WorldWideScience

Sample records for title compound kgdc10h2o8h2o2n

  1. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  2. Thermal stability of polyoxometalate compound of Keggin K8[2-SiW11O39]∙nH2O supported with SiO2

    Directory of Open Access Journals (Sweden)

    Yunita Sari M A

    2017-06-01

    Full Text Available Synthesis through sol-gel method and characterization of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O supported with SiO2 have been done. The functional groups of polyoxometalate compound  was characterized by FT-IR spectrophotometer for the fungtional groups and the degree’s of crystalinity  using XRD. The acidity of K8[b2-SiW11O39]∙nH2O/SiO2 was determined qualitative analysis using ammonia and pyridine adsorption and the quantitative analysis using potentiometric titration method. The results of FT-IR spectrum of K8[b2-SiW11O39]∙nH2O appeared at  wavenumber 987.55 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 756.1 cm-1 (W-Oc-W, 3425.58 cm-1 (O-H, respectively and spectrum of  K8[b2-SiW11O39]SiO2 appeared at wavenumber  956.69 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 3448.72 cm-1 (O-H, respectively. The diffraction of XRD pattern of K8[b2-SiW11O39]∙nH2O and K8[b2-SiW11O39]∙nH2O/SiO2 compounds show high crystalinity. The acidic properties showed K8[b2-SiW11O39]∙nH2O/SiO2 more acidic compared to K8[b2-The SiW11O39]∙nH2O. The qualitative analysis showed pyridine compound adsorbed more of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O/SiO2. Analysis of stability showed that the K8[b2-SiW11O39]∙nH2O/SiO2 at temperature 500°C has structural changes compare to 200-400oC which was indicated from vibration at wavenumber 800-1000 cm-1. Keywords : K8[b2-SiW11O39]∙nH2O, polyoxometalate, SiO2.

  3. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    Science.gov (United States)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  4. Synthesis and crystal structure of trans-[Ni(pyzdcH)M 2 (H 2 O) 2 ...

    African Journals Online (AJOL)

    The determined structure of the title compound C24H20Ni2N8O20 consists of the mononuclear trans-[Ni(pyzdc)2(H2O)2], (pyzdc = pyrazine-2,3- dicarboxylate). The Ni(II) atom is hexa-coordinated by two (pyzdcH)- groups and two water molecules. The coordinated water molecules are in trans-diaxial positions and the ...

  5. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  6. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  7. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  8. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    Science.gov (United States)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  9. Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl · 2H2O

    International Nuclear Information System (INIS)

    Zhao, Pu Su; Lu, Lu De; Jian, Fang Fang

    2003-01-01

    The crystal structure of [Co(phen) 2 (Cl)(H 2 O)] Cl · 2H 2 O(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P 1 , with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)A, α=64.02(1), β=86.364(9), γ=78.58(2) .deg., and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33A). The intermolecular hydrogen bonds connect the [Co(phen) 2 (Cl)(H 2 O)] 1+ , H 2 O moieties and chloride ion

  10. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)22H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    Science.gov (United States)

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)22H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.

  11. (2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato-κ2O4,O5(4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato-κ2O4,O5bis(1,10-phenanthroline-κ2N,N′yttrium(III dihydrate

    Directory of Open Access Journals (Sweden)

    Zilu Chen

    2008-09-01

    Full Text Available In the title compound, [Y(C5H2N2O4(C5H3N2O4(C12H8N22]·2H2O, the YIII ion lies on a twofold rotation axis and exhibits a distorted square-antiprismatic coordination geometry. It is chelated by two 1,10-phenanthroline ligands, a 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monoanion and a 4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylate dianion. The H atom involved in an N—H...N hydrogen bond between the 1,2-dihydropyrimidine units has half occupancy and is disordered around a twofold rotation axis.

  12. Hydrothermal synthesis and crystal structure of the Ni2(C4H4N2)(V4O12)(H2O)2 and Ni3(C4H4N2)3(V8O23) inorganic-organic hybrid compounds. Thermal, spectroscopic and magnetic studies of the hydrated phase

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2 , 1, and Ni 3 (C 4 H 4 N 2 ) 3 (V 8 O 23 ), 2, have been synthesized using mild hydrothermal conditions at 170 deg. C under autogenous pressure. Both phases crystallize in the P-1 triclinic space group, with the unit-cell parameters, a=7.437(7), b=7.571(3), c=7.564(4) A, α=65.64(4), β=76.09(4), γ=86.25(3) o for 1 and a=8.566(2), b=9.117(2), c=12.619(3) A, α=71.05(2), β=83.48(4), γ=61.32(3) o for 2, being Z=2 for both compounds. The crystal structure of the three-dimensional 1 is constructed from layers linked between them through the pyrazine molecules. The sheets are formed by edge-shared [Ni 2 O 6 (H 2 O) 2 N 2 ] nickel(II) dimers octahedra and rings composed by four [V 4 O 12 ] vanadium(V) tetrahedra linked through vertices. The crystal structure of 2 is formed from vertex shared [VO 4 ] tetrahedra that give rise to twelve member rings. [NiO 4 (C 4 H 4 N 2 ) 2 ] ∞ chains, resulting from [NiO 4 N 2 ] octahedra and pyrazine molecules, give rise to a 3D skeleton when connecting to [VO 4 ] tetrahedra. Diffuse reflectance measurements of 1 indicate a slightly distorted octahedral geometry with values of Dq=880, B=980 and C=2700 cm -1 . Magnetic measurements of 1, carried out in the 5.0-300 K range, indicate the existence of antiferromagnetic couplings with a Neel temperature near to 38 K. - Graphical abstract: Crystal structure of a sheet of Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2

  13. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Thabet, Safa, E-mail: safathabet@hotmail.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Ayed, Brahim, E-mail: brahimayed@yahoo.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Haddad, Amor [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, with a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.

  14. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: Cu1.5Li(C2H10N2)P6O18·7H2O

    Science.gov (United States)

    Sleymi, Samira; Lahbib, Karima; Rahmouni, Nihed; Rzaigui, Mohamed; Besbes-Hentati, Salma; Abid, Sonia

    2017-09-01

    A new organic-inorganic hybrid transition metal phosphate, Cu1.5Li(C2H10N2)P6O18·7H2O, has been prepared and characterized by X-ray diffraction, spectroscopy (infrared, Raman, diffuse reflectance and UV-Vis) and thermal analysis (TG). In addition, its electrochemical behaviors, as well as its antioxidant and antibacterial activities, have been investigated. Its structure is built up by the alternate linkages between copper and phosphate polyhedra, forming puckered layers with intersecting 12-membered rings, in which the ethylenediammonium cations reside. This compound is the first framework structure constructed from cyclohexaphosphates and three distinct copper cations. Cyclic voltammetry study in an acetonitrile solution reveals the facile anodic oxidation of its organic part on a platinum disk and a progressive growing of a thin film, though the repetitive cycling of potential. The title compound was tested for its in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferrous chelating ability (FIC) and Ferric Reducing Power (FRP) methods. The antioxidant activity of Cu1.5Li(C2H10N2)P6O18·7H2O was analyzed simultaneously with its antibacterial capacity against Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium, Streptococcus agalactiae and Candida albicans. The tested compound showed significant antioxidant activities with low antibacterial properties.

  15. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  16. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)2ṡ6H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  17. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  18. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  19. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  20. Bis(2,2′-bipyridyl-κ2N,N′(sulfato-κ2O,O′cobalt(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-01-01

    Full Text Available The title compound, [Co(SO4(C10H8N22]·C2H6O2, has the Co2+ ion in a distorted octahedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethanediol molecule. In the crystal, the [CoSO4(C10H8N22] and C2H6O2 units are held together by a pair of O—H...O hydrogen bonds.

  1. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.

    2005-01-01

    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  2. Novel decavanadate cluster complexes [H2V10O28][LH]4·nH2O (L = Imidazole, n = 2 or 2-methylimidazole, n = 0): Preparation, characterization and genotoxic studies

    Science.gov (United States)

    Siddiqi, Zafar A.; Anjuli; Sharma, Prashant K.; Shahid, M.; Khalid, Mohd.; Siddique, Armeen; Kumar, Sarvendra

    2012-12-01

    The title complexes were obtained from the reaction of VOSO4 with imidazole or 2-methyl imidazole in presence of adipic acid/iminodiacetic acid. X-ray crystallographic investigations on [H2V10O28](2-MeImzH)4 (2) revealed a strong interaction between decavanadate anion and the protonated ligand moieties as counter cations to stabilize the crystal motif resulting in a high symmetry 2D sheet network. The cyclic voltammetry of (2) suggested formation of a quasi-reversible redox (VV/IV) couple in the solution. The genotoxic studies employing single cell gel electrophoresis (comet assay) confirmed the non-toxic nature of the compounds.

  3. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  4. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  5. μ-Oxalato-κ4O1,O2:O1′,O2′-bis[aqua(2,2′-bipyridine-κN(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    Gang-Hong Pan

    2012-10-01

    Full Text Available The title compound, [Pb2(C2O4(NO32(C10H8N22(H2O2], was synthesized hydrothermally. The binuclear complex molecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is heptacoordinated by the O atom of one water molecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Intermolecular O—H...O hydrogen bonds between water molecules and oxalate and nitrate ions result in the formation of layers parallel to (010. π–π interactions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2 Å, stabilize the structural set-up.

  6. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  7. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  8. Hydrothermal synthesis and crystal structure of a new molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H2O)MoO4]·H2O (o-phen=o-phenanthroline)

    International Nuclear Information System (INIS)

    Zhang Quanzheng; Lu Canzhong; Yang Wenbin; Chen Shumei; Yu Yaqin; He Xiang; Yan Ying; Liu Jiuhui; Xu Xinjiang; Xia Changkun; Wu Xiaoyuan; Chen Lijuan

    2004-01-01

    A new one-dimensional molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H 2 O)MoO 4 ]·H 2 O (1) (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of Na 2 MoO 4 ·2H 2 O, MnSO 4 ·H 2 O, oxalic acid, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, TG analysis, IR spectrum and single-crystal X-ray diffraction. Compound 1 crystallizes in triclinic system, space group P-1 with a=7.0401(2) A, b=10.4498(2) A, c=10.5720(2) A, α=73.26(7) deg., β=83.34(8) deg., γ=77.33(9) deg., V=725.5089(0) A 3 , Z=2, and R 1 =0.0322 for 2337 observed reflections. Compound 1 exhibits one-dimensional chain structure. The chains are linked up via hydrogen bonding to 2D layers, which are further assembled through π-π stacking interactions to a 3D supermolecular structure

  9. Theoretical study of the interaction of N2 with water molecules. (H2O)/sub n/:N2, n = 1--8

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-01-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H 2 O molecule with N 2 . The potential energy surface for H 2 O:N 2 is found to have a minimum corresponding to a HOH xxx N 2 structure with a weak ( -1 ) hydrogen bond. A second, less stable, configuration corresponding to a H 2 O xxx N 2 structure with N 2 bonded side on to the oxygen of H 2 O was found to be either a minimum or a saddle point in the potential energy surface depending on the level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H 2 O molecules with N 2 . Two types of clusters, one containing only HOH xxx N 2 interactions and the other containing both HOH xxxN 2 and H 2 O xxx N 2 interactions, were investigated for [N 2 :(H 2 O)/sub n/, n = 2--8

  10. Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-09-30

    In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.

  11. Modelling of phase equilibria in CH4–C2H6–C3H8nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2–C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  12. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  13. Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6(C10H8N22]·2C10N2H8·5H2O}n

    Directory of Open Access Journals (Sweden)

    Emmanuel Aubert

    2016-11-01

    Full Text Available The coordination polymer {[Cu(SiF6(C10H8N22]·2C10H8N2·5H2O}n, systematic name: poly[[bis(μ2-4,4′-bipyridine(μ2-hexafluoridosilicatocopper(II] 4,4′-bipyridine disolvate pentahydrate], contains pores which are filled with water and 4,4′-bipyridine molecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bipyridine guest molecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the molecules interact through π–π stacking. Ordered water molecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture perpendicular to the 4,4′-bipyridine channels.

  14. (2-Formyl-6-methoxyphenolato-κ2O1,O2(perchlorato-κO(1,10-phenanthroline-κ2N,N′copper(II

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wu

    2008-05-01

    Full Text Available In the title molecule, [Cu(C8H7O3(ClO4(C12H8N2], the CuII ion is five-coordinated by two N atoms [Cu—N = 1.995 (3 and 2.022 (3 Å] from a 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.908 (2 and 1.927 (2 Å] from an o-vanillin ligand and one O atom [Cu—O = 2.510 (3 Å] from a perchlorate anion in a distorted square-pyramidal geometry. Three O atoms of the perchlorate anion are rotationally disordered between two orientations, with occupancies of 0.525 (13 and 0.475 (13. In the crystal structure, two molecules related by a centre of symmetry are paired in such a way that the phenolate O atom from one molecule completes the distorted octahedral Cu coordination in another molecule [Cu...O = 2.704 (2 Å].

  15. Tyrphostin AG-related compounds attenuate H2O2-induced TRPM2-dependent and -independent cellular responses.

    Science.gov (United States)

    Yamamoto, Shinichiro; Toda, Takahiro; Yonezawa, Ryo; Negoro, Takaharu; Shimizu, Shunichi

    2017-05-01

    TRPM2 is a Ca 2+ -permeable channel that is activated by H 2 O 2 . TRPM2-mediated Ca 2+ signaling has been implicated in the aggravation of inflammatory diseases. Therefore, the development of TRPM2 inhibitors to prevent the aggravation of these diseases is expected. We recently reported that some Tyrphostin AG-related compounds inhibited the H 2 O 2 -induced activation of TRPM2 by scavenging the intracellular hydroxyl radical. In the present study, we examined the effects of AG-related compounds on H 2 O 2 -induced cellular responses in human monocytic U937 cells, which functionally express TRPM2. The effects of AG-related compounds on H 2 O 2 -induced changes in intracellular Ca 2+ concentrations, extracellular signal-regulated kinase (ERK) activation, and CXCL8 secretion were assessed using U937 cells. Ca 2+ influxes via TRPM2 in response to H 2 O 2 were blocked by AG-related compounds. AG-related compounds also inhibited the H 2 O 2 -induced activation of ERK, and subsequent secretion of CXCL8 mediated by TRPM2-dependent and -independent mechanisms. Our results show that AG-related compounds inhibit H 2 O 2 -induced CXCL8 secretion following ERK activation, which is mediated by TRPM2-dependent and -independent mechanisms in U937 cells. We previously reported that AG-related compounds blocked H 2 O 2 -induced TRPM2 activation by scavenging the hydroxyl radical. The inhibitory effects of AG-related compounds on TRPM2-independent responses may be due to scavenging of the hydroxyl radical. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao

    2005-01-01

    The title new neodymium(III) selenate-selenite was obtained by hydrothermal reactions of neodymium(III) oxide, H 2 SeO 4 and 1,10-phenanthroline at 140 o C. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group C2/c with cell parameters of a = 12.258(2) A, b 7.1024(15) A, c = 13.391(3) A, β = 104.250(2) o . The structure of Nd 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 is isomorphous with that of Er 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 , which was refined in the monoclinic space group C2 with the disordered selenate group. It features an ordered 3D network with channels along b-axis. The selenate or selenite groups alone can form a 2D layer with the Nd(III) ions. IR spectrum, TGA and luminescent studies have also been performed

  17. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  18. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  19. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  20. Poly[[aqua(μ2-4,4′-bipyridine-κ2N:N′[μ3-3-bromo-2-(carboxylatomethylbenzoato-κ3O1:O1′:O2]cadmium] monohydrate

    Directory of Open Access Journals (Sweden)

    Yangmei Liu

    2012-08-01

    Full Text Available In the title compound, {[Cd(C9H5BrO4(C10H8N2(H2O]·H2O}n, the CdII atom has a distorted octahedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy ligands occupy the axial positions, while the equatorial positions are furnished by three carboxylate O atoms from three 3-bromo-2-(carboxylatomethylbenzoate (bcb ligands and one O atom from a water molecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H...O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4 Å] are present in the crystal.

  1. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  2. SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF BIS(CITRATEGERMANATES(IV (Hbipy2[Ge(HCit2]•2H2O AND [CuCl(bipy2]2[Ge(HCit2]•8H2O

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2016-12-01

    Full Text Available The crystalline compounds (Hbipy2[Ge(HCit22H2O (1 and CuCl(bipy2]2[Ge(HCit28H2O (2 (where H4Cit is citric acid, bipy is 2,2ʹ-bipyridine were obtained for the fi rst time and their structures were determined by the single-crystal X-ray diffraction method. Compounds were characterized by IR spectroscopy, thermogravimetric (TGA and elemental analyses. Both compounds are formed with complex bis(citrategermanate anion and protonated 2,2’-bipyridine or [Cu(bipy2Cl]+ as cations in compounds 1 and 2, respectively.

  3. Poly[diaqua(μ-4,4′-bipyridine-κ2N:N′[μ-2,2′-(p-phenylenedioxydiacetato-κ2O:O′]cadmium

    Directory of Open Access Journals (Sweden)

    Guang-Yin Wang

    2011-09-01

    Full Text Available In the title compound, [Cd(C10H8O6(C10H8N2(H2O2]n, the CdII ion has inversion symmetry and is coordinated by O atoms from two water molecules and two bridging 2,2′-(μ-p-phenylenedioxydiacetate ligands and two N atoms from two 4,4′-bipyridine ligands, giving a slightly distorted octahedral geometry. The diacetate and 4,4′-bipyridine ligands also lie across inversion centers. The bridging ligands form layers parallel to (11overline{1}, with adjacent layers interconnected via O—H...O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms, giving a three-dimensional supramolecular architecture.

  4. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  5. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  6. tert-Butyl 3-(8-bromo-4H,10H-1,2-oxazolo[4,3-c][1]benzoxepin-10-yl-2-methyl-1H-indole-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Ankur Trigunait

    2010-08-01

    Full Text Available In the title compound, C25H23BrN2O4, the seven-membered ring adopts a twisted-boat conformation. The indole ring system is planar within 0.021 (2 Å and the ester group [–C(=O—O—C–] is almost coplanar with it [dihedral angle = 3.0 (2°]. The conformation of the ester group is influenced by intramolecular C—H...O interactions. In the crystal structure, molecules are linked into chains along the b axis by C—H...N hydrogen bonds.

  7. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II butane-2,3-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Juan Wang

    2011-04-01

    Full Text Available In the title compound, [Co(SO4(C12H8N22]·C4H10O2, the Co2+ ion has a distorted octahedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule are situated on twofold rotation axes. The molecules of the complex and the solvent molecules are held together by pairs of symmetry-related O—H...O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent molecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

  8. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  9. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    Science.gov (United States)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  10. Poly[[diaquabis(2,2′-bipyridine-κ2N,N′(μ3-5-hydroxyisophthalato-κ5O1,O1′:O3,O3′:O3′(μ3-5-hydroxyisophthalato-κ4O1,O1′:O3:O3′(μ2-5-hydroxyisophthalato-κ3O1,O1′:O3didysprosium(III] dihydrate

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zhang

    2011-10-01

    Full Text Available The polymeric title compound, {[Dy2(C8H4O53(C10H8N22(H2O22H2O}n, contains two independent DyIII ions, both of which are nine-coordinated in a distorted tricapped trigonal–prismatic geometry. One DyIII ion is coordinated by five 5-hydroxyisophthalate (hip ligands and one 2,2′-bipyridine (bpy ligand and the other by three hip ligands, one bpy ligand and two water molecules. The DyIII ions are bridged by the carboxylate groups of the hip ligands, forming a three-dimensional framework. O—H...O hydrogen bonds are present in the crystal structure.

  11. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  12. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    Science.gov (United States)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  13. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  14. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  15. Study of UO{sub 2}F{sub 2} - H{sub 2}O - HF compounds; Etude des composes UO{sub 2}F{sub 2} - H{sub 2}O - HF

    Energy Technology Data Exchange (ETDEWEB)

    Neveu, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We study various compounds resulting from the interaction of UO{sub 2}F{sub 2} with H{sub 2}O and HF (gas), and various triple compounds UO{sub 2}F{sub 2} - H{sub 2}O - HF; the conditions of decomposition and the thermodynamic limits of stability are specified. (author) [French] Nous etudions divers composes formes par reaction de UO{sub 2}F{sub 2} avec H{sub 2}O et HF (gaz) et divers composes triples UO{sub 2}F{sub 2} - H{sub 2}O - HF, en essayant de preciser les decompositions et domaines d'exisfence thermodynamiques de ces corps. (auteur)

  16. Keggin type polyoxometalate H4[αSiW12O40].nH2O as intercalant for hydrotalcite

    Directory of Open Access Journals (Sweden)

    Neza Rahayu Palapa

    2017-06-01

    Full Text Available The synthesis of hydrotalcite and polyoxometalate H4[αSiW12O40].nH2O with the ratio (2:1, (1:1, (1:2 and (1:3 has been done. The product of intercalation was characterized using FT-IR spectrophotometer, XRD, and TG-DTA. Polyoxometalate H4[αSiW12O40].nH2O intercalated layered double hydroxide was optimised to use as adsorbent Congo red dye. Characterization using FT-IR was not showing the optimal insertion process. The result using XRD characterization was showed successful of polyoxometalate H4[αSiW12O40].nH2O inserted layered double hydroxide with a ratio (1:1 which the basal spacing was expanded from 7,8 Ȧ to 9,81 Ȧ. Furthermore, the thermal analysis was performed using TG-DTA. The result show that the decomposition of polyoxometalate H4[αSiW12O40].nH2O intercalated  hydrotalcite with ratio (1:1 was occured at 80oC to 400oC with a loss of OH in the layer at 150oC to 220oC, and then the decomposition of the compound polyoxometalate H4[αSiW12O40].nH2O at 350oC to 420oC. Keywords: Hydrotalcite, Layered Double Hydroxide, Polyoxometalate, Intercalation

  17. Ni2Sr(PO42·2H2O

    Directory of Open Access Journals (Sweden)

    Lahcen El Ammari

    2010-12-01

    Full Text Available The title compound, dinickel(II strontium bis[orthophosphate(V] dihydrate, was obtained under hydrothermal conditions. The crystal structure consists of linear chains ∞1[NiO2/2(OH22/2O2/1] of edge-sharing NiO6 octahedra (overline{1} symmetry running parallel to [010]. Adjacent chains are linked to each other through PO4 tetrahedra (m symmetry and arranged in such a way to build layers parallel to (001. The three-dimensional framework is accomplished by stacking of adjacent layers that are held together by SrO8 polyhedra (2/m symmetry. Two types of O—H...O hydrogen bonds involving the water molecule are present, viz. one very strong hydrogen bond perpendicular to the layers and weak trifurcated hydrogen bonds parallel to the layers.

  18. Anti-inflammatory drugs. X. Hydrated pyrrolidinium [2-[(2,6-dichlorophenyl)amino]phenyl]acetate(HP.D.H2O).

    Science.gov (United States)

    Castellari, C; Comelli, F; Ottani, S

    2001-10-01

    In the solid-state structure of the title compound, C(4)H(10)N(+).C(14)H(10)Cl(2)NO(2)(-).H(2)O, the asymmetric unit contains one cation, one anion and a water molecule. There is a network of hydrogen bonds which is similar to that found in the hydrated diethylammonium diclofenac salt. A comparison is made of the molecular conformation of the anions in the two related structures.

  19. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  20. Bis(μ-2-methylquinolin-8-olato-κ3N,O:O;κ3O:N,O-bis[(methanol-κO(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The molecule of the title compound, [Pb2(C10H8NO2(NO32(CH3OH2], lies about a centre of inversion. The Pb atom is chelated by nitrate and substituted quinolin-8-olate anions. The O atom of the quinolin-8-olate also bridges, to confer a six-coordinate status on the metal centre. When a longer Pb...O interaction is considered, the geometry approximates a Ψ-cube in which one of the sites is occupied by a stereochemically active lone pair.

  1. 2-(2-Pyridylpyridinium (2,2′-bipyridine-κ2N,N′tetrakis(nitrato-κ2O,O′bismuthate(III

    Directory of Open Access Journals (Sweden)

    Shu-Shen Zhang

    2011-10-01

    Full Text Available The structure of the title compound, (C10H9N2[Bi(NO34(C10H8N2], consists of 2-(2-pyridylpyridinium cations and anions [Bi(NO34(C10H8N2]−. The Bi3+ ion lies on the twofold axis. It is coordinated by two nitrogen atoms from one 2,2′-bipyridine ligand and eight oxygen atoms from four NO3− anions. The disordered cation is positioned at the inversion centre. The [Bi(NO34(C10H8N2]− anions and 2-(2-pyridylpyridinium cations are connected via N—H...O hydrogen bonds into chains. Moreover, these chains are further linked into a two-dimensional layered structure through π–π stacking interactions between bipyridine ligands along the c axis [centroid–centroid distance = 2.868 (4 Å].

  2. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  3. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  4. Synthesis and study of the triphosphate salt LiSr2P3O10·8H2O

    International Nuclear Information System (INIS)

    Sotnikova-Yuzhik, V.A.; Peslyak, G.V.

    1995-01-01

    Lithium triphosphate interaction with strontium nitrate in aqueous solution at 0.3 mole% concentration and 20 deg C is studied. Formation of crystal hydrate LiSr 2 P 3 O 10 ·8H 2 O and amorphous phase of variable composition Li 2,5-0,5x P 3 O 10 ·6H 2 O (0.20≤x≤0.55) is determined. Data on the stability of binary lithium-strontium triphosphate at storage, sequence of chemical and phase transitions under heating are obtained. 5 refs., 4 figs., 3 tabs

  5. Octa-akis(4-amino-pyridine)-1κN,2κN-aqua-2κO-μ-carbonato-1:2κO,O':O''-dinickel(II) dichloride penta-hydrate.

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S

    2008-10-18

    In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.

  6. 2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6ferrate(III dihydrate

    Directory of Open Access Journals (Sweden)

    Andya Nemati

    2008-10-01

    Full Text Available The reaction of iron(II sulfate heptahydrate with the proton-transfer compound (pydaH(hypydcH (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxypyridine-2,6-dicarboxylic acid in an aqueous solution led to the formation of the title compound, (C5H8N3[Fe(C7H3NO52]·2H2O. The anion is a six-coordinated complex with a distorted octahedral geometry around the FeIII atom. Extensive intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, involving the complex anion, (pydaH+ counter-ion and two uncoordinated water molecules, and π–π [centroid-to-centroid distance 3.323 (11 Å] and C—O...π [O–centroid distance 3.150 (15 Å] interactions connect the various components into a supramolecular structure.

  7. Synthesis and physicochemical investigation of vanadium tripolyphosphate, H2VP3O10·3H2O (3)

    International Nuclear Information System (INIS)

    Lyutsko, V.A.; Romanij, T.V.

    1987-01-01

    The new compound - vanadium dihydrotripolyphosphate, H 2 VP 3 O 10 x3H 2 O of the modification III has been prepared by interaction of the metalic vanadium and orthophosphoric acid at 483 K. It has been investigated by chemical analysis, thin layer chromatography, X-ray phase analysis, infrared spectroscopy and thermal analysis

  8. Unprecedented connection mode of [V{sub 16}Sb{sub 4}O{sub 42}(H{sub 2}O)]{sup 8-} cluster anions by Mn{sup 2+} centered complexes. Solvothermal synthesis and properties of {[Mn(teta)]_4V_1_6Sb_4O_4_2(H_2O)}{sub n}.[(H{sub 2}O){sub 12}]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Maren; Naether, Christian; Bensch, Wolfgang [Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel (Germany); Leusen, Jan van; Koegerler, Paul [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany)

    2017-11-17

    The new compound {[Mn(teta)]_4V_1_6Sb_4O_4_2}{sub n}.[(H{sub 2}O){sub 12}]{sub n} (teta = triethylenetetraamine) was synthesized under solvothermal conditions. The crystal structure features the high nuclearity [V{sub 16}{sup IV}Sb{sub 4}{sup III}O{sub 42}(H{sub 2}O)]{sup 8-} cluster anion, which consists of two rings composed of 8 edge-sharing VO{sub 5} polyhedra. The rings are perpendicular to each other generating four niches, which are occupied by two VO{sub 5} pyramids and two handle-like Sb{sub 2}O{sub 5} units. The two unique anions are each surrounded by eight Mn{sup 2+} centered complexes via Mn-O{sub term}-V bonds. Such an expansion has never been observed in heterometal polyoxovanadate chemistry. The connection mode between cluster anions and complex cations generates two individual layers stacked onto each other. Between the layers weak Sb..O contacts are observed. The crystal water molecules are mainly located in the empty space between the layers. Upon heating H{sub 2}O molecules are removed, while the crystal structure remains intact. The magnetic behavior is dominated by strong antiferromagnetic exchange interactions between the central V{sup 4+} ions, while the interaction between the cluster anion and central Mn{sup 2+} ions is significantly less pronounced. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  10. Tetrakis(6-methyl-2,2′-bipyridine-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetranitrato-1κ4O,O′;4κ2O,O′-tetralead(II

    Directory of Open Access Journals (Sweden)

    Roya Ahmadi

    2009-10-01

    Full Text Available In the tetranuclear centrosymmetric title compound, [Pb4(NO38(C11H10N24], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The heptacoordinated lead(II ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy ligand. The six-coordinate lead(II ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H...O hydrogen bonds may stabilize the structure.

  11. Low-temperature heat capacities and thermodynamic properties of ethylenediammonium tetrachlorozincate chloride (C2H10N2)2(ZnCl4)Cl2

    International Nuclear Information System (INIS)

    He, Dong-Hua; Di, You-Ying; Wang, Bin; Dan, Wen-Yan; Tan, Zhi-Cheng

    2010-01-01

    The ethylenediammonium tetrachlorozincate chloride (C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 was synthesized. Chemical analysis, elemental analysis, and X-ray crystallography were applied to characterize the composition and crystal structure of the complex. Low-temperature heat capacities of the compound were measured by a precision automatic adiabatic calorimeter over the temperature range from T = 77-377 K. A polynomial equation of heat capacities as a function of the reduced temperature was fitted by a least square method. Based on the polynomial equation, the smoothed heat capacities and thermodynamic functions of the title compound relative to the standard reference temperature 298.15 K were calculated at intervals of 5 K. A thermochemical cycle was designed and the enthalpy change of the solid phase reaction of ethylenediamine dihydrochloride with zinc chloride was determined to be Δ r H m o =-(17.9±0.6)kJmol -1 by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound was derived to be Δ f H m o [(C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 ,s]=-(1514.4±2.7)kJmol -1 in accordance with Hess law.

  12. μ-Adipato-κ2O1:O4-bis{[2,6-bis(1H-benzimidazol-2-yl-κN3pyridine-κN](nitrato-κOlead(II}

    Directory of Open Access Journals (Sweden)

    Lian-Qiang Wei

    2010-01-01

    Full Text Available The dinuclear title compound, [Pb2(C6H8O4(NO32(C19H13N52], lies with the mid-point of the butyl chain of the bridging adipate unit on a center of inversion. The PbII ion is covalently bonded to the nitrate anion and is bonded to a carboxylate group of the adipate unit by another covalent bond. The N-heterocycle functions in a chelating tridentate mode. The metal atom exists in a Ψ-octahedral coordination environment. When weaker Pb...O interactions are also considered, the geometry is a Ψ-tricapped trigonal prism in which the lone-pair electrons occupy one face of the trigonal prism. Adjacent molecules are linked into a layer structure by N—H...O hydrogen bonds.

  13. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Crystal structure of tetraaqua[2-(pyridin-2-yl-1H-imidazole-κ2N2,N3]iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Zouaoui Setifi

    2015-04-01

    Full Text Available In the title compound, [Fe(C8H7N3(H2O4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17 and 2.243 (2 Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18 to 2.1340 (17 Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H...O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H...O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H...O, C—H...π and π–π interactions.

  15. Synthesis and X-ray structure of the dysprosium(III complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH

    Directory of Open Access Journals (Sweden)

    Aliou H. Barry

    2003-12-01

    Full Text Available The title compound [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13-2.656(13 Å and the twelve Dy-O bonds are in the range 2.281(10-2.406(10 Å.

  16. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  17. The crystal structure of Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Verena; Schlosser, Marc; Pfitzner, Arno [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    A reinvestigation of the alkali metal thiosulfates has led to the new phase Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. At first cesium thiosulfate monohydrate was obtained as a byproduct of the synthesis of Cs{sub 4}In{sub 2}S{sub 5}. Further investigations were carried out using the traditional synthesis reported by J. Meyer and H. Eggeling. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O crystallizes in transparent, colorless needles. The crystal structure of the title compound was determined by single crystal X-ray diffraction at room temperature: space group C2/m (No. 12), unit cell dimensions: a = 11.229(4), b = 5.851(2), c = 11.260(5) Aa, β = 95.89(2) , with Z = 4 and a cell volume of V = 735.9(5) Aa{sup 3}. The positions of all atoms including the hydrogen atoms were located in the structure refinement. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O is isotypic with Rb{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. Isolated tetrahedra [S{sub 2}O{sub 3}]{sup 2-} are coordinated by the alkali metal cations, and in addition they serve as acceptors for hydrogen bonding. For both Cs atoms the shortest distances are observed to oxygen atoms of the S{sub 2}O{sub 3}{sup 2-} anions whereas the terminating sulfur atom has its shortest contacts to the water hydrogen atoms. Thus, an extended hydrogen bonding network is formed. The title compound has also been characterized by IR spectroscopy. IR spectroscopy reveals the vibrational bands of the water molecules at 3385 cm{sup -1}. They show a red shift in the OH stretching and bending modes as compared to free water. This is due both to the S..H hydrogen bonding and to the coordination of H{sub 2}O molecules to the cesium atoms.

  18. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  19. Tris(dibenzoylmethanido-κ2O,O′[(6S,8S-(+-7,7-dimethyl-3-(2-pyridyl-5,6,7,8-tetrahydro-6,8-methanoisoquinoline-κ2N,N′]gadolinium(III

    Directory of Open Access Journals (Sweden)

    Xi-Li Li

    2009-09-01

    Full Text Available In the title compound, [Gd(C15H11O23(C17H18N2], the GdIII atom is coordinated by six O atoms from three β-diketonate ligands and two N atoms from a chiral ligand LS,S-(+-7,7-dimethyl-3-(2-pyridyl-5,6,7,8-tetrahydro-6,8-methanoisoquinoline, in a coordination geometry best described as distorted square-antiprismatic.

  20. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  1. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  2. Bis(2,2′-bipyridine-κ2N,N′(3-methylbenzoato-κ2O,O′zinc 3-methylbenzoate–3-methylbenzoic acid–water (1/1/2

    Directory of Open Access Journals (Sweden)

    Qiu-qi Ye

    2012-09-01

    Full Text Available The title compound, [Zn(C8H7O2(C10H8N22](C8H7O2·C8H8O2·2H2O, is comprised of a Zn2+ cation, two 2,2′-bipydine (bipy ligands and one 3-methylbenzoate anion (L− together with one uncoordinating L− anion, one uncoordinating HL molecule and two lattice water molecules. The ZnII atom is coordinated by four N atoms of two bipy ligands and two O atoms from one L− ligand in a distorted octahedral geometry. Pairs of centrosymmetrically related complex molecules form dimers via slipped π-stacking interactions between bipy ligands with an interplanar distance of 3.470 (4 Å. The dimers are linked into supramolecular chains along [111], via C—H...O hydrogen bonds. The uncoordinated L− anions, HL molecules and water molecules are connected with each other via O—H...O hydrogen bonds, forming chains between the metal complex chains and binding them together via C—H...O contacts. The resulting layers parallel to (010 are further assembled into a three-dimensional supramolecular architecture through additional C—H...O interactions.

  3. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  4. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  5. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  6. Complexing in the system Rb2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Kuchumova, N.V.; Shtokova, I.P.; Serezhkina, L.B.; Serezhkin, V.N.

    1989-01-01

    Method of isothermal solubility at 25 deg C is used to study interaction of rubidium and uranyl selenates in aqueous solution. Formation of congruently soluble Rb 2 UO 2 (SeO 4 ) 2 x2H 2 O and Rb 2 (UO 2 ) 2 x(SeO 4 ) 3 x6H 2 O is stated. For the last compound crystallographic characteristics (a=10.668; b=14.935(9); c=13.891(7) A; β=104.94(1); Z=4, sp.gr. P2 1 /c) are determined. Thermal decomposition of a compound results in formation of Rb 2 U 2 O 7

  7. N-{2-[2-(5-Methyl-1H-pyrazol-3-ylacetamido]phenyl}benzamide monohydrate

    Directory of Open Access Journals (Sweden)

    Karim Chkirate

    2017-02-01

    Full Text Available The asymmetric unit of the title compound, C19H18N4O2·H2O, comprises the U-shaped pyrazole derivative and a solvent water molecule. The molecular conformation is partly determined by an intramolecular N—H...O hydrogen bond. The crystal packing is directed by an extensive network of O—H...O, N—H...O, N—H...N and C—H...O hydrogen bonds together with C—H...π(ring contacts that generate a three-dimensional network.

