absorption and fluorescence spectra were investigated. A continuous wave output power of 1.12 W at 2066 nm was obtained with a slope efficiency of 24% by use of diode pumping. In the Q-switched mode, a slope efficiency of 18.9% and a maximum average power of 0.65 W were obtained.
Spectroscopic analysis of LiTmF4
DEFF Research Database (Denmark)
Christensen, H.P.
1979-01-01
The absorption spectra of Tm3+ in LiTmF4 have been measured at 2, 10, 30, and 50 K in the spectral interval 4000-25 000 cm-1. The energy levels of the ground-state configuration were calculated by diagonalizing the Hamiltonian of the electron-electron interaction, the spin-orbit coupling, and the...
Accelerated Math[TM]. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2011
2011-01-01
"Accelerated Math"[TM], published by Renaissance Learning, is a software tool used to customize assignments and monitor progress in math for students in grades 1-12. The "Accelerated Math"[TM] software creates individualized assignments aligned with state standards and national guidelines, scores student work, and generates…
SpellRead[TM]. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2013
2013-01-01
"SpellRead"[TM], formerly known as "SpellRead Phonological Auditory Training"[R], is a small-group literacy program for struggling readers in grades 2-12. "SpellRead"[TM] integrates the auditory and visual aspects of the reading process and emphasizes specific skill mastery through systematic and explicit instruction.…
Efficacy of porcine dermal collagen (Permacol TM ) injection for ...
African Journals Online (AJOL)
Efficacy of porcine dermal collagen (Permacol TM ) injection for passive faecal incontinence in a dedicated Colorectal Unit at the Wits Donald Gordon Medical ... Conclusion: Trans-anal submucosal PermacolTM injections produced a significant improvement in both faecal continence and quality of life scores in patients with ...
Sealing ability of grar MTA AngelusTM, CPM TM and MBPc used as apical plugs
Directory of Open Access Journals (Sweden)
Fernando Accorsi Orosco
2008-02-01
Full Text Available This study evaluated the sealing ability of apical plugs fabricated with gray MTA AngelusTM sealer, CPM TM sealer and MBPc sealer. The root canals of 98 extracted single-rooted human teeth were instrumented with #5 to #1 Gates Glidden drills according to the crown-down technique until the #1 drill could pass through the apical foramen. The specimens were then prepared with K-files, starting with an ISO 50 until an ISO 90 could be visualized 1 mm beyond the apex. After root canal preparation, the external surface of each root was rendered impermeable and roots were assigned to 3 experimental groups (n = 30, which received a 5-mm thick apical plug of gray MTA AngelusTM, CPM TM and MBPc, and two control groups (n=4. The remaining portion of the canal in the experimental groups was filled by the lateral condensation technique. The teeth of each group, properly identified, were fixed on utility wax by their crowns and were placed in plastic flasks, leaving the apex free and facing upward. The flasks were filled with 0.2% Rhodamine B solution, pH 7.0, so as to completely cover the root apex of all teeth. The sealing ability was analyzed by measuring 0.2% Rhodamine B leakage after all groups had been maintained in this solution for 48 hours. Data were analyzed statistically by Kruskal-Wallis test and Dunn test with a=5%. The results showed that, among the tested materials used for fabrication of apical plugs, MBPc sealer had the least amount of leakage with statistically significant difference (p<0.05.
Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori
2016-01-01
Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.
Electro-magnetic waves within a model for charged solitons
International Nuclear Information System (INIS)
Borisyuk, Dmitry; Faber, Manfried; Kobushkin, Alexander
2007-01-01
We analyse the model of topological fermions (MTF), where charged fermions are treated as soliton solutions of the field equations. In the region far from the sources we find plane waves solutions with the properties of electro-magnetic waves
Comparative study of Tm-doped and Tm-Sc co-doped Lu3Al5O12 scintillator
International Nuclear Information System (INIS)
Sugiyama, Makoto; Yanagida, Takayuki; Fujimoto, Yutaka
2014-01-01
The crystals of Tm doped and Tm-Sc co-doped Lu 3 Al 5 O 12 (LuAG) grown by the floating zone (FZ) method were examined for their optical and scintillation properties. In transmittance spectra, strong absorption lines due to Tm 3+ 4f–4f transitions were observed. X-ray excited radioluminescence spectra were measured and broad and sharp emission peaks were detected. The former one was attributed to Sc 3+ and the latter one was due to Tm 3+ 4f–4f transitions. Scintillation yield enhancement due to Sc co-doping was observed by means of 137 Cs pulse height spectra. Scintillation decay times were several tens of μs under pulse X-ray excitation. - Highlights: • LuAG:Tm and LuAG:Tm, Sc single crystals have been grown by the FZ method. • Tm 3+ 4f–4f absorption has been observed in transmittance spectra. • Scintillation yield of Tm-doped LuAG has been enhanced by Sc co-doping
Energy Technology Data Exchange (ETDEWEB)
Sciuto, Tracey E.; Merley, Anne; Lin, Chi-Iou [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Richardson, Douglas [Department of Molecular and Cellular Biology, Harvard University (United States); Liu, Yu [Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Shanxi Province, Taiyuan 030001 (China); Li, Dan; Dvorak, Ann M. [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Dvorak, Harold F., E-mail: hdvorak@bidmc.harvard.edu [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Jaminet, Shou-Ching S., E-mail: sjaminet@bidmc.harvard.edu [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States)
2015-09-25
Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. - Highlights: • Anti-TM4SF1 antibody 8G4 was efficiently taken up by cultured endothelial cells. • TM4SF1–8G4 internalization is dynamin-dependent but clathrin-independent. • TM4SF1–8G4 complexes internalize along microtubules to reach the perinuclear region. • Internalized TM4SF1–8G4 complexes pass through nuclear pores into the nucleus. • TM4SF1 is an attractive candidate for ADC cancer therapy.
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
A pulsed electron gun for the Plane Wave Transformer Linac
Mahadevan, S; Nandedkar, R V
2003-01-01
A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 mu perv and the normalized emittance is within 5 pi mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.
Parallel Multi-Focusing Using Plane Wave Decomposition
DEFF Research Database (Denmark)
Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt
2003-01-01
imaging in real-time impossible. By using a transmit matrix with frequency and apodization variations across the aperture, it is possible to focus in several directions simultaneously (5 or more), significantly increasing the frame rate to 170 frames/s or more. The algorithm used for the determination...
Plane wave scattering by bow-tie posts
Lech, Rafal; Mazur, Jerzy
2004-04-01
The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.
Analyzing Lagrange gauge measurements of spherical, cylindrical, or plane waves
International Nuclear Information System (INIS)
Aidun, J.B.
1993-01-01
Material response characterizations that are very useful in constitutive model development can be obtained from careful analysis of in-material (embedded, Lagrangian) gauge measurements of stress and/or particle velocity histories at multiple locations. The requisite measurements and the analysis are feasible for both laboratory and field experiments. The final product of the analysis is a set of load paths (e.g., radial stress vs. radial strain, tangential vs. radial stress, tangential vs. radial strain, radial stress vs. particle velocity) and their possible variation with propagation distance. Material model development can be guided and constrained by this information, but extra information or assumptions are needed to first establish a parameterized representation of the material response
Reflection of plane micropolar viscoelastic waves at a loosely ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
γ = γ∗(1 + iQ−1. 4 ), where quality factors Qi(i = 1,2,... ,4) are chosen arbitrarily as. Q1 = 4, Q2 = 9, Q3 = 13,Q4 = 11. For the above values of relevant physical constants, the system of (29) are solved for amplitude ratios by the application of the Gauss elimination method for different angles of incidence varying from 0. ◦ to 90.
Improvement of the HANA{sup TM}-4 Tubing Workability
Energy Technology Data Exchange (ETDEWEB)
Kim, Yoon-HO; Park, Min-Young; Kim, In-Kyu; Mok, Yong-Kyoon [KEPCO NF, Daejeon (Korea, Republic of); Kim, Hyun-Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
HANA{sup TM} cladding has been developed for high burn-up fuel cladding exceeding 70,000 MWD/MTU. HIPER fuels using HANA{sup TM}-6 material are currently being conducted in-reactor test in commercial nuclear reactors. HANA{sup TM}-6 was produced successfully for the fuel tubing by KEPCO NF. However, the production of fuel tubing of HANA{sup TM}-4 has not reached to target yield due to cracking during tube pilgering. The purpose of this study has been carried out to improve workability of HANA{sup TM}-4 tubing. An improvement on the manufacturing parameters and the alloy compositions adjustments in order to improve workability HANA{sup TM}-4 tubing was performed in the producing HANA{sup TM}-4 cladding successfully without cracking. However, it is necessary to minor change the design of Mandrel and Die to improve the surface quality. The effects on corrosion properties and microstructure by an adjustment in manufacturing parameters and alloy compositions are currently being evaluated.
Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...
Indian Academy of Sciences (India)
Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...
Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, ...
Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.
Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook
2015-01-01
Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391 mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.
International Nuclear Information System (INIS)
Merriam, J.D.
1988-01-01
Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
user
a 6= 1, c 6= 1; then f ± g(z) = acz + ad + b. T he fact th a t jacj = 1,and the presence of z rath er th an z, ... alldisplacem ents in the plane;this is essentially the ad- ditive group of all vectors in the plane. In fact, D is ..... ro ta tio n s fa ;fb;fc as follow s: fa = R A ;® , fb = R B ;¯ , fc = R C ;° . A ssum e that the vertices of 4 A B C are ...
ASTROCULTURE (TM) root metabolism and cytochemical analysis
Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.
2000-01-01
Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.
Stimulated Raman adiabatic passage in Tm3+:YAG
International Nuclear Information System (INIS)
Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.
2008-01-01
We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results
Construction of covalently coupled, concatameric dimers of 7TM receptors
DEFF Research Database (Denmark)
Terpager, Marie; Scholl, D Jason; Kubale, Valentina
2009-01-01
-Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...... for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse...
Review of Tm and Ho Materials; Spectroscopy and Lasers
Walsh, Brian M.
2008-01-01
A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2- m lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
Neutron diffraction study of anomalous high-field magnetic phases in TmNi2B2C
DEFF Research Database (Denmark)
Toft, K.N.; Abrahamsen, A.B.; Eskildsen, M.R.
2004-01-01
We present a (B,T)-phase diagram of the magnetic superconductor TmNi2B2C obtained by neutron scattering. The measurements were performed in magnetic fields up to 6 T applied along the crystalline a axis. The observed phases are characterized by three ordering vectors, Q(F)=(0.094,0.094,0),Q(AI)=(0.......90Yb0.10)Ni2B2C the Q(F)-->Q(AI) phase transition is also observed but at a larger transition field compared to the undoped compound. In (Tm0.85Yb0.15)Ni2B2C the Q(F) phase persists up to at least 1.8 T. The magnetic correlation length of the Q(AI) phase in TmNi2B2C measured parallel and perpendicular.......483,0,0), and Q(AII)=(0.496,0,0), all with the magnetic moment along the c axis. In zero and low fields the Tm 4f-moments order in a long wavelength transverse spin density wave with Q=Q(F). The magnetic Q(AI) structure is stabilized by an applied field of 1 T and a transition to Q(AII) is observed at 4 T...
Memory effect for impulsive gravitational waves
Zhang, P.-M.; Duval, C.; Horvathy, P. A.
