WorldWideScience

Sample records for titanium-doped sapphire crystals

  1. The density and compositional analysis of titanium doped sapphire single crystal grown by the Czocharlski method

    Science.gov (United States)

    Kusuma, H. H.; Ibrahim, Z.; Othaman, Z.

    2018-03-01

    Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.

  2. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W.

    1998-01-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al 2 O 3 ) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al 2 O 3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al 2 O 3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti 3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti 3+ . Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al 2O 3 waveguide. (authors)

  3. Ti:Sapphire waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Pashinin, P.P.; Grivas, C.; Laversenne, L.; Wilkinson, J.S.; Eason, R.W.; Shepherd, D.P.

    2007-01-01

    Titanium-doped sapphire is one of the most prominent laser materials and is appreciated for its excellent heat conductivity and broadband gain spectrum, allowing for a wide wavelength tunability and generation of ultrashort pulses. As one of the hardest materials, it can also serve as a model system

  4. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-01-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons. (author)

  5. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2004-01-01

    A simple additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for mono-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons

  6. Neutron Transmission of Single-crystal Sapphire Filters

    Science.gov (United States)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  7. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    higher RIN than a setup with only a single nonlinear crystal. The Ti:S is shown to have a cut-off frequency around 500 kHz, which means that noise structures of the pump laser above this frequency are strongly suppressed. Finally, the majority of the Ti:S noise seems to originate from the laser itself......In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...... electrical noise characterizations of the utilized power supplies, the optical noise of the fundamental light, the second harmonic light, and finally the optical noise of the femtosecond pulses emitted by the Ti:S laser. Noise features originating from the electric power supply are evident throughout...

  8. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  9. Photo-catalytic studies of transition metal doped titanium dioxide thin films processed by metalorganic decomposition (MOD) method

    Science.gov (United States)

    Talagala, P.; Marko, X.; Padmanabhan, K. R.; Naik, R.; Rodak, D.; Cheng, Y. T.

    2006-03-01

    We have synthesized pure and transition element (Fe, Co and V) doped Titanium oxide thin films of thickness ˜ 350 nm on sapphire, Si, and stainless steel substrates by Metalorganic Decomposition (MOD) method. The films were subsequently annealed at appropriate temperatures ( 500-750C) to obtain either anatase or the rutile phase of TiO2. Analysis of the composition of the films were performed by energy dispersive X-ray(EDAX) and Rutherford backscattering spectrometry(RBS). Ion channeling was used to identify possible epitaxial growth of the films on sapphire. Both XRD and Raman spectra of the films exhibit that the films annealed at 550C are of anatase phase, while those annealed at 700C seem to prefer a rutile structure. The water contact angle measurements of the films before and after photoactivation, demonstrate a significant reduction in the contact angle for the anatase phase. However, the variation in contact angle was observed for films exposed to UV (<10^o-30^o) and dark (25^o-50^o). Films doped with Fe show a trend towards lower contact angle than those doped with Co. Results with films doped with V will also be included.

  10. A peek into the history of sapphire crystal growth

    Science.gov (United States)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near

  11. Characterization of single crystal uranium-oxide thin films grown via reactive-gas magnetron sputtering on yttria-stabilized zirconia and sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Strehle, Melissa M.; Heuser, Brent J., E-mail: bheuser@illinois.edu; Elbakhshwan, Mohamed S.; Han Xiaochun; Gennardo, David J.; Pappas, Harrison K.; Ju, Hyunsu

    2012-06-30

    The microstructure and valence states of three single crystal thin film systems, UO{sub 2} on (11{sup Macron }02) r-plane sapphire, UO{sub 2} on (001) yttria-stabilized zirconia, and U{sub 3}O{sub 8} on (11{sup Macron }02) r-plane sapphire, grown via reactive-gas magnetron sputtering are analyzed primarily with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). XRD analysis indicates the growth of single crystal domains with varying degrees of mosaicity. XPS and UPS analyses yield U-4f, U-5f, O-1s, and O-2p electron binding energies consistent with reported bulk values. A change from p-type to n-type semiconductor behavior induced by preferential sputtering of oxygen during depth profile analysis was observed with both XPS and UPS. Trivalent cation impurities (Nd and Al) in UO{sub 2} lower the Fermi level, shifting the XPS spectral weight. This observation is consistent with hole-doping of a Mott-Hubbard insulator. The uranium oxide-(11{sup Macron }02) sapphire system is unstable with respect to Al interdiffusion across the film-substrate interface at elevated temperature. - Highlights: Black-Right-Pointing-Pointer Single crystal uranium-oxides grown on sapphire and yttria-stabilized zirconia. Black-Right-Pointing-Pointer Anion and cation valence states studied by photoelectron emission spectroscopy. Black-Right-Pointing-Pointer Trivalent Nd and Al impurities lower the Fermi level. Black-Right-Pointing-Pointer Uranium-oxide films on sapphire found to be unstable with respect to Al interdiffusion.