  8. Synthesis and Characterization of TiO2(B Nanotubes Prepared by Hydrothermal Method Using [Ti8O12(H2O24]Cl8.HCl.7H2O as Precursor

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2010-04-01

    Full Text Available Low-dimension TiO2-related material has been synthesized by hydrothermal treatment of [Ti8O12(H2O24]Cl8.HCl.7H2O crystal as precursor in a 10 M NaOh aqueous solution at 150 C for 24 h. Characterization of the obtained product was carried out by a range of techniques including X-ray diffraction (XRD, high resolution scanning electron microscopy (HRSEM, high resolution transmission electron microscopy (HRTEM, Raman spectroscopy and nitrogen adsorption-desorption isotherm (Brunauer-Emmett-Teller (BET-Barret-Joyner-Halender (BJH. From HRTEM, XRD and Raman spectra showed that the obtained product has a TiO2(B structure. According to HRTEM observations, it was found that TiO2(B has nanotubular structure with approximately 5-8 nm in outer and 3-6 nm in inner diameter. The BET surface area of TiO2(B nanotubes is quiet large, values of 418.3163 m2/g being obtained. Pore structure analyisis by the BJH method showed that the average pore diameter of TiO2(B nanotubes has 5.5781 nm.

  9. 2-Chloroquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    Dong-Lei Cao

    2012-06-01

    Full Text Available In the title compound, C8H5ClN2O, the quinazoline system is approximately planar with a maximum deviation from the least-squares plane of 0.034 (2 Å. In the crystal, classical N—H...O and weak non-classical C—H...N hydrogen bonds link the molecules.

  10. Total scattering cross-sections for the systems nH2 + nH2, pH2 + pH2, nD2 + nD2, oD2 + oD2 and HD + HD for relative energies below ten milli-electron volts

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1979-01-01

    Relative total scattering cross sections for nH 2 + nH 2 , pH 2 + pH 2 , nD 2 + nD 2 , oD 2 + oD 2 , and HD + HD were measured with inclined nozzle beams derived from nozzle sources and intersecting at 21 0 . Both nozzles could be varied in temperature from 4.2K to 300K to provide the velocity range for the cross sections. The use of a parahydrogen converter allowed the measurement of the pH 2 + pH 2 and oD 2 + oD 2 cross sections. Cross sections for the H 2 + H 2 were measured over a relative velocity range of 200 m/s to 1450 m/s. The nH 2 + nH 2 results show an undulation in the velocity range between 350 m/s and 400 m/s that corresponds to a l = 3 orbiting resonance. Analysis of the pH 2 + pH 2 cross section indicates a l = 4 orbiting resonance near 586 m/s. This resonance has a peak energy of 1.79 meV and a measured energy width of 1.05 meV, both which agree well with theoretical predictions. The D 2 + D 2 cross sections have been measured in the velocity range between 190 m/s and 1000 m/s. No orbiting resonances have been observed, but in the oD 2 + oD 2 cross section a deep minimum between the l = 4 and the l = 5 resonances at low velocities is clearly suggested. Initial measurements of the HD + HD cross section suggests the presence of the l = 4 orbiting resonance near a relative velocity of 300 m/s. The experimental results for each system were normalized to the total cross sections, which were convoluted to account for experimental velocity and angular dispersions. Three different potentials were considered, but a chi-square fit of the data indicates that the Schaefer and Meyer potential, which has been theoretically obtained from first principles, provides the best overall description of the hydrogen systems in the low collisional energy range

  11. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  12. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II propane-1,3-diol solvate

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2010-03-01

    Full Text Available The title compound, [Co(SO4(C12H8N22]·C3H8O2, was obtained unexpectedly as a by-product during an attempt to synthesize a mixed-ligand complex of CoII with 1,10-phenanthroline (phen and melamine via a solvothermal reaction. The CoII metal ions are in a distorted octahedral coordination environment formed by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 80.06 (8°]. A twofold rotation axis passes through the Co and S atoms, and also through the central C atom of the propane-1,3-diol solvent molecule. Intermolecular O—H...O hydrogen bonds help to stabilize the structure.

  13. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  14. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    Science.gov (United States)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  15. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2HH2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  16. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H 2 O 2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H 2 O 2 (MW-H 2 O 2 ) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H 2 O 2 remained and refractory compounds were thus generated with high dosage of H 2 O 2 (0.6 g H 2 O 2 /g total solids (TS), 1.0 g H 2 O 2 /g TS) pretreatment. The residual H 2 O 2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H 2 O 2 at 0.2 g H 2 O 2 /g TS was used in MW-H 2 O 2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H 2 O 2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  17. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    Science.gov (United States)

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  18. Poly[[diaqua-μ4-pyrazine-2,3-dicarboxylato-κ6N,O2:O2′:O3,O3′:O3-strontium(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Vahid Amani

    2008-07-01

    Full Text Available In the title compound, {[Sr(C6H2N2O4(H2O2H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H...O and O—H...N hydrogen bonds, which consolidate the crystal structure.

  19. Study of the solubility, viscosity and density in Na+, Zn2+/Cl− − H2O, Na+ − Zn2+ − (H2PO2)− − H2O, Na+, Cl−/(H2PO2)− − H2O, and Zn2+, Cl−/(H2PO2)− − H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15 K

    International Nuclear Information System (INIS)

    Adiguzel, Vedat; Erge, Hasan; Alisoglu, Vahit; Necefoglu, Hacali

    2014-01-01

    Highlights: • The physicochemical properties of ternary and one quaternary have been studied. • Reciprocal quaternary systems’ solubility and phase equilibrium have been studied. • In all systems the solid phases have been found. • It was found that Zn(H 2 PO 2 ) 2 salt contains 70% of the general crystallization field. - Abstract: The solubility and the physicochemical properties (density, viscosity) in the Na-Zn- Cl-H 2 O), (Na + Zn + H 2 PO 2 + H 2 O), (Na + Cl + H 2 PO 2 + H 2 O), and (Zn + Cl + H 2 PO 2 + H 2 O) ternaries, and in Na + , Zn 2+ /Cl − , (H 2 PO 2 ) − //H 2 O reciprocal quaternary systems at T = 273.15 K were investigated by using the isothermal method. The diagrams of ternary salts systems, (NaCl + ZnCl 2 + H 2 O), (NaCl + NaH 2 PO 2 + H 2 O), (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), are plotted in figures 1–4. However, whole ions of reciprocal quaternary salt systems are plotted in figure 5. Additionally, the density and viscosity values of ternary systems vs. their corresponding composition values in weight per cent are plotted in figures 6–10. At the (i) (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ii) (NaCl + ZnCl 2 + H 2 O), (iii) (NaCl + NaH 2 PO 2 + H 2 O), (iv) (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O) ternary systems the solid phase compositions have been determined as: (i) Zn(H 2 PO 2 ) 2H 2 O, Zn(H 2 PO 2 ) 2 , ZnCl 22H 2 O, (ii) NaCl, 2NaCl ⋅ ZnCl 22H 2 O, and ZnCl 22H 2 O, (iii) NaCl and NaH 2 PO 2H 2 O, (iv) Zn(H 2 PO 2 ) 2H 2 O and NaH 2 PO 2H 2 O, respectively. On the other hand reciprocal quaternary system was observed as: ZnCl 22H 2 O, 2NaCl ⋅ ZnCl 22H 2 O, Zn(H 2 PO 2 ) 2H 2 O, NaH 2 PO 2H 2 O, NaCl. According to results, the least soluble salt was Zn(H 2 PO 2 ) 2 . The crystallization field of this salt, being the largest in comparison with those of other salts, occupied 70% of the general crystallization field

  20. A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.

    2008-01-01

    Kinetic model for the radiolysis of pure water describing the formation of H 2 , H 2 O 2 and O 2 and the radiation chemical transformations of aqueous solutions containing these compounds over a broad range of concentrations, pH, absorbed doses and dose rates is proposed and substantiated. The model includes a set of chemical reactions with optimized rate constants and the radiation chemical yields of radiolysis products. The model applicability to the description of the whole set of data on the radiation chemical transformations of water and aqueous solutions of H 2 , H 2 O 2 and O 2 is demonstrated

  1. Thermal decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O: Influence on structure, microstructure and hydrofluorination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Rivenet, M., E-mail: murielle.rivenet@ensc-lille.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Berrier, E. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Waele, I. de [Université de Lille, CNRS, UMR 8516 – LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille (France); Arab, M.; Amaraggi, D.; Morel, B. [Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Abraham, F. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-01-15

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}.2H{sub 2}O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and {sup 1}H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}, and UO{sub 3-x}(OH){sub 2x}·zH{sub 2}O, an amorphous phase found in air in the following of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2} dehydration. (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  2. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  3. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  4. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2O·C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  5. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis.

    Science.gov (United States)

    Yu, Bang-Wei; Li, Jin-Long; Guo, Bin-Bin; Fan, Hui-Min; Zhao, Wei-Min; Wang, He-Yao

    2016-11-01

    Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H 2 O 2 -induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. H9c2 cardiomyoblasts were exposed to H 2 O 2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H 2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Exposure to H 2 O 2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H 2 O 2 -induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H 2 O 2 -induced detrimental effects. Moreover, exposure to H 2 O 2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H 2 O 2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H 2 O 2 -induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H 2 O 2 -induced phosphorylation of JNK and ERK but not that of p38. Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  6. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O22H22C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  7. Bis(2,6-dihydroxybenzoato-κ2O1,O1′(nitrato-κ2O,O′bis(1,10-phenanthroline-κ2N,N′cerium(III

    Directory of Open Access Journals (Sweden)

    Hongxiao Jin

    2011-01-01

    Full Text Available The mononuclear title complex, [Ce(C7H5O32(NO3(C12H8N22], is isostructural to other related lanthanide structures. The Ce atom is in a pseudo-bicapped square-antiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB ligands and the other two from a nitrate anion. π–π stacking interactions between phen and DHB ligands [centroid–centroid distances = 3.513 (3 and 3.762 (2 Å] and phen and phen ligands [face-to-face separation = 3.423 (7 Å] of adjacent complexes stabilize the crystal structure. Intramolecular O—H...O hydrogen bonds are observed in the DHB ligands.

  8. Potassium (2,2′-bipyridine-κ2 N,N′)bis­(carbonato-κ2 O,O′)cobaltate(III) dihydrate

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-01-01

    In the title compound, K[Co(CO3)2(C10H8N2)]·2H2O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa­hedral N2O4 environment. The [Co(bipy)(CO3)2]− (bipy is 2,2′-bipyridine) ­units are stacked along [100] via π–π stacking inter­actions, with inter­planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O—H⋯O hydrogen-bonding inter­actions link the chains, forming channels along (100) in which the K+ ions reside and leading to a three-dimensional supra­molecular architecture. PMID:21587447

  9. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Science.gov (United States)

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  10. catena-Poly[[(benzoato-κ2O,O′(2,2′-bipyridine-κ2N,N′lead(II]-μ3-nitrato-κ4O:O,O′:O′′

    Directory of Open Access Journals (Sweden)

    Juan Yang

    2010-12-01

    Full Text Available In the title coordination polymer, [Pb(C7H5O2(NO3(C10H8N2]n, the PbII ion is eight-coordinated by two N atoms from one 2,2′-bipyridine ligand, two O atoms from one benzoate anion and four O atoms from three nitrate groups (one chelating, two bridging in a distorted dodecahedral geometry. Adjacent PbII ions are linked by bridging nitrate O atoms through the central Pb2O2 and Pb2O4N2 cores, resulting in an infinite chain structure along the b axis. The crystal structure is stabilized by π–π stacking interactions between 2,2′-bipyridine and benzoate ligands belonging to neighboring chains, with shortest centroid–centroid distances of 3.685 (8 and 3.564 (8 Å.

  11. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  12. 9-(3-Bromo-5-chloro-2-hydroxyphenyl-10-(2-hydroxyethyl-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2H,5H-dione

    Directory of Open Access Journals (Sweden)

    Mehmet Akkurt

    2014-06-01

    Full Text Available In the title compound, C33H27BrClNO4, the dihydropyridine ring adopts a flattened boat conformation. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond, with an S(8 ring motif. In the crystal, O—H...O, C—H...O and C—H...Cl hydrogen bonds, and C—H...π interactions link the molecules, forming a three-dimensional network. In the acridinedione ring system, the two ring C atoms at the 2- and 3-positions, and the C atom at the 6-position and the atoms of the phenyl ring attached to the C atom at the 6-position are disordered over two sets of sites with occupancy ratios of 0.783 (5:0.217 (5 and 0.526 (18:0.474 (18, respectively.

  13. Solid-state synthesis, structure and properties of a novel open-framework cadmium selenite bromide: [Cd10(SeO3)8Br4]·HBr·H2O

    International Nuclear Information System (INIS)

    Chen, Wen-Tong; Wang, Ming-Sheng; Wang, Guan-E; Chen, Hui-Fen; Guo, Guo-Cong

    2013-01-01

    A novel open-framework cadmium selenite bromide, [Cd 10 (SeO 3 ) 8 Br 4 ]·HBr·H 2 O (1), has been obtained by a solid-state reaction at 450 °C, and the structure has been determined by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in Pbcm of the orthorhombic system: a=10.882(3), b=16.275(5), c=18.728(6) Å, V=3317(2) Å 3 , R1/wR2=0.0411/0.0659. Compound 1 is characteristic of a novel 3-D open-framework structure, composing ∞ 2 [CdSeO 3 ] layers and the pillars of edge-shared CdO 3 Br 2 square pyramids. The lattice water molecules and the HBr molecules locate in the voids of the framework. Optical absorption spectrum of 1 reveals the presence of an optical gap of 1.65 eV. Solid-state photoluminescent study indicates that compound 1 exhibits strong violet emission. TG–DSC measurement shows that compound 1 is thermally stable up to 200 °C. - Graphical abstract: A metal selenite halide has been synthesized and features a 3-D open-framework structure, composing edge-shared CdO 8 decahedra and pillars of edge-sharing pentahedra. UV–vis, TG–DSC and luminescent measurements are also reported. Highlights: • This paper reports a novel cadmium selenite bromide obtained by an intermediate-temperature solid-state reaction. • The title compound is characteristic of a novel 3-D open-framework structure, composing ∞ 2 [CdSeO 3 ] layers and the pillars of edge-shared CdO 3 Br 2 square pyramids. • The title compound is thermally stable up to 200 °C. • The title compound has an optical gap of 1.65 eV and exhibits strong violet emission

  14. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  15. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua

    2005-01-01

    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  16. Crystal structures of dibromido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khandar

    2017-05-01

    Full Text Available The title compounds, [CdBr2(C12H10N4O]·CH3OH, (I, and [CdI2(C12H10N4O], (II, are cadmium bromide and cadmium iodide complexes of the ligand (E-N′-(pyridin-2-ylmethylenepicolinohydrazide. Complex (I crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I, and by two iodide anions forming an I2N2O pentacoordination sphere for (II, both with a distorted square-pyramidal geometry. In the crystal of complex (I, molecules are linked by pairs of N—H...O and O—H...Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H...Br hydrogen bonds forming layers parallel to (101. In the crystal of complex (II, molecules are linked by N—H...I hydrogen bonds, forming chains propagating along [010]. In complex (II, measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2:0.25 (2.

  17. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O5(μ2-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  18. Studies on the direct synthesis of [O-15]-H2O

    International Nuclear Information System (INIS)

    Hagami, Eiichi; Murakami, Matsutaro; Takahashi, Kazuhiro; Kanno, Iwao; Aizawa, Yasuo; Hachiya, Takenori; Shoji, Yasuaki; Shishido, Fumio; Uemura, Kazuo

    1986-01-01

    A direct [O-15]-H 2 O synthesis method and its critical point of non-radioactive NH 4 + contamination were described. The 6.4 MeV deuterons were irradiated into the target chamber of 177 ml, filled up with 3.5 kg/cm 2 of 0.1 % H 2 in N 2 . [O-15]-H 2 O vapor was transported to PET room by He flow of 2.5 l/min through the teflon tubing of 2 mm in internal diameter and of 30 m in length. [O-15]-H 2 O was trapped in the vial containing 10 ml of saline and passed through Millipore filter. In this condition, the small amount of non-radioactive NH 4 + (24.9 ± 12.8 (1 SD) μg/dl, n = 23) was detected. This NH 4 + concentration varied from 25 to 11,000 μg/dl with changing H 2 amount in the target from 0.1 to 4.0 %. The NH 4 + concentration was kept lower than a normal range of the healthy human blood with 0.5 % or less H 2 in N 2 in the target. Therefore, 0.1 % of H 2 was used in clinical use. By the present method, a yield of approximately 7 mCi/μA of [O-15]-H 2 O saline was obtained. About 10 % of radioactive gases, corresponding to C 15 O, C 15 O 2 and N 2 15 O, were detected in the waste gas. The radiochemical and radionuclidic impurity was not detected in the saline. The biological tests for bacteria and pyrogen were all passed. In conclusion, the direct synthesis method provides [O-15]-H 2 O saline in the PET room with the simple handling and is convenient for the clinical use. (author)

  19. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy.H2O]2.H2O

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu Suling; Tian Liang; Bai Jihai

    2008-01-01

    A new binuclear samarium (III) complex [Sm(p-BrBA) 3 bipy.H 2 O] 2 .H 2 O (p-BrBA = p-bromobenzoic acid; bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analysis, UV, IR, molar conductance and TG-DTG techniques. The structure of the complex was established by single crystal X-ray diffraction. It crystallizes in triclinic, space group P1-bar with a = 8.2476(7) A, b = 13.3483(10) A, c = 15.9035(13) A, α 73.9160(10) o , β = 78.9630(10) o , γ = 74.4770(10) o , Z = 1, D c 1.947 g cm -3 , F(000) = 910. The carboxylic groups are bonded to the samarium ion in two modes: bidentate bridging, monodentate. Each center Sm 3+ ion is eight-coordinated by one 2,2'-bipyridine molecular, four bidentate bridging and a monodentate carboxylic group, as well as one water molecular. The coordination polyhedron around each Sm 3+ ion can be described as bi-capped triangular prism geometry. The thermal decomposition behavior of the title complex in a static air atmosphere was investigated by TG-DTG and IR techniques

  20. Relationship between interlayer hydration and photocatalytic water splitting of A'1-xNaxCa2Ta3O10.nH2O (A'=K and Li)

    International Nuclear Information System (INIS)

    Mitsuyama, Tomohiro; Tsutsumi, Akiko; Sato, Sakiko; Ikeue, Keita; Machida, Masato

    2008-01-01

    Partial replacement of alkaline metals in anhydrous KCa 2 Ta 3 O 10 and LiCa 2 Ta 3 O 10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A' 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O (A'=K and Li) samples were synthesized by ion exchange of CsCa 2 Ta 3 O 10 in mixed molten nitrates at 400 deg. C. In K 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x≤0.7 and x≥0.5, respectively. Upon replacement by Na + having a larger enthalpy of hydration (ΔH h 0 ), the interlayer hydration occurred at x≥0.3 and the hydration number (n) was increased monotonically with an increase of x. Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O showed a similar hydration behavior, but the phase was changed from I4/mmm (x 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity increasing in consistent with n, whereas Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity maximum at x=0.77, where the rates of H 2 /O 2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1). - Graphical abstract: The partial substitution of Na in the interlayer of anhydrous-layered perovskite has been found as useful structural modification toward highly active hydrated photocatalysts

  1. 5-Methyl-2-phenyl-2H-pyrazol-3-ol

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    2008-10-01

    Full Text Available The title compound, C10H10N2O, known as Edaravone (MCI-186, was crystallized from methanol. The two independent molecules in the asymmetric unit are linked through an O—H...O hydrogen bond. One molecule adopts a ketone form, while the other adopts an enol form. In the crystal structure, molecules are linked through intermolecular N—H...O hydrogen bonds, forming chains running along the b axis.

  2. 3-Chloro-2-ethyl-6-nitro-2H-indazole

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C9H8ClN3O2, the orientation of the ethyl substituent is partly determined by an intramolecular C—H...Cl hydrogen bond. The indazole moiety is slightly folded with an angle of 0.70 (8° between the five- and six-membered rings. In the crystal, molecules pack in layers parallel to [100] through C—H...π(ring and N...;O...π(ring interactions.

  3. Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.

    Science.gov (United States)

    Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D

    2010-05-03

    The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.

  4. (Dimethylformamide-κO(2-hydroxybenzoato-κ2O1,O1′[tris(1-methyl-1H-benzimidazol-2-ylmethyl-κN3amine-κN]manganese(II perchlorate dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Baoliang Qi

    2010-10-01

    Full Text Available In the title complex, [Mn(C7H5O3(C27H27N7(C3H7NO]ClO4·C3H7NO, the MnII ion is coordinated in a slightly distorted monocapped trigonal-prismatic geometry. The tris(1-methyl-1H-benzimidazol-2-ylmethylamine (Mentb ligand coordinates in a tetradentate mode and the coordination is completed by a bis-chelating salicylate ligand and a dimethylformamide ligand. The hydroxy group and the ortho H atoms of the salicylate ligand were refined as disordered over two sites with occupancies of 0.581 (8 and 0.419 (8. Both disorder components of the hydroxy group form intramolecular O—H...O hydrogen bonds.

  5. 2,2′-Bis{8-[(benzylaminomethylidene]-1,6-dihydroxy-5-isopropyl-3-methylnaphthalen-7(8H-one}

    Directory of Open Access Journals (Sweden)

    Shukhrat M. Hakberdiev

    2013-11-01

    Full Text Available The asymmetric unit of the title compound, C44H44N2O6, contains two independent molecules with similar conformations. The dihydronaphthalene ring systems are approximately planar [maximum deviations = 0.036 (2, 0.128 (2, 0.0.24 (2 and 0.075 (2 Å]. The dihedral angle between two dihydronaphthalene ring systems is 83.37 (4° in one molecule and 88.99 (4° in the other. The carbonyl O atom is linked with the adjacent hydroxy and imino groups via intramolecular O—H...O and N—H...O hydrogen bonds. In the crystal, molecules are linked through O—H...O hydrogen bonds into layers parallel to (001, and adjacent layers are further stacked by π–π interactions between dihydronaphthalene and phenyl rings into a three-dimensional supramolecular architecture. In the crystal, one of the isopropyl groups is disordered over two positions with an occupancy ratio of 0.684 (8:0.316 (8.

  6. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolato-κ2O1,N,N′,O1′}cobalt(III monohydrate

    Directory of Open Access Journals (Sweden)

    Jianxin Xing

    2009-04-01

    Full Text Available The title compound, [Co(C18H18N2O4Cl(H2O]·H2O, contains a distorted octahedral cobalt(III complex with a 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy. The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H...O hydrogen bonds may help to stabilize the crystal packing.

  7. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  8. Synthesis and structure of a 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Xiong Ming; Lin Jianhua

    2007-01-01

    A new 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, and β=90.42(3) deg. The anionic [B 7 O 10 (OH) 3 ] n 2n- layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H 3 N(CH 2 ) 6 NH 3 ] 2+ cations are located. - Graphical abstract: A layered 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ], was solvothermally synthesized at 150 deg. C. It is a layer borate and crystallized in monoclinic space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, β=90.42(3) deg

  9. 1-(4-Fluorophenyl-2-(1H-1,2,4-triazol-1-ylethanone hemihydrate

    Directory of Open Access Journals (Sweden)

    Dong-liang Liu

    2011-12-01

    Full Text Available In the title compound, C10H8FN3O·0.5H2O, the dihedral angle between the mean planes of the rings is 99.80 (4°. The water molecule lies on a twofold axis. Weak intermolecular O—H...N and C—H...O hydrogen bonds link one water molecule with four phenylethanone molecules, while intermolecular C—H...O hydrogen bonds involving the ketone group link phenylethanone molecules into layers parallel to (100.

  10. Disordered crystal structure of 20H-AlON, Al10O3N8

    International Nuclear Information System (INIS)

    Banno, Hiroki; Funahashi, Shiro; Asaka, Toru; Hirosaki, Naoto; Fukuda, Koichiro

    2015-01-01

    The disordered crystal structure of 20H-AlON (Al 10 O 3 N 8 ) was determined by combined use of X-ray powder diffraction and transmission electron microscopy. The title compound is hexagonal with space group P6 3 /mmc (Z=2) and the unit-cell dimensions are a=0.307082(5) nm, c=5.29447(8) nm and V=0.432376(12) nm 3 . The structural model showed the positional disordering of three of the six Al sites in the unit cell. The reliability indices calculated from the Rietveld method were R wp =6.97%, S (=R wp /R e )=1.68, R p =5.45%, R B =5.13% and R F =4.56%. We interpreted the disordered structure of 20H-AlON as a statistical average of six different types of ordered structural configurations, which are composed of an octahedral [Al(O, N) 6 ] layer and tetrahedral [Al(O, N) 4 ] layers. We demonstrated the high correlations between the hexagonal unit-cell dimensions and the octahedral layer concentrations for AlON and SiAlON polytypoids. - Graphical abstract: Variations of a and c/(n O +n T ) with n O /(n O +n T ). The a and c are the hexagonal unit-cell dimensions of AlON, SiAlON and AlN. The n O and n T are, respectively, the numbers of octahedral and tetrahedral layers in the unit cells. The unit-cell dimensions in literature are plotted in black plus for AlON and black cross for SiAlON. The unit-cell dimensions of AlN are a=0.3110 nm and c=0.4980 nm. - Highlights: • Crystal structure of Al10O3N8 is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • Six types of ordered atom arrangements are derived from the disordered structure. • Hexagonal unit-cell dimensions changed systematically for AlON and SiAlON compounds

  11. Hydrothermal synthesis and characterization of the praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Teresa S.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-10-01

    The praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O was obtained in a hydrothermal synthesis. It crystallizes monoclinically in the space group P2{sub 1}/n (no. 14) with four formula units (Z=4) and unit cell parameters of a=641.9(3), b=1551.8(7), c=1068.4(5) pm, with β=90.54(2) yielding V=1.0643(8) nm{sup 3}. The defect variant constitutes the missing member in the series of isostructural, early rare earth borate-nitrates of the composition RE[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub x}]NO{sub 3}.2H{sub 2}O [RE=La (x=0; 1), Ce (x=1), Nd (x=0.85), Sm (x=0)]. In addition to powder and single-crystal X-ray diffraction data, the novel borate-nitrate was characterized through IR and Raman spectroscopy.

  12. 2-(2-Chlorophenyl-2,3-dihydroquinazolin-4(1H-one

    Directory of Open Access Journals (Sweden)

    Ming-Jian Li

    2009-09-01

    Full Text Available The title compound, C14H11ClN2O, was synthesized by the reaction of 2-chlorobenzaldehyde and 2-aminobenzamide in an ionic liquid. The pyrimidine ring adopts a skew-boat conformation and the two benzene rings make a dihedral angle of 87.1 (1°. In the crystal, N—H...O and C—H...N hydrogen bonding links the molecules along b.

  13. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  14. [Disulfanediylbis(ferrocenylthiophosphinato-κ2O,O]titanocene tetrahydrofuran trisolvate

    Directory of Open Access Journals (Sweden)

    Mehmet Karakus

    2012-04-01

    Full Text Available The title compound, [Fe2Ti(C5H54(C10H8O2P2S4]·3C4H8O, contains a central seven-membered TiO2P2S2 ring with a very similar geometry compared to the derivative showing anisyl instead of ferrocenyl substituents, the Ti—O distance being marginally longer for the anisyl derivative. Two tetrahydrofuran solvent molecules are each disordered on a twofold axis.

  15. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  16. Butane-1,2,3,4-tetracarboxylic acid–1,10-phenanthroline–water (1/2/2

    Directory of Open Access Journals (Sweden)

    Hong-lin Zhu

    2011-07-01

    Full Text Available The asymmetric unit of the title compound, 2C12H8N2·C8H10O8·2H2O, contains one 1,10-phenanthroline molecule, one half-molecule of butane-1,2,3,4-tetracarboxylic acid (H4BTC and a water molecule, with the complete tetra-acid generated by crystallographic inversion symmetry. Intermolecular O—H...O hydrogen bonds and π–π stacking interactions [centroid–centroid distances = 3.672 (2 and 3.708 (2 Å form an extensive three-dimensional network, which consolidates the crystal packing.

  17. Systems Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O at 25 deg C. Sistemy Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O pri 25 grad S

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Sadetdinov, Sh V; Akimov, V M; Mitrasov, Yu N; Petrova, O V; Klopov, Yu N [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (Russian Federation) Universitet Druzhby Narodov, Moscow (Russian Federation)

    1994-02-01

    Phase equilibriums in the Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM[sub 2]B[sub 4]O[sub 7][center dot]nN[sub 2]H[sub 3]C[sub 2]H[sub 4]OH[center dot]XH[sub 2]O, where M=Li, Na with hydrazine ethanol. K[sub 2]B[sub 4]O[sub 7][center dot]4H[sub 2]O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods.

  18. Synthesis, crystal structure and magnetic properties of [Cu(mal(abpt(H2O].3/2H2O and [Cu2(sq(abpt 2].2H2O (mal = malonate, sq = squarate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole

    Directory of Open Access Journals (Sweden)

    Eno A. Ededet

    2011-04-01

    Full Text Available Two new mixed-ligand complexes of formula [Cu(mal(abpt(H2O].3/2H2O (1 and [Cu2(sq(abpt2].2H2O (2 [mal = malonate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole and sq = squarate], have been prepared and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 crystallizes in the monoclinic system, space group C2/c, with a = 14.0086(2 Å, b = 10.0980(2 Å, c = 25.630(4 Å; β = 97.5900(10 o, and Z = 8. Complex 2 crystallizes in the triclinic system, space group P-1 with a = 7.5696(15 Å, b = 8.4697(17 Å, c = 11.049(2 Å; β = 93.00(3o, α = 96.98(3, γ = 90.111(3 and Z = 1. Complex 1 consist of a neutral mononuclear [Cu(mal(abpt(H2O] unit and water molecule of crystallization in a distorted square pyramidal coordination sphere, while complex 2 is viewed as being made up of [Cu(sq(abpt2] units with the squarato ligand bridging the two copper(II cations. Variable temperature magnetic behaviour of the complexes reveals the existence of weak antiferromagnetic interaction for complex 1 and weak ferromagnetic intrachain interaction for complex 2.

  19. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  20. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    Science.gov (United States)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  1. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  2. [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4].4[H2O]: A new layered aluminum phosphate-oxalate

    International Nuclear Information System (INIS)

    Peng Li; Li Jiyang; Yu Jihong; Li Guanghua; Fang Qianrong; Xu Ruren

    2005-01-01

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H 3 N(CH 2 ) 4 NH 3 ] 2 [Al 4 (C 2 O 4 )(H 2 PO 4 ) 2 (PO 4 ) 4 ].4[H 2 O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31 P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, α=80.830(6) deg. , β=74.965(5) deg. , γ=78.782(6) deg. , Z=2, R 1[ I >2 σ ( I )] =0.0511 and wR 2(alldata) =0.1423. The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra

  3. Synthesis and crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2·10H2O

    International Nuclear Information System (INIS)

    Baeva, E.Eh.; Serezhkina, L.B.; Virovets, A.V.; Peresypkina, E.V.

    2006-01-01

    The complex Na 6 [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 2 ·10H 2 O (I) is synthesized and studied by monocrystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a=14.2225(7) A, b=18.3601(7) A, c=16.5406(6) A, V=4319.2(3) A 3, Z=4, space group Cmcm, R 1 =0.0406. Compound I is found to be a representative of the crystal-chemical group A 3 M 3 M 3 2 T 2 3 (A=UO 2 2+ , M 3 =O 2- , M 2 =OH - , T 3 =SeO 4 2- ) of the uranyl complexes; it contains layer uranium-containing groups [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 3- . These layers are linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO 4 groups that belong to different layers [ru

  4. catena-Poly[[[diaqua(2-fluorobenzoato-κ2O,O′strontium]-μ3-2-fluorobenzoato-κ5O:O,O′:O′,F] monohydrate

    Directory of Open Access Journals (Sweden)

    Zhu-Nian Jin

    2011-04-01

    Full Text Available In the title compound, {[Sr(C7H4FO22(H2O2H2O}n, the SrII atom is coordinated by six O atoms and one F atom from four 2-fluorobenzoate ligands and two water molecules, resulting in an irregular SrFO8 coordination environment. The μ3-2-fluorobenzoate ligand bridges three symmetry-related SrII atoms, giving rise to a chain structure extending along [010]. The polymeric chains are connected via O—H...O hydrogen bonds into a two-dimensional supramolecular structure parallel to (100.

  5. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    Science.gov (United States)

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  6. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    Meng Xiangxin; Shuai Qi; Chen Sanping; Xie Gang; Gao Shengli; Shi Qizhen

    2005-01-01

    Four solid ternary complexes of RE (C5H8NS2)3(C12H8N2) (RE=Eu, Gd, Tb, Dy) were synthesized in absolute ethanol by rare earth chloride low hydrate with the mixed ligands of ammonium pyrrolidinedi-thiocarbamate (APDC) and 1, 10-phenanthroline*H2O (o-phen*H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes show that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen*H2O. It was assumed that the coordination number of RE3+ is eight. The constant-volume combustion energies of the complexes, ΔcU, were determined as (-16937.88±9.79 ), (-17588.79±8.62 ), (-17747.14±8.25 ) and (-17840.37±8.87 ) kJ*mol-1, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, ΔcHθm, and standard molar enthalpies of formation, ΔfHθm, were calculated as (-16953.37±9.79), (-17604.28±8.62), (-17762.63±8.25), (-17855.86±8.87) kJ*mol-1 and (-857.04±10.52), (-282.43±9.58), (-130.08±9.13), (-55.75±9.83) kJ*mol-1.

  7. Application of UV/TiO2/H2O2 Advanced Oxidation to Remove Naphthalene from Water

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2016-11-01

    Full Text Available Naphthalene is released into the environment by burning such organic materials as fossil fuels and wood and in industrial and vehicle exhaust emissions. Naphthalene is used in the manufacture of plastics, resins, fuels, and dyes. The aim of this study was to evaluate the performance of UV/TiO2/H2O2 process to decompose naphthalene in aqueous solutions. For this purpose, the photocatalytic degradation of naphthalene was investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. Photodegradation efficiencies of H2O2/UV, TiO2/UV, and H2O2/TiO2/UV processes were compared in a batch reactor using the low pressure mercury lamp irradiation. The effects of operating parameters such as reaction time (min; solution pH; and initial naphthalene, TiO2, and H2O2 concentrations on photodegradation were examined. In the UV/TiO2/H2O2 system with a naphthalene concentration of 15 mg/L, naphthalene removal efficiencies of 63, 75, 80, 88, 92, 95, 96.5, and 98% were achieved, respectively, for reaction times of 5, 10, 20, 30, 40, 50, 60, 100 and 120 min. This is while removal efficienciesof 50, 59.5, 69, 80, 85, 88, 91, and 95% were obtained in the UV/TiO2 system under the same conditions. For initial pH values of 3, 4, 5, 6, 7,9, 10, and 12, naphthalene removal efficiencies of approximately 96.8, 85.5, 86, 75.5, 68.8, 57.8, and 52.5% were acheived, respectively, with the UV/TiO2/H2O2 system. Thus, it may be claiomed that, compared to either H2O2/UV or TiO2/UV process, the H2O2/TiO2/UV process yielded a far more efficient photodegradation.

  8. Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

    International Nuclear Information System (INIS)

    Luo, Jinan; Xu, Kangzhen; Wang, Min; Ren, Xiaolei; Chen, Yongshun; Song, Jirong; Zhao, Fengqi

    2010-01-01

    Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)·H 2 O] and 1,1- diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)·H 2 O], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)·H 2 O and Cs(FOX-7)·H 2 O were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and 223.73 .deg. C, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and 199.47 J mol -1 K -1 at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)·H 2 O, and 9.92 - 10.54 s for Cs(FOX-7)·H 2 O. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense

  9. 2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

    Directory of Open Access Journals (Sweden)

    YuanQi Yu

    2011-10-01

    Full Text Available The asymmetric unit of the title compound, C8H9N2+·C8H5O4−, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intramolecular O—H...O bond forms an S(7 graph-set motif. In the crystal, the components are linked by N—H...O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H...O hydrogen bonds.

  10. {2-[(3,5-Dichloro-2-oxidobenzylideneamino-κ2N,O]-3-methylpentanoato-κO}(N,N′-dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Xiao Zhen Feng

    2008-05-01

    Full Text Available In the title compound, [Cu(C13H13Cl2NO3(C3H7NO], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzylideneamino]-3-methylpentanoate and by one O atom from dimethylformamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu...Cl and Cu...O = 3.401 and 2.947 Å, respectively, thereby forming an approximately octahedral arrangement. A three-dimensional network is constructed through Cl...Cu, O...Cu, Cl...Cl contacts and C—H...O hydrogen bonds.

  11. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  13. 1,4-Dihydroxyquinoxaline-2,3(1H,4H-dione

    Directory of Open Access Journals (Sweden)

    Wolfgang Frey

    2008-03-01

    Full Text Available The asymmetric unit of the title compound, C8H6N2O4, contains one half-molecule; a twofold rotation axis bisects the molecule. The quinoxaline ring is planar, which can be attributed to electron delocalization. In the crystal structure, intermolecular O—H...O hydrogen bonds link the molecules into R22(10 motifs, leading to layers, which interact via phenyl–phenyl interactions (C...C distances in the range 3.238–3.521 Å.

  14. System of Sr(NO2)2-Sr(OH)2-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Popova, T.B.; Berdyukova, V.A.; Khutsistova, F.M.