2018-03-01
Impulsive gravitational plane waves, which have a δ-function singularity on a hypersurface, can be obtained by squeezing smooth plane gravitational waves with a Gaussian profile. They exhibit (as do their smooth counterparts) the velocity memory effect: after the wave has passed, particles initially at rest move apart with non-vanishing constant transverse velocity. A new effect is that, unlike the smooth case, (i) the velocities of particles originally at rest jump, (ii) the spacetime trajectories become discontinuous along the (lightlike) propagation direction of the wave.
Jeong, Seung Jun; Hong, Chung Ki
2008-06-01
We present an effective method for the pixel-size-maintained reconstruction of images on arbitrarily tilted planes in digital holography. The method is based on the plane wave expansion of the diffraction wave fields and the three-axis rotation of the wave vectors. The images on the tilted planes are reconstructed without loss of the frequency contents of the hologram and have the same pixel sizes. Our method shows good results in the extreme cases of large tilting angles and in the region closer than the paraxial case. The effectiveness of the method is demonstrated by both simulation and experiment.
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in Plane Geometry - The Use of Conic Sections. Shailesh A Shirali. General Article Volume 13 Issue 10 October 2008 pp 916-928. Fulltext. Click here to view fulltext PDF. Permanent link:
Distributed storage in the plane
Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper
2013-01-01
We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can
DEFF Research Database (Denmark)
Rathkjen, Arne
A state of plane stress is illustrated by means of two families of curves, each family representing constant values of a derivative of Airy's stress function. The two families of curves form a map giving in the first place an overall picture of regions of high and low stress, and in the second pl...
Complex Numbers and Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Complex Numbers and Plane Geometry. Anant R Shastri. General Article Volume 13 Issue 1 January 2008 pp 35-53. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/01/0035-0053. Keywords.
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- reinforced anisotropic elastic media has been studied. The authors express the plane strain displacement components in terms of two scalar potentials to decouple the plane motion into P and SV waves. In the present ...
Curvature collineations for the field of gravitational waves
International Nuclear Information System (INIS)
Singh, K.P.; Singh, Gulab
1981-01-01
It has been shown that the space-times formed from a plane-fronted gravity wave and from a plane sandwich wave with constant polarisation admit proper curvature collineation in general. The curvature collineation vectors have been determined explicitly. (author)
BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery
National Aeronautics and Space Administration — The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order...
Lightweight Metal RubberTM Sensors and Interconnects Project
National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...
BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery
National Aeronautics and Space Administration — The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order...
BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery
National Aeronautics and Space Administration — ABSTRACT: The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and...
Field applications of the ScoutTM portable MCA
International Nuclear Information System (INIS)
Cheng, A.Y.; Ziemba, F.P.; Browning, J.E.
1998-01-01
The use of Quantrad Sensor's Scout TM in field type applications is described. The portability of the Scout TM enables the user to obtain more accurate information in the field versus a survey meter. Isotopic identification is possible when ancillary information is combined with built-in software libraries. Data from the Scout TM in remediation at Stanford Linear Accelerator (SLAC), NORM (Naturally Occurring Radioactive Material) measurements in California's Central Valley oil fields, medical isotope identification at nuclear pharmaceutical company and emergency response applications are presented. Additionally, custom software enabled the use of the Scout TM in identification, qualification and detection of Special Nuclear Materials (SNM) in illicit trafficking and portal monitoring applications. (author)
Ultrabroadband TM reflection from high contrast grating: why?
Gushchin, I.; Tishchenko, A.V.; Parriaux, O.; Hoekstra, Hugo
2009-01-01
A grating mode analysis of the unusually broadband TM reflection from a high contrast binary grating sheds light on the origin of this effect. This interpretation will be submitted to the workshop attendance.
Lightweight Metal RubberTM Sensors and Interconnects, Phase II
National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...
Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I
National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...
Selectfluor TM: A novel and efficient reagent for the rapid ...
Indian Academy of Sciences (India)
Abstract. The direct α-thiocyanation of ketones with ammonium thiocyanate has been achieved using SelectfluorTM under mild and neutral conditions to produce -ketothiocyanates, in excellent yields and with high selectivity.
Landsat TM and ETM+ Kansas Satellite Image Database (KSID)
Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2000-2001 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM) and...
SynLam(TM) Primary Mirror Evaluation, Phase I
National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG), has developed sandwich core composite material (SynLam(TM)) and related fabrication technology to address the drawbacks of...
Tri-Decadal Global Landsat Orthorectified TM Scene V1
National Aeronautics and Space Administration — Abstract: The Landsat Orthorectified data collection consists of a global set of high-quality, relatively cloud-free orthorectified MSS, TM and ETM+ imagery from...
Tri-Decadal Global Landsat Orthorectified TM Mosaic V1
National Aeronautics and Space Administration — Abstract: The Landsat Orthorectified data collection consists of a global set of high-quality, relatively cloud-free orthorectified MSS, TM and ETM+ imagery from...
Family C 7TM receptor dimerization and activation
DEFF Research Database (Denmark)
Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche
2006-01-01
The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...... changes that lead to receptor activation. Despite extensive studies of the receptor transmembrane domain, several key features, including the exact organization of the complete receptor dimer, the sequence of events leading to receptor activation, and the functional significance of dimerization, have yet...
AP1000{sup TM} plant modularization
Energy Technology Data Exchange (ETDEWEB)
Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)
2016-09-15
The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)
Energy Technology Data Exchange (ETDEWEB)
De winter, Francis; Swenson, Ronald B; Culp, David [Santa Cruz, CA (United States)
2000-07-01
Foreseeable crude oil shortages provide an incentive to use wind power in the merchant marine again, to save fuel by providing propulsion power. Out prototype KiteShip (TM), a lightweight fiberglass proa 7 m long, has been sailed with 2 different sizes of kites in fresh water. The kites are shaped like parafoil wings, with areas of 4 sq m and 9 sq m. Steering is accomplished with two coupled rudders, one fore and one aft. We have been encouraged by the boat speed and the handling, although we have encountered only light winds up to now, of no more than about 20 km/ht. In the next phase we will employ a custom-built kite of 2 sq m. and will also start sailing in the ocean with heavier winds, of 40 km/hr and above. [Spanish] La escasez previsible de petroleo motiva volver a utilizar la fuerza del viento en la marina mercante, para ahorrar combustible al suministrar la potencia de propulsion. Nuestro prototipo KiteShip (MR), con una proa ligera de fibra de vidrio con 7 m de longitud, ha navegado con dos diferentes tipos de vela ({sup k}ite{sup )} en agua dulce. Los kites tienen forma de alas de parafol, con areas de 4 m{sup 2} y 9 m{sup 2}. La direccion se logra con dos timones acoplados, uno en la proa y otro en la popa. Nos entusiasmo la velocidad del bote y su manejo, aunque hemos encontrado hasta ahora solo vientos ligeros de no mas de alrededor de 20 km/hr. En la siguiente fase emplearemos un kite hecho a la medida, de 28 m{sup 2} y tambien comenzaremos a navegar en el oceano con vientos mas fuertes de 40 km/hr o mas.
Cryogenic-cooled Tm:SBN tunable laser
Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Papashvili, Alexander G.; Batygov, Sergei H.; Osiko, Vyacheslav V.
2017-12-01
In this work the temperature dependence of spectroscopic and laser properties of new ac- tive medium Tm:SBN (Strontium-Barium Niobate, SrxBa1-xNb2O6, x = 0.61). The tested sample of Tm:SBN (2 wt. % of Tm2O3) appropriate for generation of laser radiation at 1.88 μm had plan-parallel polished faces without anti-reflection (thickness 6.65 mm). During spectroscopy and laser experiments the Tm:SBN was at- tached to temperature-controlled copper holder and was placed in a vacuum chamber. The transmission and emission spectra of Tm:SBN and the fluorescence decay time were measured depending on temperature range 80 - 350 K. The fluorescence decay time was measured to be 3.5 ms and 2.8 ms at 80 and 350 K, respectively. Longitudinal excitation of Tm:SBN was carried out by a fibre-coupled laser diode (pulse duration 10 ms, rep- etition rate 10 Hz, pump wavelength 793 nm). The laser resonator was hemispherical, 146 mm long, with flat pumping mirror (HR @1.8 - 2.1 μm) and spherical output coupler (r = 150 mm, R = 97.5 % @1.8 - 2.1 μm). The Tm:SBN laser properties were investigated at temperature range 80 - 300 K. The highest slope efficiency with respect to absorbed pumped power was 3 % at 80 K. The maximum output peak amplitude power was 0.12 W at 80 K, i.e. 3.2 times higher than it was measured at 200 K. Tunability of laser wavelength at 80 K in the range of 1827 - 1962 nm was obtained by using SiO2 birefringent filter. At 300 K, wavelength tunability reached 1859 - 1970 nm. Thus, the new Tm:SBN crystal can be an useful laser material in the region of 2 μm.
Spectroscopic and lasing properties of Ho:Tm:LuAG
Barnes, Norman P.; Filer, Elizabeth D.; Naranjo, Felipe L.; Rodriguez, Waldo J.; Kokta, Milan R.
1993-01-01
Ho:Tm:LuAG has been grown, examined spectroscopically, and lased at 2.1 microns. Ho:Tm:LuAG was selected for this experimental investigation when quantum-mechanical modeling predicted that it would be a good laser material for Ho laser operation on one of the 5I7 to 5I8 transitions. Lasing was achieved at 2.100 microns, one of the three wavelengths predicted to be most probable for laser action.
Powernext Day-AheadTM statistics - June 30, 2006
International Nuclear Information System (INIS)
2006-01-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the June 30, 2006 update of Powernext Day-Ahead TM statistics: daily traded volumes and base-load prices from November 2001 to June 2006, monthly overview from June 2005 to June 2006 (volumes and prices), weekly overview from March to June 2006 (volumes and prices), daily and hourly overview and market resilience for June 2006, power consumption in May and June 2006 (average consumption, average forecasted consumption and average price on Powernext Day-Ahead TM ), power consumption on the French hub from July 2005 to May 2006 and Powernext Day-Ahead TM prices, transfer capacities in June 2006 (auction results for France-Germany, France-Belgium, France-UK, France-Spain and France-Italy, and daily capacity allocation for France-Switzerland), temperature variations in France from January 2005 to June 2006 and base-load Powernext Day-Ahead TM prices, and balancing mechanism for April, May and June 2006 (half-hourly imbalance settlement prices). (J.S.)
International Nuclear Information System (INIS)
Ming Xianbing; Lu Fei; Liu Hanping; Chen Ming; Wang Lei
2009-01-01
Planar optical waveguides were formed in ZnO crystal by Tm + and O + ion implantation. The distributions of Tm + in as-implanted and annealed ZnO samples were investigated by the RBS technique. A shift of the Tm + peak towards the sample surface and out diffusion were observed after thermal treatment and subsequent O + ion implantation. Waveguide formation was determined after O + implantation in Tm + -implanted ZnO crystal. By using the prism-coupling method two guided modes were detected. The refractive index profile in the implanted waveguide was reconstructed according to the SRIM and RCM simulation. The RBS/channelling measurements show that the lattice structure of ZnO did not suffer detectable damage after O + implantation.
Measurements of the 169Tm(n ,2 n )168Tm cross section from threshold to 15 MeV
Soter, J.; Bhike, M.; Finch, S. W.; Krishichayan, Tornow, W.