  12. Sapphire scintillation tests for cryogenic detectors in the Edelweiss dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Luca, M

    2007-07-15

    Identifying the matter in the universe is one of the main challenges of modern cosmology and astrophysics. An important part of this matter seems to be made of non-baryonic particles. Edelweiss is a direct dark matter search using cryogenic germanium bolometers in order to look for particles that interact very weakly with the ordinary matter, generically known as WIMPs (weakly interacting massive particles). An important challenge for Edelweiss is the radioactive background and one of the ways to identify it is to use a larger variety of target crystals. Sapphire is a light target which can be complementary to the germanium crystals already in use. Spectroscopic characterization studies have been performed using different sapphire samples in order to find the optimum doping concentration for good low temperature scintillation. Ti doped crystals with weak Ti concentrations have been used for systematic X ray excitation tests both at room temperature and down to 30 K. The tests have shown that the best Ti concentration for optimum room temperature scintillation is 100 ppm and 50 ppm at T = 45 K. All concentrations have been checked by optical absorption and fluorescence. After having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of Edelweiss-II, we have proved the compatibility between a sapphire heat scintillation detector and the experimental setup. (author)

  13. Secondary electron emission of sapphire tungsten molybdenum and titanium for Maxwellian incident electrons

    International Nuclear Information System (INIS)

    Saussez-Hublet, M.-C.; Harbour, P.J.

    1980-06-01

    The second electron emission coefficient of various materials, namely titanium, molybdenum, tungsten and sapphire, has been calculated for a Maxwellian energy distribution from data for a normally incident monoenergetic beam of primary electrons. The most significant difference from the monoenergetic case occurs at low energies. In addition the influence of the incident angle of the electrons is discussed. (author)

  14. Strengthening and elongation mechanism of Lanthanum-doped Titanium-Zirconium-Molybdenum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping, E-mail: huping1985@126.com [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Hu, Bo-liang; Wang, Kuai-she; Song, Rui; Yang, Fan [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Yu, Zhi-tao [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Tan, Jiang-fei [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Cao, Wei-cheng; Liu, Dong-xin; An, Geng [Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Guo, Lei [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Yu, Hai-liang [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-12-15

    The microstructural contributes to understand the strengthening and elongation mechanism in Lanthanum-doped Titanium-Zirconium-Molybdenum alloy. Lanthanum oxide particles not only act as heterogeneous nucleation core, but also act as the second phase to hinder the grain growth during sintering crystallization. The molybdenum substrate formed sub-grain under the effect of second phase when the alloy rolled to plate.

  15. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  16. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 μm.

    Science.gov (United States)

    Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-01-08

    A composite crystal consisting of a 1.5-mm-thick Er:Yb:YAl 3 (BO 3 ) 4 crystal between two 1.2-mm-thick sapphire crystals was fabricated by the thermal diffusion bonding technique. Compared with a lone Er:Yb:YAl 3 (BO 3 ) 4 crystal measured under the identical experimental conditions, higher laser performances were demonstrated in the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal due to the reduction of the thermal effects. End-pumped by a 976 nm laser diode in a hemispherical cavity, a 1.55 μm continuous-wave laser with a maximum output power of 1.75 W and a slope efficiency of 36% was obtained in the composite crystal when the incident pump power was 6.54 W. Passively Q-switched by a Co 2+ :MgAl 2 O 4 crystal, a 1.52 μm pulse laser with energy of 10 μJ and repetition frequency of 105 kHz was also realized in the composite crystal. Pulse width was 315 ns. The results show that the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal is an excellent active element for 1.55 μm laser.

  17. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  18. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    Science.gov (United States)

    Buzby, Scott Edward

    . Dopant ions with larger radii than titanium stress the crystal lattice promoting anatase formation, since it has a larger c/a ratio than rutile does. The cation dopants were also found to decrease the average particle size of the titanium dioxide nanoparticles. The defect sites caused by the doping prevent the nucleation and retard particle growth of titanium dioxide particles. Cation doping of titanium dioxide nanoparticles affect other properties of the nanoparticles besides the phase transitions. For example titanium dioxide doped with magnetic materials such as Fe, Ni, Co or Cr has been shown to display room temperature ferromagnetism which are currently being studied for use in spintronic devices. The antibacterial studies of silver doped titanium dioxide nanoparticles were carried out against Escherichia coli, both in nutrient solution and on agar-plates. Both studies show that while pure titanium dioxide has no antibacterial effect, when doped with as little as 0.72 atomic % silver becomes more effective than pure silver nanoparticles of similar size. It has been observed that with concentrations as low as 25mug/cm 2 of silver doped titanium dioxide, completely antibacterial surfaces may be synthesized.

  19. Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Kanjwal, Muzafar Ahmed; Al-Deyab, Salem S.