    1990-01-01

    Sr(NO 2 ) 2 -Sr(OH) 2 -H 2 O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO 2 ) 2 xSr(OH) 2 x8H 2 O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained

  15. Syntheses, crystal structures and solid-state properties of the lanthanoid-containing nanoclusters [(Ln{sub 2}PW{sub 10}O{sub 38}){sub 4}(W{sub 3}O{sub 8})(OH){sub 4}(H{sub 2}O){sub 2}]{sup 26-}

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rakesh; Saini, Mukesh Kumar; Hussain, Firasat [Department of Chemistry, University of Delhi (India)

    2014-12-15

    A series of lanthanoid-substituted polyoxometalates have been synthesized by a self-assembly process in potassium chloride solution by the reaction of dilacunary [P{sub 2}W{sub 19}O{sub 69}(H{sub 2}O)]{sup 14-} with mid- and late-lanthanoid Ln(NO{sub 3}){sub 3}.nH{sub 2}O salts leading to the formation of the tetrameric tungstophosphates [(Ln{sub 2}PW{sub 10}O{sub 38}){sub 4}(W{sub 3}O{sub 8})(OH){sub 4}(H{sub 2}O){sub 2}]{sup 26-} [Ln = Y{sup 3+} (1), Sm{sup 3+} (2), Eu{sup 3+} (3), Gd{sup 3+} (4), Tb{sup 3+} (5), Dy{sup 3+} (6), Ho{sup 3+} (7), Er{sup 3+} (8), Tm{sup 3+} (9), Yb{sup 3+} (10)]. The polyanions were isolated as potassium or mixed-alkali salts. Most of the compounds were characterized by single-crystal X-ray diffraction and various analytical techniques, such as FTIR, UV/Vis, {sup 31}P NMR and photoluminescence spectroscopy, magnetism, as well as thermogravimetric analysis. The FTIR spectra suggest that all the compounds are isomorphous. The crystal structures of these complexes consist of four A-[α-PW{sub 10}O{sub 36}]{sup 7-} units, each incorporating two Ln{sup III} ions to create four Keggin-like anions that further assemble with three additional tungstate units to form a tetramer species with C{sub 2} symmetry. The photoluminescent properties of 3a and 6a were investigated following photoexcitation at room temperature. The magnetic properties of 3a, 4a, 5a and 6a were investigated at room temperature, the complexes exhibiting paramagnetic behaviour. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. catena-Poly[[bis[2-(2,3-dimethylanilinobenzoato-κO]cadmium(II]-di-μ-3-pyridylmethanol-κ2N:O2O:N

    Directory of Open Access Journals (Sweden)

    Tadeusz Lis

    2008-03-01

    Full Text Available In the crystal structure of the title compound, [Cd(C15H14NO22(C6H7NO2]n, the Cd atom displays a distorted octahedral geometry, including two pyridine N atoms and two hydroxyl O from four symmetry-related 3-pyridylmethanol (3-pyme ligands and two carboxylate O atoms from mefenamate [2-(2,3-dimethylanilinobenzoate] anions. The Cd atoms are connected via the bridging 3-pyme ligands into chains, that extend in the a-axis direction. The Cd atom is located on a center of inversion, whereas the 3-pyme ligands and the mefenamate anions occupy general positions.

  17. Structure of Sr3V10O28.22H2O

    International Nuclear Information System (INIS)

    Nieto, J.M.; Salagre, P.; Medina, F.; Sueiras, J.E.; Solans, X.

    1993-01-01

    The crystal structure of hydrated strontium decavanadate, Sr 3 V 10 O 28 .22H 2 O, has been determined. It contains two types of strontium ions: the first is coordinated to seven water molecules which define a pentagonal bipyramid; the second bonds to five molecules of water and three O atoms of different decavanadate ions, thereby bridging between decavanadate ions to produce layers of formula [Sr 2 V 10 O 38 H 20 ] n on the crystallographic plane (100). The heptacoordinated Sr and the five molecules of water associated with it are located between the different layers. (orig.)

  18. Poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4O1:O1′:O2:O3bis(2,2-bipyridine-κ2N,N′(μ2-hydroxidodicopper(II] trihydrate

    Directory of Open Access Journals (Sweden)

    Mohamed N. El-kaheli

    2014-07-01

    Full Text Available In the title two-dimensional coordination polymer, {[Cu2(C9H3O6(OH(C10H8N22]·3H2O}n, each of the two independent CuII atoms is coordinated by a bridging OH group, two O atoms from two benzene-1,3,5-tricarboxylate (L ligands and two N atoms from a 2,2- bipyridine (bipy ligand in a distorted square-pyramidal geometry. Each L ligand coordinates four CuII atoms, thus forming a polymeric layer parallel to the bc plane with bipy molecules protruding up and down. The lattice water molecules involved in O—H...· O hydrogen bonding are situated in the inner part of each layer. The crystal packing is consolidated by π–π interactions between the aromatic rings of bipy ligands from neigbouring layers [intercentroid distance = 3.762 (3 Å].

  19. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  20. Comparison of UVC/S2O8 2- with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater

    DEFF Research Database (Denmark)

    Antoniou, Maria; Andersen, Henrik Rasmus

    2015-01-01

    ' concentrations were tested with atrazine alone and in the micropollutants' mixture and it was decided to use 11.8mgL(-1) S2O8(2-) and 14.9mgL(-1) H2O2 for further testing since is closer to industrial applications and to minimize the residual oxidant concentration. Changes of the matrix composition......This study compared the UVC/S2O8(2-) system with the more commonly used AOP in water industry, UVC/H2O2, and examined whether the first one can be an economically feasible alternative technology. Atrazine and 4 volatile compounds (methyl tert-butyl ether, cis-dichlorethen, 1,4-dioxane and 1......-through reactor to simulate industrial applications. Initial experiments on the activation of oxidants with a LP lamp indicated that S2O8(2-) is photolysed about 2.3times faster than H2O2 and that the applied treatment times were not sufficient to utilize the majority of the oxidant. The effect of oxidants...

  1. Proton conducting system (ImH2)2SeO2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  2. Crystal structure of triaqua(1,10-phenanthroline-κ2N,N′(2,4,5-trifluoro-3-methoxybenzoato-κO1cobalt(II 2,4,5-trifluoro-3-methoxybenzoate

    Directory of Open Access Journals (Sweden)

    Junshan Sun

    2014-11-01

    Full Text Available The title salt, [Co(C8H4F3O3(C12H8N2(H2O3](C8H4F3O3, was obtained under solvothermal conditions by the reaction of 2,4,5-trifluoro-3-methoxybenzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen. The CoII ion is octahedrally coordinated by two N atoms [Co—N = 2.165 (2 and 2.129 (2 Å] from the phen ligand, by one carboxylate O atom [Co—O = 2.107 (1 Å] and by three O atoms from water molecules [Co—O = 2.093 (1, 2.102 (1 and 2.114 (1 Å]. The equatorial positions of the slightly distorted octahedron are occupied by the N atoms, the carboxylate O and one water O atom. An intra- and intermolecular O—H...O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

  3. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  4. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  5. A detailed study of the dehydration process in synthetic strelkinite, Na[(UO2)(VO4)] . nH2O (n = 0, 1, 2)

    International Nuclear Information System (INIS)

    Suleimanov, Evgeny V.; Somov, Nikolay V.; Chuprunov, Evgeny V.; Mayatskikh, Ekaterina F.; Depmeier, Wulf

    2012-01-01

    Synthetic strelkinite Na[(UO 2 )(VO 4 )] . nH 2 O (n = 0, 1, 2) was systematically investigated by single crystal X-ray diffraction and thermoanalytical methods. The anhydrous form and two hydrates were isolated as single crystals and the structures of these phases solved: Na[(UO 2 )(VO 4 )], monoclinic, P2 1 /c, a = 6.0205(1) Aa, b = 8.3365(1) Aa, c = 10.4164(2) Aa, β = 100.466(2) , V = 514.10(1) Aa 3 , R 1 = 0.0337; Na[(UO 2 )(VO 4 )] . H 2 O, monoclinic, P2 1 /c, a = 7.722(2) Aa, b = 8.512(1) Aa, c = 10.480(4) Aa, β = 113.18(3) , V = 633.3(3) Aa 3 , R 1 = 0.1658; Na[(UO 2 )(VO 4 )] . 2 H 2 O, monoclinic, P2 1 /n, a = 16.2399(5) Aa, b = 8.2844(2) Aa, c = 10.5011(2) Aa, β = 97.644(2) , V = 1400.24(6) Aa 3 , R 1 = 0.0776. A possible mechanism of the structural transformation processes during dehydration is proposed based on the structures of the anhydrous phase and the hydrates. (orig.)

  6. Poly[μ2-benzene-1,3-dicarboxylato-κ2O:O′-μ2-1,3-di-4-pyridylpropane-κ2N:N′-zinc(II

    Directory of Open Access Journals (Sweden)

    En Tang

    2008-02-01

    Full Text Available The title compound, [Zn(C8H4O4(C13H14N2]n, was obtained by the hydrothermal reaction of Zn(OAc2·H2O with 1,3-di-4-pyridylpropane (bpp and isophthalic acid (H2ip. The ZnII ion is coordinated by two bpp and two ip ligands in a distorted tetrahedral environment. Each ligand coordinates in a bridging mode to connect ZnII ions into a three-dimensional diamondoid-type structure.

  7. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  8. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  9. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  10. System of Sr(NO sub 2 ) sub 2 -Sr(OH) sub 2 -H sub 2 O at 25 deg C. Sistema Sr(NO sub 2 ) sub 2 -H sub 2 O pri 25 grad C

    Energy Technology Data Exchange (ETDEWEB)

    Popova, T B; Berdyukova, V A; Khutsistova, F M [Kalmytskij Gosudarstvennyj Univ., Ehlista (USSR) Rostovskij-na-Donu Gosudarstvennyj Univ., Rostov-na-Donu (USSR)

    1990-02-01

    Sr(NO{sub 2}){sub 2}-Sr(OH){sub 2}-H{sub 2}O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO{sub 2}){sub 2}xSr(OH){sub 2}x8H{sub 2}O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained.

  11. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr22-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  12. N-Cyclohexyl-2-(5-fluoro-1H-indol-3-yl-2-oxoacetamide

    Directory of Open Access Journals (Sweden)

    Dan-Li Tian

    2011-07-01

    Full Text Available In title compound, C16H17FN2O2, the cyclohexane ring adopts a chair conformation.. The crystal packing is stabilized by weak π–π stacking interactions [centroid–centroid distance = 3.503 (5 Å] and intermolecular C—H...O, N—H...O and N—H...F hydrogen-bond interactions.

  13. 2-(2,4-Dichlorophenyl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylacetamide

    Directory of Open Access Journals (Sweden)

    B. Narayana

    2013-01-01

    Full Text Available In the crystal structure of the title compound, C19H17Cl2N3O2, the molecules form dimers of the R22(10 type through N—H...O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13 and 64.82 (12°, respectively. The dihedral angle between the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6°.

  14. SIMULTANEOUS OBSERVATIONS OF SiO AND H{sub 2}O MASERS TOWARD KNOWN STELLAR H{sub 2}O MASER SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeheon [Yonsei University Observatory, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Cho, Se-Hyung [Korean VLBI Network Yonsei Radio Astronomy Observatory, Yonsei University, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Kim, Sang Joon, E-mail: jhkim@kasi.re.kr, E-mail: cho@kasi.re.kr, E-mail: sjkim1@khu.ac.kr [Department of Astronomy and Space Science, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-701 (Korea, Republic of)

    2013-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0, and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 152 known stellar H{sub 2}O maser sources using the Yonsei 21 m radio telescope of the Korean VLBI Network from 2009 June to 2011 January. Both SiO and H{sub 2}O masers were detected from 62 sources with a detection rate of 40.8%. The SiO-only maser emission without H{sub 2}O maser detection was detected from 27 sources, while the H{sub 2}O-only maser without SiO maser detection was detected from 22 sources. Therefore, the overall SiO maser emission was detected from 89 sources, resulting in a detection rate of 58.6%. We have identified 70 new detections of the SiO maser emission. For both H{sub 2}O and SiO maser detected sources, the peak and integrated antenna temperatures of SiO masers are stronger than those of H{sub 2}O masers in both Mira variables and OH/IR stars and the relative intensity ratios of H{sub 2}O to SiO masers in OH/IR stars are larger than those in Mira variables. In addition, distributions of 152 observed sources were investigated in the IRAS two-color diagram.

  15. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  16. Crystal structure of RbCe(SeO4)2 · 5H2O

    International Nuclear Information System (INIS)

    Ovanesyan, S.M.; Iskhakova, L.D.; Trunov, V.K.

    1987-01-01

    RbTR(SeO 4 ) 2 x5H 2 O TR=La-Pr are synthesized. Crystal structure of RbCe(SeO 4 ) 2 x5H 2 O is studied. Monoclinic unit parameters are: a=7,200(2), b=8,723(1), c=19,258(6) A, Β=90,88(2), ρ (calc) =3,304 sp.gr. P2 1 /c. Within the structure the Ce nine vertex cages are united by Se(1)- and Se(2)-tetrahedrons in (Ce(SeO 4 ) 2 (H 2 O) 5 ) 2n- layers. Some crystal structure regularities of the laminated MTR(EO 4 ) 2 xnH 2 O (M=NH 4 ,K,Rb,Cs; TR=La-Ln, E=S,Se) are considered

  17. Bis(2,2′-bipyridyl-κ2 N,N′)(carbonato-κ2 O,O′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2008-01-01

    The title complex, [Co(CO3)(C10H8N2)2]Br·3H2O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2′-bipy)2CO3]+ cation (2,2′-bipy is 2,2′-bipyrid­yl), bromide ion and water mol­ecules are linked together via O—H⋯Br and O—H⋯O hydrogen bonds, generating a one-dimensional chain. PMID:21200495

  18. (Carbonato-κ2 O,O′)bis­(1,10-phenan­throline-κ2 N,N′)cobalt(III) nitrate monohydrate

    Science.gov (United States)

    Andaç, Ömer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2010-01-01

    The crystal structure of the title compound, [Co(CO3)(C12H8N2)2]NO3·H2O, consists of CoIII complex cations, nitrate anions and uncoordinated water mol­ecules. The CoIII cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa­hedral coordination geometry. A three-dimensional supra­molecular structure is formed by O—H⋯O and C—H⋯O hydrogen bonding, C—H⋯π and aromatic π–π stacking [centroid–centroid distance = 3.995 (1)Å] inter­actions. PMID:21579944

  19. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K

    International Nuclear Information System (INIS)

    Cao, Hong-yu; Zhou, Huan; Bai, Xiao-qin; Ma, Ruo-xin; Tan, Li-na; Wang, Jun-min

    2016-01-01

    Graphical abstract: Solubility diagram of the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system at T = (323.15 and 298.15) K. - Highlights: • Phase diagrams of Ca 2+ -H 2 PO 2 − -Cl − -H 2 O, Ca 2+ -Na + -H 2 PO 2 − -H 2 O at 323.15 K were obtained. • Incompatible double salt of NaCa(H 2 PO 2 ) 3 in Ca 2+ -Na + -H 2 PO 2 − -H 2 O system was determined. • Density diagram of the corresponding liquid were simultaneously measured. - Abstract: Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutritional supplement. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the (solid + liquid) phase equilibria of (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) and (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) ternary systems at T = 323.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of CaCl 2 ·2H 2 O and Ca(H 2 PO 2 ) 2 exist in the (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) system, and three salts of Ca(H 2 PO 2 ) 2 , NaH 2 PO 2 ·H 2 O and one incompatible double salt, NaCa(H 2 PO 2 ) 3 occur in the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system.

  20. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  1. 8-Hydroxy-2-methylquinolinium tetrachlorido(pyridine-2-carboxylato-κ2N,Ostannate(IV

    Directory of Open Access Journals (Sweden)

    Ezzatollah Najafi

    2011-02-01

    Full Text Available In the reaction of pyridine-2-carboxylic acid and stannic chloride in the presence of 2-methyl-8-hydroxyquinoline, the 2-methyl-8-hydroxyquinoline is protonated, yielding the title salt, (C10H10NO[SnCl4(C6H4NO2]. The SnIV atom in the anion is N,O-chelated by a pyridine-2-carboxylate in a cis-SnNOCl4 octahedral geometry. The cation is linked to the anion by an O—H...O hydrogen bond.

  2. Tris(2,2′-bipyridine-κ2 N,N′)cobalt(III) bis­[bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)cobaltate(III)] perchlorate dimethyl­formamide hemisolvate 1.3-hydrate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Iskenderov, Turganbay S.

    2012-01-01

    In the title compound, [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudoocta­hedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxyl­ate O atoms of two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One dimethyl­formamide solvent mol­ecule and two water mol­ecules are half-occupied and one water mol­ecule is 0.3-occupied. O—H⋯O hydrogen bonds link the water mol­ecules, the perchlorate anions and the complex anions. π–π inter­actions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3) Å]. PMID:23125573

  3. (Acetato-κO{bis[(2,4-dimethyl-1H-pyrazol-1-ylmethyl][(pyridin-2-ylmethyl]amine}cobalt(II hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2012-10-01

    Full Text Available In the title compound, [Co(CH3CO2(C18H24N6]PF6, the CoII atom is pentacoordinated in a distorted trigonal–bipyramidal geometry by four N atoms from a tripodal ligand and one O atom from a monodentate acetate ligand. The crystal packing is stabilized by intermolecular C—H...F and C—H...O hydrogen bonds.

  4. catena-Poly[[[triaqua[3-(4-carboxyphenoxyphthalato-κO2]manganese(II]-μ-4,4′-bipyridine-κ2N:N′] 4,4′-bipyridine monosolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2013-02-01

    Full Text Available In the title compound, {[Mn(C15H8O7(C10H8N2(H2O3]·C10H8N2·2H2O}n, the bridging mode of the coordinating 4,4′-bipyridine ligands leads to the formation of polymeric zigzag chains parallel to [0-11]. The chains are separated by 4,4′-bipyridine and water solvent molecules. Within a chain, the MnII atom is six-coordinated by two N atoms of the bridging 4,4′-bipyridine ligands, three water O atoms and one carboxylate O atom of a single deprotonated 3-(4-carboxyphenoxyphthalic acid ligand. Both coordinating and solvent 4,4′-bipyridine molecules are situated on centres of inversion. An intricate network of O—H...O and O—H...N hydrogen bonds involving the carboxy group, the coordinating water molecules and the two types of solvent molecules leads to the formation of a three-dimensional network.

  5. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    Science.gov (United States)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  6. Degradation of n-butylparaben and 4-tert-octylphenol in H2O2/UV system

    International Nuclear Information System (INIS)

    BLedzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gebicki, Jerzy L.; Miller, Jacek S.

    2010-01-01

    The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4-tert-octylphenol (OP) in the H 2 O 2 /UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8x10 9 and 4.2x10 9 M -1 s -1 , respectively. For BP the rate constant equal to 2.0x10 10 M -1 s -1 was also determined using water radiolysis as a source of hydroxyl radicals.

  7. N-(2-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Xu Zhu

    2013-10-01

    Full Text Available In the title Ebselen [systematic name: (2-phenyl-1,2-benzoisoselenazol-3-(2H-one] analogue, C14H11NOSe, the benzisoselenazolyl moiety (r.m.s. deviation = 0.0209 Å is nearly perpendicular to the N-arenyl ring, making a dihedral angle of 78.15 (11°. In the crystal, molecules are linked by C—H...O and Se...O interactions into chains along the c-axis direction. The Se...O distance [2.733 (3 Å] is longer than that in Ebselen (2.571 (3 Å].

  8. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene]diphenolato-κ2O1,N,N′,O1′}cobalt(III dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Yun Wei

    2012-04-01

    Full Text Available In the title compound, [Co(C18H18N2O4Cl(H2O]·C3H7NO, the CoIII ion is six-coordinated by a tetradentate 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene]diphenolate ligand, with a chloride ion and an aqua ligand in the apical positions. The compound crystallized as a dimethylformamide (DMF monosolvate. In the crystal, complex molecules are linked via O—Hwater...O hydrogen bonds to form a dimer-like arrangement. These dimers are linked via a C—H...Cl interaction, and the DMF molecule is linked to the complex molecule by C—H...O interactions.

  9. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  10. Photochemical degradation of diethyl phthalate with UV/H2O2

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Sun Xiaofeng; Xia Shengji; Rui Min; Simonnot, Marie-Odile; Causserand, Christel; Zhao Jianfu

    2007-01-01

    The decomposition of diethyl phthalate (DEP) in water using UV-H 2 O 2 process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H 2 O 2 oxidation alone, while UV-H 2 O 2 combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0 mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 μW/cm 2 and H 2 O 2 dosage of 20 mg/L. The effects of applied H 2 O 2 dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H 2 O 2 concentration

  11. 2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-ylmethyl]methylsulfonamido}ethyl methanesulfonate

    Directory of Open Access Journals (Sweden)

    Mustafa Göçmentürk

    2014-01-01

    Full Text Available In the title compound, C17H24N2O5S2, the indole ring system is nearly planar [maximum deviation = 0.032 (1 Å] and the cyclohexene ring has a half-chair conformation. In the crystal, N—H...O hydrogen bonds link the molecules into a chain running along the b-axis direction. Weak C—H...O hydrogen bonds and weak C—H...π interactions are observed between the chains.

  12. 1-(Furan-2-yl-2-(2H-indazol-2-ylethanone

    Directory of Open Access Journals (Sweden)

    Özden Özel Güven

    2014-04-01

    Full Text Available The asymmetric unit of the title compound, C13H10N2O2, contains two crystallographically independent molecules (A and B. The indazole ring systems are approximately planar [maximum deviations = 0.0037 (15 and −0.0198 (15 Å], and their mean planes are oriented at 80.10 (5 and 65.97 (4° with respect to the furan rings in molecules A and B, respectively. In the crystal, pairs of C—H...N hydrogen bonds link the B molecules, forming inversion dimers. These dimers are bridged by the A molecules via C—H...O hydrogen bonds, forming sheets parallel to (011. There are also C—H...π interactions present, and π–π interactions between neighbouring furan and the indazole rings [centroid–centroid distance = 3.8708 (9 Å] of inversion-related molecules, forming a three-dimensional structure.

  13. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation

    Science.gov (United States)

    Tellier, C. R.

    2011-02-01

    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  14. Tris(tetrabutylammonium) tris(nitrato-κ2 O,O ')tetrakis(thiocyanato-κN)thorium(IV)

    International Nuclear Information System (INIS)

    Janeth Lozano-Rodriguez, M.; Petit, S.; Copping, R.; Den Auwer, Ch.; Janeth Lozano-Rodriguez, M.; Mustre de Leon, J.; Thuery, P.

    2011-01-01

    The title compound, (C 16 H 36 N) 3 [Th(NCS) 4 (NO 3 ) 3 ], was obtained from the reaction of Th(NO 3 ) 4 .5H 2 O with (Bu 4 N)(NCS). The Th(IV) atom is in a ten-coordinate environment of irregular geometry, being bound to the N atoms of the four thiocyanate ions and to three bidentate nitrate ions. The average Th-N and Th-O bond lengths are 2.481 (10) and 2.57 (3) Angstroms, respectively. (authors)

  15. Poly[di-μ-aqua-diaquabis(μ7-oxalato-κ9O1:O1:O1,O2:O2:O2′:O2′,O1′:O1′calciumdicaesium

    Directory of Open Access Journals (Sweden)

    Hamza Kherfi

    2013-09-01

    Full Text Available In the title compound, [CaCs2(C2O42(H2O4]n, the Ca2+ ion, lying on a twofold rotation axis, is coordinated by four O atoms from two oxalate ligands and two bridging water molecules in an octahedral geometry. The Cs+ ion is coordinated by seven O atoms from six oxalate ligands, one bridging water and one terminal water molecule. The oxalate ligand displays a scarce high denticity. The structure contains parallel chain units runnig along [10-1], formed by two edge-sharing Cs polyhedra connected by CsO9 polyhedra connected by a face-sharing CaO6 octahedron. These chains are further linked by the oxalate ligands to build up a three-dimensional framework. O—H...O hydrogen bonds involving the water molecules and the carboxylate O atoms enhance the extended structure.

  16. Poly[aqua-μ-bromido-(μ2-5-methylpyrazine-2-carboxylato-κ4N1,O2:O2,O2′lead(II

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2012-09-01

    Full Text Available In the title coordination polymer, [PbBr(C6H5N2O2(H2O]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001; the layers are linked by O—H...N and O—H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodecahedral coordination environment for PbII.

  17. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O

    International Nuclear Information System (INIS)

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-01

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu(en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O (1) has been synthesized by reaction of Sb 2 O 3 , Na 2 WO 4 ·2H 2 O, CuCl 2 ·2H 2 O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW 9 O 33 ] 9− subunits sandwiching a hexagonal (Cu 2 Na 4 ) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu 2 Na 4 ) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu 2 Na 4 ) sandwiched tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu (en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu 2 Na 4 sandwiched) tungstoantimonate [Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ] 10− . • Ferromagnetic tungstoantimonate

  18. Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cadmate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Najmeh Firoozi

    2008-10-01

    Full Text Available In the title compound, (C4H14N2[Cd(C7H3NO42]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17–2.2493 (17 Å] and two N atoms [Cd—N = 2.3113 (15 and 2.3917 (15 Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O—H...O and N—H...O hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with π–π stacking interactions [centroid–centroid distances of 3.5313 (13 and 3.6028 (11 Å between the pyridine rings of neighbouring dianions].

  19. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3.3H2O and Pr[M(CN)2]3.3H2O (M=Ag, Au)

    International Nuclear Information System (INIS)

    Assefa, Zerihun; Haire, Richard G.; Sykora, Richard E.

    2008-01-01

    We have prepared Cm[Au(CN) 2 ] 3 .3H 2 O and Cm[Ag(CN) 2 ] 3 .3H 2 O as a part of our continuing investigations into the chemistry of the 5f-elements' dicyanometallates. Single crystals of Cm[Au(CN) 2 ] 3 .3H 2 O were obtained from the reaction of CmCl 3 and KAu(CN) 2 under mild hydrothermal conditions. Due to similarities in size, the related praseodymium compounds were also synthesized and characterized for comparison with the actinide systems. The compounds crystallize in the hexagonal space group P6 3 /mcm, where the curium and the transition metals interconnect through cyanide bridging. Crystallographic data (Mo Kα, λ=0.71073 A): Cm[Au(CN) 2 ] 3 .3H 2 O (1), a=6.6614(5) A, c=18.3135(13) A, V=703.77(9), Z=2; Pr[Au(CN) 2 ] 3 .3H 2 O (3), a=6.6662(8) A, c=18.497(3) A, V=711.83(17), Z=2; Pr[Ag(CN) 2 ] 3 .3H 2 O (4), a=6.7186(8) A, c=18.678(2) A, V=730.18(14), Z=2. The Cm 3+ and/or Pr 3+ ions are coordinated to six N-bound CN - groups resulting in a trigonal prismatic arrangement. Three oxygen atoms of coordinated water molecules tricap the trigonal prismatic arrangement providing a coordination number of nine for the f-elements. The curium ions in both compounds exhibit a strong red emission corresponding to the 6 D 7/28 S 7/2 transition. This transition is observed at 16,780 cm -1 , with shoulders at 17,080 and 16,840 cm -1 for the Ag complex, while the emission is red shifted by ∼100 cm -1 in the corresponding gold complex. The Pr systems also provide well-resolved emissions upon f-f excitation. - Graphical abstract: Coordination polymeric compounds between a trans-plutonium element, curium and transition metal ions, gold(I) and silver(I), were prepared using the hydrothermal synthetic procedure. The curium ion and the transition metals are interconnected through cyanide bridging. The Cm ion has a tricapped trigonal prismatic coordination environment with coordination number of nine. Detail photoluminescence studies of the complexes are also reported

  20. Synthesis of R-(+)- and S-(-)-8-hydroxy-2-(N,N-dipropylamino)-2[2-3H]tetralin. HCl (8-OH-DPAT) a 5HT1A receptor agonist

    International Nuclear Information System (INIS)

    Ackland, M.J.; Dring, L.G.; Jones, J.R.

    1991-01-01

    The title compounds were synthesised in 7 steps from 1,7-dihydroxynaphthalene as follows: 1,7-dihydroxynaphthalene was methylated and subjected to a Birch reduction to yield 8-methoxy-2-tetralone. Reductive amination with sodium cyanoboro[ 3 H]hydride and n-propylamine gave 8-methoxy-2-(n-propylamino)-[2- 3 H]tetralin which was acylated and reduced to give (±)8-methoxy-2-(N,N-dipropylamino)-[2 3 H]tetralin. Treatment with conc.HC1 gave (±)-8-hydroxy-2-(N,N-dipropylamino)-[2- 3 H]tetralin. The racemate was then resolved by chiral mobile phase chromatography. (author)

  1. 4-[(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-ylphenylmethyl]-5-methyl-2-phenyl-1H-pyrazol-3(2H-one ethanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2009-01-01

    Full Text Available The asymmetric unit of the title compound, C27H24N4O2·0.5C2H6O, comprises two crystallographically independent molecules (A and B with slightly different conformations, and one ethanol molecule of crystallization. Intramolecular C—H...O and O—H...O hydrogen bonds generate six- and eight-membered rings, producing S(6 and S(8 ring motifs, respectively. In molecule A, one of the benzene rings is disordered over two positions, with site-occupancy factors of 0.542 (11 and 0.458 (11. The dihedral angles between the central benzene ring and the two outer benzene rings are 73.88 (9 and 82.6 (2/88.9 (2° in molecule A, and 80.81 (8 and 79.38 (8° in molecule B. In the crystal structure, molecules form infinite one-dimensional chains in the (101 plane. The crystal structure is stabilized by intermolecular O—H...N, N—H...N, N—H...O and C—H...O hydrogen bonds, weak C—H...π and π–π [centroid–centroid = 3.5496 (1 Å] interactions.

  2. Preparation of Zr(Mo,W)2O8 with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)2(OH,Cl)22H2O.

    Science.gov (United States)

    Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I

    2018-03-28

    Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 22H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8  → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8  → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8  → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6  - -4.5∙10 -6  K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6  K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 22H 2 O within 500-800 K.

  3. Ab initio and transition state theory study of the OH + HO2H2O + O2(3Σg−)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-22

    Reactions of hydroxyl (OH) and hydroperoxyl (HO2) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO2H2O + O2(3Σg−)/O2(1Δg) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200–2500 K, represented by k(T) = 3.08 × 1012T0.07 exp(1151/RT) + 8.00 × 1012T0.32 exp(−6896/RT) and k(T) = 2.14 × 106T1.65 exp(−2180/RT) in cm3 mol−1 s−1, respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755–3772). The updated kinetic model was used to perform H2O2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565–571), and to estimate flame speeds and ignition delay times in H2 mixtures. The simulation predicted a larger amount of O2(1Δg) in H2O2 decomposition than that predicted by Konnov\\'s original model. These differences in the O2(1Δg) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H2O2 decomposition and on the flame speeds and ignition delay times of different H2–oxidizer mixtures. However, if the oxidizer is seeded with O3, small differences appear in the flame speed. Given that O2(1Δg) is much more reactive than O2(3Σg−), we do not preclude an effect of the

  4. {2-[(2-Acetylhydrazin-1-ylidenemethyl-κ2N1,O]-6-methoxyphenolato-κO1}(nitrato-κOcopper(II monohydrate

    Directory of Open Access Journals (Sweden)

    Ibrahima Elhadj Thiam

    2010-02-01

    Full Text Available In the title complex, [Cu(C10H11N2O3(NO3]·H2O, prepared from the Schiff base N′-(3-methoxy-2-oxidobenzylideneacetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak interaction with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H...O and N—H...O hydrogen bonds involving the uncoordinated water molecule are observed.

  5. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  6. 2-{4-Methyl-N-[(2,3,4,9-tetrahydro-1H-carbazol-3-ylmethyl]benzenesulfonamido}ethyl 4-methylbenzenesulfonate

    Directory of Open Access Journals (Sweden)

    Nagihan Çaylak Delibaş

    2013-12-01

    Full Text Available In the title compound, C29H32N2O5S2, the indole ring system is nearly planar, with a maximum deviation of 0.013 (2 Å, and the cyclohexenone ring has an envelope conformation with the methine C atom as the flap. The two methylbenzene rings are approximately perpendicular to each other, making a dihedral angle of 89.09 (8°. In the crystal, N—H...O hydrogen bonds link the molecules into a chain running along the a-axis direction, and weak C—H...O hydrogen bonds and C—H...π interactions are observed between the chains.

  7. A three-dimensional coordination polymer based on 1,2,3-triazole-4,5-dicarboxylic acid (H{sub 3}tda): ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O)6.25){sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang [Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, National Jiangsu Syngerstic Innovation Center for Advanced Materials (SICAM) (China)

    2017-03-15

    The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through the neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.

  8. Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Olchowka, Jakub; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry [Unite de Catalyse et Chimie du Solide (UCCS) - UMR CNRS 8181, Universite de Lille Nord de France, USTL-ENSCL, Villeneuve d' Ascq (France)

    2013-04-15

    A new heterometallic uranyl zinc carboxylate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O, has been hydrothermally prepared (150 C, 24 h) by using 1,2,3,4,5,6-benzenehexacarboxylic acid (mellitic acid) as organic linker in order to form a three-dimensional network. Four of the six carboxylate groups of the mellitate ligand interact with mononuclear uranyl or zinc cations, which are eightfold (hexagonal bipyramid, UO{sub 8}) or sixfold [octahedron, ZnO{sub 2}(H{sub 2}O){sub 4}] coordinated, respectively. The remaining free carboxylate arms of the mellitate species preferentially interact through hydrogen bonds with water molecules trapped within the framework. Thermogravimetric and X-ray thermodiffraction (up to 800 C) analyses and in situ infrared spectroscopy (up to 210 C) indicated that both free and bound water species are evacuated from the structure in one step between 80 and 170 C, followed by its transformation into an unknown, anhydrous, poorly crystalline phase [UO{sub 2}Zn(mel)] up to 320 C. After the formation of an amorphous phase, the re-crystallization of oxides α-ZnU{sub 3}O{sub 10} and ZnO was observed from 460 C. The fluorescence spectrum of the as-synthesized uranyl zinc mellitate shows the six bands that are typical for vibronic couplings of the [O=U=O]{sup 2+} moiety. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. (Acetato-κO(aqua-κO(2-{bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2methyl]amino-κN}ethanol-κOnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2012-04-01

    Full Text Available In the structure of the title complex, [Ni(CH3CO2(C14H23N5O(H2O]ClOH2O, the NiII centre has a distorted octahedral environment defined by one O and three N atoms derived from the tetradentate ligand, and two O atoms, one from a water molecule and the other from an acetate anion. The molecules are connected into a three-dimensional architecture by O—H...O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19.

  10. Poly[[μ2-2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole-κ2N3:N3′](μ2-5-hydroxyisophthalato-κ2O1:O3zinc

    Directory of Open Access Journals (Sweden)

    Ying-Ying Liu

    2011-11-01

    Full Text Available In the title coordination polymer, [Zn(C8H4O5(C14H22N4]n, the ZnII cation is coordinated by an O2N2 donor set in a distorted tetrahedral geometry. The ZnII ions are linked by μ2-OH-bdc (OH-H2bdc = 5-hydroxyisophthalic acid and bbie ligands [bbie = 2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole], forming a two-dimensional layer parallel to the ab plane. The layers are further connected through intermolecular C—H...O and O—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the bbie ligand, the two C atoms in the ethyl group are each disordered over two positions with a site-occupancy ratio of 0.69:0.31.

  11. Human milk H2O2 content: does it benefit preterm infants?

    Science.gov (United States)

    Cieslak, Monika; Ferreira, Cristina H F; Shifrin, Yulia; Pan, Jingyi; Belik, Jaques

    2018-03-01

    BackgroundHuman milk has a high content of the antimicrobial compound hydrogen peroxide (H 2 O 2 ). As opposed to healthy full-term infants, preterm neonates are fed previously expressed and stored maternal milk. These practices may favor H 2 O 2 decomposition, thus limiting its potential benefit to preterm infants. The goal of this study was to evaluate the factors responsible for H 2 O 2 generation and degradation in breastmilk.MethodsHuman donors' and rats' milk, along with rat mammary tissue were evaluated. The role of oxytocin and xanthine oxidase on H 2 O 2 generation, its pH-dependent stability, as well as its degradation via lactoperoxidase and catalase was measured in milk.ResultsBreast tissue xanthine oxidase is responsible for the H 2 O 2 generation and its milk content is dependent on oxytocin stimulation. Stability of the human milk H 2 O 2 content is pH-dependent and greatest in the acidic range. Complete H 2 O 2 degradation occurs when human milk is maintained, longer than 10 min, at room temperature and this process is suppressed by lactoperoxidase and catalase inhibition.ConclusionFresh breastmilk H 2 O 2 content is labile and quickly degrades at room temperature. Further investigation on breastmilk handling techniques to preserve its H 2 O 2 content, when gavage-fed to preterm infants is warranted.

  12. 4-{(E-[2-(4-Iodobutoxybenzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-07-01

    Full Text Available The title Schiff base compound, C22H24IN3O2, adopts an E configuration about the central C=N bond. The pyrazolone ring makes a dihedral angle of 49.68 (10° with its attached phenyl ring. The phenolate plane makes dihedral angles of 16.78 (9 and 50.54 (9°, respectively, with the pyrazolone ring and the terminal phenyl ring. An intramolecular C—H...O hydrogen bond generates an S(6 ring motif. In the crystal structure, an intermolecular C—H...O hydrogen bond is also observed.