2017-12-01
Measurements of the 169Tm(n ,2 n )168Tm cross section have been performed via the activation technique at 13 energies between 8.5 and 15.0 MeV. The purpose of this comprehensive data set is to provide an alternative diagnostic tool for obtaining subtle information on the neutron energy distribution produced in inertial confinement deuterium-tritium fusion experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The 169Tm(n ,2 n )168Tm reaction not only provides the primary 14-MeV neutron fluence, but also the important down-scattered neutron fluence, the latter providing information on the density achieved in the deuterium-tritium plasma during a laser shot.
Hydrodynamics of planing monohull watercraft
Vorus, William S
2017-01-01
This book addresses the principles involved in the design and engineering of planing monohull power boats, with an emphasis on the theoretical fundamentals that readers need in order to be fully functional in marine design and engineering. Author William Vorus focuses on three topics: boat resistance, seaway response, and propulsion and explains the physical principles, mathematical details, and theoretical details that support physical understanding. In particular, he explains the approximations and simplifications in mathematics that lead to success in the applications of planing craft design engineering, and begins with the simplest configuration that embodies the basic physics. He leads readers, step-by-step, through the physical complications that occur, leading to a useful working knowledge of marine design and engineering. Included in the book are a wealth of examples that exemplify some of the most important naval architecture and marine engineering problems that challenge many of today’s engineers.
Law, K. P.
2010-02-01
In the era of systems biology, new analytical platforms are under demand. Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a promising high throughput laser mass spectrometry approach that has attracted a lot of attention, and has been commercialized. Another substrate material manufactured by physical method has also been made commercially available under the trade name of QuickMass(TM). These two commercial substrates, DIOS(TM) and QuickMass(TM), were investigated independently from the manufacturers and were characterized by a number of advanced surface techniques. This work determined (1) the correlation between the substrate physicochemical properties and their LDI activity, (2) the feasibility of metabolic profiling from complex biological matrices and (3) the laser desorption/ionization mechanism. The DIOS(TM) substrate was characterized with a thick nano-sized porous layer, a high surface concentration of fluorocarbon and silicon oxides and super-hydrophobicity. In contrast, the QuickMass(TM) substrate consisted of a non-porous germanium thin-film. The relatively high ionization efficiency obtained from the DIOS(TM) substrate was contributed to the fluorosilane manufacturing processes and its porous morphology. Despite the QuickMass(TM) substrate being less effective, it was noted that the use of germanium affords a self-cleaning mechanism and suppresses background interference of mass spectra. The suitability of DIOS(TM) substrates for metabolic profiling of complex biological matrices was demonstrated. DIOS mass spectra of human blood plasma, human urine and animal liver tissue extracts were produced. Suitable extraction methods were found to be important, but relatively simplified approaches were sufficient. Further investigations of the DIOS desorption/ionization mechanism were carried out. The previously proposed sub-surface state reaction could be a molten-solid interfacial state reaction of the substrate and this had a significant
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Srimath
the role ofm appings and transform ation groups in plane geom etry. 1. P arabola in a Triangle. W e ¯rst recall tw o results from the geom etry of the parabola. Let P denote a parabola w ith focus F and d irectrix `. For any point P 2 P , let tP denote the tangent to P at P . (i) T he im age ofF under re°ection in any ofthe tangents.
Ends of the line for tmRNA-SmpB.
Hudson, Corey M; Lau, Britney Y; Williams, Kelly P
2014-01-01
Genes for the RNA tmRNA and protein SmpB, partners in the trans-translation process that rescues stalled ribosomes, have previously been found in all bacteria and some organelles. During a major update of The tmRNA Website (relocated to http://bioinformatics.sandia.gov/tmrna), including addition of an SmpB sequence database, we found some bacteria that lack functionally significant regions of SmpB. Three groups with reduced genomes have lost the central loop of SmpB, which is thought to improve alanylation and EF-Tu activation: Carsonella, Hodgkinia, and the hemoplasmas (hemotropic Mycoplasma). Carsonella has also lost the SmpB C-terminal tail, thought to stimulate the decoding center of the ribosome. We validate recent identification of tmRNA homologs in oomycete mitochondria by finding partner genes from oomycete nuclei that target SmpB to the mitochondrion. We have moreover identified through exhaustive search a small number of complete, but often highly derived, bacterial genomes that appear to lack a functional copy of either the tmRNA or SmpB gene (but not both). One Carsonella isolate exhibits complete degradation of the tmRNA gene sequence yet its smpB shows no evidence for relaxed selective constraint, relative to other genes in the genome. After loss of the SmpB central loop in the hemoplasmas, one subclade apparently lost tmRNA. Carsonella also exhibits gene overlap such that tmRNA maturation should produce a non-stop smpB mRNA. At least some of the tmRNA/SmpB-deficient strains appear to further lack the ArfA and ArfB backup systems for ribosome rescue. The most frequent neighbors of smpB are the tmRNA gene, a ratA/rnfH unit, and the gene for RNaseR, a known physical and functional partner of tmRNA-SmpB.
Ends of the line for tmRNA-SmpB
Directory of Open Access Journals (Sweden)
Corey M. Hudson
2014-08-01
Full Text Available Genes for the RNA tmRNA and protein SmpB, partners in the trans-translation process that rescues stalled ribosomes, have previously been found in all bacteria and some organelles. During a major update of The tmRNA Website (relocated to http://bioinformatics.sandia.gov/tmrna, including addition of an SmpB sequence database, we found some bacteria that lack functionally significant regions of SmpB. Three groups with reduced genomes have lost the central loop of SmpB, which is thought to improve alanylation and EF-Tu activation: Carsonella, Hodgkinia and the hemoplasmas (hemotropic Mycoplasma. Carsonella has also lost the SmpB C-terminal tail, thought to stimulate the decoding center of the ribosome. We validate recent identification of tmRNA homologs in oomycete mitochondria by finding partner genes from oomycete nuclei that target SmpB to the mitochondrion. We have moreover identified through exhaustive search a small number of complete, but often highly derived, bacterial genomes that appear to lack a functional copy of either the tmRNA or SmpB gene (but not both. One Carsonella isolate exhibits complete degradation of the tmRNA gene sequence yet its smpB shows no evidence for relaxed selective constraint, relative to other genes in the genome. After loss of the SmpB central loop in the hemoplasmas, one subclade apparently lost tmRNA. Carsonella also exhibits gene overlap such that tmRNA maturation should produce a non-stop smpB mRNA. At least some of the tmRNA/SmpB-deficient strains appear to further lack the ArfA and ArfB backup systems for ribosome rescue. The most frequent neighbors of smpB are the tmRNA gene, a ratA/rnfH unit, and the gene for RNaseR, a known physical and functional partner of tmRNA-SmpB.
Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300.
Rosado, C; Pinto, P; Rodrigues, L M
2005-08-01
The measurement of transepidermal water loss (TEWL) has been established as one of the main parameters in the assessment of skin barrier function. One of the most widely employed devices to measure TEWL is the Tewameter. Courage and Khazaka launched the TM300 in 2003 and successfully eliminated some of the limitations of the previous model. In the more recent device, the sensors inside the probe head can be pre-heated to a temperature close to that of the skin, which considerably decreases sampling time. Additionally, the new technology of the probe does not require frequent and time-consuming recalibration with different solutions. The main objective of this work was to perform a comparative assessment of the performance of the two different Tewameter models. Fifteen volunteers were used in this study, which was conducted in the mid-portion of the volar forearm. The standard measurements assessed differences in the basal values, time necessary for a stable value and coefficient of variability under normal and extreme conditions. The dynamic measurements performed were based on a plastic occlusion stress test (POST), involving the application of an occlusive patch for 24 h, after which the TEWL desorption curves were recorded. A mathematical model was adjusted to the data points using a specially modified simplex routine. Calculated parameters considered relevant to the study were t(1/2evap) (evaporation half-life) and dynamic water mass (DWM). Results show slight differences in the performance the two models, which are nevertheless statistically significant. The TM300 seems to be more sensitive to differences in TEWL and presents a much quicker measurement capacity. These results confirm a marked improvement in the more recent Tewameter model, when compared with its predecessor. The main conclusion of this work is that caution is advised when comparing results obtained with the two different models and that studies should be carried out entirely with the same
Review of water wave kinematics
Energy Technology Data Exchange (ETDEWEB)
Sterndorff, M.J.
1995-03-01
The present report covers a comprehensive review of water wave kinematics carried out by Danish Hydraulic Institute (DHI) in connection with the EFP`93 project: Dynamics of Mono Tower Platforms (ref. EFP`93, 1313/93-0009). This project is carried out in cooperation with Ramboell, Hannemann and Hoejlund A/S. The main objectives of the project are to develop and verify a method for the determination of the non-linear wave load and the dynamic response of mono tower platforms. One of the characteristics of mono tower platforms is that due to the small water plane area the hydrodynamic loading will be very concentrated. Such platforms may therefore respond strongly and in a highly dynamic manner to short waves and high order components of extreme waves having periods corresponding to the first natural period of the platform. A key element in the hydrodynamic load process is the wave kinematics. The present report is a comprehensive review of recent literature concerning wave theories, wave-current interaction, laboratory experiments, and field measurements of water wave kinematics. The review has been concentrated on non-breaking waves on deep to intermediate water depths. Papers concerning shallow water waves have only been reviewed if they present methods which may be applied for deep to intermediate water waves. (au) EFP-93; 30 refs.
Frequency tunable surface magneto elastic waves
Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.
2015-01-01
We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.
Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems
Directory of Open Access Journals (Sweden)
Stelian Alaci
2015-06-01
Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.
International Nuclear Information System (INIS)
Yao Baoquan; Zheng Liangliang; Duan Xiaoming; Zhao Guangjun; Zong Yanhua
2008-01-01
This paper reports that the Tm 3+ :Lu 2 SiO 5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd–Ofelt intensity parameters Ω 2 = 9.3155 × 10 −20 cm 2 , Ω 4 = 8.4103 × 10 −20 cm 2 ,Ω 6 = 1.5908 × 10 −20 cm 2 , the fluorescence lifetime is calculated to be 2.03 ms for 3 F 4 → 3 H 6 transition, and the integrated emission cross section is 5.81 × 10 −18 cm 2 . Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 μm with spectral bandwidth of ∼13.6 nm. (nuclear physics)
Yao, Bao-Quan; Zheng, Liang-Liang; Duan, Xiao-Ming; Zhao, Guang-Jun; Zong, Yan-Hua
2008-10-01
This paper reports that the Tm3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2 = 9.3155 × 10-20 cm2, Ω4 = 8.4103 × 10-20 cm2,Ω6 = 1.5908 × 10-20 cm2, the fluorescence lifetime is calculated to be 2.03 ms for 3F4 → 3H6 transition, and the integrated emission cross section is 5.81 × 10-18 cm2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 μm with spectral bandwidth of ~13.6 nm.
The Castor 120 (TM) motor: Development and qualification testing results
Hilden, Jack G.; Poirer, Beverly M.
1993-01-01
This paper discusses Thiokol Corporation's static test results for the development and qualification program of the Castor 120(TM) motor. The demonstration program began with a 25,000-pound motor to demonstrate the new technologies and processes that would be used on the larger Castor 120(TM) motor. The Castor 120(TM) motor was designed to be applicable as a first stage, second stage, or strap-on motor. Static test results from the Castor 25 and two Castor 120(TM) motors are discussed in this paper. The results verified the feasibility of tailoring the propellant grain configuration and nozzle throat diameter to meet various customer requirements. The first and second motors were conditioned successfully at ambient temperature and 28 F, respectively, to demonstrate that the design could handle a wide range of environmental launch conditions. Furthermore, the second Castor 120(TM) motor demonstrated a systems tunnel and forward skirt extension to verify flight-ready stage hardware. It is anticipated that the first flight motor will be ready by the fall of 1994.