  13. Preparation and infrared spectra of the Schiff base solid complexes [UO2(sal-O-phdn)(H2O)] and [UO2(sal-O-phdn) (Et3N)] (sal-O-phdn=n, n'-o-phenylenebissalicylideniminato)

    International Nuclear Information System (INIS)

    Sadeek, S.A.; Teleb, S.M.; Al-Kority, A.M.

    1993-01-01

    In the present communication, we report the preparation of the related two new complexes, [UO 2 (sal-o-phdn)(H 2 O)] and LUO 2 (sal-o-phdn)(Et 3 N)], where sal-o-phdn=N, N'-o-phenylenebis (salicylideneiminato); here U VI is seven-coordinate. The infrared spectra of these two complexes are recorded and assigned. (author). 10 refs., 1 tab

  14. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  15. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  16. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    Science.gov (United States)

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  17. Crystal structure of strontium osmate (8) Sr[OsO5(H2O)]x3H2O

    International Nuclear Information System (INIS)

    Nevskij, N.N; Ivanov-Ehmin, B.N.; Nevskaya, N.A.; Belov, N.V.; AN SSSR, Moscow. Inst. Kristallografii)

    1982-01-01

    Crystal structure of the Sr[OsO 5 (H 2 O)]x3H 2 O complex is studied. Rhombic P-cell has the parameters: a=6.426(1), b=7.888(1), c=14.377(5) A, Vsub(c)=729 A 3 . The R-factor equals 0.034. The coordinates of the basis atoms and isotropic temperature corrections, as well as basic interatomic distances, are determined

  18. Bis(2,6-dimethylanilinium diaquabis(dihydrogen diphosphato-κ2O,O′cobaltate(II

    Directory of Open Access Journals (Sweden)

    Ahlem Ben Saad

    2014-03-01

    Full Text Available In the title compound, (C8H12N2[Co(H2P2O72(H2O2], the Co2+ ion lies on a crystallographic inversion centre and adopts a slightly distorted octahedral CoO6 coordination geometry arising from two chelating diphosphate [H2P2O7]2− ligands and two trans water molecules. In the crystal, the components are linked by O—H...O, N—H...O and C—H...O hydrogen bonds and weak aromatic π–π stacking [shortest centroid–centroid separation = 3.778 (2 Å] interactions. (001 layers of alternating organic cations and complex inorganic anions are apparent.

  19. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  20. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2HH2O at room temperature

    Science.gov (United States)

    O, Song-Il; Yan, Jun-Min; Wang, Hong-Li; Wang, Zhi-Li; Jiang, Qing

    2014-09-01

    Ni/La2O3 nanocatalyst with Pt and Rh content as low as 5 mol%, respectively, is successfully synthesized by a facile co-reduction method in the presence of hexadecyl trimethyl ammonium chloride aqueous solution under ambient atmosphere. Interestingly, the resulted Ni/La2O3 catalyst with low cost exhibits excellent catalytic activity to dehydrogenation of hydrous hydrazine (N2HH2O), producing hydrogen with 100% selectivity at room temperature (298 K), which represents a promising step toward the practical application for N2HH2O system on fuel cells.

  1. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  2. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  3. Specific heat and thermodynamic functions of uranovanadates of the M2+(VUO6)2 · nH2O series (M2+ = Mg, Ca, Sr, Ba, Pb)

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Sulejmanov, E.V.; Trostin, V.L.; Alimzhanov, M.I.; Razuvaeva, E.A.

    1999-01-01

    Isobaric specific heat of crystal uranovanadates Ca(VUO 6 ) 2 · 8H 2 O, Ba(VUO 6 ) 2 · 4H 2 O in the temperature range of 10 - 300 K and of M 1 (VUO 6 ) 2 · 5H 2 O, (M 1 = Mg, Ca, Sr, Pb) at 80 -300 K are measured by the method of adiabatic vacuum calorimetry. The functions H 0 (T) - H 0 (0), S 0 (T), G 0 (T) - H 0 (T) for all the above-mentioned compounds in the range of 0 - 300 K have been calculated, the standard entropies and Gibbs functions of uranovanadates formation at 298.15 K being calculated as well [ru

  4. The first 3D malonate bridged copper [Cu(O2C–CH2–CO2H)2·2H2O]: Structure, properties and electronic structure

    International Nuclear Information System (INIS)

    Seguatni, A.; Fakhfakh, M.; Smiri, L.S.; Gressier, P.; Boucher, F.; Jouini, N.

    2012-01-01

    A new inorganic-organic compound [Cu(O 2 C–CH 2 –CO 2 H) 2 ·2H 2 O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)–malonic acid–H 2 O. Its framework is built up through carboxyl bridged copper where CuO 6 octahedra are elongated with an almost D 4h symmetry (4+2) due to the Jahn–Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2–300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U eff value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O 2 C–CH 2 –CO 2 H) 2 ·2H 2 O]: the first 3D hybrid organic–inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: ► A new organic–inorganic material with an unprecedented topology is synthesized. ► Crystallographic structure is determined using single crystal X-ray diffraction. ► Electronic structure is obtained from DFT, GGA+U calculation. ► Framework can be described as formed from CuC 4 tetrahedron sharing four corners. ► This structure can be classified as an extended diamond structure.

  5. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix

    International Nuclear Information System (INIS)

    Zhang, Ai; Li, Yongmei

    2014-01-01

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H 2 O 2 ), and the combined UV/H 2 O 2 processes. Effects of initial EDC concentration, H 2 O 2 dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H 2 O 2 , and UV/H 2 O 2 treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H 2 O 2 oxidation process, UV/H 2 O 2 treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H 2 O 2 oxidation were 45–197 times greater than those during UV irradiation and 11–53 times greater than those during H 2 O 2 oxidation. High dosage of H 2 O 2 and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm −2 , and H 2 O 2 dosage = 0.5 mol L −1 , the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (·OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H 2 O 2 oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis/photosensitization effects. These indicate that the sludge matrix plays an important role in the degradation of EDCs. - Highlights:

  6. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  7. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30– and studies in solution.

    Science.gov (United States)

    Korenev, Vladimir S; Floquet, Sébastien; Marrot, Jérôme; Haouas, Mohamed; Mbomekallé, Israël-Martyr; Taulelle, Francis; Sokolov, Maxim N; Fedin, Vladimir P; Cadot, Emmanuel

    2012-02-20

    Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).

  8. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  9. Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O′nickelate(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Ghadermazi

    2008-07-01

    Full Text Available The reaction of nickel(II nitrate hexahydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2[Ni(C7H3NO42]·4H2O or (p-1,2-daH2[Ni(pydc2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid. The geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. Considerable C=O...π stacking interactions are observed between the carboxylate C=O groups and the pyridine rings of the (pydc2− fragments, with O...π distances of 3.1563 (12 and 3.2523 (12 Å and C=O...π angles of 95.14 (8 and 94.64 (8°. In the crystal structure, a wide range of non-covalent interactions, consisting of hydrogen bonding [O—H...O, N—H...O and C—H...O, with D...A distances ranging from 2.712 (2 to 3.484 (2 Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8 Å] and C=O...π stacking, connect the various components to form a supramolecular structure.

  10. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    Science.gov (United States)

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  11. Synthesis and complex study of the crystal hydrate Zn{sub 2}ZrF{sub 8}.12H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Elena; Didenko, Nina; Gayvoronskaya, Kseniya; Slobodyuk, Arseniy; Gerasimenko, Andrey [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 159 Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok (Russian Federation)

    2016-05-15

    The synthesis and study of structure and properties of a crystal hydrate of the composition Zn{sub 2}ZrF{sub 8}.12H{sub 2}O were performed by XRD, DTA analysis as well as IR, Raman, and {sup 1}H, and {sup 19}F NMR, including {sup 19}F MAS NMR spectroscopy. The compound crystallizes in the monoclinic syngony with the following unit cell parameters: a = 20.9649 (12), b = 9.6851 (6), c = 24.0209 (14) Aa, β = 103.742 (2) , space group C2/c, Z = 12. The structure is built from monomeric complex [ZrF{sub 8}]{sup 4-} and [Zn(H{sub 2}O){sub 6}]{sup 2+} linked through hydrogen bonds of different lengths (O-H..F and O-H..O). The peculiarity of the structure consists in the presence of short hydrogen bonds (interatomic O..F distances 2.5-2.6 Aa). Analysis of the IR and Raman spectra allowed interpretation of bands corresponding to vibrations of the [ZrF{sub 8}]{sup 4-} anion and to describe hydrogen bonds in the structure of Zn{sub 2}ZrF{sub 8}.12H{sub 2}O. Phase transformations in the process of thermal dehydration were studied on the basis of changes in vibrational and NMR spectra. It has been established that the interligand exchange in the complex anion takes place as early as at -103 C, whereas no reorientation of hexaaquacations was observed up to 47 C. At 58 C, the compound undergoes an incongruent melting accompanied with formation of much more stable ZnZrF{sub 6}.6H{sub 2}O and an aqueous salty liquid phase characterized with high mobility of fluorine atoms and protons, in accordance with the NMR spectroscopic data. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  13. 2-(4-Fluoroanilino-3-(2-hydroxyethylquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The molecular and crystal structures of the title compound, C16H14FN3O2, are stabilized by intramolecular N—H...O and intermolecular O—H...O hydrogen bonds. The existence of non-classical intramolecular C—H...N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1°.

  14. Crystal structure of 4-(4b,8a-dihydro-9H-pyrido[3,4-b]indol-1-yl-7-methyl-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    S. Samundeeswari

    2017-01-01

    Full Text Available The title compound, C21H14N2O2, was prepared by Pictet–Spengler cyclization of tryptamine and 4-formyl coumarin. In the molecule, the dihedral angle between the mean planes of the coumarin and β-carboline ring systems is 63.8 (2°. In the crystal, molecules are linked via N—H...N hydrogen bonds, forming chains along the b-axis direction. Within the chains, there are a number of offset π–π interactions present [shortest intercentroid distance = 3.457 (2 Å].

  15. Crystal structure of cis-1-phenyl-8-(pyridin-2-ylmethyldibenzo[1,2-c:2,1-h]-2,14-dioxa-8-aza-1-borabicyclo[4.4.0]deca-3,8-diene

    Directory of Open Access Journals (Sweden)

    Gabriela Ledesma

    2017-12-01

    Full Text Available The title compound, C26H23BN2O2, was obtained as by product during synthetic attempts of a complexation reaction between the tripodal ligand H2L [N,N-bis(2-hydroxybenzyl(pyridin-2-ylmethylamine] and manganese(III acetate in the presence of NaBPh4. The isolated B-phenyl dioxazaborocine contains an N→B dative bond with a cis conformation. In the crystal, C—H...O hydrogen bonds define chains parallel to the b-axis direction. A comparative analysis with other structurally related derivatives is also included, together with a rationalization of the unexpected production of this zwitterionic heterocycle.

  16. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  18. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8H2 O.

    Science.gov (United States)

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. (3R,4Z-1,3-Diethyl-4-(2-oxopropylidene-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one

    Directory of Open Access Journals (Sweden)

    Laila El Foujji

    2018-04-01

    Full Text Available In the title compound, C16H20N2O2, the seven-membered ring adopts a bowl-shaped conformation while the orientation of the 2-oxopropylidene substituent is determined by an intramolecular N—H...O hydrogen bond, which generates an S(6 ring. In the crystal, inversion dimers linked by pairs of very weak C—H...O interactions occur, which generate R22(8 loops.

  20. (S-2-(2-Pyrrolidinio-1H-benzimidazol-3-ium dichloride monohydrate

    Directory of Open Access Journals (Sweden)

    Dai Jing

    2009-06-01

    Full Text Available In the title compound, C11H15N32+·2Cl−·H2O, one N atom of the imidazole ring and the N atom of the pyrrolidine ring are protonated. The crystal structure is stabilized by aromatic π–π interactions between the benzene rings of neighbouring benzimidazole systems [centroid–centroid duistance = 3.712 (2 Å]. The crystal structure is further stabilized by intermolecular N—H...Cl, O—H...Cl and N—H...O hydrogen bonds.

  1. Synthesis and vibrational spectra of cooper(II) and erbium(III) complexes with 2-diazo[2'-(oxymethyldiphenylphosphinyl)phenyl]-4-tert-butylphenol (HL) - [CuL22H2O and Er(NO3)3·2HL·2H2O. Crystal structure of [CuL22H2O

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Minacheva, L.Kh.; Ivanova, I.S.; Pyatova, E.N.; Sergienko, V.S.; Baulin, V.E.

    2008-01-01

    Paper describes synthesis of CuL 2 ·2H 2 O (I) complex cupric salt and of Er(NO 3 ) 3 ·2HL·2H 2 O (II) erbium nitrate complex (HL=2-diazo-[2'(oxymethyl-diphenyl-phosphinyl)phenyl]-4-tert-butylphenol). One interprets the fundamental frequencies within the IR-spectra of (I) and (II) compounds. One has performed X-ray diffraction analysis of I compound. The crystals are monoclinic ones, a=15.157(3), b=17.080(2), c=22.451(9) A, β=106.09(3) Deg, V=5584(3) A 3 , Z=4, C2/c sp.gr., R=0.0546 as to 1152 reflections with I>2σ(I). The copper atom coordination polyhedron (C 2 symmetry) may be described as a symmetrically-prolonged square bipyramid (4+2). Cu polyhedron central square is formed by substituted phenol oxygen atom and by one of diazo-group nitrogen atoms of either of two deprotonated ligands, namely: L - (Cu-N 1.969(6), Cu-O 1.899(5) A). The angles between lying opposite O and N atoms constitute 157.6 Deg, while the rest equatorial angles range within 90.6 Deg-95.9 Deg. The axial positions are occupied by O(2) and O(2A) anisole atoms (Cu-O 2.737(6) A, O(2)Cu(1)O(2A) angle constitutes 132.3 Deg). Within crystal I the complex molecules and the crystallization molecules of water are combined by by the hydrogen bond system. According to the IR-spectra data, within complex II in contrast to compound I erbium atom coordination by HL ligand involves oxygen phosphoryl atom [ru

  2. Nanosecond pulsed discharges in N2 and N2/H2O mixtures

    NARCIS (Netherlands)

    Joosten, R.M.; Verreycken, T.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2011-01-01

    Nanosecond pulsed discharges in N2 and N2/H2O at atmospheric pressure between two pin-shaped electrodes are studied. The evolution of the discharge is investigated with time-resolved imaging and optical emission spectroscopy. The discharge consists of three phases, the ignition (mainly molecular

  3. Crystal structure of vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, Jakub [Czech Academy of Sciences, Praha (Czech Republic). Inst. of Physics

    2017-07-01

    Vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O, is a rare supergene uranyl vanadate that forms during hydration-oxidation weathering of uraninite in oxide zones of U deposits. On the basis of single-crystal X-ray diffraction data it is monoclinic, space group P2{sub 1}/n, with a = 10.4637(10), b = 8.4700(5), c = 20.527(2) Aa, β = 102.821(9) , V=1773.9(3) Aa{sup 3} and Z = 4, D{sub calc.} = 3.561 g cm{sup -3}. The structure of vanuralite (R = 0.058 for 2638 unique observed reflections) contains uranyl vanadate sheets of francevillite topology of the composition [(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}]{sup 2-}. Sheets are stacked perpendicular to c, and an interstitial complex {sup [6]}Al(OH)(H{sub 2}O){sub 4}(H{sub 2}O){sub 4.5}; adjacent structural sheets are linked through an extensive network of hydrogen bonds. Vanuralite is the most complex mineral among uranyl vanadates, with 961 bits/cell. The scarcity of occurrences is probably caused by the less common combination of elements present in the structure, as well as the relatively high complexity of the structure (compared to related minerals), arising namely from the complicated network of H-bonds.

  4. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    Science.gov (United States)

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  5. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  6. 1-Methoxy-3-o-tolylbicyclo[2.2.2]oct-5-ene-2,2-dicarbonitrile

    Directory of Open Access Journals (Sweden)

    Orhan Büyükgüngör

    2009-09-01

    Full Text Available In the title compound, C18H18N2O, the cyclohexene and cyclohexane rings of the bicyclo[2.2.2]oct-5-ene unit adopt distorted boat conformations. In the crystal, molecules exist as C—H...N hydrogen-bonded centrosymmetric R22(14 dimers, which are further linked by C—H...π interactions.

  7. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    Science.gov (United States)

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  8. 9-Ethyl-2,3-dihydro-9H-carbazol-4(1H-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C28H30N2O2, the cyclohexene ring system adopts a sofa conformation. The crystal structure is stabilized by C—H...O interactions between methyl H atoms of the ethyl substituents and the O atoms of carbonyl groups of adjacent molecules, and by an intermolecular carbonyl–carbonyl interactions [3.207 (2 Å

  9. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.

    1988-01-01

    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  10. 6-Hydroxymethyl-4-methoxy-2H-pyran-2-one (Opuntiol

    Directory of Open Access Journals (Sweden)

    Muhammad Athar Abbasi

    2010-01-01

    Full Text Available The title compound, C7H8O4, isolated from Opuntia dillenii Haw (Cactaceae, is almost planar [maximum deviation of 0.027 (2 Å] except for the H atoms of the methylene and methyl groups. The crystal packing is stabilized by C—H...O and O—H...O intermolecular hydrogen bonds, resulting in the formation of a three-dimensional network.

  11. (Acetylacetonato-κ2O,O′bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Zhou

    2011-10-01

    Full Text Available In the title compound, [Ir(C18H12NO22(C5H7O2], the Ir atom is O,O′-chelated by the acetylacetonate group and C,N-chelated by the 2-arylnaphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octahedral geometry. Intramolecular C—H...O hydrogen bonds occur. In the crystal, intermolecular C—H...O hydrogen bonds link the molecules into columns parallel to the b axis.

  12. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2H3O+ + H reaction

    Science.gov (United States)

    Li, Anyang; Guo, Hua

    2014-06-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm-1. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H4O+ well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H2O+ rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H2O+ reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  13. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2H3O+ + H reaction

    International Nuclear Information System (INIS)

    Li, Anyang; Guo, Hua

    2014-01-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm −1 . The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H 4 O + well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H 2 O + rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H 2 O + reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction

  14. [(Nitrato-κ2 O,O′)(nitrito-κ2 O,O′)(0.25/1.75)]bis­(1,10-phenanthroline-κ2 N,N′)cadmium(II)

    Science.gov (United States)

    Najafi, Ezzatollah; Amini, Mostafa M.; Ng, Seik Weng

    2011-01-01

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca­hedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion. PMID:21522904

  15. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  16. (Bipyridine-κ2N,N′chlorido[N-(2-hydroxyethyl-N-isopropyldithiocarbamato-κ2S,S′]zinc(II

    Directory of Open Access Journals (Sweden)

    Fatin Allia Mohamad

    2012-07-01

    Full Text Available The ZnII atom in the title compound, [Zn(C6H12NOS2Cl(C10H8N2], is coordinated by a chelating N-2-hydroxyethyl-N-isopropyldithiocarbamate ligand, a 2,2′-bipyridine ligand and a Cl atom. The resulting ClN2S2 donor set defines a distorted square-pyramidal coordination geometry. Helical supramolecular chains sustained by O—H...S hydrogen bonds and propagating along the b axis feature in the crystal packing. A three-dimensional architecture is stabilized by C—H...O, C—H...S and C—H...Cl interactions.

  17. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  18. Bis[2-(2H-benzotriazol-2-yl-4-methylphenolato]palladium(II

    Directory of Open Access Journals (Sweden)

    Chen-Yen Tsai

    2009-06-01

    Full Text Available In the title complex, [Pd(C13H10N3O2], the PdII atom is tetracoordinated by two N atoms and two O atoms from two bidentate 2-(2H-benzotriazol-2-yl-4-methylphenolate ligands, forming a square-planar environment. The asymmetric unit contains one half molecule in which the Pd atom lies on a centre of symmetry.

  19. 1,5-Dimethyl-4-(1-methyl-3-oxo-3-phenylprop-1-enylamino-2-phenyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Hualing Zhu

    2011-07-01

    Full Text Available In the title compound, C21H21N3O2, an intramolecular N—H...O interaction generates an S(6 ring, which stablizes the enamine–keto tautomer. The S(6 ring makes dihedral angles of 33.07 (7, 56.50 (8 and 38.59 (8°, respectively, with the benzoylacetone benzene ring and the antipyrine pyrazole and benzene rings.

  20. Bis(1,10-phenanthroline-κ2N,N′(sulfato-Ocopper(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2011-09-01

    Full Text Available In the title compound, [Cu(SO4(C12H8N22]·C2H6O2, the CuII ion is five-coordinated in a distorted square-pyramidal manner by four N atoms from two chelating 1,10-phenanthroline (phen ligands and one O atom from a monodentate sulfate anion. The four N atoms comprise a square and the one O atom the apex of a square pyramid. The two chelating N2C2 groups are oriented at 71.1 (2°. In the crystal, the components are connected by intermolecular O—H...O hydrogen bonding. The presence of pseudosymmetry in the structure suggests the higher symmetry space group C2/c, but attempts to refine the structure in this space group resulted in an unsatisfactory model.

  1. Study of NaBH4 reaction with RhCl3·4H2O and H2PtCl6·6H2O in dimethylformamide

    International Nuclear Information System (INIS)

    Khain, V.S.; Val'kova, V.P.

    1988-01-01

    Data on study of NaBH 4 reactions with RhCl 3 x4H 2 O and H 2 PtCl 6 x6H 2 O in dimethylformamide, which is a good solvent of both complex hydride and compounds of platinum metals are presented. Rhodium (3) and platinum (4) reduction by sodium tetrahydridoborate in dimethylformamide proceeds quantitatively up to element state. Depositions of powder-like rhodium and platinum or their sols stable up to 8 months are formed depending on the ratio of concentrations of the reacting substances. Stoichiometry of redox-reactions is established based on spectrophotometric, gasovolumetric measurements,

  2. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′(triphenylphosphine-κPrhodium(I acetone solvate

    Directory of Open Access Journals (Sweden)

    T. J. Muller

    2009-12-01

    Full Text Available The title compound, [Rh(C10H7N2O2(C18H15P(CO]·(CH32CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10°. There are no classical hydrogen-bond interactions observed for this complex.

  3. (3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-olato-κ2O,Obis[2-(2-pyridylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2011-11-01

    Full Text Available The title compound, [Ir(C11H8N2(C17H19O2], has an octahedral coordination geometry around the IrIII atom, retaining the cis-C,C,trans–N,N chelate disposition of the two 2-phenylpyridine ligands. The chelate rings are nearly mutually perpendicular [the interplanar angles range from 85.48 (17 to 89.17 (19°]. The two 2-(2-pyridylphenyl ligands are approximately planar, with the plane of the phenyl ring being inclined to that of the pyridine ring by 2.3 (3 and 5.1 (3° in the two ligands. The interplanar angle between the phenyl ring in 3-benzoyl-camphor and the IrO2C3 chelate ring is 35.5 (2°.

  4. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdelraheem, Wael H.M. [Chemistry Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); He, Xuexiang; Duan, Xiaodi [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus)

    2015-01-23

    Graphical abstract: - Highlights: • UV-254 nm/H{sub 2}O{sub 2} AOP was utilized for the degradation and mineralization of PBSA and BSA. • Promotion of k{sub obs} with [H{sub 2}O{sub 2}]{sub 0} ≤ 4 mM and inhibition at higher [H{sub 2}O{sub 2}]{sub 0} were observed. • The S and N were released and monitored as SO{sub 4}{sup 2−} and NH{sub 4}{sup +}, respectively. • Br{sup −} inhibited both the degradation and mineralization much more significantly than Cl{sup −}. • There was an increase in [NH{sub 4}{sup +}] at higher [H{sub 2}O{sub 2}]{sub 0} and its further destruction at higher UV fluence. - Abstract: Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254 nm/H{sub 2}O{sub 2} advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0 mM [H{sub 2}O{sub 2}]{sub 0}, a complete removal of 40.0 μM parent PBSA and 25% decrease in TOC were achieved with 190 min of UV irradiation; SO{sub 4}{sup 2−} was formed and reached its maximum level while the release of nitrogen as NH{sub 4}{sup +} was much lower (around 50%) at 190 min. Sulfate removal was strongly enhanced by increasing [H{sub 2}O{sub 2}]{sub 0} in the range of 0–4.0 mM, with slight inhibition in 4.0–12.0 mM. Faster and earlier ammonia formation was observed at higher [H{sub 2}O{sub 2}]{sub 0}. The presence of Br{sup −} slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl{sup −}. Our study provides important technical and fundamental results on the HO{sup ·} based degradation and

  5. The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis(aqua(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II μ-oxalato-κ4O1,O2:O1′,O2′-bis((methanol-κO(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II (1/1

    Directory of Open Access Journals (Sweden)

    Youssouph Bah

    2008-09-01

    Full Text Available The title cocrystal, [Cu2(C2O4(NO32(C7H9N32(H2O2][Cu2(C2O4(NO32(C7H9N32(CH4O2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each molecule, the CuII centre is in a distorted octahedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one molecule, a monodentate nitrate anion and a water molecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol molecule occupy these sites. In the crystal structure, intermolecular N—H...O, O—H...O and N—H...N hydrogen bonds link the molecules into a network. Weak intramolecular N—H...O interactions are also observed.

  6. Determination and modeling for the solubility of Na_2WO_4·2H_2O and Na_2MoO_4·2H_2O in the (Na"+ + MoO_4"2"− + WO_4"2"− + SO_4"2"− + H_2O) system

    International Nuclear Information System (INIS)

    Ning, Pengge; Xu, Weifeng; Cao, Hongbin; Xu, Hongbin

    2016-01-01

    Highlights: • The solubility of Na_2MoO_4·2H_2O and Na_2WO_4·2H_2O in Na_2MoO_4–Na_2WO_4–Na_2SO_4–H_2O were performed. • The solubility of sodium tungstate dihydrate in Na_2WO_4–Na_2SO_4–H_2O was determined. • The new model was established via regressing the published and the determined data. • The Pitzer parameter and the solubility product constant of the salt in solution were calculated. • The model was used to estimate the solubility of the sodium molybdate and sodium tungstate. - Abstract: The solubility of sodium tungstate dihydrate and sodium molybdate dihydrate in the (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) system was studied using experimental and calculated methods. The osmotic coefficient of sodium tungstate was fitted to calculate the thermodynamics parameters of (Na_2WO_4 + H_2O) system. The solubility of sodium tungstate dihydrate was determined using the dynamic method in Na_2WO_4–Na_2SO_4–H_2O to establish the new model which can provide an estimate the solubility of sodium tungstate dihydrate in various conditions, combined with the data published, the solubility of sodium tungstate dihydrate and the sodium molybdate dihydrate in quaternary system of (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) was estimated using the parameters of the two ternary systems of (Na_2WO_4 + Na_2SO_4 + H_2O) and (Na_2MoO_4 + Na_2SO_4 + H_2O). The results show that the AARD is always small and the calculated value is basically consistent with the experimental values for the system studied.

  7. Diaquabis[2,6-bis(4H-1,2,4-triazol-4-ylpyridine-κN2]bis(selenocyanato-κNcobalt(II

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2012-08-01

    Full Text Available In the title compound, [Co(NCSe2(C9H7N72(H2O2], the Co2+ cation is coordinated by two selenocyanate anions, two 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligands and two water molecules within a slightly distorted N4O2 octahedron. The asymmetric unit consists of one Co2+ cation, which is located on a center of inversion, as well as one selenocyanate anion, one 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligand and one water molecule in general positions. Intermolecular O—H...N hydrogen bonds join the complex molecules into layers parallel to the bc plane. The layers are linked by C—H...N and C—H...Se hydrogen bonds into a three-dimensional supramolecular architecture.

  8. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  9. A Sequential Method to Prepare Polymorphs and Solvatomorphs of [Fe(1,3-bpp)2 ](ClO4 )2nH2 O (n=0, 1, 2) with Varying Spin-Crossover Behaviour.

    Science.gov (United States)

    Bartual-Murgui, Carlos; Codina, Carlota; Roubeau, Olivier; Aromí, Guillem

    2016-08-26

    Two polymorphs of the spin crossover (SCO) compound [Fe(1,3-bpp)2 ](ClO4 )2 (1 and 2; 1,3-bpp=2-(pyrazol-1-yl)-6-(pyrazol-3-yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid-state procedure, by sequentially removing lattice H2 O molecules from the solvatomorph [Fe(1,3-bpp)2 ](ClO4 )22H2 O (22H2 O), using single-crystal-to-single-crystal (SCSC) transformations. Hydrate 22H2 O is obtained through the same reaction as 1, now with 2.5 % of water added. Compounds 2 and 22H2 O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2H2 O (2H2 O), also following SCSC processes. The four derivatives have been characterised by single-crystal X-ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X-ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑ =279/316 K and T1/2↓ =276/314 K (near 40 K of shift) and different cooperativity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bis(1H-imidazole-κN3bis(1-naphthaleneacetato-κ2O,O′cadmium(II

    Directory of Open Access Journals (Sweden)

    Hong-Mian Wu

    2008-05-01

    Full Text Available In the mononuclear title compound, [Cd(C12H9O22(C3H4N22], the CdII centre has a distorted octahedral coordination geometry defined by four O atoms from two naphthaleneacetate ligands and two N atoms from two imidazole ligands. The molecules are linked by N—H...O hydrogen bonds, forming a layer network.

  11. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Magnesium hexafluoridozirconates MgZrF{sub 6}.5H{sub 2}O, MgZrF{sub 6}.2H{sub 2}O, and MgZrF{sub 6}. Structures, phase transitions, and internal mobility of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, Andrey V.; Gaivoronskaya, Kseniya A.; Slobodyuk, Arseny B.; Didenko, Nina A. [Institute of Chemistry, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2017-12-04

    The MgZrF{sub 6}.nH{sub 2}O (n = 5, 2 and 0) compounds were studied by the methods of X-ray diffraction and {sup 19}F, MAS {sup 19}F, and {sup 1}H NMR spectroscopy. At room temperature, the compound MgZrF{sub 6}.5H{sub 2}O has a monoclinic C-centered unit cell and is composed of isolated chains of edge-sharing ZrF{sub 8} dodecahedra reinforced with MgF{sub 2}(H{sub 2}O){sub 4} octahedra and uncoordinated H{sub 2}O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic <-> two-domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF{sub 6}.2H{sub 2}O comprises a three-dimensional framework consisting of chains of edge-sharing ZrF{sub 8} dodecahedra linked to each other through MgF{sub 4}(H{sub 2}O){sub 2} octahedra. The compound MgZrF{sub 6} belongs to the NaSbF{sub 6} type and is built from regular ZrF{sub 6} and MgF{sub 6} octahedra linked into a three-dimensional framework through linear Zr-F-Mg bridges. The peaks in {sup 19}F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable-temperature {sup 1}H NMR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Observations of interstellar H2O emission at 183 Gigahertz

    International Nuclear Information System (INIS)

    Waters, J.W.; Gustincic, J.J.; Kakar, R.K.; Kuiper, T.B.H.; Roscoe, H.K.; Swanson, P.N.; Rodriguez Kuiper, E.N.; Kerr, A.R.; Thaddeus, P.

    1980-01-01

    Line emission at 183 GHz by the 3 13 --2 20 rotational transition of water vapor has been detected from the Orion Nebula with the NASA Kuiper Airborne Observatory 91 cm telescope. The peak antenna temperature of the line is 15 K, its LSR velocity is 8 km s -1 , and its width is 15 km s -1 . The velocity profile has characteristics similar to those for CO:a narrow (approx.4 km s -1 ) ''spike'' centered at 9.5 km s -1 and a broad ''plateau'' with flaring wings centered at approx.8 km s -1 . Our 7'.5 antenna beam did not resolve the source. The 183 GHz H 2 O plateau emission appears enhanced above that expected for thermal excitation if it originates from the no greater than 1' region characteristic of plateau emission from all other observed molecules. The spike emission is consistent with an optically thick source of the approximated size of the well-known molecular ridge in Orion having the H 2 O in thermal equilibrium at Tapprox. =50 K. If this is the case, then the H 2 O column density giving rise to the spike is N/sub H/2/sub O/> or =3 x 10 17 cm -2 . An excitation calculation implies N/sub H/2/sub O/approx. =10 18 cm -2 for a source the size of the molecular ridge. These results imply that H 2 O is one of the more abundant species in the Orion Molecualr Cloud.H 2 O emission at 183 GHz was not detected in Sgr A, Sgr B2, W3, W43, W49, W51, DR 21, NGC 1333, NGC 7027, GL 2591, or the rho Oph cloud; it may have been detected in M17

  14. (2-Methyl-4-oxo-4H-pyran-3-olato-κ2O3,O4bis(triphenylphosphane-κPcopper(I–triphenylphosphane–methanol (1/1/1

    Directory of Open Access Journals (Sweden)

    Fabian M. A. Muller

    2011-05-01

    Full Text Available In the title compound, [Cu(C6H5O3(C18H15P2]·C18H15P·CH3OH, the pyran-4-one ring is appromimately planar (r.m.s deviation = 0.0138 Å, with the CuI atom 0.451 (5 Å out of the plane. The CuI atom has a distorted tetrahedral coordination. The O—Cu—O angle is 80.07 (8° and the P—Cu—P angle is 123.49 (3°. The crystal packing is stablized by intramolecular C—H...O interactions and intermolecular C—H...O and O—H...O interactions.

  15. 5-[(E-(2-Hydroxybenzylideneamino]-1H-1,3-benzimidazole-2(3H-thione

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-01-01

    Full Text Available There are two molecules in the asymmetric unit of the title compound, C14H11N3OS. In each, the benzimidazole ring system is essentially planar, with maximum deviations of 0.010 (2 and 0.006 (2 Å, and makes dihedral angles of 8.70 (9 and 13.75 (8°, respectively, with the hydroxy-substituted benzene rings. Each molecule adopts an E configuration about the central C=N double bond. In the crystal, the two independent molecules are connected via intermolecular N—H...S hydrogen bonds, forming dimers. Furthermore, the dimers are connected by N—H...O hydrogen bonds into molecular ribbons along the c axis. There is an intramolecular O—H...N hydrogen bond in each molecule, which generates an S(6 ring motif.

  16. Synthesis and Characterization of 8-Yttrium(III-Containing 81-Tungsto-8-Arsenate(III, [Y8(CH3COO(H2O18(As2W19O684(W2O62(WO4]43−

    Directory of Open Access Journals (Sweden)

    Masooma Ibrahim

    2015-06-01

    Full Text Available The 8-yttrium(III-containing 81-tungsto-8-arsenate(III [Y8(CH3COO(H2O18(As2W19O684(W2O62(WO4]43− (1 has been synthesized in a one-pot reaction of yttrium(III ions with [B-α-AsW9O33]9− in 1 M NaOAc/HOAc buffer at pH 4.8. Polyanion 1 is composed of four {As2W19O68} units, two {W2O10} fragments, one {WO6} group, and eight YIII ions. The hydrated cesium-sodium salt of 1 (CsNa-1 was characterized in the solid-state by single-crystal XRD, FT-IR spectroscopy, thermogravimetric and elemental analyses.

  17. Hydrates of the alkali trioxidomonosulfidomolybdates and -tungstates. K{sub 2}[(Mo/W)O{sub 3}S] . 1.5 H{sub 2}O and (Rb/Cs){sub 2}[(Mo/W)O{sub 3}S] . H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Anna J.; Braitsch, Milan; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2012-11-01

    The trioxidomonosulfidomolybdate and -tungstate anions [(Mo/W)O{sub 3}S]{sup 2-} are the first products formed when passing H{sub 2}S gas through a solution of the oxidometalates. Their potassium, rubidium and cesium salt hydrates form as crystalline precipitates from these solutions depending on pH, the polarity of the solvent, educt concentrations and temperature. The structures of the sesqui- (K) and mono- (Rb, Cs) hydrates have been determined by means of X-ray single crystal diffraction data. The potassium sesquihydrates K{sub 2}[(Mo/W)O{sub 3}S] . 1.5 H{sub 2}O are isotypic and crystallize with a new structure type (monoclinic, space group C2/c, M = Mo/W: a = 987.0(2)/993.13(11), b = 831.75(14)/831.10(11), c = 1868.9(4)/1865.2(2) pm, {beta} = 99.34(2)/99.153(8) , R1 = 0.0352/0.0390). In the crystal structure the [(Mo/W)O{sub 3}S]{sup 2-} anions are connected via hydrogen bonds to form columns along the c direction. Channels containing only water molecules run along the [101] direction. The dehydration process proceeds in a topotactic reaction between 60 to 95 C and yields crystals of the anhydrous salts K{sub 2}[(Mo/W)O{sub 3}S]. The two different K+ cations exhibit a 5 + 3 and 5 + 2 O/S coordination. The heavier alkali metal cations form the four monohydrates (Rb/Cs){sub 2}[(Mo/W)O{sub 3}S] . H{sub 2}O (trigonal rhombohedral, space group R anti 3m) with lattice parameters for the Rb/Cs molybdates of a = 621.17(6)/624.62(10), c = 3377.9(4)/3388.6(8) pm (R1 = 0.0505/0.0734) and the tungstates of a = 642.80(3)/643.3(4), c = 3532.8(3)/3566(4) pm (R1 = 0.0348/0.0660). In the structures the 3m symmetrical tetrahedra are arranged to form double layers in such a way, that the O{sub 3} bases of the tetrahedra are pointing towards each other in a staggered conformation. These double layers are stacked in the c direction in a rhombohedral sequence. In these hydrates, there are no distinct hydrogen bonds. Instead, partially disordered pairs of H{sub 2}O molecules are

  18. Synthesis and 3D Network Architecture of 1- and 16-Hydrated Salts of 4-Dimethylaminopyridinium Decavanadate, (DMAPH6[V10O28]·nH2O

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez-Lara

    2016-05-01

    Full Text Available Two hybrid materials based on decavanadates (DMAPH6[V10O28]·H2O, (1 and (DMAPH6[V10O28]·16H2O, (2 (where DMAPH = 4-dimethylaminopyridinium were obtained by reactions under mild conditions at T = 294 and 283 K, respectively. These compounds are pseudopolymorphs, which crystallize in monoclinic P 2 1 / n and triclinic P 1 ¯ space groups. The structural analysis revealed that in both compounds, six cations DMAPH+ interact with decavanadate anion through N-H∙∙∙Odec hydrogen bonds; in 2, the hydrogen-bonding association of sixteen lattice water molecules leads to the formation of an unusual network stabilized by decavanadate clusters; this hydrogen-bond connectivity is described using graph set notation. Compound 2 differs basically in the water content which in turn increases the π∙∙∙π interactions coming from pyridinium rings. Elemental and thermal analysis (TGA/DSC as well as FT-IR, FT-Raman, for 1 and 2 are consistent with both structures and are also presented.

  19. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis.

    Science.gov (United States)

    Wang, Junli; Song, Mingrui; Chen, Baiyang; Wang, Lei; Zhu, Rongshu

    2017-10-01

    In order to achieve better removal and analyses of three dissolved inorganic nitrogen (DIN) species via ultraviolet-activated hydrogen peroxide (UV/H 2 O 2 ) process, this study systematically investigated the rates of photo-oxidations of ammonia/ammonium (NH 3 /NH 4 + ) and nitrite (NO 2 - ) as well as the photo-reduction of nitrate (NO 3 - ) at varying pH and H 2 O 2 conditions. The results showed that the mass balances of nitrogen were maintained along irradiation despite of interconversions of DIN species, suggesting that no nitrogen gas (N 2 ) or other nitrogen-containing compound was formed. NH 3 was more reactive than NH 4 + with hydroxyl radical (OH), and by a stepwise H 2 O 2 addition method NH 3 /NH 4 + can be completely converted to NO x - ; NO 2 - underwent rapid oxidation to form NO 3 - when H 2 O 2 was present, suggesting that it is an intermediate compound linking NH 3 /NH 4 + and NO 3 - ; but once H 2 O 2 was depleted, NO 3 - can be gradually photo-reduced back to NO 2 - at high pH conditions. Other than H 2 O 2 , the transformation kinetics of DINs were all dependent on pH, but to varying aspects and extents: the NH 3 photo-oxidation favored a pH of 10.3, which fell within the pK a values of NH 4 + (9.24) and H 2 O 2 (11.6); the NO 3 - photo-reduction increased with increasing pH provided that it exceeds the pK a of peroxynitrous acid (6.8); while the NO 2 - photo-oxidation remained stable unless the pH neared the pK a of H 2 O 2 (11.6). The study thereby demonstrates a picture of the evolutions of DIN species together during UV/H 2 O 2 irradiation process, and for the first time presents a method to achieve complete conversion of NH 4 + to NO 3 - with UV/H 2 O 2 process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Double molybdates in Li2MoO4 - Na2MoO4 - H2O system at 25 grad C

    International Nuclear Information System (INIS)

    Karov, Z.G.; Mirzoev, R.S.; Makitova, D.D.; Zhilova, S.B.; Podnek, A.G.; Urusova, R.Kh.

    1989-01-01

    Solubility in Li 2 MoO 4 - Na 2 MoO 4 - H 2 O system at 25 deg C is first stuied. Formation of two Li 2 MoO 4 · Na 2 MoO 4 · 4H 2 O and Li 2 MoO 4 · 3Na 2 MoO 4 · 12H 2 O compounds in a system is ascertained. Density, refractive index, viscosity, surface tension, electric conductivity and pH of saturated solutions are determined. Isothermes of mole volume, equivalent and reduced electric conductivity and seeming mole volume of salts sum in solutions are calculated. All these properties adequtely confirm the character of components interaction in a system determined by solubility method. Crystallhydrates of binary molybdates are separated, indentified and studied

  1. Dicarbonyl[2-hydroxy-3,5,7-tris(morpholinomethylcyclohepta-2,4,6-trienonato(1–-κ2O1,O2]rhodium(I

    Directory of Open Access Journals (Sweden)

    G. Steyl

    2008-12-01

    Full Text Available In the title compound, [Rh(C22H32N3O5(CO2], the RhI atom is coordinated by two carbonyl ligands and two tropolonate O atoms in a distorted square-planar geometry. It is an example of a new type of tropolone derivative that has not been characterized via solid-state methods. Weak intramolecular C—H...N and intermolecular C—H...O hydrogen bonds, and π–π stacking interactions between the tropolone rings [centroid–centroid distance = 3.590 (8 Å] are observed in the crystal structure.

  2. 4-(2,4-Dichlorophenyl-2-(1H-indol-3-yl-6-methoxypyridine-3,5-dicarbonitrile

    Directory of Open Access Journals (Sweden)

    M. N. Ponnuswamy

    2008-10-01

    Full Text Available In the title compound, C22H12Cl2N4O, the indole ring system and the benzene ring form dihedral angles of 21.18 (7° and 68.43 (8°, respectively, with the pyridine ring. The methoxy group is coplanar with the pyridine ring. In the crystal structure N—H...N intermolecular hydrogen bonds link the molecules into C(10 chains running along [011]. Intramolecular C—H...N hydrogen bonds are also observed.

  3. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  4. 1-(Prop-2-en-1-yl-3-[(prop-2-en-1-yloxy]quinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Khadija El Bourakadi

    2017-05-01

    Full Text Available In the title compound, C14H14N2O2, the dihydroquinoxaline moiety deviates slightly from planarity. In the crystal, zigzag chains are formed by inversion-related C—H...O hydrogen bonds. Adjacent chains are associated through pairwise C—H...π(ring and π-stacking interactions.

  5. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    Science.gov (United States)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  6. 6,7-Dichloro-3-(2,4-dichlorobenzylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Jinpeng Zhang

    2012-08-01

    Full Text Available In the title compound, C15H8Cl4N2O, the quinoxaline ring system is almost planar, with a dihedral angle between the benzene and pyrazine rings of 3.1 (2°. The 2,4-dichlorophenyl ring is approximately perpendicular to the pyrazine ring, with a dihedral angle of 86.47 (13° between them. The crystal packing features intermolecular N—H...O hydrogen bonds and π–π stacking interactions, with centroid–centroid distances in the range 3.699 (3–4.054 (3 Å.

  7. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  8. Diaquabis[2-(2-hydroxyethylpyridine-κ2N,O]cobalt(II dichloride

    Directory of Open Access Journals (Sweden)

    Hocine Merazig

    2013-08-01

    Full Text Available In the title salt, [Co(C7H9NO2(H2O2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11 Å].

  9. Crystal structures and thermal decomposition of permanganates AE[MnO_4]_2 . n H_2O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    International Nuclear Information System (INIS)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas

    2017-01-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO_4]_2 . 4 H_2O, Sr[MnO_4]_2 . 3 H_2O and Ba[MnO_4]_2 are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO_4]_2 a long time ago, we employed a cation-exchange column loaded with Ba"2"+ cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO_4]_2 . 4 H_2O exhibiting [CaO_8] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO_4]_2 . 3 H_2O with [SrO_1_0] polyhedra adopts the cubic space group P2_13 with a=964.19(7) pm and Z=4. So the harder the AE"2"+ cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO_4]_2 in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO_1_2] polyhedra. During the thermal decomposition of Ca[MnO_4]_2 . 4 H_2O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H_2O molecule at 157 C. The crystal structure of Sr[MnO_4]_2 . 3 H_2O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn_2O_3 and the oxomanganates(III,IV) AEMn_3O_6 (AE=Ca and Sr) remain as final decomposition products at 800 C next to amorphous phases. On the other hand, the already anhydrous Ba[MnO_4]_2 thermally decomposes to hollandite-type BaMn_8O_1_6 and BaMnO_3 at 800 C.

  10. Calcium and strontium salts of (glycinato-κ(2)N,O)oxidobis(peroxido-κ(2)O,O')vanadate(V) tetrahydrate.

    Science.gov (United States)

    Higuchi, Takeshi; Uchida, Ayana; Hashimoto, Masato

    2013-12-15

    The title salts calcium (glycinato-κ(2)N,O)oxidobis(peroxido-κ(2)O,O')vanadate(V) tetrahydrate, Ca[VO(O2)2(NH2CH2COO)]·4H2O, and strontium (glycinato-κ(2)N,O)oxidobis(peroxido-κ(2)O,O')vanadate(V) tetrahydrate, Sr[VO(O2)2(NH2CH2COO)]·4H2O, crystallized at pH ca 7.4 with similar lattice parameters. The glycinate anion acts as a bidentate N,O-chelating ligand, and the V atom has a pentagonal bipyramidal geometry, with two η(2)-peroxo groups and the glycinate N atom in the equatorial plane, and one terminal oxo and a glycinate O atom at the axial positions. The H atoms of three of the four water molecules in the strontium salt exhibited disorder over three positions for each molecule.

  11. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    Science.gov (United States)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  12. Poly[[diaqua-μ2-4,4′-bipyridyl-μ2-o-phthalato-nickel(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Bing Li

    2008-02-01

    Full Text Available In the title layer complex, {[Ni(C8H4O4(C10H8N2(H2O22H2O}n, the Ni atom has a distorted octahedral environment, defined by the phthalate and 4,4′-bipyridyl ligands which link the Ni atoms, forming a square lattice in the bc plane. This extends into a three-dimensional supramolecular network through O—H...O hydrogen-bonding interactions. The Ni atom lies on, and both ligands are bisected by, a crystallographic twofold axis.

  13. Thermal, spectroscopic and magnetic properties of the Co xNi1-x(SeO3).2H2O (x = 0, 0.4, 1) phases

    International Nuclear Information System (INIS)

    Larranaga, A.; Mesa, J.L.; Pizarro, J.L.; Pena, A.; Chapman, J.P.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Co x Ni 1-x (SeO 3 ).2H 2 O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co 0.4 Ni 0.6 (SeO 3 ).2H 2 O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO 3 ).2H 2 O (M = Co and Ni) minerals and crystallizes in the P2 1 /n space group, with a 6.4681(7), b = 8.7816(7), c = 7.5668(7) A, β = 98.927(9) deg and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO 3 ) 2- selenite oxoanions and edge-sharing M 2 O 10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d 7 and 3d 8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO 3 ) 2- anions which are linked to the M 2 O 10 polyhedra in three dimensions

  14. Diaqua{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-κ2O,N,N′,O′}manganese(III perchlorate 18-crown-6 hemisolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Ming-Ming Yu

    2009-02-01

    Full Text Available In the cation of the title compound, [Mn(C18H18N2O4(H2O2]ClO4·0.5C12H24OH2O, the MnIII ion is coordinated by two water O atoms, and two O atoms and two N atoms from the tetradentate 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolate ligand, completing a distorted octahedral geometry. One O atom of the 18-crown-6-ether is disordered over two positions with occupancies of 0.70 (2 and 0.30 (2.

  15. Mixing-assisted oxidative desulfurization of model sulfur compounds using polyoxometalate/H2O2 catalytic system

    Directory of Open Access Journals (Sweden)

    Angelo Earvin Sy Choi

    2016-07-01

    Full Text Available Desulfurization of fossil fuel derived oil is needed in order to comply with environmental regulations. Dibenzothiophene and benzothiophene are among the predominant sulfur compound present in raw diesel oil. In this study, mixing-assisted oxidative desulfurization of dibenzothiophene and benzothiophene were carried out using polyoxometalate/H2O2 systems and a phase transfer agent. The effects of reaction time (2–30 min and temperature (30–70 °C were examined in the oxidation of model sulfur compounds mixed in toluene. A pseudo first-order reaction kinetic model and the Arrhenius equation were utilized in order to evaluate the kinetic rate constant and activation energy of each catalyst tested in the desulfurization process. Results showed the order of catalytic activity and activation energy of the different polyoxometalate catalysts to be H3PW12O40 > H3PM12O40 > H4SiW12O40 for both dibenzothiophene and benzothiophene.

  16. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  17. A novel layered bimetallic phosphite intercalating with organic amines: Synthesis and characterization of Co(H2O)4Zn4(HPO3)6.C2N2H1

    International Nuclear Information System (INIS)

    Lin Zhien; Fan Wei; Gao Feifei; Chino, Naotaka; Yokoi, Toshiyuki; Okubo, Tatsuya

    2006-01-01

    A new layered cobalt-zinc phosphite, Co(H 2 O) 4 Zn 4 (HPO 3 ) 6 .C 2 N 2 H 1 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) A, β=114.098(4) o , V=2542.3(2) A 3 , Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO 4 tetrahedra, CoO 6 octahedra and HPO 3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH 4 + cations without the collapse of the framework

  18. 2-(4-Fluorophenyl-2H-chromen-4(3H-one

    Directory of Open Access Journals (Sweden)

    Michał Wera

    2012-02-01

    Full Text Available In the crystal structure of the title compound, C15H11FO2, molecules form inversion dimers through pairs of weak C—H...O hydrogen bonds. Dimers oriented in parallel, linked by C—H...π contacts, are arranged in columns along the b axis. The fluorophenyl ring and the benzene ring of the 2H-chromen-4(3H-one unit are inclined to one another by 70.41 (16°. They are respectively parallel in a given column or almost perpendicular [oriented at an angle of 87.8 (1°] in neighbouring (inversely oriented columns, forming a herringbone pattern.

  19. Structural and spectral analyses of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide)

    Science.gov (United States)

    Yıldırım, Sema Öztürk; Büyükmumcu, Zeki; Pekdur, Özlem Savaş; Butcher, Ray J.; Doǧan, Şengül Dilem

    2018-02-01

    In this study we report structure determination of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide). 2,2'-Dithiobis(benzamide) derivatives have been reported to possess important biological properties such as antibacterial, antifungal activities and inhibition of blood platelet aggregation and redeterrmined at 100(2)K from the data published by Raftery, Lallbeeharry, Bhowon, Laulloo & Joulea [Acta Cryst. 2009, E65, o16]. 2,2'-Dithiobis(N-butyl-benzamide) has been reported to be useful as an antiseptic for cosmetics. The structural properties of the compound have been characterized by using 1H NMR and the structure were determined by single-crystal X-ray diffraction. Molecular structure crystallizes in triclinic form, space group with a = 9.6396(7) Å, b = 9.9115(7) Å, c = 12.0026(8) Å, α = 109.743(6)°, β = 103.653(6)°, γ = 104.633(6)° and V = 977.15(13) Å3. In the solid state of the molecular structure N-H…S, N-H…O and C-H…O, type interactions provide for stabilization. The geometries of the title compound have been optimized using density functional theory (DFT) method. The calculated values were found to be in agreement with the experimental data.

  20. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Adil, Karim; Belmabkhout, Youssef; Shekhah, Osama; Bhatt, Prashant M.; Cadiau, Amandine

    2016-01-01

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided

  1. Bis{μ-2,2′-[1,1′-(ethane-1,2-diyldinitrilodiethylidyne]diphenolato-κ5O,N,N′,O′:O}bis[chloridomanganese(III

    Directory of Open Access Journals (Sweden)

    Robert D. Pike

    2008-02-01

    Full Text Available The title compound, [Mn2(C18H18N2O22Cl2], was synthesized by the reaction between manganese(II o-chlorobenzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxyacetophenone. The centrosymmetric dimer contains two Jahn–Teller-distorted manganese(III ions, each in an octahedral geometry, connected through two phenoxy bridges from two ligands.

  2. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  3. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  4. Crystal structure of poly[[hexaqua-1κ4O,2κ2O-bis(μ3-pyridine-2,4-dicarboxylato-1κO2:2κ2N,O2′;1′κO4cobalt(IIstrontium(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Zhaojun Yu

    2015-09-01

    Full Text Available In the title polymeric complex, {[CoSr(C7H3NO42(H2O6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-dicarboxylate (pydc2− ligands and two terminal water molecules in a slightly distorted octahedral geometry, to form a trans-[Co(pydc2(H2O2]2− unit. The SrII ion, situated on a C2 axis, is coordinated by four O atoms from four pydc2− ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc2(H2O2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water molecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H...O hydrogen bonds. Further intra- and intermolecular O—H...O hydrogen bonds consolidate the overall structure.

  5. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2017-05-15

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.

  6. Magnetism of CuCl{sub 22D{sub 2}O and CuCl{sub 22H{sub 2}O, and of CuBr{sub 2}·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hampton, A.S.; Van Dongen, M.J.; Komatsu, C.H.; Benday, N.S.; Davis, C.M. [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hays, K.; Wagner, M.J. [Department of Chemistry, George Washington University, Washington, D.C. 20052 (United States)

    2017-07-15

    Highlights: • CuCl{sub 22D{sub 2}O is examined magnetically and compared with CuCl{sub 22H{sub 2}O. • Slightly lower magnetic characteristic temperatures occur for deuterated dihydrate. • The new compound CuBr{sub 2}·6H{sub 2}O is examined magnetically. • Unexpected relationships appears between magnetic behaviors of CuBr{sub 2}·6H{sub 2}O and CuBr{sub 2}. • Two alternative monoclinic unit cells can account for diffraction data on CuBr{sub 2}·6H{sub 2}O. - Abstract: The magnetic properties of little examined CuCl{sub 22D{sub 2}O are studied and compared with those of CuCl{sub 22H{sub 2}O. New CuBr{sub 2}·6H{sub 2}O is also examined. Susceptibility maxima appear for chlorides at 5.35 and 5.50 K, in the above order, with estimated antiferromagnetic ordering at 4.15 and 4.25 K. Curie-Weiss fits yield g of 2.210 and 2.205, and Weiss θ of −6.0 and −4.7 K, respectively, in χ{sub M} = C/(T − θ). One-dimensional Heisenberg model fits to susceptibilities, including interchain exchange in a mean-field approximation, are performed. Interchain exchange is significant but much weaker than intrachain. The bromide hexahydrate strongly differs magnetically from any chloride hydrate, but exhibits notable similarities and differences compared to previously studied CuBr{sub 2}. A broad susceptibility maximum occurs near 218 K, only 4% lower than for CuBr{sub 2}, but with almost twice the magnitude. Powder X-ray diffraction data for CuBr{sub 2}·6H{sub 2}O may be best accounted for by a monoclinic unit cell that is metrically orthorhombic. The volume per formula unit is consistent with trends in metal ionic radii. However, an alternative monoclinic cell with 5% smaller volume more readily rationalizes the magnetism.

  7. Photochemical degradation of diethyl phthalate with UV/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xu Bin [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)]. E-mail: gaonaiyun@mail.tongji.edu.cn; Sun Xiaofeng [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Xia Shengji [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Rui Min [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Simonnot, Marie-Odile [Laboratory of Chemical Engineering Science, CNRS-INPL, 1 rue Grandville, BP451, F-54001 Nancy Cedex (France); Causserand, Christel [Laboratory of Chemical Engineering, UMR 5503 CNRS INP, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Zhao Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2007-01-02

    The decomposition of diethyl phthalate (DEP) in water using UV-H{sub 2}O{sub 2} process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H{sub 2}O{sub 2} oxidation alone, while UV-H{sub 2}O{sub 2} combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0 mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 {mu}W/cm{sup 2} and H{sub 2}O{sub 2} dosage of 20 mg/L. The effects of applied H{sub 2}O{sub 2} dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H{sub 2}O{sub 2} concentration.

  8. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    Science.gov (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  9. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  10. Octa­akis(4-amino­pyridine)-1κ4 N 1,2κ4 N 1-aqua-2κO-μ-carbonato-1:2κ3 O,O′:O′′-dinickel(II) dichloride penta­hydrate

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B.; Alfred Cecil Raj, S.

    2008-01-01

    In the title compound, [Ni2(CO3)(C5H6N2)8(H2O)]Cl2·5H2O, one of the the NiII ions is six-coordinated in a distorted octa­hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino­pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other NiII ion is also six-coordinated, by four other pyridine N atoms from four other amino­pyridine ligands and two carbonate O atoms to complete a distorted octa­hedral geometry. In the crystal structure, mol­ecules are linked into an infinite three-dimensional network by O—H⋯O, N—H⋯Cl, N—H⋯O, O—H⋯N, C—H⋯O, C—H⋯N and C/N—H⋯π inter­actions involving the pyridine rings. PMID:21580879

  11. Structure and thermal property of N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Goto, Takefumi; Yoshimura, Yukihiro; Michishita, Yosuke; Matsumoto, Hitoshi

    2008-01-01

    By in situ observations using simultaneous X-ray diffraction and differential scanning calorimetry method, complicated phase transitions were observed in N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate, [DEME][BF 4 ] and H 2 O mixtures. In pure [DEME][BF 4 ], two different crystal structures were determined below crystallization temperature, T c . Two kinds of crystals correspond to two stages of melting upon heating. T c decreases with increasing in the H 2 O content of [DEME][BF 4 ]-H 2 O mixture. Around 6.7 mol% H 2 O, an amorphous solid, however, was formed without crystallization on cooling. Glass transition temperature, T g , of the amorphous phase depends on cooling rate of the mixture. On heating, the amorphous solid transformed to a crystal accompanied by an exothermal peak. This unusual cold crystallization is induced by H 2 O molecules. Two different dynamic components were observed in a Raman spectrum of the amorphous phase, where the lower Raman band is crystal-like and the higher one is liquid-like. At higher H 2 O concentration, coexistence of the amorphous solid and crystal was realized below T c , and the cold crystallization also occurred. In spite of a variety of phase transitions, the crystal structure of [DEME][BF 4 ]-H 2 O mixtures is the same one as pure [DEME][BF 4

  12. cis-Aquadichlorido[pyrimidin-2(1H-one-κN3]copper(II

    Directory of Open Access Journals (Sweden)

    A. Guy Orpen

    2008-07-01

    Full Text Available In the title compound, [CuCl2(C4H4N2O(H2O], the CuII cation is coordinated by two chloride anions, one pyrimidin-2-one N atom and one water molecule, giving a slightly distorted square-planar geometry. In the crystal structure, the pyrimidin-2-one rings stack along the b axis, with an interplanar distance of 3.306 Å, as do the copper coordination planes (interplanar spacing = 2.998 Å. The coordination around the Jahn–Teller-distorted CuII ion is completed by long Cu...O [3.014 (5 Å] and Cu...Cl [3.0194 (15 Å] interactions with adjacent molecules involved in this stacking. Several N—H...Cl, O—H...Cl and O—H...O intermolecular hydrogen bonds form a polar three-dimensional network.

  13. Crystal structure of 2-cyano-N-(furan-2-ylmethylacetamide

    Directory of Open Access Journals (Sweden)

    Shivanna Subhadramma

    2015-07-01

    Full Text Available In the title compound, C8H8N2O2, the acetamide unit is inclined to the furan ring by 76.7 (1°. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, generating C(4 chains along [100]. The carbonyl O atom is a bifurcated acceptor and an R12(6 ring is formed.

  14. A two-dimensional CdII coordination polymer: poly[diaqua[μ3-5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylato-κ5O2:O3:O3,N4,N5]cadmium

    Directory of Open Access Journals (Sweden)

    Monserrat Alfonso

    2016-09-01

    Full Text Available The reaction of 5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4(H2O2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxylate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H...O hydrogen bonds present, involving the water molecules and the carboxylate O atoms. There are also C—H...N and C—H...O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

  15. Absorption spectra between 0.8 {mu} and 30 {mu} of mixtures of H{sub 2}O - D{sub 2}O in the liquid state; Le spectre d'absorption des melanges H{sub 2}O-D{sub 2}O a l'etat liquide entre 0,8 et 30 {mu}

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Goldman, M; Roth, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    There has been very little work carried out recently on the absorption bands of H{sub 2}O, HDO and D{sub 2}O in the liquid state. We have established the spectra of these molecules in between 0.8 and 30 p. The table of absorption bands of the molecules HDO and D{sub 2}O for which all the bands corresponding to those for H{sub 2}O had not been established has been completed. We have sought a convenient method of representing the variations in optical density of certain HDO bands as a function of the concentration of heavy water in the mixtures studied. (author) [French] Il y a peu de travaux recents sur les bandes d'absorption de H{sub 2}O, HDO et D{sub 2}O a l'etat liquide. Nous avons releve les spectres de ces molecules entre 0,8 et 30 p. Le tableau des bandes d'absorption des molecules HDO et D{sub 2}O, pour lesquelles le releve de toutes les bandes correspondantes a celles de H{sub 2}O n'etait pas encore effectue, a ete complete. Nous avons cherche des modes de representation commodes des variations de densite optique de certaines bandes de HDO en fonction de la teneur en eau lourde des melanges etudies. (auteur)

  16. Preparation and Performance Analysis of Na2SO4·10H2O/EG Composite Phase-change Materials

    Directory of Open Access Journals (Sweden)

    LENG Cong-bin

    2017-01-01

    Full Text Available Sodium sulfate decahydrate/expanded graphite composite phase-change material (Na2SO4·10H2O/EG was prepared by vacuum adsorption method.The thermal properties of Na2SO4·10H2O/EG,such as melting-solidification,phase separation,supercooling and latent heat were tested and analyzed.The results show that with the addition of 2%(mass fraction borax and 8% EG,the composite phase-change materials Na2SO4·10H2O/EG obtain ideal properties.The phase separation is eliminated,the supercooling degree of Na2SO4·10H2O is reduced from 13.6℃ to below 0.6℃,the latent heat and the energy storage density of the phase-change materials reach 225.77kJ·kg-1 and 218.09MJ·m-3 respectively.The thermal conductivity is also greatly improved.Compared with Na2SO4·10H2O with the addition of the nucleating agent borax only,the time for heat storage is shortened by 52.6%,and the time for heat release is shortened by 55.1%.Even after 500 times of rapid heating and cooling cycles,the performance of Na2SO4·10H2O/EG does not deteriorate.The novel composite phase-change material has better storage/exothermic properties.

  17. The MgSeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1984-01-01

    The method of isothermal solubility at 25 deg C has been used to study MgSeO 4 -UO 2 SeO 4 -H 2 O system. Formation of the new compound Mg 2 (UO 2 ) 3 (SeO 4 ) 5 X32H 2 O, congruently soluble in water is stated. Thermographic and X-ray diffraction investigations of the prepared magnesium selenato-uranylate and products of its dehydration are conducted

  18. Synthesis and crystal structure of hydrogen selenates K(HSeO4)(H2SeO4) and Cs(HSeO4)(H2SeO4)

    International Nuclear Information System (INIS)

    Troyanov, S.I.; Morozov, I.V.; Zakharov, M.A.; Kemnitz, E.

    1999-01-01

    Hydrogen selenates of the compositions K(HSeO 4 )(H 2 SeO 4 ) and Cs(HSeO 4 )(H 2 SeO 4 ) are synthesized by the reaction of alkali metal carbonates with an excess of the concentrated selenic acid. The X-ray diffraction study showed that both compounds are isostructural to the corresponding hydrogen sulfates. The difference in the systems of hydrogen bonding are caused by various combinations of the acceptor functions of the oxygen atoms in the HSeO 4 and H 2 SeO 4 groups

  19. (E-3-Propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one monohydrate

    Directory of Open Access Journals (Sweden)

    Burkhon Zh Elmuradov

    2010-05-01

    Full Text Available The title compound, C15H16N2O2·H2O, was synthesized via the alkylation of 3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide in the presence of sodium hydroxide. The organic molecule and the water molecule both lie on a crystallographic mirror plane. In the crystal structure, intermolecular O—H...O and O—H...N hydrogen bonds link the components into extended chains along [100].

  20. 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

    Directory of Open Access Journals (Sweden)

    Evgeny Bulatov

    2014-02-01

    Full Text Available The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-diphenyl-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2 and 55.3 (2°. In the crystal, inversion dimers linked by pairs of N—H...N hydrogen bonds generate a graph-set motif of R22(8 via N—H...N hydrogen bonds.

  1. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  2. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] metallotectons

    Science.gov (United States)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  3. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  4. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    Science.gov (United States)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  5. Degradation of Pentachlorophenol in Aqueous Solution by the UV/ZrO 2 /H 2 O 2 Photocatalytic Process

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2015-12-01

    Full Text Available Pentachlorophenol (PCP, which is one of the resistant phenolic compounds, has been classified in the category of EPA’s priority pollutants due to its high toxicity and carcinogenic potential. Therefore, its removal from water and wastewater is very important. Various methods have been studied for removing the compound, among which advanced oxidation processes (AOPs have attracted much attention because of ease of application and high efficiency. Thus the aim of this study was to investigate the efficiency of the UV/ZrO2/H2O2 process, as an AOP, for PCP removal from aquatic environments. The effects of several parameters such as ultraviolet (UV exposure time, initial PCP concentration, pH, concentration of zirconium dioxide (ZrO2 nanoparticles, and H2O2 concentration were studied. Kinetics of the reaction was also detected. The concentration of the stated materials in the samples was determined using a spectrophotometer at 500 nm. The results showed that the highest efficiency (approximately 100% was reached at optimized conditions of pH 6, contact time of 30 minutes, initial PCP concentration of 20 mg/L, the nanoparticles concentration of 0.1 g/L and H2O2 concentration of 14.7 mM/L. Also, the process followed the first order kinetics reaction. The obtained results illustrated that the UV/ZrO2/H2O2 process has a high ability in removing PCP.

  6. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided are methods of making metal organic frameworks.

  7. Bis[2-(2-pyridylmethyleneaminobenzenesulfonato-κ3N,N′,O]cadmium(II dihydrate

    Directory of Open Access Journals (Sweden)

    Miao Ou-Yang

    2008-11-01

    Full Text Available The title complex, [Cd(Paba22H2O or [Cd(C12H9N2O3S22H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyleneaminobenzenesulfonic acid (PabaK with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyleneaminobenzenesulfonate ligands in a slightly distorted octahedral environment. There are extensive hydrogen bonds of the type O—H...O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001.

  8. Features of the structure of phospho- and arsenouranic acids of the composition of HPUO2x4H2O and HAsUO6x4H2O

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Karyakin, N.V.; Chernorukov, G.N.

    1994-01-01

    The structure of crystal phases of the composition HPUO 6 x4H 2 O and HAsUO 6 x4H 2 O has been studied using the methods of IR spectroscopy, thermography, X-ray phase analysis and calorimetry. The nature and binding energy of water within the compounds mentioned are determined. 10 refs., 2 figs

  9. catena-Poly[[aquabis[N-(pyridin-3-ylisonicotinamide-κN1]copper(II]-μ-fumarato-κ2O1:O4

    Directory of Open Access Journals (Sweden)

    Sultan H. Qiblawi

    2012-12-01

    Full Text Available In the title compound, [Cu(C4H2O4(C11H9N3O2(H2O]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumarate(3-pina2(H2O]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100 by O—H...O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H...O(=C hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H...N and C—H...O hydrogen bonds, affording a three-dimensional network.

  10. 5-Fluoro-6′H,7′H,8H-spiro[indoline-3,7′-pyrano[3,2-c:5,6-c′]di-1-benzopyran]-2,6′,8′-trione

    Directory of Open Access Journals (Sweden)

    J. Suresh

    2012-03-01

    Full Text Available In the title compound, C26H12FNO6, the central pyran ring and both benzopyran systems are nonplanar, having total puckering amplitudes of 0.139 (2, 0.050 (1 and 0.112 (2 Å, respectively. The central pyran ring adopts a boat conformation. The crystal structure is stabilized by C—H...O, N—H...O, N—H...F and C—H...π interactions.

  11. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  12. The H2O/D2O exchange across vesicular lipid bilayers

    International Nuclear Information System (INIS)

    Engelbert, H.P.; Lawaczek, R.

    1985-01-01

    A new method to measure the water (D 2 O/H 2 O) permeation across vesicular lipid bilayers is described. The method is based on the solvent isotope effect of the light scattering which is a consequence of the different indices of refraction of D 2 O and H 2 O. Unilamellar lipid vesicles in excess of H 2 O are rapidly mixed with D 2 O or vice versa. As result of the H 2 O/D 2 O exchange across the vesicular bilayer the light scattering signal has a time dependent, almost single exponential component allowing the deduction of the exchange relaxation rate and, at known size, of the permeability coefficient. The experimental results are in accord with calculations from the Mie theory of light scattering for coated spheres. The method is applicable for large vesicles where the permeation is the rate-limiting step. Size separations are performed by a flow dialysis through a sequence of pore-membrane-filters. For dimyristoyl-lecithin bilayers the water permeability-coefficient is 1.9 . 10 -5 cm/s in the crystalline phase and increases by a factor of 10-100 in the liquid-crystalline state. The temperature dependence of the permeation exhibits a sharp change at the phase transition. For binary mixtures of lecithins this sharp change follows the solidus curve of the non-ideal phase diagram determined by spectroscopic techniques. (orig.)

  13. 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-ylmethyl]-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-yl-methyl]-6-hydroxy-1,3-di-methylpyrimidine-2,4(1H,3H-dione 3 was synthesized via a multicomponent reaction. The Aldol–Michael addition reactions of N,N-dimethylbarbituric acid, cyclohexane-1,3-dione, and 3-fluorobenzaldehyde in aqueous solution gave the product in high yield. The molecular structure of the compound was confirmed by spectroscopic methods and X-ray crystallography. The title compound (C19H19FN2OH2O crystallizes in the Monoclinic form, P21/c, a = 7.8630 (5 Å, b = 20.0308 (13 Å, c = 11.3987 (8 Å, β = 104.274 (3°, V = 1739.9 (2° Å3, Z = 4, Rint = 0.117, wR(F2 = 0.124, T = 100 K.

  14. Tris(1,10-phenanthroline-κ2N,N′iron(II bis[(1,10-phenanthroline-κ2N,N′tetrakis(thiocyanato-κNchromate(III] acetonitrile trisolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Bon

    2012-05-01

    Full Text Available Single crystals of the title heterometallic compound, [Fe(C12H8N23][Cr(NCS4(C12H8N2]2·3CH3CN·H2O or [Fe(Cphen3][Cr(NCS4(phen]2·3CH3CN·H2O, were prepared using the one-pot open-air reaction of iron powder, Reineckes salt and 1,10-phenanthroline (phen in acetonitrile. The asymetric unit consists of an [Fe(phen3]2+ cation, two [Cr(phen(NCS4]− anions, three acetonitrile solvent molecules and a water molecule. The Fe and Cr atoms both show a slightly distorted octahedral FeN6 and CrN6 coordination geometry with adjacent angles in the range 79.67 (12–95.21 (12°. No classical hydrogen bonding involving the water molecule is observed.

  15. Improved radiosensitive microcapsules using H2O2

    International Nuclear Information System (INIS)

    Harada, Satoshi; Ehara, Shigeru; Ishii, Keizo

    2010-01-01

    The radiation-induced releasing of the liquid-core of the microcapsules was improved using H 2 O 2 , which produced O 2 generation of H 2 O 2 after irradiation. Further, we tested whether these microcapsules enhanced the antitumor effects and decreased the adverse effects in vivo in C3He/J mice. The capsules were produced by spraying a mixture of 3.0% hyaluronic acid, 2.0% alginate, 3.0% H 2 O 2 , and 0.3 mmol of carboplatin on a mixture of 0.3 mol FeCl 2 and 0.15 mol CaCl 2 . The microcapsules were subcutaneously injected into MM46 tumors that had been inoculated in the left hind legs of C3He/J mice. The radiotherapy comprised tumor irradiation with 10 Gy or 20 Gy 60 Co. The antitumor effect of the microcapsules was tested by measuring tumor size and monitoring tumor growth. Three types of adverse effects were considered: fuzzy hair, loss of body weight, and death. The size of the capsule size was 23±2.4 μmφ and that of the liquid core, 20.2±2.2 μmφ. The injected microcapsules localized drugs around the tumor. The production of O 2 by radiation increased the release of carboplatin from the microcapsules. The antitumor effects of radiation, carboplatin, and released oxygen were synergistic. Localization of the carboplatin decreased its adverse effects. However, the H 2 O 2 caused ulceration of the skin in the treated area. The use of our microcapsules enhanced the antitumor effects and decreased the adverse effects of carboplatin. However, the skin-ulceration caused by H 2 O 2 must be considered before these microcapsules can be used clinically. (author)

  16. Production of 34S-labeled gypsum (Ca34SO4.2H2O Produção de gesso (Ca34SO4.2H2O, marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2006-08-01

    Full Text Available Agricultural gypsum (CaSO4.2H2O stands out as an effective source of calcium and sulfur, and to control aluminum saturation in the soil. Labeled as 34S it can elucidate important aspects of the sulfur cycle. Ca34SO4.2H2O was obtained by chemical reaction between Ca(OH2 and H2(34SO4, performed under slow agitation. The acid was produced by ion exchange chromatography using the Dowex 50WX8 cation exchange resin and a Na2(34SO4 eluting solution. After precipitation, the precipitate was separated and dried in a ventilated oven at 60ºC. From 2.2 L H2SO4 0.2 mol L-1 and 33.6 g Ca(OH2, 73.7 ± 0.6 g Ca34SO4.2H2O were produced on average in the tests, representing a mean yield of 94.6 ± 0.8%, with 98% purity. The 34SO2 gas was obtained from Ca34SO4.2H2O in the presence of NaPO3 in a high vacuum line and was used for the isotopic determination of S in an ATLAS-MAT model CH-4 mass spectrometer.O gesso agrícola (CaSO4.2H2O destaca-se como fonte eficiente de cálcio e enxofre e na redução da saturação de alumínio no solo. O 34S como traçador isotópico pode elucidar aspectos importantes no ciclo do enxofre. Para tanto o Ca34SO4.2H2O foi obtido por reação química entre o Ca(OH2 e solução de H2(34SO4, realizada sob agitação lenta. O ácido foi produzido por cromatografia de troca iônica, utilizando resina catiônica Dowex 50WX8 e solução eluente de Na2(34SO4. Após a precipitação foi separado o precipitado e realizada a secagem em estufa ventilada à temperatura de 60ºC. Nos testes, a partir de 2,2 L de H2SO4 0,2 mol L-1 e 33,6 g de Ca(OH2, foram produzidos em média 73,7 ± 0,6 g de Ca34SO4.2H2O representando um rendimento médio de 94,6 ± 0,8%, com pureza de 98%. A partir do Ca34SO4.2H2O na presença de NaPO3, em linha de alto vácuo, obteve-se o gás 34SO2 utilizado para a determinação isotópica do S no espectrômetro de massas ATLAS-MAT modelo CH-4.