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
SNAP Satellite Focal Plane Development
International Nuclear Information System (INIS)
Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez, D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher, A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.
2003-01-01
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R and D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics
Transition to turbulence in plane channel flow
Biringen, S.; Goglia, G. L.
1983-01-01
A numerical simulation of the final stages of transition to turbulence in plane channel flow is reported. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time-evolution of two and three dimensional finite amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction-blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Transition to turbulence in plane channel flows
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Determination of the photoelectron reference plane in nanostructured surfaces
International Nuclear Information System (INIS)
Lobo-Checa, Jorge; Mugarza, Aitor; Ortega, Jose Enrique; Michel, Enrique G
2011-01-01
In angle-resolved photoemission (ARPES) from crystalline solids, wave-vector conservation applies to the two-dimensional (2D) surface, which may thus be defined as the reference plane in ARPES. We investigate whether such reference varies for photoemitted electrons in nanometer-sized systems that expose different crystal planes. To this aim, we exploit the structural tunability of the Ag/Cu(223) system which is capable of offering surfaces with periodic arrays of nanofacets of varying size and orientation. A thorough, photon-energy-dependent analysis of the surface states confined to such nanostructures is performed comparing different reference planes for photoemitted electrons. Assuming the premise that k || must be a good quantum number for 2D states, we conclude that the (final state) photoelectron reference direction is not the average optical direction but the local facet that confines the (initial state) surface electrons. Moreover, in the general case of nanostructured systems with uneven surfaces, we show how the photoelectron reference plane can be empirically determined through such a photon-energy-dependent ARPES analysis. (paper)
Powernext FuturesTM statistics. April 30, 2006
International Nuclear Information System (INIS)
2006-01-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the April 30, 2006 update of Powernext Futures TM statistics: year, quarter and month contracts for April 2006, base-load and peak-load contracts overview from November 2005 to April 2006 (monthly volume in MW, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period), and market liquidity in April 2006 (average bid ask spread and availability for base-load and peak-load contracts). (J.S.)
Powernext FuturesTM statistics. Jun 30, 2006
International Nuclear Information System (INIS)
2006-01-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the June 30, 2006 update of Powernext Futures TM statistics: year, quarter and month contracts for June 2006, base-load and peak-load contracts overview from January 2006 to June 2006 (monthly volume in MW, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period), and market liquidity in June 2006 (average bid ask spread and availability for base-load and peak-load contracts). (J.S.)
Powernext futuresTM statistics November 30, 2004
International Nuclear Information System (INIS)
2004-11-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the November 30, 2004 update of Powernext Futures TM statistics: year, quarter and month contracts for November 2004, base-load and peak-load contracts overview from June 2004 to November 2004 (daily volume in lots, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period, base-load and peak-load price spreads), and market liquidity in November 2004 (average bid ask spread and availability). (J.S.)
DC Stark addressing for quantum memory in Tm:YAG
Directory of Open Access Journals (Sweden)
Gerasimov Konstantin
2017-01-01
Full Text Available We observed a linear DC Stark effect for 3H6 – 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.
Assembly Bow Characteristics of the HIPER16TM Fuel Design
International Nuclear Information System (INIS)
Jeon, Sang-Youn; Kwon, O-Cheol; Ha, Dong-Geun; Kim, Jae-Ik
2015-01-01
The out-of-pile tests were performed either in air or in a hydraulic loop and at room temperature or operating temperature conditions. The test results include the required physical and thermal-hydraulic data needed to verify the HIPER16 TM fuel design. The mechanical integrity and safety of HIPER16 TM fuel design has been verified based on the final verification tests and evaluations. The visual examinations and dimensional measurements were performed on the LTAs using poolside examination equipment. The in-reactor verification test results showed that the HIPER16 TM fuel design met the irradiation related design requirement. The poolside examinations after 3rd irradiation cycle of LTA will be performed in the end of 2015.
Hydrological planning studies using Landsat-4 Thematic Mapper (TM)
Gervin, J. C.; Mulligan, P. J.; Lu, Y. C.; Marcell, R. F.
1984-01-01
NASA, in cooperation with the U.S. Army Corps of Engineers, is evaluating the capabilities of Landsat 4 Thematic Mapper (TM) data for environmental and hydrological applications. Attention is given to the results of studies conducted at the Clinton River Basin in Michigan and the eastern shore of the Chesapeake Bay in Maryland. In the former, the evaluation conducted was for the band combinations: (1) 2, 3, and 4; (2) 3, 4, and 5; (3) 3, 4, 5, and 6; and (4) all seven bands. In the latter case, Multispectral Scanner (MSS) and TM data were classified for combinations (1), (3) and (4). Wetland classification accuracy for the 7-band TM data in this study was found to be 9 percent higher than with MSS data, allowing more reliable and accurate monitoring.
Extremely large magnetoresistance and electronic structure of TmSb
Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long
2018-02-01
We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.
Powernext Day-AheadTM products and market organization
International Nuclear Information System (INIS)
2004-06-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents the principle of the trading of hourly contracts on Powernext Day-Ahead TM , the accessibility of the market, the SAPRI trading platform operated by Nord Pool, the Scandinavian power exchange, the validation of the auction results, the collaboration with LCH.Clearnet SA to secure and facilitate the transactions, and the delivery guarantee implemented by RTE (the French energy transport network). (J.S.)
Slip patterns and preferred dislocation boundary planes
DEFF Research Database (Denmark)
Winther, G.
2003-01-01
and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co...
Energy Technology Data Exchange (ETDEWEB)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of)
2016-04-15
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.
PLUS7TM In-Reactor Operating Performance and Economics
International Nuclear Information System (INIS)
Kim, Kyutae; Jang, Youngki; Choi, Joonhyung; Lee, Jinseok; Kim, Yoonho; Suh, Jungmin
2006-01-01
KNFC has developed an advanced fuel, PLUS7 TM , for the Korean Standard Nuclear Power Plants(KSNPs) through the joint development program with Westinghouse. With the help of various out-of-pile tests, it is found that the PLUS7 TM shows much better performance than the current fuel, GUARDIAN TM from the safety and economy points of view. Now four Lead Test Assembles(LTAs) of the PLUS7 TM are being irradiated for the 3 rd cycle after the successful completion of the 1 st and 2 nd irradiation cycles. During the 1 st and 2 nd irradiation cycles, no fuel failure was observed at LTAs and their nuclear-related parameters matched their design values well. During the overhaul period, on the other hand, pool side examinations were performed for four LTAs to generate key in-reactor fuel performance data such as fuel rod and assembly growths, fuel rod-to-top nozzle gap, fuel assembly bow and twist, fuel rod bow, spacer grid width, fuel rod diameter and fuel rod oxide layer thickness. It is found that all measured values are bounded by upper and lower predicted ones. The detailed economic analyses have shown that significant fuel cycle cost can be reduced by more than one million dollars per cycle of one KSNP with the introduction of the PLUS7 TM assembly. Furthermore, more than one hundred million dollars with power up-rating of 5% can be saved annually for currently operating eight KSNPs, which is easily and safety achievable with the PLUS7 TM assembly
Fault plane solutions as related to known geological faults in and near India
Directory of Open Access Journals (Sweden)
N. SRIVASTAVA
1975-05-01
Full Text Available Based on the focal mechanism solutions of newly determined solutions, and other recent workers the correlation between one of the nodal planes and the geological faults has been discussed for three regions namely Kashmir, Central Himalayas and northeast India including Assam. The variability between multiple solutions reported for some earthquakes and the limitations in the choice of the nodal plane from /'-wave solutions have been brought out. It is seen that no standard criteria either on the basis of isoseismals or of aftershocks can be used to distinguish the fault plane from the auxiliary plane. It has been found that in general there is good agreement between one of the nodal planes and the geological faults in Kashmir and the Central Himalayas. In northeast India, the strike directions obtained from the mechanism solutions generally agree with the trends of the main thrusts but the dip direction for shocks originating in the India-Burma border
On the energy confinement in the TM-G tokamak with high plasma density
International Nuclear Information System (INIS)
Stefanovskij, A.M.
1986-01-01
Energy confinement time τ E , when plasma density changing, has been measured at the TM-G-tokamak device with a graphite discharge chamber. The measurements have been carried out in three different discharge modes with a similar stability margin on the limiter (q L )=3) and with different values of the discharge current of a longitudinal field (I p =20, 40 and 60 kA, V T =0.8; 1.6 and 2.4 T). On the basis of experimental data analysis the conclusion is made that saturation of τ E (n e ) dependence at high plasma density occurs due to current channel compression and violation of a ''self-consistent'' profile of current density. Drift wave excitation at densities similar to the limiting Murakami density can also play an important role
Quantitative measurement of in-plane acoustic field components using surface-mounted fiber sensors
Claus, Richard O.; Dhawan, Rajat R.; Gunther, Michael F.; Murphy, Kent A.
1993-01-01
Extrinsic Fabry-Perot interferometric sensors have been used to obtain calibrated, quantitative measurements of the in-plane displacement components associated with the propagation of ultrasonic elastic stress waves on the surfaces of solids. The frequency response of the sensor is determined by the internal spacing between the two reflecting fiber endface surfaces which form the Fabry-Perot cavity, a distance which is easily controlled during fabrication. With knowledge of the material properties of the solid, the out-of-plane displacement component of the wave may also be determined, giving full field data.
Soft modes in the easy plane pyrochlore antiferromagnet
International Nuclear Information System (INIS)
Champion, J D M; Holdsworth, P C W
2004-01-01
Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts
Comparative evaluation of two methods for 172Tm production in nuclear reactors
International Nuclear Information System (INIS)
Cohen, I.M.; Hayes, Alejandro; Melcer, Elsa
2016-01-01
A comparative evaluation of two methods for the production of 172 Tm in nuclear reactors is carried out. They are respectively based on two chains of double neutron capture reactions, 170 Er(n,γ) 171 Er(n,γ) 172 Er(β - ) 172 Tm and 170 Er(n,γ) 171 Er(β - ) 171 Tm(n,γ) 172 Tm, and a chain of triple neutron capture: 169 Tm(n,γ) 170 Tm(n,γ) 71 Tm(n,γ) 172 Tm. Theoretical considerations with respect to both ways of production are formulated and the mathematical equation are solved. Experiments of irradiation of Er 2 O 3 and Tm 2 O 3 were performed. Advantages and drawbacks of both methods are discussed. (author)
Magnetic anomaly in superconducting TmRh4B4
International Nuclear Information System (INIS)
Smith, J.L.; Huang, C.Y.; Tsou, J.J.; Ho, J.C.
1978-01-01
The magnetic and superconducting properties of TmRh 4 B 4 (which becomes superconducting at 9.6 K) by means of ac and dc magnetic susceptibility and specific heat measurements are investigated. At 10.7 K, an ac susceptibility peak similar to those found in spin glasses has been observed. In addition, a pronounced specific heat peak has been observed at 11.4 K. The susceptibility peak is essentially unaffected by substitution of 1% Lu or Er for the Tm, but it diminishes when much larger amounts of Er are substituted. The physical origin of this anomalous peak will be discussed
Family C 7TM receptor dimerization and activation
DEFF Research Database (Denmark)
Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche
2006-01-01
changes that lead to receptor activation. Despite extensive studies of the receptor transmembrane domain, several key features, including the exact organization of the complete receptor dimer, the sequence of events leading to receptor activation, and the functional significance of dimerization, have yet...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors....
Systems considerations in mosaic focal planes
White, K. P., III
1983-08-01
Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.
An introduction to finite projective planes
Albert, Abraham Adrian
2015-01-01
Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and
DEFF Research Database (Denmark)
Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek
2010-01-01
Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... simulations showed that, although the fewer water molecules in rhodopsin were relatively movable, the hydrogen bond network of the beta2-adrenergic receptor was fully loaded with water molecules that were surprisingly immobilized between the two rotamer switches, both apparently being in their closed...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...
Standing Sound Waves in Air with DataStudio
Kraftmakher, Yaakov
2010-01-01
Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
in the expressions concerning the modulation instability of a plane Langmuir wave. When the Vlasov equation for the ions is applied, a Langmuir wave is modulationally unstable for arbitrary perturbations independent of the unperturbed wave amplitude, in contrast to what is found for fluid ions. A simple analogy...
Functional Aesthetic Occlusal Plane (FAOP
Directory of Open Access Journals (Sweden)
Carlos Alexandre Câmara
Full Text Available ABSTRACT Introduction: A reasonable exposure of incisors and gingival tissues is generally considered more attractive than excess or lack of exposure. A reasonable gingival exposure is considered to be around 0 to 2 mm when smiling and 2-4 mm exposure of the maxillary incisor edge when the lips are at rest. Objective: The aim of this paper is to present the Functional Aesthetic Occlusal Plane (FAOP, which aims to help in the diagnosis of the relationships established among molars, incisors and the upper lip. Conclusion: FAOP can complement an existing and established orthodontic treatment plan, facilitating the visualization of functional and aesthetic demands by giving a greater focus on the position of incisors in the relationship established among the incisors, molars and the upper lip stomion.
Functional Aesthetic Occlusal Plane (FAOP).
Câmara, Carlos Alexandre; Martins, Renato Parsekian
2016-01-01
A reasonable exposure of incisors and gingival tissues is generally considered more attractive than excess or lack of exposure. A reasonable gingival exposure is considered to be around 0 to 2 mm when smiling and 2-4 mm exposure of the maxillary incisor edge when the lips are at rest. The aim of this paper is to present the Functional Aesthetic Occlusal Plane (FAOP), which aims to help in the diagnosis of the relationships established among molars, incisors and the upper lip. FAOP can complement an existing and established orthodontic treatment plan, facilitating the visualization of functional and aesthetic demands by giving a greater focus on the position of incisors in the relationship established among the incisors, molars and the upper lip stomion.
Paton, R. T.; Skews, B. W.; Rubidge, S.; Snow, J.
2013-07-01
The behaviour of conical shock waves imploding axisymmetrically was first studied numerically by Hornung (J Fluid Mech 409:1-12, 2000) and this prompted a limited experimental investigation into these complex flow patterns by Skews et al. (Shock Waves 11:323-326, 2002). Modification of the simulation boundary conditions, resulting in the loss of self-similarity, was necessary to image the flow experimentally. The current tests examine the temporal evolution of these flows utilising a converging conical gap of fixed width fed by a shock wave impinging at its entrance, supported by CFD simulations. The effects of gap thickness, angle and incident shock strength were investigated. The wave initially diffracts around the outer lip of the gap shedding a vortex which, for strong incident shock cases, can contain embedded shocks. The converging shock at exit reflects on the axis of symmetry with the reflected wave propagating outwards resulting in a triple point developing on the incident wave together with the associated shear layer. This axisymmetric shear layer rolls up into a mushroom-shaped toroidal vortex ring and forward-facing jet. For strong shocks, this deforms the Mach disk to the extent of forming a second triple point with the primary shock exhibiting a double bulge. Separate features resembling the Richtmeyer-Meshkov and Kelvin-Helmholtz instabilities were noted in some tests. Aside from the incident wave curvature, the reflection patterns demonstrated correspond well with the V- and DV-types identified by Hornung although type S was not clearly seen, possibly due to the occlusion of the reflection region by the outer diffraction vortex at these early times. Some additional computational work explicitly exploring the limits of the parameter space for such systems has demonstrated the existence of a possible further reflection type, called vN-type, which is similar to the von Neumann reflection for plane waves. It is recommended that the parameter space be
Surveys Of The Galactic Plane For Pulsars
Bates, S. D.
2011-03-01
Since their discovery in 1968, the known population of radio pulsars has grown to ~2000, and comprises several different groups which display markedly different behaviour from one another. Despite the large number of known sources, there are several scientific justifications for new wide-area searches for pulsars. These are outlined in this work, but include population studies, the evolutionary history of pulsars, and the possible detection of gravitational waves through high-precision timing.Previous pulsar surveys have been limited by (a) the hardware used to record the survey data; and, (b) the computational power that has been available to process this data. This has resulted in an observational bias which made the discovery of distant, highly dispersed pulsars, very difficult. Particularly affected by this are the most rapidly-rotating pulsars --- the millisecond pulsars --- which are known to rotate with spin periods as short as 1.4 ms. Since these are also some of the most interesting sources, with the greatest potential for high-precision timing, it is important to perform searches both deep into the Galactic plane and covering the whole sky, with sufficient time resolution to discover more millisecond pulsars. This thesis describes two such pulsar surveys, in which several discoveries have been made.The first is a survey of the Galactic plane at an observing frequency of 6.5 GHz, motivated by the need to discover pulsars at the Galactic centre. This survey resulted in the discovery of three pulsars, all of which are at distances > 9.5 kpc.The second is the ongoing High Time Resolution Universe pulsar survey using the 64-metre telescope at Parkes. This survey will make observations of the whole of the Southern sky using extremely high time resolution and narrow frequency channels. Preliminary results from the survey are presented here, including the discovery of 5 millisecond pulsars at relatively large distances, including one for which regular eclipses
Resonance of Superconducting Microstrip Antenna with Aperture in the Ground Plane
Directory of Open Access Journals (Sweden)
S. Benkouda
2013-08-01
Full Text Available This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.
BACTEC MGIT 960 TM system for screening of Mycobacterium ...
African Journals Online (AJOL)
This study was aimed to evaluate the recent technique (BACTEC MGIT 960 TM system) for screening of Mycobacterium tuberculosis complex among cattle in Egypt. From the 1180 cattle examined in three different Governorates (El-Sharkia, El-Gharbia and El-Monefeia) by single intradermal tuberculin test, 29 animals ...
Evaluation of NGAL TestTM on Cobas 6000
DEFF Research Database (Denmark)
Hansen, Young B L; Damgaard, Anette; Poulsen, Jørgen H
2014-01-01
BACKGROUND: Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a promising biomarker for acute kidney injury (AKI). Our objectives were to evaluate the NGAL Test(TM) from Bioporto for both urine NGAL and plasma NGAL on the Cobas 6000 c501 (Roche Diagnostics, Rotkreuz, Switzerland) with matched...
Modeling woody vegetation resources using Landsat TM imagery in ...
African Journals Online (AJOL)
Modeling woody vegetation resources using Landsat TM imagery in northern Namibia. Alex Verlinden, Risto Laamanen. Abstract. In 1995 a forest inventory covering northern Namibia was initiated, based on stratified systematic field sampling of plots with a radius of up to 30 m. In these plots detailed tree parameters were ...
Tm2+ luminescent materials for solar radiation conversion devices
Van der Kolk, E.
2015-01-01
A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength
Teaching Engineering Design through Lego[R] Mindstorms[TM
Ringwood, J. V.; Monaghan, K.; Maloco, J.
2005-01-01
This paper examines a particular methodology of teaching engineering design to undergraduate engineering students, which relies on Lego[R] Mindstorms[TM]. A number of important issues are addressed, including the timing of the design module within the programme, prior knowledge required and assessment components. The module, which has been running…
Unmixing-based Landsat TM and MERIS FR data fusion
Zurita Milla, R.; Clevers, J.G.P.W.; Schaepman, M.E.
2008-01-01
An unmixing-based data fusion technique is used to generate images that have the spatial resolution of Landsat Thematic Mapper (TM) and the spectral resolution provided by the Medium Resolution Imaging Spectrometer (MERIS) sensor. The method requires the optimization of the following two parameters:
Supporting Moral Development: The Virtues Project[TM
de Moor, Gerrit
2011-01-01
The Virtues Project[TM] was founded in Canada in 1991 by Linda Kavelin Popov, Dan Popov, and John Kavelin who were concerned about the level of violence among families and youth. In studying sacred traditions and cultures around the world, they identified a set of common virtues. These were used to develop a pedagogical model that has applications…
Words Their Way[TM]. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2013
2013-01-01
"Words Their Way"[TM] is an approach to phonics, vocabulary, and spelling instruction for students in kindergarten through high school. The program can be implemented as a core or supplemental curriculum and aims to provide a practical way to study words with students. The purpose of word study (which involves examining, manipulating,…
Doors to Discovery[TM]. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2013
2013-01-01
"Doors to Discovery"]TM] is a preschool literacy curriculum that uses eight thematic units of activities to help children build fundamental early literacy skills in oral language, phonological awareness, concepts of print, alphabet knowledge, writing, and comprehension. The eight thematic units cover topics such as nature, friendship,…
Caelyx (TM) in malignant mesothelioma : A phase II EORTC study
Baas, P; van Meerbeeck, J; Groen, H; Schouwink, H; Burgers, S; Daamen, S; Giaccone, G
Background: The use of doxorubicin has shown some activity in malignant mesothelioma but prolonged administration is hampered by cardiotoxicity. Caelyx(TM), a new liposomal and pegylated form of doxorubicin has shown a better pharmacokinetic and toxic profile then doxorubicin. In a phase II study,
Helicons in uniform fields. I. Wave diagnostics with hodograms
Urrutia, J. M.; Stenzel, R. L.
2018-03-01
The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.
Numerical simulation of the transient ultrasonic wave reflection at a liquid-solid interface
Energy Technology Data Exchange (ETDEWEB)
Maghlaoui, Nadir; Djelouah, Hakim; Belgroune, Djema [Universite des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria); Ourak, Mohamed [Universite de Valenciennes et Hainaut Cambresis, Valenciennes (France)
2015-01-15
In the nondestructive evaluation domain, the reflection of ultrasonic waves at liquid-solid interfaces generates interesting and useful phenomena when the incident angle approaches the longitudinal critical angle or Rayleigh angle. In this paper, we have developed a model for the study of the transient ultrasonic waves radiated by a plane or a focusing transducer in a liquid and reflected by a solid plane interface. The method used is an extension of the angular spectrum method to the transient case where the reflection at the plane interface is taken into account by using the reflection coefficient for plane harmonic waves. The results obtained highlighted the different components of the ultrasonic field: the direct and edge waves as well as the longitudinal head waves or leaky Rayleigh waves. These waves have been carefully analyzed and discussed. Instantaneous cartographies allowed a clear description of all the waves which appear at the liquid-solid interface.
Traveling wave accelerating structures with a large phase advance
International Nuclear Information System (INIS)
Paramonov, V.V.
2012-01-01
The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.