  17. Using H2O2 as oxidant in leaching of uranium ores. The new research on the reaction of H2O2 with Fe2+

    International Nuclear Information System (INIS)

    Gao Xizhen

    1997-05-01

    The new research on the reaction of H 2 O 2 with Fe 2+ has been studied. Through determining the electric potential, pH and O 2 release during the mutual titration between H 2 O 2 solution and FeSO 4 solution, deduced the chemical equations of H 2 O 2 (without free hydroxyl) oxidizing FeSO 4 and Fe 2 (SO 4 ) 3 oxidizing H 2 O 2 . The research results show that acid is a catalytic agent for decomposing H 2 O 2 to be O 2 and H 2 O besides iron ions. The maximum oxidizing potential is up to about 640 mV. While using H 2 O 2 as an oxidant in uranium heap leaching and in-situ leaching, controlling electric potential can be regarded as a method for adjusting the feeding speed of H 2 O 2 to keep the electric potential below 500 mV, thus the H 2 O 2 decomposition can be reduced. (13 refs., 3 tabs., 1 fig.)

  18. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    Science.gov (United States)

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  19. Neutron Spectra in H{sub 2}O, D{sub 2}O, BeO and CH{sub 2}; Spectres de Neutrons dans H{sub 2}O, D{sub 2}O, BeO et CH{sub 2}; Spektry nejtronov v H{sub 2}O, D{sub 2}O, BeO i CH{sub 2}; Espectros Neutronicos en H{sub 2}O, D{sub 2}O, BeO y CH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Neill, J. M.; Young, J. C.; Trimble, G. D.; Beyster, J. R. [General Atomic Division of General Dynamics Corporation, John Jay Hopkins Laboratory for Pure and Applied Science, San Diego, CA (United States)

    1965-08-15

    Thermal neutron spectral measurements in moderators of interest to reactor technology are being made at General Atomic. The purpose of these measurements is to provide an integral check of the adequacy of proposed scattering models for these moderators. At present the scattering kernels are obtained by measuring the double differential scattering cross-sections directly, or by inferring them from a study of the vibrational and rotational motions of the molecules in a liquid or the lattice vibrational spectrum in a solid. The direct measurement has suffered from some experimental difficulties, such as obtaining the desired intensity and resolution and making the proper corrections for multiple scattering in the sample. From the standpoint of the application to reactor technology, the latter procedure for obtaining the scattering kernel has been more satisfactory in many instances. The integral measurements that have been made, coupled to comparative calculations of the neutron spectra, allow comment to be made on the status of the theoretical scattering models for H{sub 2}O, D{sub 2}O and BeO. In this paper, angular- and position-dependent spectra measured in H{sub 2}O and D{sub 2}O poisoned with boron or cadmium are presented and show improved agreement with the theoretical values. It appears that the Nelkin model for H{sub 2}O provides a reasonable first description for the scattering by that moderator. It also appears that the Honeck model for D{sub 2}O, an extension of the incoherent model for H{sub 2}O of Nelkin, is also an adequate description for some applications. This is surprising since deuterium, unlike hydrogen, is mostly a coherent scatterer; however it supports recent studies by Koppel which showed that the intramolecular and intermolecular interference scattering terms in D{sub 2}O tend to cancel. Measured angularly-dependent neutron spectra in BeO poisoned with borated stainless steel are also presented. In general the agreement of measurement with

  20. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  1. Investigation of the Na2(H2PO2)2 - Ba(H2PO2)2 - H2O Water-Salt Ternary System at Room Temperature

    OpenAIRE

    Erge, Hasan; Turan, Hakan; Kul, Ali Riza

    2016-01-01

    Objective: In this study, the solubility, density, conductivity and phase equilibria of the Na2(H2PO2)2-Ba(H2PO2)2-H2O ternary system located in the structure of the Na+, Ba2+, (H2PO2)-//H2O quaternary reciprocal water-salt system were investigated using physicochemical analysis methods. Material and Methods: Riedel-de Haen and Merck salts were used to investigate the solubility and phase equilibria of the Na2(H2PO2)2 -Ba(H2PO2)2-H2O ternary water–salt system at room temperature Res...

  2. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2016-01-01

    Full Text Available Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2- induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR. Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.

  3. Investigation into complexing in Re7-H3O+-SO42--H2O system

    International Nuclear Information System (INIS)

    Sinyakova, G.S.

    1979-01-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO 4 - -H 3 O + -SO 4 2- -H 2 O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK 1 =3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK 2 =0.93+-0.13 and lgK 3 =0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK 1 =1.86+-0.02 and lgK 2 =2.35+-0.03

  4. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers

    Science.gov (United States)

    Li, Yanping; Wang, Baowei; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan

    2015-01-01

    A series of Cu2O/TiO2 photocatalysts with different molar fraction of Cu2O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption desorption and UV-vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO2 was significantly enhanced by combined with p-type Cu2O, due to the efficient p-n heterojunction. The p-n heterojunction between Cu2O and TiO2 can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu2O/TiO2 photocatalyst exhibited the highest photocatalytic activity for H2 evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu2O/TiO2 sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H2 evolution rate was discussed.

  5. Bis[μ-2-(2,4-difluorophenyl-1,3-bis(1,2,4-triazol-1-ylpropan-2-olato-κ4N2,O:O,N2′]bis[(acetato-κ2O,O′nickel(II] methanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2010-01-01

    Full Text Available In the title complex, [Ni2(C13H11F2N6O2(C2H3O22]·0.5CH3OH, there are two half-molecules in the asymmetric unit. The two centrosymmetrically related NiII atoms, each attached to an acetate ligand, are linked by two fluconazole ligands. Each NiII atom is six-coordinated in a distorted octahedral geometry by two N atoms of the triazole groups and two bridging O atoms from two different fluconazole ligands and two O atoms from a chelating acetate ligand. In the crystal structure, the half-occupied methanol solvent molecule is linked to a triazole group via an O—H...N hydrogen bond.

  6. Electron spin resonance study of a-Cr2O3 and Cr2OnH2O quasi-spherical nanoparticles

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-12-01

    Full Text Available The quasi-spherical nanoparticles of hydrated Cr2O3 · nH2O, and crystalline -Cr2O3, have been synthesized by reduction of the first row (3d) transition metal complex of K2Cr2O7. The temperaturedependence of electron spin resonance (ESR) spectrum...

  7. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  8. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies

    Science.gov (United States)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.

    2017-10-01

    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  9. Two different one-dimensional structural motifs in [catena-{Cu(tacn)}2Pd(CN)4]Br2.[catena-Cu(tacn)Pd(CN)4]2.H2O (tacn is 1,4,7-triazacyclononane).

    Science.gov (United States)

    Kuchár, Juraj; Cernák, Juraj

    2009-07-01

    The title compound, catena-poly[[bis[(triazacyclononane-kappa(3)N,N',N'')copper(II)]-di-mu-cyanido-kappa(4)N:C-palladate(II)-di-mu-cyanido-kappa(4)C:N] dibromide bis[[(triazacyclononane-kappa(3)N,N',N'')copper(II)]-mu-cyanido-kappa(2)N:C-[dicyanidopalladate(II)]-mu-cyanido-kappa(2)C:N] monohydrate], {[Cu(2)Pd(CN)(4)(C(6)H(15)N(3))(2)]Br(2).[Cu(2)Pd(2)(CN)(8)(C(6)H(15)N(3))(2)].H(2)O}(n), (I), was isolated from an aqueous solution containing tacn.3HBr (tacn is 1,4,7-triazacyclononane), Cu(2+) and tetracyanidopalladate(2-) anions. The crystal structure of (I) is essentially ionic and built up of 2,2-electroneutral chains, viz. [Cu(tacn)(NC)-Pd(CN)(2)-(CN)-], positively charged 2,4-ribbons exhibiting the composition {[Cu(tacn)(NC)(2)-Pd(CN)(2)-Cu(tacn)](2n+)}(n), bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one-quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one-dimensional structural motif within the same structure is a unique feature of this compound.

  10. Experimental Study of Effects of pH, Temperature and H2O2 on Gasoline Removal from Contaminated Water Using Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Hasti Hasheminejad

    2010-01-01

    Full Text Available Contamination of water with petroleum compounds is a serious environmental problem in Iran. Old fuel storage tanks, gasoline stations, and oil refineries are the main sources of gasoline leakage into water resources. In this study, the batch adsorption technique was used to investigate adsorption of petroleum compounds (gasoline on granular activated carbon. Experiments showed that the adsorption capacity of activated carbon is a function of pH, temperature, and H2O2 concentration in solution. Maximum adsorption of petroleum compounds was obtained at pH of 8. Adsorption of petroleum compounds was increased by decreasing temperature (due to decreasing van der Waals forces between the adsorbent and the adsorbate and H2O2 concentration in solution (due to the decrease in the initial concentration of the adsorbate by oxidation . In this experiment, the maximum equilibrium capacity of granular activated carbon was 129.05 mg COD/g GAC at pH 8 and at an ambient temperature of 10˚C. The experimental adsorption data were fitted to the Freundlich and Langmuir adsorption model. The correlation coefficients calculated indicate that the Freundlich model was best fitted. Also, the regression analysis was used with a correlation coefficient of 0.981 to develop a model for describing the relationship between absorption variation in equilibrium state, pH, temperature, and H2O2. On the whole, the correlation coefficient calculated by the proposed model was found to be higher than Freundlich’s.

  11. Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Transparent colorless crystals of NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs) were obtained by blending aqueous solutions of Na{sub 3}[C{sub 6}N{sub 9}] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group P2{sub 1}/m (no. 11) with the cell parameters a = 815.56(16), b = 1637.7(4) and c = 1036.4(3) pm, and β = 110.738(12) for NaRb{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O and a = 843.32(6), b = 1708.47(11) and c = 1052.42(7) pm, and β = 112.034(2) for NaCs{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O, respectively. Raman spectra of the title compounds complement our results.

  12. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  13. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  14. 5-Isobutyl-4-phenylsulfonyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    M. Venkatesh

    2010-12-01

    Full Text Available The title compound, C13H16N2O3S, consists of two crystallographically independent molecules with similar geometries and exists in a keto form, the C=O bond lengths being 1.267 (2 and 1.254 (2 Å. In both molecules, the pyrazole rings are approximately planar, with maximum deviations of 0.017 (2 and 0.010 (2 Å, and the dihedral angles between the pyrazole and phenyl rings are 83.63 (11 and 70.07 (12°. In one molecule, an intramolecular C—H...O hydrogen bond with an S(6 ring motif is observed. In the crystal, intermolecular N—H...O and C—H...O hydrogen bonds link the molecules into two-dimensional networks parallel to the ab plane.

  15. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Antao, Sytle M.; Dhaliwal, Inayat

    2017-08-01

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedral dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average O>[6] = 2.122(1) Å and average 2–O>[6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average O>[4], O>[6], and 2–O>[6] distances increase linearly with V. The average O> distance is affected by M atoms, whereas the average O> distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.

  16. Ethyl 5-cyano-4-[2-(2,4-dichlorophenoxyacetamido]-1-phenyl-1H-pyrrole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2009-08-01

    Full Text Available In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14°. The C=O bond length is 1.213 (3 Å, indicating that the molecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The molecule is stabilized by an intramolecular N—H...O hydrogen-bonding interaction. In the crystal, the stacked molecules exhibit intermolecular C—H...O and C—H...N hydrogen-bonding interactions.

  17. 6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H-one

    Directory of Open Access Journals (Sweden)

    S. Dahmani

    2010-04-01

    Full Text Available The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one in dimethylformamide yields the title compound, C12H8BrN3O, which features nitrogen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å; the propynyl chains point in opposite directions relative to the fused ring. One acetylenic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related molecule, forming a dimer; adjacent dimers are linked by a second acetylene–pyridine C—H...N interaction, forming a layer motif.

  18. Solar degradation of 5-amino-6-methyl-2-benzimidazolone by TiO2 and iron(III) catalyst with H2O2 and O2 as electron acceptors

    International Nuclear Information System (INIS)

    Sarria, Victor; Peringer, Paul; Caceres, Julia; Blanco, Julian; Malato, Sixto; Pulgarin, Cesar

    2004-01-01

    Wastewater containing mainly 5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterized as bio-recalcitrant by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, solar photocatalytic degradation methods were explored. The systems light/TiO 2 /O 2 , light/TiO 2 /H 2 O 2 , light/Fe 3+ /O 2 and light/Fe 3+ /H 2 O 2 were compared under direct sunlight at the Plataforma Solar de Almeria (Spain), using a Compound Parabolic Collector (CPC). The iron photo-assisted systems exhibited the most interesting behaviour, from the kinetic and engineering points of view, especially if their combination (as pre-treatment) with a biological process is considered. To compare the efficiency of these systems, the evolution of the following parameters were studied: (a) the dissolved organic carbon and initial compound concentration, (b) the toxicity, and (c) the biodegradability of treated solution. At lab scale, using a solar lamp, the degradation rate of the system light/Fe 3+ /H 2 O 2 was two times higher than the system light/Fe 3+ /O 2 but this last system does not need H 2 O 2 addition, improving the economical requirements of the system

  19. Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation

    International Nuclear Information System (INIS)

    He, Xuexiang; Mezyk, Stephen P.; Michael, Irene; Fatta-Kassinos, Despo; Dionysiou, Dionysios D.

    2014-01-01

    Graphical abstract: - Highlights: • Removal efficiency was comparable at different UV fluence rates but same fluence. • Reducing pH to 3 or 2 did not inhibit the removal of nitrobenzene by UV/S 2 O 8 2− . • 1.84 × 10 −14 M [HO • ] ss and 3.10 × 10 −13 M [SO 4 • − ] ss in UV/S 2 O 8 2− were estimated. • HO • reacted faster with the β-lactams than SO 4 • − but sharing similar byproducts. • Transformation pathways included hydroxylation, hydrolysis and decarboxylation. - Abstract: The extensive production and usage of antibiotics have led to an increasing occurrence of antibiotic residuals in various aquatic compartments, presenting a significant threat to both ecosystem and human health. This study investigated the degradation of selected β-lactam antibiotics (penicillins: ampicillin, penicillin V, and piperacillin; cephalosporin: cephalothin) by UV-254 nm activated H 2 O 2 and S 2 O 8 2− photochemical processes. The UV irradiation alone resulted in various degrees of direct photolysis of the antibiotics; while the addition of the oxidants improved significantly the removal efficiency. The steady-state radical concentrations were estimated, revealing a non-negligible contribution of hydroxyl radicals in the UV/S 2 O 8 2− system. Mineralization of the β-lactams could be achieved at high UV fluence, with a slow formation of SO 4 2− and a much lower elimination of total organic carbon (TOC). The transformation mechanisms were also investigated showing the main reaction pathways of hydroxylation (+16 Da) at the aromatic ring and/or the sulfur atom, hydrolysis (+18 Da) at the β-lactam ring and decarboxylation (–44 Da) for the three penicillins. Oxidation of amine group was also observed for ampicillin. This study suggests that UV/H 2 O 2 and UV/S 2 O 8 2− advanced oxidation processes (AOPs) are capable of degrading β-lactam antibiotics decreasing consequently the antibiotic activity of treated waters

  20. 2-(1H-Benzimidazol-2-ylphenol

    Directory of Open Access Journals (Sweden)

    S. M. Prakash

    2014-02-01

    Full Text Available The title molecule, C13H10N2O, is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2 Å. The imidazole ring makes a dihedral angle of 0.37 (13° with the attached benzene ring. An intramolecular O—H...N hydrogen bond generates an S(6 ring motif. In the crystal, molecules are linked through N—H...O hydrogen bonds, forming chains propagating in [001]. The crystal packing also features four π–π stacking interactions involving the imidazole ring, fused benzene ring and attached benzene ring system [centroid–centroid distances = 3.6106 (17, 3.6108 (17, 3.6666 (17 and 3.6668 (17 Å].

  1. Solid-liquid stable phase equilibria of the ternary systems MgCl2 + MgB6O10+ H2O AND MgSO4 + MgB6O10 + H2O at 308.15 K

    Directory of Open Access Journals (Sweden)

    Lingzong Meng

    2014-03-01

    Full Text Available The solubilities and the relevant physicochemical properties of the ternary systems MgCl2 + MgB6O10 + H2O and MgSO4 + MgB6O10 + H2O at 308.15 K were investigated using an isothermal dissolution method. It was found that there is one invariant point, two univariant curves, and two crystallization regions of the systems. The systems belong to a simple co-saturated type, and neither double salts nor solid solutions were found. Based on the extended HW model and its temperature-dependent equations, the single-salt Pitzer parameters β(0, β(1, β(2 and CØ for MgCl2, MgSO4, and Mg(B6O7(OH6, the mixed ion-interaction parameters θCl,B6O10, θSO4,B6O10, ΨMg,Cl,B6O10, ΨMg,SO4,B6O10 of the systems at 308.15 K were fitted, In addition, the average equilibrium constants of the stable equilibrium solids at 308.15 K were obtained by a method using the activity product constant. Then the solubilities of the ternary systems are calculated. The calculated solubilities agree well with the experimental values.

  2. (2RS-2-(2,4-Difluorophenyl-1-[(4-iodobenzyl(methylamino]-3-(1H-1,2,4-triazol-1-ylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    Hui-Ping Xiong

    2012-08-01

    Full Text Available In the title compound (common name: iodiconazole, C19H19F2IN4O, there is an intramolecular O—H...N hydrogen bond and molecules are linked by weak interactions only, namely C—H...N, C—H...O and C—H...F hydrogen bonds, and π-electron ring–π-electron ring interactions between the triazole rings with centroid–centroid distances of 3.725 (3 Å.

  3. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    Science.gov (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  4. Synthesis and the crystal and molecular structures of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 Mono- and dibromohydrates (HL)Br . 3H2O and (H2L)Br2 . 3H2O

    International Nuclear Information System (INIS)

    Kovalchukova, O. V.; Stash, A. I.; Belsky, V. K.; Strashnova, S. B.; Zaitsev, B. E.; Ryabov, M. A.

    2009-01-01

    4-(Piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 monobromohydrate (HL)Br . 3H 2 O (I) and 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 dibromohydrate (H 2 L)Br 2 . 3H 2 O (II) are isolated in the crystalline state. The crystal structures of compounds I and II are determined using X-ray diffraction. It is established that the protonation of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 proceeds primarily through the pyridine atom at pH 2-3. The attachment of the second proton occurs through the piperidine nitrogen atom at pH ∼ 1.

  5. Structural, thermal, and magnetic study of solvation processes in spin-crossover [Fe(bpp)(2)][Cr(L)(ox)(2)](2).nH(2)O complexes.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Giménez-López, M Carmen; Romero, Francisco M

    2007-12-24

    The influence of lattice water in the magnetic properties of spin-crossover [Fe(bpp)2]X2.nH2O salts [bpp = 2,6-bis(pyrazol-3-yl)pyridine] is well-documented. In most cases, it stabilizes the low-spin state compared to the anhydrous compound. In other cases, it is rather the contrary. Unraveling this mystery implies the study of the microscopic changes that accompany the loss of water. This might be difficult from an experimental point of view. Our strategy is to focus on some salts that undergo a nonreversible dehydration-hydration process without loss of crystallinity. By comparison of the structural and magnetic properties of original and rehydrated samples, several rules concerning the role of water at the microscopic level can be deduced. This paper reports on the crystal structure, thermal studies, and magnetic properties of [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1), [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O.0.5MeOH (2), and [Fe(bpp)2][Cr(phen)(ox)2]2.5.5H2O.2.5MeOH (3). Salt 1 contains both high-spin (HS) and low-spin (LS) Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 353 K and T1/2 upward arrow = 369 K. Rehydration affords the dihydrate [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1r) with 100% HS Fe2+ sites. Salt 2 also contains both HS and LS Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 343 K and T1/2 upward arrow = 348 K. Rehydration affords [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O (2r) with 72% Fe2+ sites in the LS configuration. The structural, magnetic, and thermal properties of these rehydrated compounds 1r and 2r are also discussed. Finally, 1 has been dehydrated and resolvated with MeOH to give [Fe(bpp)2][Cr(bpy)(ox)2]2.MeOH (1s) with 33% HS Fe2+ sites. The influence of the guest solvent in the Fe2+ spin state can anticipate the future applications of these compounds in solvent sensing.

  6. Sonolytic Oxidation of Tc(IVO2nH2O Nanoparticles to Tc(VIIO4 in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Zakir

    2010-04-01

    Full Text Available Sonolysis of a hydrosol of TcO2nH2O was investigated in the Ar- or He- atmosphere. Colloidal TcO2nH2O nanoparticles were irradiated with a 200 kHz and 1.25 W/cm2 ultrasound. It was found that the TcO2nH2O colloids dispersed in an aqueous solution (under Ar or He atmosphere was completely dissolved by ultrasonic irradiation (200 kHz, 200 W. The original brownish black color of the suspension slowly disappeared leaving behind a colorless solution. This change suggests that oxidation of Tc(IV to Tc(VII takes place. The oxidation was almost complete during 30 minutes sonication time under argon atmosphere for initial concentration of 6.0E-5 M. Addition of t-butyl alcohol, an effective radical scavenger which readily reacts with OH radicals, supressed the dissolution of TcO2nH2O colloids. This reaction indicates that TcO2nH2O molecules are oxidized by OH radicals produced in cavitation bubbles.

  7. (E-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylideneamino]pyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Irvin Booysen

    2011-09-01

    Full Text Available In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å. The N=C bond is E-configured. Intracyclic angles in the pyridine moiety cover the range 117.6 (2–124.1 (2°. Intra- and intermolecular N—H...N and N—H...O hydrogen bonds are observed in the crystal structure, as are intra- and intermolecular C—H...O contacts which, in total, connect the molecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14 Å is between the two different types of six-membered rings.

  8. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  9. Martinandresite, Ba2(Al4Si12O32)·10H2O, a new zeolite from Wasenalp, Switzerland

    Science.gov (United States)

    Chukanov, Nikita V.; Zubkova, Natalia V.; Meisser, Nicolas; Ansermet, Stefan; Weiss, Stefan; Pekov, Igor V.; Belakovskiy, Dmitriy I.; Vozchikova, Svetlana A.; Britvin, Sergey N.; Pushcharovsky, Dmitry Yu.

    2018-06-01

    The new zeolite martinandresite, ideally Ba2(Al4Si12O32)·10H2O, was discovered in the armenite locality of Wasenalp near the Isenwegg peak, Ganter valley, Simplon region, Switzerland. The associated minerals are armenite, quartz, dickite, and chlorite. Martinandresite forms tan-coloured blocky crystals up to 8 × 5 × 3.5 mm, their aggregates up to 6 cm across, as well as cruciform twins up to 3.5 mm. The major form is {010}; the subordinate forms are {100} and {001}. Indistinct cleavage is observed, presumably on (010) and in a direction across (010). The Mohs' hardness is 4½. Density measured by flotation in heavy liquids is 2.482(5) g/cm3. Density calculated using the empirical formula is equal to 2.495 g/cm3. Martinandresite is optically biaxial, negative, α = 1.500(2), β = 1.512(2), γ = 1.515(2) ( λ = 589 nm). 2 V (meas.) = 55(10)°. The IR spectrum is given. The chemical composition of martinandresite is (wt%; electron microprobe, H2O determined by the modified Penfield method): Na2O 0.37, K2O 0.12, BaO 21.55, Al2O3 15.03, SiO2 49.86, H2O 12.57, total 99.50. The empirical formula based on 16 atoms Si + Al pfu is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is orthorhombic, space group Pmmn, with a = 9.4640(5), b = 14.2288(6), c = 6.9940(4) Å, V = 941.82(8) Å3 and Z = 1. The crystal structure of martinandresite is unique and is based on the Al-Si-O tetrahedral framework containing four-, six- and eight-membered rings of tetrahedra. Si and Al are disordered between the two independent tetrahedral sites. The strongest lines of the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141). Martinandresite is named after Martin Andres (b. 1965), the discoverer of the armenite locality of Wasenalp.

  10. Martinandresite, Ba2(Al4Si12O32)·10H2O, a new zeolite from Wasenalp, Switzerland

    Science.gov (United States)

    Chukanov, Nikita V.; Zubkova, Natalia V.; Meisser, Nicolas; Ansermet, Stefan; Weiss, Stefan; Pekov, Igor V.; Belakovskiy, Dmitriy I.; Vozchikova, Svetlana A.; Britvin, Sergey N.; Pushcharovsky, Dmitry Yu.

    2017-12-01

    The new zeolite martinandresite, ideally Ba2(Al4Si12O32)·10H2O, was discovered in the armenite locality of Wasenalp near the Isenwegg peak, Ganter valley, Simplon region, Switzerland. The associated minerals are armenite, quartz, dickite, and chlorite. Martinandresite forms tan-coloured blocky crystals up to 8 × 5 × 3.5 mm, their aggregates up to 6 cm across, as well as cruciform twins up to 3.5 mm. The major form is {010}; the subordinate forms are {100} and {001}. Indistinct cleavage is observed, presumably on (010) and in a direction across (010). The Mohs' hardness is 4½. Density measured by flotation in heavy liquids is 2.482(5) g/cm3. Density calculated using the empirical formula is equal to 2.495 g/cm3. Martinandresite is optically biaxial, negative, α = 1.500(2), β = 1.512(2), γ = 1.515(2) (λ = 589 nm). 2V (meas.) = 55(10)°. The IR spectrum is given. The chemical composition of martinandresite is (wt%; electron microprobe, H2O determined by the modified Penfield method): Na2O 0.37, K2O 0.12, BaO 21.55, Al2O3 15.03, SiO2 49.86, H2O 12.57, total 99.50. The empirical formula based on 16 atoms Si + Al pfu is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is orthorhombic, space group Pmmn, with a = 9.4640(5), b = 14.2288(6), c = 6.9940(4) Å, V = 941.82(8) Å3 and Z = 1. The crystal structure of martinandresite is unique and is based on the Al-Si-O tetrahedral framework containing four-, six- and eight-membered rings of tetrahedra. Si and Al are disordered between the two independent tetrahedral sites. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141). Martinandresite is named after Martin Andres (b. 1965), the discoverer of the armenite locality of Wasenalp.

  11. Structure of H2/O2/N2 flames at atmospheric pressure studied by molecular beam mass spectrometry and modeling

    NARCIS (Netherlands)

    Knyazkov, D.A.; Korobeinichev, O.P.; Shmakov, A.G.; Rybitskaya, I.V.; Bolshova, T.A.; Chernov, D.A.; Konnov, A.A.

    2009-01-01

    Structure of laminar premixed flat H2/O2/N2 flames with different equivalence ratios at atmospheric pressure isinvestigated experimentally and by numerical modeling. Concentration profiles of stable species (H2, O2, H2O) as well as of H atoms and OH radicals in the flames were measured using

  12. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  13. Structural and physical properties of the NaxCoO2·yH2O superconducting system

    International Nuclear Information System (INIS)

    Shi, Y G; Li, J Q; Yu, H C; Zhou, Y Q; Zhang, H R; Dong, C

    2004-01-01

    The structural features and physical properties of Na x CoO 2 and Na x CoO 2 ·yH 2 O materials have been investigated. The Na x CoO 2 -yH 2 O samples, in general, undergo superconducting transitions at around 3.5 K. Energy dispersive x-ray analyses suggest that our samples have average compositions of Na 0.65 CoO 2 for the parent compounds and Na 0.26 CoO 2 ·yH 2 O for the superconducting oxyhydrates. Transmission electron microscopy observations reveal a new superstructure with wave vector q = in the parent material. This superstructure becomes very weak in the superconducting samples. Electron energy loss spectra analyses show that the Co ions have valence states of around +3.3 in Na 0.65 CoO 2 and around +3.7 in Na 0.26 CoO 2 -yH 2 O

  14. Structure of ferroelastic K3H(SeO4)2

    International Nuclear Information System (INIS)

    Ichikawa, M.; Sato, S.; Komukae, M.; Osaka, T.

    1992-01-01

    Tripotassium hydrogenbis(selenate), K 3 H(SeO 4 ) 2 , M r = 404.2, monoclinic, A2/a, a = 10.1291 (8), b = 5.9038 (5), c = 14.961 (1) A, β = 103.640 (8) 0 , V = 869.5 (1) A 3 , Z = 4, D x = 3.086 Mg m -3 , λ(Mo Kα) = 0.71073 A, μ = 9.86 mm -1 , F(000) = 760, T = 299 K, R(F) = 0.0294 for 1670 unique reflections. K 3 H(SeO 4 ) 2 is isomorphous with most M 3 H(XO 4 ) 2 -type crystals (M=K,Rb and Cs; Cs; X = S and Se); two SeO 4 groups are connected by a crystallographically symmetric hydrogen bond into a dimer. The bond distances and angles in the SeO 4 group are similar to those in Rb 3 H(SeO 4 ) 2 and Rb 3 D(SeO 4 ) 2 . The hydrogen-bond length, 2.524 (5) A, is the shortest among the members of the M 3 H(SeO 4 ) 2 family exhibiting the low-temperature phase transition. (orig.)

  15. Bis[N,N-bis(1-allyl-1H-benzimidazol-2-ylmethyl-κN3benzylamine-κN]cadmium dipicrate

    Directory of Open Access Journals (Sweden)

    Jing-Kun Yuan

    2011-06-01

    Full Text Available The crystal structure of the title compound, [Cd(C29H29N52](C6H2N3O72, consists of CdII complex cations and picrate anions. In the complex cation, the CdII ion is chelated by two bis(1-allylbenzimidazol-2-ylmethylbenzylamine (babb ligands in a distorted octahedral geometry. Extensive C—H...O hydrogen bonding occurs between cations and anions in the crystal structure.

  16. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-02-01

    Full Text Available Aim: Copaene (COP, a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and anticarcinogenic features. But, very little information is known about the effects of COP on oxidative stress induced neurotoxicity. Method: We used hydrogen peroxide (H2O2 exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of COP in H2O2-induced toxicity in rat cerebral cortex cell cultures for the first time. For this purpose, methyl thiazolyl tetrazolium (MTT and lactate dehydrogenase (LDH release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC and total oxidative stress (TOS parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG levels, the single cell gel electrophoresis (SCGE or comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Result: The results of this study showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone treated cultures. But pre-treatment of COP suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. Conclusion: It is proposed that COP as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative diseases. [J Intercult Ethnopharmacol 2014; 3(1.000: 21-28

  17. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  18. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O)

    Science.gov (United States)

    Ma, Yun-Xiang; Gong, Ya-Ping; Hu, Chun-li; Mao, Jiang-Gao; Kong, Fang

    2018-06-01

    Three new d10 transition metal selenites containing PO4 tetrahedron, namely, Cd7(HPO4)2(PO4)2(SeO3)2 (1), Cd6(PO4)1.34(SeO3)4.66 (2) and Zn3(HPO4)(SeO3)2(H2O) (3), have been synthesized by hydrothermal reaction. They feature three different structural types. Compound 1 exhibits a novel 3D network composed of 3D cadmium selenite open framework with phosphate groups filled in the 1D helical tunnels. The structure of compound 2 displays a new 3D framework consisted of 2D cadmium oxide layers bridged by SeO3 and PO4 groups. Compound 3 is isostructural with the reported solids of Co3(SeO3)3-x(PO3OH)x(H2O) when x is equal to 1.0. Its structure could be viewed as a 3D zinc oxide open skeleton with SeO3 and HPO4 polyhedra attached on the wall of the tunnels. They represent the only examples in metal selenite phosphates in addition to the above cobalt compounds. Optical diffuse reflectance spectra revealed that these solids are insulators, which are consistent with the results of band structure computations based on DFT algorithm.

  19. 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

    Science.gov (United States)

    Bulatov, Evgeny; Chulkova, Tatiana; Haukka, Matti

    2014-01-01

    The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-di­phenyl­-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2) and 55.3 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate a graph-set motif of R 2 2(8) via N—H⋯N hydrogen bonds. PMID:24764881

  20. Aquachloridobis[5-(2-pyridyl-1H-tetrazolato-κN1]iron(III

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-08-01

    Full Text Available The title compound, [Fe(C6H4N52Cl(H2O], was synthesized by hydrothermal reaction of FeCl3 with 2-(1H-tetrazol-5-ylpyridine. The iron(III metal centre exhibits a distorted octahedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetrazole rings are nearly coplanar [dihedral angles = 4.32 (15 and 5.04 (14°]. In the crystal structure, intermolecular O—H...N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100.

  1. Crystal structure of catena-poly[silver(I-μ-l-tyrosinato-κ2O:N

    Directory of Open Access Journals (Sweden)

    Aqsa Yousaf

    2015-03-01

    Full Text Available The title compound, [Ag(C9H10NO3]n, is a polymeric silver(I complex of l-tyrosine. The AgI atom is connected to N and O atoms of two different l-tyrosine ligands in an almost linear arrangement, with an Ni—Ag—O1 bond angle of 173.4 (2° [symmetry code: (i x + 1, y, z]. The Ag—Ni and Ag—O bond lengths are 2.156 (5 and 2.162 (4 Å, respectively. The polymeric chains extend along the crystallographic a axis. Strong hydrogen bonds of the N—H...O and O—H...O types and additional C—H...O interactions connect these chains into a double-layer polymeric network in the ab plane.

  2. 2-(4-Methoxy-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yong-Hong Lu

    2012-01-01

    Full Text Available In the title compound, C11H10N2O, the cyanide group is twisted away from the indole-ring plane [Ccy—Cme—Car—Car = 70.7 (2°; cy = cyanide, me = methylene, ar = aromatic], whereas the methoxy C atom is almost coplanar with the ring system [displacement = 0.014 (5 Å]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in [100].

  3. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  4. Variable dimensionality and framework found in a series of quaternary zinc selenites, A2Zn3(SeO3)4·xH2O (A = Na, Rb, and Cs; 0≤x≤1) and Cs2Zn2(SeO3)3·2H2O

    Science.gov (United States)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2017-01-01

    Five new alkali metal zinc selenites, A2Zn3(SeO3)4·xH2O (A = Na, Rb, and Cs; 0≤x≤1) and Cs2Zn2(SeO3)3·2H2O have been synthesized by heating a mixture of ZnO, SeO2 and A2CO3 (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn2+. While Rb2Zn3(SeO3)4 and Cs2Zn3(SeO3)4·H2O revealed three-dimensional frameworks consisting of isolated ZnO4 tetrahedra and SeO3 polyhedra, Na2Zn3(SeO3)4, Cs2Zn3(SeO3)4, and Cs2Zn2(SeO3)3·2H2O contained two-dimensional [Zn3(SeO3)4]2- layers. Specifically, whereas isolated ZnO4 tetrahedra and SeO3 polyhedra are arranged into two-dimensional [Zn3(SeO3)4]2- layers in two cesium compounds, circular [Zn3O10]14- chains and SeO3 linkers are formed in two-dimensional [Zn3(SeO3)4]2- layers in Na2Zn3(SeO3)4. Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations.

  5. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC

    Science.gov (United States)

    He, Meizhi; Yang, Luwei; Zhang, Zhentao

    2018-01-01

    By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.

  6. [2,6-Difluoro-3-(pyridin-2-yl-κNpyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2013-11-01

    Full Text Available The title compound, [Ir(C10H5F2N22(C5H7O2], has a distorted octahedral coordination geometry around the IrIII atom, retaining the cis-C,C/trans-N,N chelate disposition in two 2,6-difluoro-3-(pyridin-2-yl-κNpyridin-4-yl ligands which are nearly mutually perpendicular [dihedral angle = 82.75 (15°]. The molecular structure is stabilized by weak C—H...O and C—H...F hydrogen-bond interactions. The crystal structure is stabilized by π–π stacking interactions (centroid–centroid distance = 3.951 Å.

  7. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  8. 4-((E-{2-[N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarboximidoyl]benzylidene}amino-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one

    Directory of Open Access Journals (Sweden)

    Richard Betz

    2011-10-01

    Full Text Available The title compound, C30H28N6O2, is a symmetric diimine derived from ortho-dibenzaldehyde. Both C=N bonds are (E-configured. The terminal N-bonded phenyl groups adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35 (11 and 38.59 (10°. In the crystal, C—H...O contacts connect the molecules into chains along the b axis and give rise to a C11(14C11(14 and a R22(12 pattern on different levels of graph-set analysis. The shortest intercentroid distance between two centroids was found at 4.2074 (11 Å between the two five-membered heterocycles.

  9. N-(4-Chlorophenyl-2-(hydroxyiminoacetamide

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2009-09-01

    Full Text Available The title compound, C8H7ClN2O2, is an intermediate in the synthesis of 5-chloroisatin, which can be further transformed to 5-chloro-2-indolinone via a Wolff–Kishne reduction. The C2N acetamide plane forms a dihedral angle of 6.3 (3° with the benzene ring. An intramolecular C—H...O interaction results in the formation of a six-membered ring. In the crystal, intermolecular N—H...O, N—H...N and O—H...O hydrogen bonds link the molecules into multimers, forming sheets.

  10. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong

    2018-01-18

    Due to the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion have become major research areas. Many investigations have already been performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps towards the influence of N2 impurities have been taken, i.e. CO2/N2 and CH4/N2. In this feature article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far, and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2 and H2O, to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes, as well as for investigating the influence of N2, O2 and H2O on these processes, and even to support plasma-based multi-reforming processes.

  11. catena-Poly[[[aquasilver(I]-μ-1,1′-(butane-1,4-diyldi-1H-imidazole-κ2N3:N3′] hemi(biphenyl-4,4′-dicarboxylate dihydrate

    Directory of Open Access Journals (Sweden)

    Zheyu Zhang

    2009-12-01

    Full Text Available In the title compound, {[Ag(C10H14N4(H2O](C14H8O40.5·2H2O}n, the AgI ion is three-coordinated by two N atoms from two independent 1,1′-(butane-1,4-diyldi-1H-imidazole (BBI ligands and one water O atom in a distorted T-shaped coordination geometry. The biphenyl-4,4′-dicarboxylate (BPDC dianions do not coordinate to AgI ions but act as counter-ions. The AgI ions are linked by BBI ligands, forming a zigzag chain. These chains are linked into a two-dimensional supramolecular architecture by O—H...O hydrogen-bonding interactions between water molecules and carboxylate O atoms of the BPDC dianions.

  12. Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O′stannate(IV

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2015-05-01

    Full Text Available The tin(IV atom in the complex anion of the title salt, (C4H7N2[Sn(C2O4Cl3(H2O], is in a distorted octahedral coordination environment defined by three chlorido ligands, an oxygen atom from a water molecule and two oxygen atoms from a chelating oxalate anion. The organic cation is linked through a bifurcated N—H...O hydrogen bond to the free oxygen atoms of the oxalate ligand of the complex [Sn(H2OCl3(C2O4]− anion. Neighbouring stannate(IV anions are linked through O—H...O hydrogen bonds involving the water molecule and the two non-coordinating oxalate oxygen atoms. In combination with additional N—H...Cl hydrogen bonds between cations and anions, a three-dimensional network is spanned.

  13. (Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.

    Science.gov (United States)

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-04-01

    In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.

  14. Topotactic dehydration of the lamellar oxide HK2Ti5NbO14 x H2O: the oxide K4Ti10Nb2O27

    International Nuclear Information System (INIS)

    Grandin, A.; Borel, M.M.; Hervieu, M.; Raveau, B.

    1987-01-01

    The lamellar oxide HK 2 Ti 5 NbO 14 x H 2 O can be topotactically dehydrated to K 4 Ti 10 Nb 2 O 27 . Electron diffraction and X-ray diffraction studies of this phase lead to a monoclinic cell with the parameters a = 17.005, b = 3.78, c = 9.01 A and β 92.14 0 . Diffusion streaks on the electron diffraction patterns indicate disorder whereas the existence of two sets of lattices on the same crystal give evidence of the topotactic character of the reaction. A structural model is proposed for K 4 Ti 10 Nb 2 O 27 , which corresponds to the intergrowth of K 3 TiNbO 14 layers with the K 2 Ti 6 O 13 tunnel structure. The possibility of formation of various intergrowths such as (KTi 5 NbO 13 )/sub n/ (HK 2 Ti 5 NbO 14 )/sub n/' is suggested

  15. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    Science.gov (United States)

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  16. Tiberiobardiite, Cu9Al(SiO3OH2(OH12(H2O6(SO41.5·10H2O, a New Mineral Related to Chalcophyllite from the Cretaio Cu Prospect, Massa Marittima, Grosseto (Tuscany, Italy: Occurrence and Crystal Structure

    Directory of Open Access Journals (Sweden)

    Cristian Biagioni

    2018-04-01

    Full Text Available The new mineral species tiberiobardiite, ideally Cu9Al(SiO3OH2(OH12(H2O6(SO41.5·10H2O, has been discovered in the Cretaio Cu prospect, Massa Marittima, Grosseto, Tuscany, Italy, as very rare, light green, vitreous, tabular {0001}, pseudo-hexagonal crystals, up to 200 μm in size and 5 μm in thickness, associated with brochantite. Electron microprobe analysis gave (in wt %, average of 5 spot analyses: SO3 10.37, P2O5 3.41, As2O5 0.05, SiO2 8.13, Al2O3 5.54, Fe2O3 0.74, CuO 62.05, and ZnO 0.03, for a total of 90.32. Based on an idealized O content of 42 atoms per formula unit, assuming the presence of 16 H2O groups and 13.5 cations (without H, the empirical formula of tiberiobardiite is (Cu8.69Al0.21Fe0.10Σ9.00Al1.00(Si1.51P0.54Σ2.05S1.44O12.53(OH13.47·16H2O. The main diffraction lines, corresponding to multiple hkl indices, are [d in Å (relative visual intensity]: 9.4 (s, 4.67 (s, 2.576 (m, 2.330 (m, and 2.041 (mw. The crystal structure study revealed tiberiobardiite to be trigonal, space group R 3 ¯ , with unit-cell parameters a = 10.6860(4, c = 28.3239(10 Å, V = 2801.0(2 Å3, and Z = 3. The crystal structure was refined to a final R1 = 0.060 for 1747 reflections with Fo > 4σ (Fo and 99 refined parameters. Tiberiobardiite is the Si-analogue of chalcophyllite, with Si4+ replacing As5+ through the coupled substitution As5+ + O2− = Si4+ + (OH−. The name tiberiobardiite honors Tiberio Bardi (b. 1960 for his contribution to the study of the mineralogy of Tuscany.

  17. cis-Bis[N′-(4-bromobenzoyl-N,N-dimethylthioureato-κ2O,S]copper(II

    Directory of Open Access Journals (Sweden)

    Gün Binzet

    2011-05-01

    Full Text Available The asymmetric unit of the title compound, [Cu(C10H10BrN2OS2], contains two independent complex molecules with almost identical conformations. Two S and two O atoms form the coordination environment of the Cu atom, resulting in a slightly distorted square-planar coordination. The S atoms are in a cis configuration. The crystal structure is stabilized by weak intermolecular C—H...Br hydrogen-bonding interactions.

  18. 6-Methoxy-1-(4-methoxyphenyl-1,2,3,4-tetrahydro-9H-β-carbolin-2-ium acetate

    Directory of Open Access Journals (Sweden)

    Mohd Mustaqim Rosli

    2012-05-01

    Full Text Available In the title compound, C19H21N2O2+·C2H3O2−, the 1H-indole ring system is essentially planar [maximum deviation = 0.0257 (14 Å] and forms a dihedral angle of 87.92 (7 Å with the benzene ring attached to the tetrahydropyridinium fragment. The tetrahydropyridinium ring adopts a half-chair conformation. In the crystal, cations and anions are linked by interionic N—H...O, C—H...O and C—H...N hydrogen bonds into chains along the a axis.

  19. A Novel Ruthenium-Decorating Polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH2]·24H2O: An Active Heterogeneous Oxidation Catalyst for Alcohols

    Directory of Open Access Journals (Sweden)

    Rong Wan

    2018-01-01

    Full Text Available The first example of wholly inorganic ruthenium-containing polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH2]·24H2O (1 was isolated and systematically characterized by element analysis, infrared spectroscopy (IR, thermogravimetric analyses (TGA, X-ray photoelectron spectroscopy (XPS, energy dispersive X-ray spectroscopy (EDX and single-crystal X-ray diffraction. Compound 1 is composed of an unprecedented {Mo14}-type isopolymolybdate with a di-ruthenium core precisely encapsulated in its center, exhibiting a three-tiered ladder-like structure. The title compound can act as an efficient heterogeneous catalyst in the transformation of 1-phenylethanol to acetophenone. This catalyst is also capable of being recycled and reused for at least ten cycles with its activity being retained under the optimal conditions.

  20. (E-4-Hydroxy-6-methyl-3-[1-(2-phenylhydrazinylideneethyl]-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    Samra Rahmouni

    2016-05-01

    Full Text Available The title compound, C14H14N2O3, crystallized with three crystallographically independent molecules (A, B and C in the asymmetric unit. The three molecules each have an E conformation about the C=N bond but differ in the orientation of the phenyl and pyran rings. The dihedral angles between the phenyl and pyran ring planes are 14.30 (1, 28.38 (1 and 25.58 (1° in molecules A, B and C, respectively. There is an intramolecular O—H...N hydrogen bond in each molecule with an S(6 ring motif. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, forming layers parallel to (001, enclosing R22(8 and R33(21 ring motifs. The layers are linked via C—H...π interactions, forming bilayers, which are joined by a further C—H...π interaction, forming a three-dimensional structure.

  1. Synthesis, characterization and crystal structure of the new pentahydrate of bis(2,2'-bipyridine-κ(2)N,N')(oxalato-κ(2)O(1),O(2))nickel(II).

    Science.gov (United States)

    Farkašová, Nela; Cernák, Juraj; Tomás, Milagros; Falvello, Larry R

    2014-05-01

    The reaction of NiCl2, K2C2OH2O and 2,2'-bipyridine (bpy) in water-ethanol solution at 281 K yields light-purple needles of the new pentahydrate of bis(2,2'-bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep-pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán-Miralles & Beitia (1995), Polyhedron, 14, 2863-2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π-π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.

  2. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  3. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  4. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

    Science.gov (United States)

    Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane

    2013-09-03

    The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

  5. H2O2 modulates the energetic metabolism of the cloud microbiome

    Directory of Open Access Journals (Sweden)

    N. Wirgot

    2017-12-01

    Full Text Available Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫ or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France. The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  6. H2O2 modulates the energetic metabolism of the cloud microbiome

    Science.gov (United States)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  7. Diaqua?bis?(1,10-phenanthroline-?2 N,N?)manganese(II) sulfate hexa?hydrate

    OpenAIRE

    Zhang, Chun; Zhu, Hong-lin

    2010-01-01

    In the title compound, [Mn(C12H8N2)2(H2O)2]SO4·6H2O, the complex cations assemble into positively charged sheets parallel to (010) via intermolecular π–π stacking interactions with a mean interplanar distance of 3.410 (6) along [100] and 3.465 (5) Å along [001]. The sulfate anions and uncoordinated water molecules are interconnected between these layers by hydrogen bonds, forming negatively charged layers which are li...

  8. Crystal structure of tetrakis[μ2-2-(dimethylaminoethanolato-κ3N,O:O]di-μ3-hydroxido-dithiocyanato-κ2N-dichromium(IIIdilead(II dithiocyanate acetonitrile monosolvate

    Directory of Open Access Journals (Sweden)

    Julia A. Rusanova

    2016-04-01

    Full Text Available The tetranuclear complex cation of the title compound, [Cr2Pb2(NCS2(OH2(C4H10NO4](SCN2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octahedron, which involves two N atoms of one bidentate ligand and one thiocyanate anion, two μ2-O atoms of 2-(dimethylaminoethanolate ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb...S interactions involving the coordinating and non-coordinating thiocyanate anions are observed. In the crystal, the complex cations are linked through the thiocyanate anions via the Pb...S interactions and O—H...N hydrogen bonds into chains along the c axis. The chains are further linked together via S...S contacts. The contribution of the disordered solvent acetonitrile molecule was removed with the SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported molecular formula, weight and density.

  9. 3-(4-Fluorophenyl-1-[1′-(4-fluorophenyl-2-oxo-5′,6′,7′,7a′-tetrahydro-1H-indole-3(2H-spiro-3′(2H-1H′-pyrrolizin-2′-yl]prop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C29H24F2N2O2, one of the pyrrolidine rings of the pyrrolizine system is disordered over two sites, with occupancy factors 0.734:0.266 (12. Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The molecules are linked into centrosymmetric dimers by N—H...O hydrogen bonds and the dimers are connected via C—H...π interactions. The crystal structure is also stabilized by intermolecular C—H...F hydrogen bonds.

  10. Synthesis, crystal structure and characterization of a 1D polyoxometalate-based compound: {l_brace}[Pr(H{sub 2}O){sub 7}][CrMo{sub 6}H{sub 6}O{sub 24}]{r_brace} . 4H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lijie; Shen Shuchang; Yu Haiming [Qiqihar Univ., HL (China). Dept. of Chemistry and Chemical Engineering

    2008-07-15

    A novel polyoxometalated-based compound, {l_brace}[Pr(H{sub 2}O){sub 7}][CrMo{sub 6}H{sub 6}O{sub 24}]{r_brace} . 4H{sub 2}O, was prepared and characterized by elemental analysis, infrared and ultraviolet spectroscopy, TG measurement and single crystal X-ray diffraction. A chain-like coordination polymer is formed from a heteropolyanion [CrMo{sub 6}H{sub 6}O{sub 24}]{sup 3} as a building unit and [Pr(H{sub 2}O){sub 7}]{sup 3+} cations as linker. The chains are linked into an extensive three-dimensional supramolecular network through hydrogen bonding. The synthesis of 1 is accomplished only from pre-synthesized Anderson clusters, but not from simple starting materials. (orig.)

  11. Tris(cyclohexylammonium cis-dichloridobis(oxalato-κ2O1,O2stannate(IV chloride monohydrate

    Directory of Open Access Journals (Sweden)

    Modou Sarr

    2013-11-01

    Full Text Available The crystal structure of the title compound, (C6H14N3[Sn(C2O42Cl2]Cl·H2O, contains three cyclohexylammonium cations, one stannate(IV dianion, one isolated chloride anion and one lattice water molecule. The cyclohexylammonium cations adopt chair conformations. In the complex anion, two bidentate oxalate ligands and two chloride anions in cis positions coordinate octahedrally to the central SnIV atom. The cohesion of the molecular entities is ensured by the formation of N—H...O, O—H...O, O—H...Cl and N—H...Cl interactions involving cations, anions and the lattice water molecule, giving rise to a layer-like arrangement parallel to (010.

  12. (4-Nitrophenylmethyl 2,3-dihydro-1H-pyrrole-1-carboxylate: crystal structure and Hirshfeld analysis

    Directory of Open Access Journals (Sweden)

    Julio Zukerman-Schpector

    2018-03-01

    Full Text Available In the title compound, C12H12N2O4, the dihydropyrrole ring is almost planar (r.m.s. deviation = 0.0049 Å and is nearly coplanar with the adjacent C2O2 residue [dihedral angle = 4.56 (9°], which links to the 4-nitrobenzene substituent [dihedral angle = 4.58 (8°]. The molecule is concave, with the outer rings lying to the same side of the central C2O2 residue and being inclined to each other [dihedral angle = 8.30 (7°]. In the crystal, supramolecular layers parallel to (10-5 are sustained by nitrobenzene-C—H...O(carbonyl and pyrrole-C—H...O(nitro interactions. The layers are connected into a three-dimensional architecture by π(pyrrole–π(nitrobenzene stacking [inter-centroid separation = 3.7414 (10 Å] and nitro-O...π(pyrrole interactions.

  13. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  14. Multiple anion...π interactions in tris(1,10-phenanthroline-κ(2)N,N')iron(II) bis[1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide] monohydrate.

    Science.gov (United States)

    Setifi, Zouaoui; Domasevitch, Konstantin V; Setifi, Fatima; Mach, Pavel; Ng, Seik Weng; Petříček, Vaclav; Dušek, Michal

    2013-11-01

    In the ionic structure of the title compound, [Fe(C12H8N2)3](C9H5N4O2)2·H2O, the octahedral tris-chelate [Fe(phen)3](2+) dications [Fe-N = 1.9647 (14)-1.9769 (14) Å; phen is 1,10-phenathroline] afford one-dimensional chains by a series of slipped π-π stacking interactions [centroid-to-centroid distances = 3.792 (3) and 3.939 (3) Å]. The 1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide anions, denoted tcnoetOH(-), reveal an appreciable delocalization of π-electron density, involving the central propenide [C-C = 1.383 (3)-1.401 (2) Å] fragment and four nitrile groups, and this is also supported by density functional theory (DFT) calculations at the B97D/6-311+G(2d,2p) level. Primary noncovalent inter-moiety interactions comprise conventional O-H...O(N) and weak C-H...O(N) hydrogen bonding [O...O(N) = 2.833 (2)-3.289 (5) Å and C...O(N) = 3.132 (2)-3.439 (2) Å]. The double anion...π interaction involving a nitrile group of tcnoetOH(-) and two cis-positioned pyridine rings (`π-pocket') of [Fe(phen)3](2+) [N...centroid = 3.212 (2) and 3.418 (2) Å] suggest the relevance of anion...π stackings for charge-diffuse polycyanoanions and common M-chelate species.

  15. Positronium formation and hydrated positron reactions in H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen

    1986-01-01

    Angular correlation of annihilation photons were measured for H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−. The three components of the angular correlation spectra for D2O and H2O were nearly identical in shape. The positronium (Ps) yields for the H2O and D2O solutions...... before annihilation (lifetime 400 ps) was determined for the three halides in the four solvents. Simple kinetic equations (“trapping model”) with time dependent rate constant, solved analytically, could explain the [X−, e+] formation in H2O fairly well for concentrations below 0.03 M X−, if a diffusion...... controlled reaction with positron diffusion constant D = 5 × 10−5 cm2/s and reaction radius R = 1 nm were assumed. The three halides gave roughly identical [X−, e+] formation below 0.03 M X−. The difference between the four solutions could be explained partly only in terms of viscosity change for the model...

  16. Bis(2-methoxybenzylammonium diaquabis(dihydrogen diphosphato-κ2O,O′manganate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Adel Elboulali

    2013-11-01

    Full Text Available The asymmetric unit of the title compound, (C8H12NO2[Mn(H2P2O72(H2O22H2O, consists of half an MnII complex anion, a 2-methoxybenylammonium cation and a solvent water molecule. The MnII complex anion lies across an inversion center, and has a slightly distorted octahedral coordination environment for the MnII ion, formed by two bidentate dihydrogendiphosphate ligands and two water molecules. In the crystal, the components are linked by O—H...O and N—H...O hydrogen bonds, forming layers parallel to (100. An intramolecular N—H...O hydrogen bond is also observed.

  17. 4-(2,3-Dihydroxybenzylideneamino-3-methyl-1H-1,2,4-triazol-5(4H-one

    Directory of Open Access Journals (Sweden)

    Şamil Işık

    2009-12-01

    Full Text Available All the non-H atoms of the title compound, C10H10N4O3, are almost coplanar, the maximum deviation from planarity being 0.065 (3 Å. The dihedral angle between the aromatic rings is 1.66 (6°. The molecule adopts the enol–imine tautomeric form with an intramolecular hydrogen-bonding interaction between the Schiff base N atom and the hydroxy group. In the crystal, intermolecular N—H...O and O—H...O hydrogen bonds link the molecules into a three-dimensional network.

  18. Methyl 2-(1a,4a-dimethyl-2,8-dioxo-2,3,4,4a,5,6,7,8-octahydro-1aH-1-oxacyclopropa[d]naphthalen-7-ylacrylate

    Directory of Open Access Journals (Sweden)

    Mohamed Tebbaa

    2012-02-01

    Full Text Available The title compound, C16H20O5, was synthesized from ilicic acid [2-(8-hydroxy-4a,8-dimethyldecahydronaphthalen-2-ylacrylic acid], which was isolated from the chloroform extract of the aerial part of Inula viscose (L Aiton [or Dittrichia viscosa (L Greuter]. The molecule is built up from two fused six-membered rings, the epoxidized six-membered ring adopts a half-chair conformation while the other ring displays a perfect chair conformation. The crystal structure features C—H...O hydrogen bonds.

  19. NH4In(SeO4)2x4H2O crystal structure interpretation

    International Nuclear Information System (INIS)

    Soldatov, E.A.; Kuz'min, Eh.A.; Ilyukhin, V.V.

    1979-01-01

    The rhomb method has been applied to interpret the structure of monoclinic ammonium indium selenate NH 4 In(SeO 4 ) 2 x4H 2 O the elementary cell of which contains Z=4 formula units (a=10.728, b=9.434, c=11.086 A, γ=101.58). The space group is P2 1 /b. The structure foundation is composed of [In(SeO 4 ) 2 x2H 2 O] 1- mixed layers parallel to (100). ''Free'' H 2 O molecules and NH 4 + cations are situated between the layers

  20. Untersuchungen am System NMMO/H2O/Cellulose

    OpenAIRE

    Cibik, T.

    2003-01-01

    Die vorliegende Arbeit befasst sich mit der Untersuchung des Zweistoffsystems N-Methylmorpholin-N-oxid (NMMO)/H2O und des Dreistoffsystems NMMO/H2O/Cellulose sowie mit der Herstellung und Charakterisierung von faserverstärkten Cellulosefolien. Das binäre System wird mittels Dynamischer Differenzkalorimetrie und Röntgenweitwinkel-Diffraktometrie untersucht und dadurch das Schmelzverhalten und die Phasenzusammensetzung dieses Systems im festen Zustand als Funktion des NMMO/H2O-Verhältnisses bes...

  1. Triaquabis(1H-imidazolebis[μ2-2-(oxaloaminobenzoato(3−]dicopper(IIcalcium(II heptahydrate

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2008-02-01

    Full Text Available In the title heterotrinuclear coordination compound, [CaCu2(C9H4NO52(C3H4N22(H2O3]·7H2O, the Ca2+ cation is in a pentagonal–bipyramidal geometry and bridges two (1H-imidazole[2-(oxaloaminobenzoato(3−]copper(II units in its equatorial plane. Each CuII atom has a normal square-planar geometry. The molecule has approximate local (non-crystallographic mirror symmetry and 23 classical hydrogen bonds are found in the crystal structure.

  2. Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes

    International Nuclear Information System (INIS)

    He, Guan-Ru; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui

    2012-01-01

    The fabrication and detailed electrical properties of heterojunction diodes based on n-type ZnO and p-type Si were reported. The effect of interface modification by H 2 O 2 treatment on the electrical properties of n-type ZnO/p-type Si diodes was investigated. The n-type ZnO/p-type Si diode without H 2 O 2 treatment showed a poor rectifying behavior with an ideality factor (n) of 2.5 and high leakage, indicating that the interfacial ZnSi x O y layer influenced the electronic conduction through the device. However, the n-type ZnO/p-type Si diode with H 2 O 2 treatment showed a good rectifying behavior with n of 1.3 and low leakage. This is because the thin SiO x layer acts as a thermodynamically stable buffer layer to suppress interfacial reaction between ZnO and Si. In addition, the enhanced photo-responsivity can be interpreted by the device rectifying performance and interface passivation. - Highlights: ► The electrical properties of n-ZnO/p-Si heterojunction diodes were researched. ► The n-ZnO/p-Si diode without H 2 O 2 treatment showed a poor rectifying behavior. ► The n-ZnO/H 2 O 2 -treated p-Si diode showed a good rectifying behavior. ► The enhanced responsivity can be interpreted by the device rectifying performance.

  3. [H2en]2{La2M(SO4)6(H2O)2} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    International Nuclear Information System (INIS)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan; Mao Jianggao; Clearfield, Abraham

    2005-01-01

    The first organically templated 3d-4f mixed metal sulfates, [H 2 en] 2 {La 2 M(SO 4 ) 6 (H 2 O) 2 } (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediamine cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)

  4. Tris(1,10-phenanthroline-κ2N,N′zinc(II chloride 2-phenyl-4-selenazole-5-carboxylate decahydrate

    Directory of Open Access Journals (Sweden)

    Jin-Bei Shen

    2011-02-01

    Full Text Available The asymmetric unit of the title salt, [Zn(C12H8N23](C10H6NO2SeCl·10H2O, contains a [Zn(phen3]2+ cation (phen is 1,10-phenanthroline, uncoordinated chloride and 2-phenyl-4-selenazole-5-carboxylate anions and ten uncoordinated water molecules. The central ZnII ion is six-coordinated by six N atoms from three phen ligands in a distorted octahedral geometry. An extensive O—H...O, O—H...N and O—H...Cl hydrogen-bonding network stabilizes the crystal structure.

  5. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds

    Science.gov (United States)

    Loeffler, Mark Josiah; Hudson, Reggie Lester

    2015-01-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  6. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    Science.gov (United States)

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  7. Raman spectroscopic study of the minerals apophyllite-(KF) KCa4Si8O20F·8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH)·8H2O

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei

    2012-11-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to study the variation in molecular structure of two minerals of the apophyllite mineral group, namely apophyllite-(KF) KCa4Si8O20F·8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH)·8H2O. apophyllite-(KF) and apophyllite-(KOH) are different minerals only because of the difference in the percentage of fluorine to hydroxyl ions. The Raman spectra are dominated by a very intense sharp peak at 1059 cm-1. A band at around 846 cm-1 is assigned to the water librational mode. It is proposed that the difference between apophyllite-(KF) and apophyllite-(KOH) is the observation of two Raman bands in the OH stretching region at around 3563 and 3625 cm-1. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces.

  8. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li 2 O 2 ·H 2 O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li 2 O 2 ·H 2 O content on hydrogen peroxide decay contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system under conditions of experiments conducted has been shown. (paper)

  9. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    Science.gov (United States)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  10. N2,N2,N5,N5-Tetrakis(2-chloroethyl-3,4-dimethylthiophene-2,5-dicarboxamide

    Directory of Open Access Journals (Sweden)

    Yi-Dan Tang

    2010-01-01

    Full Text Available In the title compound, C16H22Cl4N2O2S, the two imide groups adopt a trans arrangement relative to the central thienyl ring, so the four terminal 2-chloroethyl arms adopt different orientations. In the crystal, molecules are linked by weak C—H...Cl and C—H...O hydrogen bonds into a three-dimensional network.

  11. Fabrications of some kinds of 2-D frameworks consisting of nanosized polyoxomolybdate anion [Mo36O112(H2O)16]8- via condensation processes

    International Nuclear Information System (INIS)

    Eda, Kazuo; Iriki, Yuichi; Kawamura, Kenjiro; Ikuki, Takeshi; Hayashi, Masahiko

    2007-01-01

    We succeeded to prepare novel [Mo 36 O 112 (H 2 O) 16 ] 8- ({Mo 36 }) compounds by using 1,3-diamino-2-propanol (βOHC 3 -DA) and 1,3,5-tris(aminomethyl)benzene (MES-TA)+1,3-diaminopropane (C 3 -DA) as linkers, and determined their crystal structures. We have confirmed they have unique two-dimensional (2-D) molybdenum oxide frameworks, which are formed by condensation of {Mo 36 }s. Side-staggered arrays of {Mo 36 }s, connected in lying position by eight bridges per a {Mo 36 }, are formed in the compound with βOHC 3 -DA, while herringbone arrays of {Mo 36 }s, connected in standing position by four bridges per a {Mo 36 }, are built in the compound with MES-TA+C 3 -DA. The latter compound exhibited non-stoichiometric property, and its composition and cell parameters varied depending on the relative concentration of MES-TA in the mother solution. - Graphical abstract: The image shows a variety of 2-D molybdenum oxide frameworks consisting of nanosized polyoxometalate anion [Mo 36 O 112 (H 2 O) 16 ] 8- ({Mo 36 }), obtained by our fabrication techniques. The variations are expected to provide diversity in physical properties of the frameworks

  12. Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Li; Tingting Shen; Dongbo Wang; Xiu Yue; Xian Liu; Qi Yang; Jianbin Cao; Wei Zheng; Guangming Zeng

    2012-01-01

    Three oxidation processes of UV-Fe3+(EDTA)/H2O2 (UV:ultraviolet light; EDTA:ethylenediaminetetraacetic acid),UV-Fe3+/H2O2 and Fe3+/H2O2 were simultaneously investigated for the degradation of amoxicillin at pH 7.0.The results indicated that,100% amoxicillin degradation and 81.9% chemical oxygen demand (CODcr) removal could be achieved in the UV-Fe3+ (EDTA)/H2O2 process.The treatment efficiency of amoxicillin and CODcr removal were found to decrease to 59.0% and 43.0% in the UV-Fe3+/H2O2 process;39.6% and 31.3% in the Fe3+/H2O2 process.Moreover,the results of biodegradability (biological oxygen demand (BOD5)/CODCr ratio) revealed that the UV-Fe3+ (EDTA)/H2O2 process was a promising strategy to degrade amoxicillin as the biodegradability of the effluent was improved to 0.45,compared with the cases of UV-Fe3+/H2O2 (0.25) and Fe3+/H2O2 (0.10) processes.Therefore,it could be deduced that EDTA and UV light performed synergetic catalytic effect on the Fe3+/H2O2 process,enhancing the treatment efficiency.The degradation mechanisms were also investigated via UV-Vis spectra,and high performance liquid chromatography-mass spectra.The degradation pathway of amoxicillin was further proposed.

  13. Crystal structures of the dioxane hemisolvates of N-(7-bromomethyl-1,8-naphthyridin-2-ylacetamide and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-ylacetamide

    Directory of Open Access Journals (Sweden)

    Robert Rosin

    2017-10-01

    Full Text Available The syntheses and crystal structures of N-(7-bromomethyl-1,8-naphthyridin-2-ylacetamide dioxane hemisolvate, C11H10BrN3O·0.5C4H8O2, (I, and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-ylacetamide] dioxane hemisolvate, 2C11H9Br2N3O·0.5C4H8O2, (II, are described. The molecules adopt a conformation with the N—H hydrogen pointing towards the lone electron pair of the adjacent naphthyridine N atom. The crystals of (I are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—Br...π halogen bonds. The crystals of compound (II are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—H...π contacts and C—Br...π halogen bonds. The structure of the substituent attached in the 7-position of the naphthyridine skeleton has a fundamental influence on the pattern of intermolecular noncovalent bonding. While the Br atom of (I participates in weak C—Br...Oguest and C—Br...π contacts, the Br atoms of compound (II are involved in host–host interactions via C—Br...O=C, C—Br...N and C—Br...π bonding.

  14. Variable dimensionality and framework found in a series of quaternary zinc selenites, A2Zn3(SeO3)4·xH2O (A = Na, Rb, and Cs; 0≤x≤1) and Cs2Zn2(SeO3)3·2H2O

    International Nuclear Information System (INIS)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2017-01-01

    Five new alkali metal zinc selenites, A 2 Zn 3 (SeO 3 ) 4 ·xH 2 O (A = Na, Rb, and Cs; 0≤x≤1) and Cs 2 Zn 2 (SeO 3 ) 3 ·2H 2 O have been synthesized by heating a mixture of ZnO, SeO 2 and A 2 CO 3 (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn 2+ . While Rb 2 Zn 3 (SeO 3 ) 4 and Cs 2 Zn 3 (SeO 3 ) 4 ·H 2 O revealed three-dimensional frameworks consisting of isolated ZnO 4 tetrahedra and SeO 3 polyhedra, Na 2 Zn 3 (SeO 3 ) 4 , Cs 2 Zn 3 (SeO 3 ) 4 , and Cs 2 Zn 2 (SeO 3 ) 3 ·2H 2 O contained two-dimensional [Zn 3 (SeO 3 ) 4 ] 2- layers. Specifically, whereas isolated ZnO 4 tetrahedra and SeO 3 polyhedra are arranged into two-dimensional [Zn 3 (SeO 3 ) 4 ] 2- layers in two cesium compounds, circular [Zn 3 O 10 ] 14- chains and SeO 3 linkers are formed in two-dimensional [Zn 3 (SeO 3 ) 4 ] 2- layers in Na 2 Zn 3 (SeO 3 ) 4 . Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations. - Graphical abstract: Variable dimensions and frameworks were found in a series of quaternary zinc selenites, A 2 Zn 3 (SeO 3 ) 4 (A = Na, Rb and Cs). - Highlights: • Five novel quaternary zinc selenites are synthesized. • All the selenites with different structures contain polarizable d 10 and lone pair cations. • The size of alkali metal cations is significant in determining the framework geometry.

  15. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  16. High-Temperature Corrosion of T92 Steel in N{sub 2}/H{sub 2}O/H{sub 2}S-Mixed Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuke; Kim, Min Jung; Park, Soon Yong; Abro, M. Ali; Yadav, Poonam; Lee, Dong Bok [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-06-15

    The ASTM T92 steel was corroded at 600 ℃ and 800 ℃ at 1 atm of N{sub 2}/3.1%H{sub 2}O/2.42%H{sub 2}S-mixed gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, FeCr{sub 2}S{sub 4})-mixed scale containing a small amount of the Cr{sub 2}O{sub 3} scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the H{sub 2}S gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.

  17. Speciation in the aqueous H+/H2VO4-/H2O2/citrate system of biomedical interest.

    Science.gov (United States)

    Gorzsás, András; Getty, Kendra; Andersson, Ingegärd; Pettersson, Lage

    2004-09-21

    The speciation in the quaternary aqueous H+/H2VO4-/H2O2/citrate (Cit3-) and H+/H2VO4-/Cit3-/L-(+)-lactate (Lac-) systems has been determined at 25 degrees C in the physiological medium of 0.150 M Na(Cl). A combination of 51V NMR integral intensities and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and evaluated with the computer program LAKE, which is able to treat multimethod data simultaneously. The pKa-values for citric acid have been determined as 2.94, 4.34 and 5.61. Altogether six vanadate-citrate species have been found in the ternary H+/H2VO4-/Cit3- system in the pH region 2-10, only two of which are mononuclear. Reduction of vanadium(V) becomes more pronounced at pH acidic solutions limited the final model to pH > 4. In the quaternary H+/H2VO4-/Cit3-/Lac- system, two mixed-ligand species have been determined, with the compositions V2CitLac2- and V2CitLac3- (pKa = 5.0). To our knowledge, this is the first time such complexes have been reported for vanadium(V). 51V NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. When suitable, structural proposals are given, based on 13C NMR measurements and available literature data of related compounds.

  18. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3.H2O, and Th(CrO4)(IO3)2

    International Nuclear Information System (INIS)

    Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E.

    2006-01-01

    Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO 3 )(SeO 4 ) (1), Th(IO 3 ) 2 (SeO 4 )(H 2 O) 3 .H 2 O (2), and Th(CrO 4 )(IO 3 ) 2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO 9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO 3 2- , anions containing Se(IV), and tetrahedral selenate, SeO 4 2- , anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO 9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO 9 tricapped trigonal prisms. Each Th center is bound by six IO 3 1- anions and three CrO 4 2- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532nm light from 1064nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193K, MoKα, λ=0.71073): 1; monoclinic, P2 1 /c; a=7.0351(5)A, b=9.5259(7)A, c=9.0266(7)A, β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P2 1 /n, a=7.4889(9)A, b=8.002(1)A, c=20.165(3)A, β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P2 1 2 1 2 1 , a=7.3672(5)A, b=9.3617(6)A, c=11.9201(7)A, Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I)

  19. Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose.

    Science.gov (United States)

    Hallaj, Tooba; Amjadi, Mohammad; Song, Zhenlun; Bagheri, Robabeh

    2017-12-19

    The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H 2 O 2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H 2 O 2 and glucose (via glucose oxidase-catalyzed formation of H 2 O 2 ) with detection limits (3σ) of 10 nM for H 2 O 2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results. Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H 2 O 2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H 2 O 2 .

  20. Bis(2-methoxybenzylammonium diaquabis(dihydrogen diphosphato-κ2O,O′cobaltate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Adel Elboulali

    2014-04-01

    Full Text Available The title compound, (C8H12NO2[Co(H2P2O72(H2O22H2O, crystallizes isotypically with its MnII analogue. It consists of alternating layers of organic cations and inorganic complex anions, extending parallel to (100. The complex cobaltate(II anion exhibits -1 symmetry. Its Co2+ atom has an octahedral coordination sphere, defined by two water molecules in apical positions and two H2P2O72− ligands in equatorial positions. The cohesion between inorganic and organic layers is accomplished by a set of O—H...O and N—H...O hydrogen bonds involving the organic cation, the inorganic anion and the remaining lattice water molecules.

  1. (Diethyl ether{1-[2-(1-methyl-1H-imidazol-2-yl-κN3-1,1-diphenylethyl]-(1,2,3,3a,7a-η-indenyl}lithium(I

    Directory of Open Access Journals (Sweden)

    Maxim V. Borzov

    2009-05-01

    Full Text Available In the title compound, [Li(C27H23N2(C4H10O], the Li atom possesses a nearly planar trigonal coordination environment (assuming the cyclopentadienyl ring of the indenyl group occupies one coordination place. The diethyl ether ligand adopts a nearly planar W-type conformation.