Minehound TM trials in Cambodia, Bosnia, and Angola
Daniels, David J.; Curtis, Paul
2006-05-01
This paper describes the trials of the MINEHOUND TM dual sensor, land mine detector carried out in Cambodia, Bosnia and Angola. MINEHOUND TM has been developed for use in humanitarian demining as a means of improving the efficiency of clearance operations. The trials were sponsored by the UK Department for International Development (DFID). ERA Technology Ltd conducted the trials, which were monitored by staff drawn from the countries participating in the International Test and Evaluation Programme (ITEP) for humanitarian de-mining. Experienced deminers from the Mines Advisory Group (MAG) and Norwegian Peoples Aid (NPA) used the pre-production units in live minefields. The objectives of the trial were: 1. To record information on the performance of MINEHOUND TM when used in a live minefield. 2. To determine the reduction in False Alarm Rate (FAR) that could be achieved using a dual sensor mine detector. The trials were conducted in three mine-affected countries for a period of eight weeks per country; the programme of trials ran from July 2005 to December 2005, with an additional smaller trial in late February 2006. The results of the trials showed that MINEHOUND TM achieved 100% detection of the mines encountered and an improvement in FAR of better than 5:1 compared with a basic metal detector. The trials enabled optimisation of the production design and clearly demonstrated that new technology can be brought to humanitarian clearance operations in a safe and controlled manner. As a result of the highly successful trials, Vallon and ERA will produce the MINEHOUND TM (Type number VMR1) starting in Q3 of 2006.
Forest Attributes Estimation Using Aerial Laser Scanner and TM Data
Directory of Open Access Journals (Sweden)
S. Shataee Joibary
2013-12-01
Full Text Available Aim of study: The aim of this study was performance of four non-parametric algorithms including the k-NN, SVR, RF and ANN to estimate forest volume and basal area attributes using combination of Aerial Laser Scanner and Landsat-TM data.Area of study: Data in small part of a mixed managed forest in the Waldkirch region, Germany.Material and methods: The volume/ha and basal area/ha in the 411 circular plots were estimated based on DBH and height of trees using volume functions of study area. The low density ALS raw data as first and last pulses were prepared and automatically classified into vegetation and ground returns to generate two fine resolution digital terrain and surface models after noise removing. Plot-based height and density metrics were extracted from ALS data and used both separated and combined with orthorectified and processed TM bands. The algorithms implemented with different options including k-NN with different distance measures, SVR with the best regularized parameters for four kernel types, RF with regularized decision tree parameters and ANN with different types of networks. The algorithm performances were validated using computing absolute and percentage RMSe and bias on unused test samples.Main results: Results showed that among four methods, SVR using the RBF kernel could better estimate volume/ha with lower RMSe and bias (156.02 m3 ha–1 and 0.48, respectively compared to others. In basal area/ha, k-NN could generate results with similar RMSe (11.79 m3 ha–1 but unbiased (0.03 compared to SVR with RMSe of 11.55 m3 ha–1 but slightly biased (–1.04.Research highlights: Results exposed that combining Lidar with TM data could improve estimations compared to using only Lidar or TM data.Key words: forest attributes estimation; ALS; TM; non-parametric algorithms.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Veritex(TM) Patches for Structural Repair and Re-Use, Phase I
National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) proposes to develop a bonded composite patch repair and re-use system based on CRG's VeritexTM materials. VeritexTM is a...
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym
2007-01-01
In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Radioactivity in the galactic plane
Walraven, G. D.; Haymes, R. C.
1976-01-01
The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.
Spectroscopy and microchip laser operation of Tm, Ho:KYW crystals with different Ho concentrations
Gusakova, N. V.; Kurilchik, S. V.; Yasukevich, A. S.; Kisel, V. E.; Dashkevich, V. I.; Orlovich, V. A.; Pavlyuk, A. A.; Vatnik, S. M.; Bagaev, S. N.; Kuleshov, N. V.
2018-02-01
The spectroscopic properties of Tm, Ho:KYW crystals with different Ho concentrations were investigated. The diode-pumped microchip laser operation of Tm (5 at.%), Ho (0.5 at.%):KYW and Tm (5 at.%), Ho (1 at.%):KYW was demonstrated. The highest, to our knowledge, output power of 480 mW with slope efficiency of 31% for CW Tm (5 at.%), Ho (0.5 at.%):KYW microchip laser was obtained.
Large Format Uncooled Focal Plane Array Project
National Aeronautics and Space Administration — Black Forest Engineering has identified innovative modifications in uncooled focal plane array (UFPA) architecture and processing that allows development of large...
Flux dynamics in ultrasensitive superconducting focal planes
National Aeronautics and Space Administration — The performance of superconducting focal planes will drive the achievable specifications of ultrasensitive instruments for NASA astrophysics missions, yet they have...
The application of digital image plane holography technology to identify Chinese herbal medicine
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
The generation of a Tollmien-Schlichting wave by a sound wave
International Nuclear Information System (INIS)
Murdock, J.W.
1980-01-01
A spectral numerical method is used to study the two-dimensional unsteady flow over a flat plate in the presence of a plane sound wave propagating parallel to the flow. For s = ωx/Uinfinite > 0(1), no observable interaction or energy interchange between the sound wave and the Tollmien-Schlichting wave is present. In the region s 2 infinite = 56 x 10 -6 generates a Tollmien-Schlichting wave of the same frequency and an amplitude at the first neutral point 10 -4 times the sound-wave amplitude. (orig.)
Resonant excitation of coastal Kelvin waves by inertia-gravity waves
International Nuclear Information System (INIS)
Reznik, G.M.; Zeitlin, V.
2009-01-01
We reveal a mechanism of resonant excitation of non-dispersive coastal Kelvin waves by pairs of incident/reflected inertia-gravity waves in the rotating stratified fluid. In the simplest rotating shallow water model on the semi-infinite plane we show that the mechanism works for a continuum of incoming waves, and thus should be ubiquitous in the ocean. Subsequent slow evolution of thus excited Kelvin waves is governed by harmonically forced simple-wave equation and leads to nontrivial transport and mixing properties
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....
Electromagnetic scattering by underground targets using the cylindrical-wave approach
Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe
2010-05-01
The electromagnetic detection of buried cylindrical targets, as structures encountered in the inspection of archaeological sites, or pipes, conduits, and tunnels, has been recently addressed in several works. The development of techniques for investigating cylindrical inhomogeneities embedded in a dielectric medium, is a challenging topic also in several other applications, including non-destructive evaluation and testing in civil engineering, and medical imaging. Ground-penetrating radars (GPRs) are extremely useful in probing subsurface targets through electromagnetic waves. These tools solve an inverse problem, to estimate the electromagnetic properties of a target from field measurements. Different algorithms are employed to post-process the collected experimental data: most of them need a fast and accurate forward solver, to perform repeated evaluations of the scattered field due to known targets, and to be used in combination with some optimization techniques. In this paper, we present an efficient spectral-domain method that we developed for the solution of the two-dimensional electromagnetic plane-wave forward scattering by a finite set of perfectly-conducting or dielectric cylinders, buried in a dielectric half-space or in a finite-thickness slab. The technique is called Cylindrical-Wave Approach (CWA), because the field scattered by the targets is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interfaces. Suitable reflected and transmitted cylindrical functions are defined; adaptive integration procedures of Gaussian type, together with acceleration algorithms, are employed for the numerical solution of the relevant spectral integrals. All the multiple-reflection phenomena are taken into account. The method may deal with both TM and TE polarization fields; it can be applied for arbitrary values of permittivity, radius, and depth, of the
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.
1998-01-01
This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies...
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes
International Nuclear Information System (INIS)
Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.
1998-01-01
Two new isotopes, 145 Tm and 140 Ho and three isomers in previously known isotopes, 141m Ho, 150m Lu and 151m Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation
Powernext futuresTM front office user's guide
International Nuclear Information System (INIS)
2004-07-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document is the front office user's guide, it presents: the market model (characteristics, regulation, contractual framework), the members (traders, clearers, quotation providers, fees structure), the products (specifications, use, liquidity and market efficiency), the trading system (architecture, hardware and software requirements, installation process and connecting to server), the trading (session, screen, sending an order, order execution). Contracts codifications and a glossary are given in the appendix. (J.S.)
Κ-electron capture probability in 167Tm
International Nuclear Information System (INIS)
Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.; Radha Krishna, K.; Bhuloka Reddy, S.; Satyanarayana, G.; Ramana Rao, P.V.; Sastry, D.L.
1990-01-01
The Κ-electron capture probability in the decay of 167 Tm for the first-forbidden transition 1/2 + →3/2 - was measured using the sum-coincidence method and employing a hyper-pure Ge system. The P Κ value is found to be 0.835±0.029, in agreement with the theoretical value of 0.829. (author)
Kappa. -electron capture probability in sup 167 Tm
Energy Technology Data Exchange (ETDEWEB)
Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.; Radha Krishna, K.; Bhuloka Reddy, S.; Satyanarayana, G.; Ramana Rao, P.V.; Sastry, D.L. (Andhra Univ., Visakhapatnam (India). Labs. for Nuclear Research); Chintalapudi, S.N. (Variable Energy Cyclotron Centre, Calcutta (India))
1990-07-01
The {Kappa}-electron capture probability in the decay of {sup 167}Tm for the first-forbidden transition 1/2{sup +}{yields}3/2{sup -} was measured using the sum-coincidence method and employing a hyper-pure Ge system. The P{sub {Kappa}} value is found to be 0.835{plus minus}0.029, in agreement with the theoretical value of 0.829. (author).
Experiences with OpenMP in tmLQCD
International Nuclear Information System (INIS)
Deuzeman, A.
2013-11-01
An overview is given of the lessons learned from the introduction of multi-threading using OpenMP in tmLQCD. In particular, programming style, performance measurements, cache misses, scaling, thread distribution for hybrid codes, race conditions, the overlapping of communication and computation and the measurement and reduction of certain overheads are discussed. Performance measurements and sampling profiles are given for different implementations of the hopping matrix computational kernel.
CHROMITITE PROSPECTING USING LANDSAT TM AND ASTER REMOTE SENSING DATA
Directory of Open Access Journals (Sweden)
A. Beiranvand Pour
2015-10-01
Full Text Available Studying the ophiolite complexes using multispectral remote sensing satellite data are interesting because of high diversity of minerals and the source of podiform chromitites. This research developed an approach to discriminate lithological units and detecting host rock of chromitite bodies within ophiolitic complexes using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER and Landsat Thematic Mapper (TM satellite data. Three main ophiolite complexes located in south of Iran have been selected for the study. Spectral transform techniques, including minimum noise fraction (MNF and specialized band ratio were employed to detect different rock units and the identification of high-potential areas of chromite ore deposits within ophiolitic complexes. A specialized band ratio (4/1, 4/5, 4/7 of ASTER, MNF components and Spectral Angle Mapper (SAM on ASTER and Landsat TM data were used to distinguish ophiolitic rock units. Results show that the specialized band ratio was able to identify different rock units and serpentinized dunite as host rock of chromitites within ophiolitic complexes, appropriately. MNF components of ASTER and Landsat TM data were suitable to distinguish ophiolitic rock complexes at a regional scale. The integration of SAM and Feature Level Fusion (FLF used in this investigation discriminated the ophiolitic rock units and prepared detailed geological map for the study area. Accordingly, high potential areas (serpentinite dunite were identified in the study area for chromite exploration targets.The approach used in this research offers the image processing techniques as a robust, reliable, fast and cost-effective method for detecting serpentinized dunite as host rock of chromitite bodies within vast ophiolite complexes using ASTER and Landsat TM satellite data.