  2. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  3. N′-Benzylidene-2-({5-[(4-chlorophenoxymethyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanylacetohydrazide hemihydrate

    Directory of Open Access Journals (Sweden)

    Joel T. Mague

    2016-04-01

    Full Text Available The title compound, C24H20ClN5O2S·0.5H2O, has three independent molecules in the asymmetric unit and two water molecules of crystallization, one of which is equally disordered over two sites. The three unique organic molecules differ in the conformations of the substituents on the pyrazole ring. In the crystal, extensive O—H...O, O—H...N, N—H...O and C—H...O hydrogen bonding generates a three-dimensional network and C—H...π interactions are also observed.

  4. Propane-1,3-diaminium–2-carboxypyridine-6-carboxylate–pyridine-2,6-dicarboxylic acid–water (1/2/2/8

    Directory of Open Access Journals (Sweden)

    Hossein Aghabozorg

    2008-01-01

    Full Text Available The title proton-transfer compound, C3H12N22+·2C7H4NO4−·2C7H5NO4·8H2O or (pnH2(pydcH2.2(pydcH2·8H2O, was obtained by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2 and propane-1,3-diamine (pn in aqueous solution. Both neutral and monoanionic forms of the diacid are observed in the crystal structure. The negative charge of two monoanions is balanced by the dicationic propane-1,3-diaminium species. In addition, considerable π–π stacking interactions between the aromatic rings of the (pydcH− and (pydcH2 fragments [with centroid–centroid distances of 3.5108 (11–3.5949 (11 Å] are observed. The most important feature of this crystal structure is the presence of a large number of O—H...O, O—H...N, N—H...O, N—H...N, C—H...O and C—H...N hydrogen bonds, with D...A ranging from 2.445 (2 to 3.485 (3 Å. These interactions as well as ion pairing and π–π stacking connect the various fragments into a supramolecular structure.

  5. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    Science.gov (United States)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  6. Synthesis and investigation of aluminium uranium-containing compounds of Al[B5UO6]2[OH]·nH2O (B5=P, As) composition

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Sulejmanov, E.V.; Barch, S.V.

    2001-01-01

    The technique of synthesis of hydroxyuranophosphate and hydroxyuranoarsenate of aluminium is developed. Hydroxyuranophosphates and hydroxyuranoarsenates of aluminium are prepared by reaction of interaction of aqueous solutions of orthophosphoric (orthoarsenic) acid (0.05 mol/l), uranyl nitrate (0.05 mol/l) and aluminium nitrate (0.1 mol/l) at 20 Deg C. Peculiarities of the structure and thermal degradation reactions are studied by the methods of x-ray diffraction, IR spectroscopy, thermography. It is shown that in dependence on outer conditions in the systems Al[PUO 6 ] 2 ·[OH]·nH 2 O and Al[AsUO 6 ] 2 ·[OH]·nH 2 O crystal hydrates with hydrate numbers n=3-11(13) and anhydrous compounds form. The compounds have laminated type of lattice. Two-dimensional layers of [P(As)UO 6 ] ∞ n- are the basis of anion sublattice of these compounds. Aluminium in coordination surrounding of hydroxy groups and water molecules forms cationic sublattice [ru

  7. Emission noise spectrum in a premixed H2-O2-N2 flame

    NARCIS (Netherlands)

    Alkemade, C.T.J.; Hooymayers, H.P.; Lijnse, P.L.; Vierbergen, T.J.M.J.

    Experimental noise spectra in the frequency range of 15–105 Hz are reported for the thermal emission of the first resonance doublet of Na and K in a premixed H2-O2-N2 flame, and for the flame background emission. Under certain conditions, low-frequency peaks arise in the noise spectrum below 100 Hz,

  8. Tinnunculite, C5H4N4O3 · 2H2O: Occurrences on the Kola Peninsula and Redefinition and Validation as a Mineral Species

    Science.gov (United States)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Belakovskiy, D. I.; Lykova, I. S.; Zubkova, N. V.; Shcherbakova, E. P.; Britvin, S. N.; Chervonnyi, A. D.

    2017-12-01

    Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as "guano microdeposits." The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. D calc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (-), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2 V obs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 O, 28.4 C, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/ c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern ( d, Å- I[ hkl]) are 8.82-84[002], 5.97-15[011], 5.63-24[102̅, 102], 4.22-22[112], 3.24-27[114̅,114], 3.18-100[210], 3.12-44[211̅, 211], 2.576-14[024].

  9. Investigation of dehydration reaction of BaCl2.2H2O and SrCl2.6H2O by thermal analysis under pressure

    International Nuclear Information System (INIS)

    Homma, Tsuneyuki; Yamada, Tetsuo

    1978-01-01

    The dehydration reactions of BaCl 2 .2H 2 O and SrCl 2 .6H 2 O were investigated by the techniques of thermal analysis, i.e. thermogravimetry (TG and DTG) and differential thermal analysis (DTA) under pressures of 1, 4, 10 and 40 atm. For BaCl 2 .2H 2 O, the DTA curves showed two peaks at 1 atm and three or four peaks at pressures above 4 atm, and the TG curves showed two steps over the range of 1 -- 10 atm and 3 steps at 40 atm. For SrCl 2 .6H 2 O, the DTA curves showed five peaks at respective pressure, and the TG curves showed three steps at 1 atm and two steps at pressures above 4 atm. As a common effect of pressure to the dehydration of these two salts, DTG peaks and some of DTA peaks shifted to higher temperatures with a increase in pressure, but a few peaks remained unshifted on DTA curves in spite of increasing pressure. The peaks which corresponded to these unshifted peaks on DTA curves were not observed on DTG curves. The unshifted peaks on DTA curves were attributed to the endothermic reaction accompanied by the dissociation of coordination water. The DTA and TG curves suggested that both salts formed the intermediate state between anhydrous and monohydrate states. (auth.)

  10. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    Science.gov (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  11. Monte Carlo analysis of Pu-H2O and UO2-PuO2-H2O critical assemblies with ENDF/B-IV data

    International Nuclear Information System (INIS)

    Hardy, J. Jr.; Ullo, J.J.

    1981-04-01

    A set of critical experiments, comprising thirteen homogeneous Pu-H 2 O assemblies and twelve UO 2 -PuO 2 lattices, was analyzed with ENDF/B-IV data and the RCPO1 Monte Carlo program, which modeled the experiments explicitly. Some major data sensitivities were also evaluated. For the Pu-H 2 O assemblies, calculated K/sub eff/ averaged 1.011. The large (2.7%) scatter of K/sub eff/ values for these assemblies was attributed mostly to uncertainties in physical specifications since no clear trends of K/sub eff/ were evident and data sensitivities were insignificant. The UO 2 -PuO 2 lattices showed just one trend of K/sub eff/, which indicated an overprediction of U238 capture consistent with that observed for uranium-H 2 O experiments. There was however a approx. 1% discrepancy in calculated K/sub eff/ between the two sets of UO 2 -PuO 2 lattices studied

  12. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H{sub 2}O{sub 2}, UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2} — Comparison of transformation products, ready biodegradability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbeck, Carlos Alexandre, E-mail: lutterbeck@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul — UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul (Brazil); Wilde, Marcelo Luís, E-mail: wilde@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Baginska, Ewelina, E-mail: ewelina.baginska@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Leder, Christoph, E-mail: cleder@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Machado, Ênio Leandro, E-mail: enio@unisc.br [Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul — UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul (Brazil); and others

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H{sub 2}O{sub 2}, UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2}. Prescreening experiments varying the H{sub 2}O{sub 2} and TiO{sub 2} concentrations were performed in order to set the best catalyst concentrations in the UV/H{sub 2}O{sub 2} and UV/TiO{sub 2} experiments, whereas the UV/Fe{sup 2+}/H{sub 2}O{sub 2} process was optimized varying the pH, Fe{sup 2+} and H{sub 2}O{sub 2} concentrations by means of the Box–Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2} processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H{sub 2}O{sub 2} treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H{sub 2}O{sub 2} treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. - Highlights: • Full primary elimination of 5-FU was

  13. 3-Chloro-4-methyl­quinolin-2(1H)-one

    Science.gov (United States)

    Kassem, Mohamed G.; Ghabbour, Hazem A.; Abdel-Aziz, Hatem A.; Fun, Hoong-Kun; Ooi, Chin Wei

    2012-01-01

    The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) rings. Weak aromatic π–π stacking inter­actions [centroid–centroid distance = 3.7622 (12) Å] also occur. PMID:22589913

  14. Crystal and molecular structure of the coordination compounds of Er3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL21(NO3)2]2[Er(NO3)2(H2O)5]0.333(NO3)2.333 · 2.833H2O and its ethyl substituted derivative [ErL22(NO3)2][Er(NO3)5]0.5 · 0.5H2O

    International Nuclear Information System (INIS)

    Polyakova, I. N.; Baulin, V. E.; Ivanova, I. S.; Pyatova, E. N.; Sergienko, V. S.; Tsivadze, A. Yu.

    2015-01-01

    The coordination compounds of Er 3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL 2 1 (NO 3 ) 2 ] 2 [Er(NO 3 ) 2 (H 2 O) 5 ] 0.333 (NO 3 ) 2.333 · 2.833H 2 O (I) and its ethyl substituted derivative [ErL 2 2 (NO 3 ) 2 ][Er(NO 3 ) 5 ] 0.5 · 0.5H 2 O (II) are synthesized and their crystal structures are studied. I and II contain [ErL 2 (NO 3 ) 2 ] + complex cations of identical composition and close structure. The eight-vertex polyhedron of the Er atom in the shape of a distorted octahedron with two split trans vertices is formed by the O atoms of the phosphoryl groups of L ligands and nitrate anions. L ligands close nine-membered metallocycles. The structures contain spacious channels which are populated differently, namely, by disordered [Er(NO 3 ) 2 (H 2 O) 5 ] + complex cations, NO 3 − anions, and crystallization water molecules in I and disordered [Er(NO 3 ) 5 ] 2− complex anions and crystallization water molecules in II. The IR spectra of I and II are studied

  15. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag: cement binding materials

    International Nuclear Information System (INIS)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian

    2016-01-01

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO 3 and CaSO 4 ·2H 2 O were added. This was done to study the compound effect of CaCO 3 and CaSO 4 ·2H 2 O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO 3 and CaSO 4 ·2H 2 O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO 3 and CaSO 4 ·2H 2 O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO 3 could accelerate the hydration of C 3 S. In addition, CaCO 3 was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO 4 ·2H 2 O could increase the number of AFt. The compound effect of CaCO 3 and CaSO 4 ·2H 2 O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  16. Weak ferrimagnetism, compensation point and magnetization reversal in Ni(HCOO)2x2H2O

    International Nuclear Information System (INIS)

    Kageyama, H.; Khomskii, D.I.; Levitin, R.Z.; Vasiliev, A.N.

    2003-01-01

    Nickel (II) format dihydrate Ni(HCOO) 2 x2H 2 O shows peculiar magnetic response at T N =15.5 K. The magnitude of weak magnetic moment increases initially below T N , equals zero at T*=8.5 K and increases again at lowering temperature. The sign of low field magnetization at any given temperature is determined by the sample's magnetic prehistory and the signs are opposite to each other at T N . This behavior suggests that Ni(HCOO) 2 x2H 2 O is a weak ferrimagnet and T* is a compensation point

  17. Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6iron(II bis(dicyanamidate 4.5-hydrate

    Directory of Open Access Journals (Sweden)

    R. Cortés

    2010-03-01

    Full Text Available In the title compound, [Fe(C24H16N62][N(CN2]2·4.5H2O, the central iron(II ion is hexacoordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz ligands. Two dicyanamide anions [dca or N(CN2−] act as counter-ions, and 4.5 water molecules act as solvation agents. The structure contains isolated cationic iron(II–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water molecule are disordered with an occupancy ratio of 0.614 (8:0.386 (8. O—H...O, O—H...N and C—H...O hydrogen bonds involving dca, water and tppz molecules are observed.

  18. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(o-phen)

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-Xin; GAO Sheng-Li; CHEN San-Ping; YANG Xu-Wu; XIE Gang; SHI Qi-Zhen

    2005-01-01

    Five solid ternary complexes of RE(C5H8NS2)3(o-phen) (RE=Ho, Er, Tm, Yb, Lu) have been synthesized in absolute ethanol by rare earth chloride low hydrate reacting with the mixed ligands of ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline·H2O (o-phen·H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air. IR spectra of the complexes showed that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen·H2O. It was assumed that the coordination number of RE3+was eight. The constant-volume combustion energies of the complexes, △cU, were determined as (-16788.46±7.74), (- 15434.53± 8.28), (- 15287.807.31), (- 15200.50±7.22) and (- 15254.34±6.61) kJ·mol-1, respectively, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, △cH m,and standard molar enthalpies of formation, △fH m, were calculated as (-16803.95 ±7.74), (-15450.02±8.28),(-15303.29±9.28), (-15215.99±7.22), (-15269.83±6.61) kJ·mol-1 and (-1115.42±8.94), (-2477.80±9.15), (-2619.95 ±10.44), (-2670.17 ± 8.22), ( -2650.06± 8.49) kJ·mol-1, respectively.

  19. μ-Acetato-κ2O:O′-[7,23-dibenzyl-15,31-dichloro-3,7,11,19,23,27-hexaazatricyclo[27.3.1.113,17]tetratriconta-1(32,2,11,13,15,17(34,18,27,29(33,30-decaene-33,34-diolato-κ10N4,N5,N6,O1,O2:N1,N2,N3,O1,O2]dinickel(II perchlorate acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Juan Kong

    2008-01-01

    Full Text Available The title complex, [Ni2(C42H46Cl2N6O2(C2H3O2]ClO2CH3CN, was synthesized by condensation of 2,6-diformyl-4-chlorophenol with N,N-bis(aminopropylbenzylamine in the presence of NiII ions. The ligand is a 28-membered macrocycle with two identical pendant arms. The coordination geometries of the Ni atoms are both octahedral. The two Ni atoms are bridged by two phenolate O atoms of the macrocyclic ligand and one acetate ligand, with an Ni...Ni distance of 3.147 (4 Å.

  20. N-(5-Benzylsulfanyl-1,3,4-thiadiazol-2-yl-2-(piperidin-1-ylacetamide

    Directory of Open Access Journals (Sweden)

    D. S. Ismailova

    2014-03-01

    Full Text Available The title compound, C16H20N4OS2, was synthesized by the reaction of 2-benzylsulfanyl-5-chloroacetamido-1,3,4-thiadiazole and piperidine in a 1:2 ratio. The planes of the acetamide and 1,3,4-thiadiazole units are twisted by 10.8 (4°. The thiadiazole S atom and the acetamide O atom are syn-oriented due to a hypervalent S...O interaction of 2.628 (4 Å. In the crystal, molecules form centrosymmetric dimers via N—H...N hydrogen bonds. These dimers are further connected by C—H...O interactions into (100 layers.

  1. Propane-1,3-diammonium bis[aquachlorido(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6mercurate(II] tetrahydrate

    Directory of Open Access Journals (Sweden)

    Hossein Aghabozorg

    2008-08-01

    Full Text Available The reaction of mercury(II chloride dihydrate, propane-1,3-diamine and 4-hydroxypyridine-2,6-dicarboxylic acid in a 1:1:1 molar ratio in aqueous solution, resulted in the formation of the title compound, (C3H12N2[Hg(C7H3NO5Cl(H2O]2·4H2O or (pnH2[Hg(hypydcCl(H2O]2·4H2O (where pn is propane-1,3-diamine and hypydcH2 is 4-hydroxypyridine-2,6-dicarboxylic acid. The metal atom is coordinated by one chloride group, one water molecule cis to the chloride ligand and one (hypydc2− ligand. The coordinated water molecule is almost perpendicular to the plane of the aromatic ring of (hypydc2−. The geometry of the resulting HgClNO3 coordination can be described as distorted square-pyramidal. This structure also contains propane-1,3-diammonium (site symmetry 2 as a counter-ion and four uncoordinated water molecules. There is a wide range of non-covalent interactions consisting of hydrogen bonding [of the types O—H...O, N—H...O and C—H...O, with D...A ranging from 2.548 (5 to 3.393 (6 Å] and ion pairing.

  2. Synthesis and Molecular Structure of 6-Amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-03-01

    Full Text Available The title compound 6-amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one (4, molecular formula C11H10N6OS, was obtained by the reaction of3-amino-2-benzyl-6-hydrazino-1,2,4-triazin-5(2H-one (3 with carbon disulfide in awater/pyridine mixture. Compound 4 can also be synthesized by reacting6-amino-3(2Hmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (7 with benzylbromide in methanolic ammonia water. The compound crystallizes in the monoclinicspace group P21/c with a = 7.2926(15, b = 14.456(2, c = 11.436(2 å, β = 105.30(2°, V= 1162.9(4 å3 and Z = 4, resulting in a density Dcalc of 1.567 g/cm3. Molecules of 4 arelinked by extensive intermolecular N-H···N and N-H···O hydrogen bonding [graph set R22 (9]. The structure is further stabilized by π-π stacking interactions. 2

  3. 3-{2-[2-(2-Fluorobenzylidenehydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    Afsheen Arshad

    2010-06-01

    Full Text Available In the title compound, C19H12FN3O2S, the chromene ring system and the thiazole ring are approximately planar [maximum deviations of 0.023 (3 Å and 0.004 (2 Å, respectively]. The chromene ring system is inclined at angles of 4.78 (10 and 26.51 (10° with respect to the thiazole and benzene rings, respectively, while the thiazole ring makes a dihedral angle of 23.07 (12° with the benzene ring. The molecular structure is stabilized by an intramolecular C—H...O hydrogen bond, which generates an S(6 ring motif. The crystal packing is consolidated by intermolecular N—H...O hydrogen bonds, which link the molecules into chains parallel to [100], and by C—H...π and π–π [centroid–centroid distance = 3.4954 (15 Å] stacking interactions.

  4. Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n.

    Science.gov (United States)

    Abrantes, Marta; Amarante, Tatiana R; Antunes, Margarida M; Gago, Sandra; Paz, Filipe A Almeida; Margiolaki, Irene; Rodrigues, Alírio E; Pillinger, Martyn; Valente, Anabela A; Gonçalves, Isabel S

    2010-08-02

    The reaction of [MoO(2)Cl(2)(bipy)] (1) (bipy = 2,2'-bipyridine) with water in a Teflon-lined stainless steel autoclave (100 degrees C, 19 h), in an open reflux system with oil bath heating (12 h) or in a microwave synthesis system (120 degrees C, 4 h), gave the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (2) as a microcrystalline powder in yields of 72-92%. The crystal structure of 2 determined from synchrotron X-ray powder diffraction data is composed of two distinct neutral one-dimensional polymers: an organic-inorganic polymer, [MoO(3)(bipy)](n), and a purely inorganic chain, [MoO(3)(H(2)O)](n), which are interconnected by O-H...O hydrogen bonding interactions. Compound 2 is a moderately active, stable, and selective catalyst for the epoxidation of cis-cyclooctene at 55 degrees C with tert-butylhydroperoxide (tBuOOH, 5.5 M in decane or 70% aqueous) as the oxidant. Biphasic solid-liquid or triphasic solid-organic-aqueous mixtures are formed, and 1,2-epoxycyclooctane is the only reaction product. When n-hexane is employed as a cosolvent and tBuOOH(decane) is the oxidant, the catalytic reaction is heterogeneous in nature, and the solid catalyst can be recycled and reused without a loss of activity. For comparison, the catalytic performance of the precursor 1 was also investigated. The IR spectra of solids recovered after catalysis indicate that 1 transforms into the organic-inorganic polymer [MoO(3)(bipy)] when the oxidant is tBuOOH(decane) and compound 2 when the oxidant is 70% aqueous tBuOOH.

  5. trans-(2-Benzoylpyridine-κ2N,Odichlorido[2-(2-pyridylcarbonylphenyl-κ2C1,N]iridium(III dichloromethane solvate

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, [Ir(C12H8NOCl2(C12H9NO]·CH2Cl2, which was obtained from the reaction of iridium(III chloride trihydrate and 2-benzoylpyridine, contains an IrIII atom coordinated by two N, one O, one C and two Cl atoms in trans positions, forming a distorted octahedral environment. The solvent molecule CH2Cl2 is disordered over two positions with an occupancy of 0.8:0.2.

  6. N-(4-Chloro-1,3-benzothiazol-2-yl-2-(3-methylphenylacetamide monohydrate

    Directory of Open Access Journals (Sweden)

    H. S. Yathirajan

    2011-10-01

    Full Text Available In the title compound, C16H13ClN2OS·H2O, the dihedral angle between the mean planes of the benzothiazole ring system and the methylphenyl ring is 79.3 (6°. The crystal packing features intermolecular O—H...N, O—H...O and N—H...O hydrogen bonds involving the water molecule and weak C—H...O, C—H...Cg and π–π stacking interactions [centroid–centroid distances = 3.8743 (7, 3.7229 (7 and 3.7076 (8 Å].

  7. Investigation into complexing in Re/sup 7/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system

    Energy Technology Data Exchange (ETDEWEB)

    Sinyakova, G S [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1979-10-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO/sub 4//sup -/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK/sub 1/=3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK/sub 2/=0.93+-0.13 and lgK/sub 3/=0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK/sub 1/=1.86+-0.02 and lgK/sub 2/=2.35+-0.03.

  8. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.

    1982-01-01

    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  9. Partial exchange of the Li+, Na+ and K+ alkaline cations in the HNi(PO4).H2O layered compound

    International Nuclear Information System (INIS)

    Escobal, Jaione; Mesa, Jose; Pizarro, Jose; Bazan, Begona; Arriortua, Maria; Rojo, Teofilo

    2006-01-01

    The exchange of the Li + (1), Na + (2) and K + (3) alkaline cations in the layered HNi(PO 4 ).H 2 O was carried out starting from a methanolic solution containing the Li(OH).H 2 O hydroxide for (1) and the M(OH) (M=Na and K) hydroxides together with the (C 6 H 13 NH 2 ) 0.75 HNiPO 4 .H 2 O phases for (2) and (3). The compounds are stable until, approximately, 280 o C for (1) and 400 deg. C for phases (2) and (3), respectively. The IR spectra show the bands belonging to the water molecule and the (PO 4 ) 3- oxoanion. The diffuse reflectance spectra indicate the existence of Ni(II), d 8 , cations in slightly distorted octahedral geometry. The calculated Dq and Racah (B and C) parameters have a mean value of Dq=765, B=905 and C=3895cm -1 , respectively, in accordance with the values obtained habitually for this octahedral Ni(II) cation. The study of the exchange process performed by X-ray powder diffraction indicates that the exchange of the Li + cation in the lamellar HNi(PO 4 ).H 2 O phase is the minor rapid reaction, whereas the exchange of the Na + and K + cations needs the presence of the intermediate (C 6 H 13 NH 2 ) 0.75 HNiPO 4 .H 2 O intercalate in order to obtain the required product with the sodium and potassium ions. The Scanning electronic microscopy (SEM) images show a mean size of particle of 5μm. The Li + exchanged compound exhibits small ionic conductivity (Ωcm -1 is in the 10 -8 -10 -9 range) probably restrained by the methanol solvent. Magnetic measurements carried out from 5K to room temperature indicate antiferromagnetic coupling as the major interaction in the three phases. Notwithstanding the Li and K phases show a weak ferromagnetism at low temperatures

  10. Ferrous ion oxidations by ·H, ·OH and H2O2 in aerated FBX dosimetry system

    International Nuclear Information System (INIS)

    Gupta, B.L.; Nilekani, S.R.

    1998-01-01

    In the ferrous ion, benzoic acid and xylenol orange (FBX) dosimetric system, benzoic acid (BA) increases the G(Fe 3+ ) value. Xylenol orange (XO) controls the BA sensitized chain reaction as well as forms a complex with Fe 3+ . In the aerated FBX system each ·H, ·OH and H 2 O 2 oxidizes 8.5, 6.6 and 7.6 Fe 2+ ions, respectively; and these values respectively increase to 11.3, 7.6 and 8.6 in oxygenated solution. About 8% ·OH reacts with XO and the remaining with BA. The above fractional values are due to this competition. This ·OH reaction with XO oxidizes 1.8% and 2.1% ferrous ions only in aerated and oxygenated solutions, respectively. There is a competition between ·H reactions with O 2 and with BA, but both lead to the production of H 2 O 2 . The oxidation of Fe 2+ by ·OH reactions at different concentrations of H 2 O 2 is linear with absorbed dose while the ·H reactions make the oxidation of Fe 2+ non-linear with dose. This is due to competition reaction of H-adduct of BA between O 2 and Fe 3+

  11. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    Science.gov (United States)

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  12. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  13. A nine-dimensional ab initio global potential energy surface for the H{sub 2}O{sup +} + H{sub 2} → H{sub 3}O{sup +} + H reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Anyang; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-06-14

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm{sup −1}. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H{sub 4}O{sup +} well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H{sub 2}O{sup +} rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H{sub 2}O{sup +} reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  14. Fingerprints of field-induced Berezinskii–Kosterlitz–Thouless transition in quasi-two-dimensional S=1/2 Heisenberg magnets Cu(en)(H2O)2SO4 and Cu(tn)Cl2

    International Nuclear Information System (INIS)

    Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander

    2016-01-01

    Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.

  15. (Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.

    Science.gov (United States)

    Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2009-12-12

    The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.

  16. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  17. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  18. Importance of halogen···halogen contacts for the structural and magnetic properties of CuX2(pyrazine-N,N′-dioxide)(H2O)2 (X = Cl and Br).

    Science.gov (United States)

    Schlueter, John A; Park, Hyunsoo; Halder, Gregory J; Armand, William R; Dunmars, Cortney; Chapman, Karena W; Manson, Jamie L; Singleton, John; McDonald, Ross; Plonczak, Alex; Kang, Jinhee; Lee, Chaghoon; Whangbo, Myung-Hwan; Lancaster, Tom; Steele, Andrew J; Franke, Isabel; Wright, Jack D; Blundell, Stephen J; Pratt, Francis L; deGeorge, Joseph; Turnbull, Mark M; Landee, Christopher P

    2012-02-20

    The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, β = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, β = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the Cu

  19. Crystal structure of (1S,2S,2′R,3a′S,5R-2′-[(5-bromo-1H-indol-3-ylmethyl]-2-isopropyl-5,5′-dimethyldihydro-2H-spiro[cyclohexane-1,6′-imidazo[1,5-b]isoxazol]-4′(5′H-one

    Directory of Open Access Journals (Sweden)

    Siwar Ghannay

    2016-08-01

    Full Text Available In the title compound, C24H32BrN3O2, the six-membered cyclohexane ring adopts a chair conformation and the isoxasolidine ring adopts a twisted conformation. The molecule has five chiral centres and the absolute configuration has been determined in this analysis. The molecular structure is stabilized by weak intramolecular C—H...O and C—H...N contacts. In the crystal, molecules are linked by N—H...N and C—H...O hydrogen bonds, forming undulating sheets parallel to the bc plane.

  20. Quasielastic neutron scattering and infra-red band contour study of H2O reorientations in [Ni(H2O)6] (ClO4)2

    International Nuclear Information System (INIS)

    Janik, J.A.; Janik, J.M.; Otnes, K.; Stanek, T.

    1980-01-01

    IR band contour measurements carried out for [Ni(H 2 O) 6 ] (ClO 4 ) 2 revealed an existence of fast H 2 O 180 deg flips around Ni-O axes at room temperatures. These flips were subjected to a more accurate study by the quasielastic neutron scattering method. Correlation times of the order of picosecond were obtained for room temperatures and the barrier to rotation of ca. 7 kcal/mole. The results are compared to those previously obtained for [Mg(H 2 O) 6 ] (ClO 4 ) 2 and also to those for [Ni(NH 3 ) 6 ] (ClO 4 ) 2 and [Mg(NH 3 ) 6 ] (ClO 4 ) 2 . (author)

  1. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4.nH2O nanorods

    Science.gov (United States)

    Ghosh, Debasis; Giri, Soumen; Das, Chapal Kumar

    2013-10-01

    One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability.One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene

  2. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  4. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  5. {6,6′-Dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(ethanol-1κO-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-samarium(IIIzinc(II

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2009-10-01

    Full Text Available In the title heteronuclear ZnII–SmIII complex, [SmZn(C18H18N2O4(NO33(CH3CH2OH], with the hexadentate Schiff base compartmental ligand N,N′-bis(3-methoxysalicylideneethylenediamine (H2L, the SmIII and ZnII ions are triply bridged by two phenolate O atoms from the Schiff base ligand and one nitrate anion. The five-coordinate ZnII ion is in a square-pyramidal geometry formed by the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The SmIII center is in a ten-fold coordination of O atoms, involving the phenolate O atoms, two methoxy O atoms, one ethanol O atom, and two O atoms from two nitrate anions and one from the bridging nitrate anion. In the crystal, intermolecular O—H...O and C—H...O interactions generate a layer structure extending parallel to (101.

  6. Improved transparent-conducting properties in N2- and H2- annealed GaZnO thin films grown on glass substrates

    International Nuclear Information System (INIS)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The effects of N 2 - and H 2 - annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of ∼10 0 Ω·cm and an optical transmittance of ∼86%. After annealing in N 2 or H 2 , the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H 2 -annealed sample, a dramatic decrease in the resistivity (7 x 10 -4 Ω·cm) with a considerable increase in the carrier concentration (4.22 x 10 21 cm -3 ) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H 2 annealing. The sample revealed an enhanced optical transmittance (∼91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H 2 -annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  7. N-(2-Chlorophenyl-2-({5-[4-(methylsulfanylbenzyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanylacetamide

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-08-01

    Full Text Available In the title molecule, C24H21ClN4OS2, the central 1,2,4-triazole ring forms dihedral angles of 89.05 (9, 86.66 (9 and 82.70 (10° with the chloro-substituted benzene ring, the methylsulfanyl-substituted benzene ring and the phenyl ring, respectively. In the crystal, molecules are linked into sheets parallel to (100 by intermolecular N—H...N and weak C—H...O hydrogen bonds.

  8. 2,2-Dimethyl-2,3-dihydropyrano[2,3-a]carbazol-4(11H-one

    Directory of Open Access Journals (Sweden)

    Makuteswaran Sridharan

    2008-11-01

    Full Text Available The title compound, C17H15NO2, was prepared from 1-hydroxycarbazole and 3,3-dimethylacrylic acid with a mixture of AlCl3 and POCl3 as the cyclization catalyst. Owing to the presence of the –CMe2– group, the molecule is not quite planar. In the crystal structre, strong N—H...O hydrogen bonds and weaker C—H...π interactions occur, and a slipped π–π stacking interaction [centroid–centroid separation = 3.8425 (8 Å] is also observed.

  9. Crystal structure of (2-formylphenolato-κ2O,O′oxido(2-{[(2-oxidoethylimino]methyl}phenolato-κ3O,N,O′vanadium(V

    Directory of Open Access Journals (Sweden)

    Sowmianarayanan Parimala

    2015-05-01

    Full Text Available In the unsymmetrical title vanadyl complex, [V(C9H9NO2(C7H5O2O], one of the ligands (2-formylphenol is disordered over two sets of sites, with an occupancy ratio of 0.55 (2:0.45 (2. The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron is provided by the (disordered formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2° between the major parts. The crystal structure features weak C—H...O and C—H...π interactions, forming a lateral arrangement of adjacent molecules.

  10. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    Science.gov (United States)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  11. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    Science.gov (United States)

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  12. Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

    International Nuclear Information System (INIS)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng; Liu, Guangliang; Chen, Ping; Zhao, Zhixi

    2013-01-01

    Direct synthesis of H 2 O 2 and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au 0 species for H 2 O 2 synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H 2 O 2 synthesis as CH 3 OH/H 2 O ratio of solvent changed. H 2 O 2 decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O 2 /H 2 ratio on H 2 O 2 concentration, H 2 conversion and H 2 O 2 selectivity revealed a relationship between H 2 O 2 generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O 2 /H 2 ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H 2 conversion and oxidative desulfurization selectivity of H 2 were presented

  13. Hydrogenation/Deoxygenation (H/D Reaction of Furfural-Acetone Condensation Product using Ni/Al2O3-ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Adam Mahfud

    2016-08-01

    Full Text Available The catalytic hydrogenation/deoxygenation (H/D reaction was carried out using Ni/Al2O3-ZrO2 catalyst. The 10% (wt/wt of Ni were impregnated on Al2O3-ZrO2 (10NiAZ by wet impregnation method followed by calcination and reduction. X-Ray diffraction analysis showed that Nideposited on the surface, with specific surface areas (SBET was 48.616 m2/g. Catalyst performance were evaluated for H/D reaction over furfural-acetone condensation products, mixture of 2-(4-furyl-3-buten-2-on and 1,5-bis-(furan-2-yl-pentan-3-one. The reaction was carried out in a batch, performed at 150°C for 8 hours. The H/D reaction gave alkane derivatives C8 and C10 by hydrogenation process followed by ring opening of furan in 15.2% yield. While, oxygenated product C10-C13 were also detected in 17.2% yield. The increasing of pore volume of 10NiAZ might enhance catalyst activity over H/D reaction. The alkene C=C bond was easy to hydrogenated under this condition by the lower bond energy gap.

  14. N-{4-[4-(4-Fluorophenyl-1-(2-methoxyethyl-2-methylsulfanyl-1H-imidazol-5-yl]-2-pyridyl}-2-methyl-3-phenylpropionamide

    Directory of Open Access Journals (Sweden)

    Stefan Laufer

    2009-12-01

    Full Text Available In the crystal structure of the title compound, C28H29FN4O2S, the imidazole ring makes dihedral angles of 11.85 (7, 73.33 (7 and 22.83 (8° with the 4-fluorophenyl, pyridine and phenyl rings, respectively. The 4-fluorophenyl ring makes dihedral angles of 77.91 (7 and 26.93 (8° with the pyridine and phenyl rings, respectively. The phenyl and pyridine rings are nearly perpendicular, making a dihedral angle of 86.47 (9°. The crystal packing shows an intermolecular N—H...O hydrogen-bonding interaction between the N—H and carbonyl groups of the amide functions.

  15. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  16. Crystal structures and thermal decomposition of permanganates AE[MnO{sub 4}]{sub 2} . n H{sub 2}O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2017-10-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O and Ba[MnO{sub 4}]{sub 2} are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO{sub 4}]{sub 2} a long time ago, we employed a cation-exchange column loaded with Ba{sup 2+} cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O exhibiting [CaO{sub 8}] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O with [SrO{sub 10}] polyhedra adopts the cubic space group P2{sub 1}3 with a=964.19(7) pm and Z=4. So the harder the AE{sup 2+} cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO{sub 4}]{sub 2} in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO{sub 12}] polyhedra. During the thermal decomposition of Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H{sub 2}O molecule at 157 C. The crystal structure of Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn{sub 2}O{sub 3} and the oxomanganates(III,IV) AEMn{sub 3}O{sub 6} (AE=Ca and Sr) remain as final decomposition products at 800 C

  17. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    Science.gov (United States)

    Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  18. Effective Reuse of Electroplating Rinse Wastewater by Combining PAC with H2O2/UV Process.

    Science.gov (United States)

    Yen, Hsing Yuan; Kang, Shyh-Fang; Lin, Chen Pei

    2015-04-01

    This study evaluated the performance of treating electroplating rinse wastewater by powder activated carbon (PAC) adsorption, H2O2/UV oxidation, and their combination to remove organic compounds and heavy metals. The results showed that neither the process of PAC adsorption nor H2O2/UV oxidation could reduce COD to 100 mg/L, as enforced by the Taiwan Environmental Protection Agency. On the other hand, the water sample treated by the combined approach of using PAC (5 g/L) pre-adsorption and H2O2/UV post-oxidation (UV of 64 W, H2O2 of 100 mg/L, oxidation time of 90 min), COD and DOC were reduced to 8.2 mg/L and 3.8 mg/L, respectively. Also, the combined approach reduced heavy metals to meet the effluent standards and to satisfy the in-house water reuse criteria for the electroplating factory. The reaction constant analysis indicated that the reaction proceeded much more rapidly for the combined process. Hence, it is a more efficient, economic and environmentally friendly process.

  19. Hexaaquabis[3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Do

    2013-11-01

    Full Text Available In the title compound, [Ba(C7H5N2O52(H2O6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide oxo O atoms [Ba—O = 2.8715 (17 Å], two hydroxyimino N atoms [Ba—N = 3.036 (2 Å], and six water molecules [Ba—O = 2.847 (2, 2.848 (2, and 2.880 (2 Å]. The 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hydroxyimino group and an O atom of the neighboring oxo group. Two lattice water molecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water molecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

  20. Magnetic susceptibility and specific heat of the one-dimensional conductor (H3O) sub (1,6) Pt (C2O4)2.nH2O at low temperatures

    International Nuclear Information System (INIS)

    Raede, H.S.

    1985-01-01

    It has been shown recently that some transition metal complexes exhibit one-dimensional metallic properties. It is reported, in this context, susceptibility and specific heat measurements of polycrystalline (H 3 O) 1 , 6 Pt(C 2 O 4 ) 2 .nH 2 O in the low temperature range. It is found that the susceptibility can be described by a non-uniform Curie law with a characteristic break in the slope. The specific heat reveals no linear temperature contribution, which could be explained by a transition into a Peierls distorted state. Until 13 0 K, the heat capacity follows a T 3 -law. Deviations at higher temperatures are possibly attributed to the anisotropy of the system [pt