An evaluation of the Human Capital BRidgeTM framework
Directory of Open Access Journals (Sweden)
Mpho D. Magau
2010-03-01
Full Text Available Orientation: The methodologies employed for achieving two important goals of human resource (HR measurement, namely to enhance decisions about human capital and to connect HR and business strategy, are rarely empirically investigated.Research purpose: The aim of the present study was therefore to use the Human Capital (HC BRidgeTM framework to compare the views of HR practitioners with those of line management on HC solutions towards achieving strategic business objectives.Motivation for the study: The motivation for this study was to determine whether the HC BRidgeTM framework can create a useful platform for leveraging human capital solutions and for demonstrating HR value-add.Research design: A census-based survey was conducted on a target population of 787 supervisors and managers in specific categories in a mining company, which yielded 202 responses. The measuring instrument used was based on the HC BRidgeTM framework and on the company’s strategic objectives. Item intercorrelations on the subscales were followed by factor analyses and iterative item analyses.Main findings/results: The self-developed measuring instrument yielded an overall Cronbach alpha coefficient of 0.97. Statistically significant differences were found between line management’s and HR practitioners’ views in respect of the three strategic business objectives.Practical/managerial implications: The results suggested that HR management was not yet fully aligned in respect of strategic business objectives and of becoming a strategic business partner.Contribution/value-add: The study therefore suggested that the HC BRidgeTM framework can be used as a method to connect human capital processes with business strategy to leverage business results and to demonstrate value-add.
Discretization of superintegrable systems on a plane
Kabát, Z.
2012-02-01
We construct difference analogues of so called Smorodinsky-Winternitz superintegrable systems in the Euclidean plane. Using methods of umbral calculus, we obtain difference equations for generalized isotropic harmonic oscillator on the uniform lattice, and also its solution in terms of power series. In the case of gauge-rotated Hamiltonian, the solution is a polynomial, well-defined in the whole plane.
Trigonometric Characterization of Some Plane Curves
Indian Academy of Sciences (India)
IAS Admin
There is a way to describe a family of plane curves different from that using Cartesian or po- lar co-ordinates. This is a trigonometric equation involving two angles. In this article, we highlight the fact that trigonometric equations are conve- nient to describe certain one-parameter families of plane curves. In some cases, the ...
Directory of Open Access Journals (Sweden)
Komal Puri
2013-01-01
Full Text Available Background: The aim of the present study was to evaluate and compare the clinical and microbiological effectiveness of Periochip TM as an adjunct to scaling and root planing (SRP with SRP alone in patients with chronic periodontitis. Materials and Methods: This randomized, split mouth, 3-month clinical and microbiological trial included 30 sites in 15 patients aged 30-50 years diagnosed with chronic periodontitis. In each patient, two bilateral pockets probing 5-7 mm were randomly assigned to test and control groups. The test group received SRP plus Periochip TM , whereas the control group received SRP alone. Clinical indices and anaerobic culture analysis was done at baseline, 1 month, and 3 months interval. Total bacterial count and analysis of four major periodontopathogenic bacteria Porphyromonas gingivalis (Pg, Prevotella intermedia (Pi, Aggregatibacter actinomycetemcomitans (Aa, and Fusobacterium nucleatum (Fn was done. Results: Significant improvement was obtained in all clinical variables in the test group as compared to the control group over the study period. Total colony counts were significantly reduced in the test group as compared to control over the period of time. At baseline Aa was recovered from 4 test group sites and 5 control group sites, Pg from 15 test group and 14 control group sites, Pi from 5 test group and 2 control group sites, Fn from 7 test and 7 control group sites. At 3 months, Aa was recovered from 1 test group and 4 control group sites, Pg from 4 test group and 8 control group sites, Pi from 1 test group and 1 control group site, Fn from 3 test and 4 control group sites. Conclusion: Periochip TM placement as an adjunct to SRP, showed promising results, when compared to SRP alone. Healthy microflora can be maintained for a longer period of time and delay in the repopulation by periodontopathic microorganisms was observed.
Neutron scattering study on R2PdSi3 (R=Ho,Er,Tm) compounds
International Nuclear Information System (INIS)
Tang, Fei
2010-01-01
Previous studies on the family of inter-metallic rare-earth compounds R 2 PdSi 3 revealed multifaceted magnetic properties, for instance, spin-glass like behavior. Experimental observations include: Signs of a crystallographic superstructure, complicated magnetic structures both in zero field and in applied magnetic fields as well as a generic phase in applied fields for compounds in the series with the heavy rare-earths R=Gd, Tb, Dy, Ho, Er and Tm. This thesis expands the studies on the magnetic properties of R 2 PdSi 3 employing mainly neutron scattering on single crystals with the focus on the compounds with R=Ho, Er and Tm. A detailed analysis of the crystallographic superstructure using modulation wave approach and group theory is presented. The resulting structure implies the existence of two different rare-earth sites with reduced symmetry and an arrangement of the different sites according to sequences as determined by the superstructure. It is shown that the reduced symmetry of the rare-earth sites is explicitly observed in the energy spectra of inelastic neutron scattering. The results on the magnetic structures and excitations are shown and discussed in the framework of the superstructure model. Specifically the generic phase in applied fields is interpreted as a direct consequence of the crystallographic superstructure. It is rather unusual that a crystallographic superstructure is playing such a decisive, and through the field dependence also tunable role in determining the magnetic properties as observed in R 2 PdSi 3 . The mediating interactions between the crystallographic part and the magnetic part of the system are discussed. (orig.)
Very high coupling of TM polarised light in photonic crystal directional couplers
DEFF Research Database (Denmark)
Borel, Peter Ingo; Thorhauge, Morten; Frandsen, Lars Hagedorn
2003-01-01
The experimental and simulated spectra for TE and TM polarised light for the transmission through photonic crystal directional couplers are presented. The 3D FDTD simulations successfully explain all the major features of the experimental spectra as well as the actual transmission level. Especially...... noteworthy is the transmission level, experimentally found to be above -3 dB in the wavelength range 1520-1690 nm, for TM polarised light in the coupled channel. It is noted that even though band calculations show that the propagation of the TM polarisation takes place below the TM valence band, very high...... and spectrally smooth coupling is observed for the TM polarisation in this wavelength range....
ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel
Energy Technology Data Exchange (ETDEWEB)
Bai, Xuemei [Cellana LLC
2012-09-24
* ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized
A new comprehensive index for drought monitoring with TM data
Wang, Yuanyuan
2017-10-01
Drought is one of the most important and frequent natural hazards to agriculture production in North China Plain. To improve agriculture water management, accurate drought monitoring information is needed. This study proposed a method for comprehensive drought monitoring by combining a meteorological index and three satellite drought indices of TM data together. SPI (Standard Precipitation Index), the meteorological drought index, is used to measure precipitation deficiency. Three satellite drought indices (Temperature Vegetation Drought Index, Land Surface Water Index, Modified Perpendicular Drought Index) are used to evaluate agricultural drought risk by exploring data from various channels (VIS, NIR, SWIR, TIR). Considering disparities in data ranges of different drought indices, normalization is implemented before combination. First, SPI is normalized to 0 — 100 given that its normal range is -4 - +4. Then, the three satellite drought indices are normalized to 0 - 100 according to the maximum and minimum values in the image, and aggregated using weighted average method (the result is denoted as ADI, Aggregated drought index). Finally, weighed geometric mean of SPI and ADI are calculated (the result is denoted as DIcombined). A case study in North China plain using three TM images acquired during April-May 2007 show that the method proposed in this study is effective. In spatial domain, DIcombined demonstrates dramatically more details than SPI; in temporal domain, DIcombined shows more reasonable drought development trajectory than satellite indices that are derived from independent TM images.
Pool boiling performance of NovecTM 649 engineered fluid
International Nuclear Information System (INIS)
Forrest, Eric; Buongiorno, Jacopo; McKrell, Thomas; Hu, Lin-Wen
2009-01-01
A new fluorinated ketone, C 2 F 5 C(O)CF(CF 3 ) 2 , is currently being considered as an environmentally friendly alternative for power electronics cooling applications due to its high dielectric strength and low global warming potential (GWP). Sold commercially by the 3M Company as Novec TM 649 Engineered Fluid, C 2 F 5 C(O)CF(CF 3 ) 2 exhibits very low acute toxicity while maintaining long-term stability. To assess the general two-phase heat transfer performance of Novec TM 649, pool boiling tests were conducted by resistively heating a 0.01 in. diameter nickel wire at the fluid's atmospheric saturation temperature of 49 deg C. The nucleate boiling heat transfer coefficient and critical heat flux (CHF) obtained for the fluorinated ketone compare favorably with results obtained for FC-72, a fluorocarbon widely used for the direct cooling of electronic devices. Initial results indicate that Novec TM 649 may prove to be a viable alternative to FC-72 and other halo alkanes for the cooling of high power density electronic devices. (author)
Powernext futuresTM statistics 31st, July 2004
International Nuclear Information System (INIS)
2004-07-01
The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the July 31, 2004 update of Powernext Futures TM statistics: year, quarter and month contracts for July 2004, base-load and peak-load contracts overview from June 2004 to July 2004 (daily volume in lots, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period, base-load and peak-load price spreads), and market liquidity from mid-June to end of July 2004 (average bid ask spread and availability). (J.S.)
Assessing UiTM TESL Students’ Knowledge of Vocabulary
Directory of Open Access Journals (Sweden)
Leele Susana Jamian
2008-12-01
Full Text Available Learning the vocabulary of a language is vital in the process of acquiring the language because it serves several functions which assist learners to be good at the language, even though learning can be complicated and burdening for learners (Jiang, 2004; Cobb & Horst, 2004. The aim of the study was to investigate the English vocabulary levels of the TESL mainstream students in Universiti Teknologi MARA (UiTM. This research study also examined the differences in vocabulary levels between the male and female students. The study involved 90 respondents that were enrolled in the TESL programme at the Faculty of Education in UiTM, Shah Alam. The findings revealed that most of the UiTM TESL students scored an average of 15 correct answers in the 2,000 word-level, 12 for the 3,000 word-level, 8 for the 5,000 word-level, 10 for the University Word Level and 6 for the 10,000 word-level. The study also revealed that even though the students were highly engaged with listening, reading, speaking and writing activities, these involvements did not correlate with the mastery of vocabulary knowledge.
TmCd quadrupolar ordering and magnetic interactions
International Nuclear Information System (INIS)
Aleonard, R.; Morin, P.
1979-01-01
The paramagnetic compound TmCd crystallizes with the CsCl-type structure. Its Jahn-Teller behavior was first observed by Luethi and coworkers. We analyze here various physical properties with a pure-harmonic-elasticity model. The structural transition between cubic and tetragonal phases is now fully described (first-order character and temperature of occurrence) as well as the magnetic susceptibility, magnetization process, specific-heat, elastic-constant, and strain data. The relevant Hamiltonian takes into account the second-order magnetoelastic coupling and the quadrupolar exchange in addition to the cubic crystal field and the Heisenberg bilinear interactions. TmCd appears to be closely related to isomorphous TmZn and completes the illustration of the competition between bilinear and quadrupolar interactions occurring in some rare-earth intermetallics. In these two compounds, the quadrupolar exchange is many times stronger than the magnetoelastic coupling and the quadrupolar ordering then drives the structural transition. This situation is opposite to that occurring in (actual) Jahn-Teller compounds
“Occlusal Plane Orientor”: An Innovative and Efficient Device for Occlusal Plane Orientation
Kuniyal, Harish; Katoch, Nidhi; Rao, P. Laxman
2011-01-01
Correct occlusal plane orientation is a prerequisite in Prosthodontic reconstructive treatment therapy as it helps in achieving esthetics and phonetics anteriorly and forms a milling surface posteriorly where tongue and buccinator muscle position the food bolus during mastication. Activity of Muscles during clenching will be least, when the occlusal plane is made parallel to plane of lost natural teeth. Conventionally the ala-tragus line (Camper’s plane) is used as a guide for assessment of t...
Wave data processing toolbox manual
Sullivan, Charlene M.; Warner, John C.; Martini, Marinna A.; Lightsom, Frances S.; Voulgaris, George; Work, Paul
2006-01-01
Researchers routinely deploy oceanographic equipment in estuaries, coastal nearshore environments, and shelf settings. These deployments usually include tripod-mounted instruments to measure a suite of physical parameters such as currents, waves, and pressure. Instruments such as the RD Instruments Acoustic Doppler Current Profiler (ADCP(tm)), the Sontek Argonaut, and the Nortek Aquadopp(tm) Profiler (AP) can measure these parameters. The data from these instruments must be processed using proprietary software unique to each instrument to convert measurements to real physical values. These processed files are then available for dissemination and scientific evaluation. For example, the proprietary processing program used to process data from the RD Instruments ADCP for wave information is called WavesMon. Depending on the length of the deployment, WavesMon will typically produce thousands of processed data files. These files are difficult to archive and further analysis of the data becomes cumbersome. More imperative is that these files alone do not include sufficient information pertinent to that deployment (metadata), which could hinder future scientific interpretation. This open-file report describes a toolbox developed to compile, archive, and disseminate the processed wave measurement data from an RD Instruments ADCP, a Sontek Argonaut, or a Nortek AP. This toolbox will be referred to as the Wave Data Processing Toolbox. The Wave Data Processing Toolbox congregates the processed files output from the proprietary software into two NetCDF files: one file contains the statistics of the burst data and the other file contains the raw burst data (additional details described below). One important advantage of this toolbox is that it converts the data into NetCDF format. Data in NetCDF format is easy to disseminate, is portable to any computer platform, and is viewable with public-domain freely-available software. Another important advantage is that a metadata
International Nuclear Information System (INIS)
Belyaeva, A.I.; Antonov, A.V.; Egiazaryan, G.S.; Yur'ev, V.P.
1980-01-01
Carried out is visual study of the domain structure of (BiTm) 3 (FeGa) 5 O 12 ferrite-garnet epitaxial film with induced one-axial anisotropy within a wide temperature range of 4.2-400 K. Found is hysteresicless spin-reorientation phase transition, related to anisotropy change (light axis type on the anisotropy of light plane tyre). Intermediade state, connected with this transition, is investigated. It is shown, that double structure within temperature range Tsub(room)>=T>=Tsub(ph.tr) can be considered as thermodynamically equilibrium one
Ganiger, Chanamallappa R; Nayak, U S Krishna; Cariappa, K U; Ahammed, A R Yusuf
2012-07-01
This study was undertaken to analyze the clinical usefulness of the maxillomandibular bisector, its reproducibility, its validity and its relationship to the functional occlusal plane, the bisecting occlusal plane and the nature of its cant. Thirty pretreatment lateral cephalograms, each of adolescents (above 18 years of age) and children (10- 12 years), seeking orthodontic treatment were randomly selected and the Wits technique of anteroposterior measurement was used to compare A-B values measured to the new plane with those measured to the functional occlusal plane (FOP) and to the traditional or bisecting occlusal plane (BOP). Present study showed that MM bisector plane is more reproducible and valid reference plane, than the FOP and BOP. A new plane, geometrically derived from the dental base planes, has been tested as an occlusal plane substitute for the measurement of anteroposterior jaw relationships. It lies close to but at an angle and inferior to the traditional occlusal planes and is highly reproducible at all times. Maxillomandibular planes angle bisector may be a useful adjunct for the cephalometric assessment of sagittal relationship of the patient.
Ultrasonic waves in classical gases
Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.
2017-12-01
The velocity and absorption coefficient for the plane sound waves in a classical gas are obtained by solving the Boltzmann kinetic equation, which describes the reaction of the single-particle distribution function to a periodic external field. Within the linear response theory, the nonperturbative dispersion equation valid for all sound frequencies is derived and solved numerically. The results are in agreement with the approximate analytical solutions found for both the frequent- and rare-collision regimes. These results are also in qualitative agreement with the experimental data for ultrasonic waves in dilute gases.
Reflection of P and SV waves at the free surface of a monoclinic ...
Indian Academy of Sciences (India)
The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, ...
Amino Acids in the TM4-TM5 loop of Na,K-ATPase Are Important for Biosynthesis
DEFF Research Database (Denmark)
Jørgensen, Jesper Roland; Houghton-Larsen, Jens; Jacobsen, Mette Dorph
2003-01-01
-sensitive folding mutants, as they induce the unfolded protein response at 30°C but not at 15°C. We used an algorithm to predict that residues 868ENGFLIPIHLL878 in the L78 loop exposed to the endoplasmic reticulum lumen constitute the most likely BiP binding site. Correct folding of this sequence may be important...... in the endoplasmic reticulum quality control, as the same loop is responsible for the a-ß-associations required to leave this compartment. On the basis of the Ca-ATPase crystal structure and the presented data, we propose a model to account for the role of the TM4-TM5 loop in Na,K-ATPase biosynthesis....
Amino Acids in the TM4-TM5 loop of Na,K-ATPase Are Important for Biosynthesis
DEFF Research Database (Denmark)
Jørgensen, Jesper Roland; Houghton-Larsen, Jens; Jacobsen, Mette Dorph
2003-01-01
in the endoplasmic reticulum quality control, as the same loop is responsible for the a-ß-associations required to leave this compartment. On the basis of the Ca-ATPase crystal structure and the presented data, we propose a model to account for the role of the TM4-TM5 loop in Na,K-ATPase biosynthesis.......The ten-transmembrane Na,K-ATPase a-subunit exposes very few amino acids to the extra membrane space except for an approximately 408 residue-long loop between transmembrane segments four and five. The present paper focuses on the role of this loop in biosynthesis of functional Na,K-ATPase...
Modeling a Hypothetical 170Tm Source for Brachytherapy Applications
International Nuclear Information System (INIS)
Enger, Shirin A.; D'Amours, Michel; Beaulieu, Luc
2011-01-01
Purpose: To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical 170 Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons. Methods: GEANT4 Monte Carlo code version 9.2 patch 2 was used to simulate the decay process of 170 Tm and to calculate the absorbed dose distribution using the GEANT4 Penelope physics models. A hypothetical 170 Tm source based on the Flexisource brachytherapy design with the active core set as a pure thulium cylinder (length 3.5 mm and diameter 0.6 mm) and different cylindrical source encapsulations (length 5 mm and thickness 0.125 mm) constructed of titanium, stainless-steel, gold, or platinum were simulated. The radial dose function for the line source approximation was calculated following the TG-43U1 formalism for the stainless-steel encapsulation. Results: For the titanium and stainless-steel encapsulation, 94% of the total bremsstrahlung is produced inside the core, 4.8 and 5.5% in titanium and stainless-steel capsules, respectively, and less than 1% in water. For the gold capsule, 85% is produced inside the core, 14.2% inside the gold capsule, and a negligible amount ( 170 Tm source is primarily a bremsstrahlung source, with the majority of bremsstrahlung photons being generated in the source core and experiencing little attenuation in the source encapsulation. Electrons are efficiently absorbed by the gold and platinum encapsulations. However, for the stainless-steel capsule (or other lower Z encapsulations) electrons will escape. The dose from these electrons is dominant over the photon dose in the first few millimeter but is not taken into account by current standard treatment planning systems. The total energy spectrum of photons emerging from the source depends on the encapsulation composition and results in mean photon energies well above 100 keV. This is higher than the main gamma-ray energy peak at 84 keV. Based on our
Transmission of longitudinal wave through micro-porous elastic ...
African Journals Online (AJOL)
An investigation of reflection and transmission phenomena of plane longitudinal wave from a plane interface between two distinct micropolar porous elastic solid half-spaces in welded contact has been made. Using the method of potentials, the appropriate boundary conditions at the interface are solved to obtain the ...
Directory of Open Access Journals (Sweden)
Jeanne Farrell
Full Text Available BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex/Sacy(tm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS: We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex knockout allele. CONCLUSIONS/SIGNIFICANCE: These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.
On the Accuracy of Asymptotic Solutions for TM Waves Diffracting on an Impedance Wedge
Directory of Open Access Journals (Sweden)
Sonia Fu
2014-01-01
Full Text Available The contribution focuses on the accuracy of two asymptotic solutions aimed at representing the electromagnetic field scattered by penetrable wedges. One is a heuristic manipulation of the solution for the perfect electrical conductor, and the other one is a more rigorous coefficient based on approximate boundary conditions. The results presented here extend those proposed by other authors by illustrating the accuracy of such solutions at the edge of validity of the uniform theory of diffraction. In particular, they show that the heuristic formulation can be freely applied in similar conditions, while the other might not always lead to accurate predictions.
Directory of Open Access Journals (Sweden)
Kameswari Kondreddy
2012-01-01
Full Text Available Aims and objectives: The aim of this study is to evaluate the effectiveness of a controlled-release chlorhexidine chip as an adjunctive therapy to scaling and root planing when compared with scaling and root planing alone in the treatment of chronic periodontitis. Materials and Methods: 20 patients with a total number of 40 posterior sites were selected. These sites were divided into two groups in a split mouth design,: Group A (control site had 20 sites treated with scaling and root planing alone and Group B (test site had 20 sites treated with scaling and root planing and PerioCol TM -CG. The clinical parameters (Plaque index, bleeding on probing, probing pocket depth, clinical attachment level were recorded at baseline, 90 th and 180 th day for both the groups. Results: When both groups were compared the change in Plaque index was significantly higher in Group B when compared to Group A on the 90 th day and 180 th day. However, there was no statistically significant difference in the mean percentage of gingival bleeding sites between the two groups on the 90 th day, though Group B showed a statistically higher reduction in the mean percentage of gingival bleeding sites at the end of 180 th day. There was no statistically significant difference in probing pocket depth between the two groups on both 90 th and 180 th day. Gain in clinical attachment level was significantly higher in Group B when compared to Group A on the 90 th and 180 th day. Conclusion: From the results observed in this study, it can be concluded that the adjunctive use of PerioCol TM -CG was safe and provided significant improvement in both Plaque index and gingival bleeding index. It was also more favorable than scaling and root planing alone for gain in clinical attachment level.
Determination of the occlusal plane using a custom-made occlusal plane analyzer: a clinical report.
Bedia, Sumit V; Dange, Shankar P; Khalikar, Arun N
2007-11-01
In fixed prosthodontic procedures, when it has been determined that restoration of all or most of the posterior teeth is necessary, the use of the Broderick occlusal plane analyzer provides an easy and practical method to determine an occlusal plane that will fulfill esthetic and functional occlusion requirements. However, several manufacturers of semiadjustable articulators offer no such occlusal plane analyzers for use with these instruments. This article demonstrates the use of a custom-made Broderick occlusal plane analyzer with a semiadjustable articulator to determine the correct curve of Spee for the occlusal plane.
In-plane and cross-plane thermal conductivities of molybdenum disulfide
International Nuclear Information System (INIS)
Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu
2015-01-01
We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)