    2011-01-01

    Doping of titanium dioxide nanofibers by silver nanoparticles revealed distinct improvement in the photocatalytic activ-ity; however other influences have not been investigated. In this work, effect of sliver-doping on the crystal structure, the nanofibrous morphology as well as the photocatalyti...

  20. Neurosurgery contact handheld probe based on sapphire shaped crystal

    Science.gov (United States)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  1. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna

    2016-07-01

    Full Text Available A new carbon self-doped (C-doped TiO2 photocatalyst was synthesized by sol–gel method, in which titanium butoxide was utilized because of its dual functions as a titanium precursor and a carbon source. The effects of calcination temperature from 200 to 600 °C on the photocatalytic activity towards acetaminophen (ACT, which was used as a model persistent organic pollutant under visible light were examined. The effects of temperature on the structure and physicochemical properties of the C-doped TiO2 were also investigated by X-ray diffraction, BET measurement, X-ray photoelectron spectroscopy, and scanning electron microscopy. The specific surface area of the as-doped TiO2 declined as the crystal size increased with increasing calcination temperature. Only amorphous TiO2 was present at 200 °C, while an anatase phase was observed between 300 and 500 °C. Both anatase and rutile phases were observed at 600 °C. Photocatalytic activity increased as the calcination temperature initially increased from 200 to 300 °C but it decreased as the calcination temperature further increased from 400 to 600 °C. The highest ACT removal of 94% with an apparent rate constant of 5.0 × 10−3 min−1 was achieved using the new doped TiO2 calcined at 300 °C, which had an atomic composition of 31.6% Ti2p3, 50.3% O1s and 18.2% C1s.

  2. Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Lei, Hong, E-mail: hong_lei2005@aliyun.com

    2017-08-15

    Highlights: • The novel Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives were synthesized by seed-introduced method. • The Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives exhibited lower Ra and higher MRR on sapphire during CMP. • The cores SiO{sub 2} were coated by the shells (SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) via chemical bonds and hydrogen bonds. • XPS analysis revealed the solid-state chemical reaction between Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives and sapphire during CMP. - Abstract: Abrasive is one of the most important factors in chemical mechanical polishing (CMP). In order to improve the polishing qualities of sapphire substrates, the novel Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives were prepared by seed-induced growth method. In this work, there were a series of condensation reactions during the synthesis process of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives and the silica cores were coated by shells (which contains SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) via chemical bonds and hydrogen bonds in the Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives, which made the composite abrasives’ core-shell structure more sTable Scanning electron microscopy (SEM) showed that Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives were spherical and uniform in size. And the acting mechanisms of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives on sapphire in CMP were investigated. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the solid-state chemical reactions between the shells (which contained SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives and the sapphire occurred during the CMP process. Furthermore, Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives exhibited lower surface roughness and

  3. Detection of solar neutrinos with a torsion balance with sapphire crystal

    Science.gov (United States)

    Cruceru, M.; Nicolescu, G.

    2018-01-01

    The solar neutrinos (antineutrinos) are detected with a dedicated torsion balance in the case when they interact coherently on stiff crystals (sapphire with high Debye temperature ∼1000K and lead with ∼100K Debye temperature). The balance consists in two equal masses of lead and sapphire, of 25g. An autocollimator coupled to this balance measures small rotation angles of the balance. The force with which neutrino flux interacts with these crystals is between 10-5 dyn and 10-8 dyn, comparable with that reported in Weber’s experiments [1]. A diurnal effect is observed for solar neutrinos due to the rotation of the Earth around its own axes. The solar neutrino flux obtained at the site of our experiment is ∼3.8*1010neutrinos/cm2*s [2]. Experimental data for neutrinos signals from this high sensitivity torsion balance are presented and commented [3].

  4. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  5. Influences of oxygen gas flow rate on electrical properties of Ga-doped ZnO thin films deposited on glass and sapphire substrates

    International Nuclear Information System (INIS)

    Makino, Hisao; Song, Huaping; Yamamoto, Tetsuya

    2014-01-01

    The Ga-doped ZnO (GZO) films deposited on glass and c-plane sapphire substrates have been comparatively studied in order to explore the role of grain boundaries in electrical properties. The influences of oxygen gas flow rates (OFRs) during the deposition by ion-plating were examined. The dependences of carrier concentration, lattice parameters, and characteristic of thermal desorption of Zn on the OFR showed common features between glass and sapphire substrates, however, the Hall mobility showed different behavior. The Hall mobility of GZO films on glass increased with increasing OFR of up to 15 sccm, and decreased with further increasing OFR. On the other hand, the Hall mobility of GZO films on c-sapphire increased for up to 25 sccm. The role of grain boundary in polycrystalline GZO films has been discussed. - Highlights: • Ga-doped ZnO films were deposited on glass and c-sapphire by ion-plating. • The epitaxial growth on c-sapphire was confirmed by X-ray diffraction. • Dependence of Hall mobility showed different tendency between glass and sapphire. • Grain boundaries influence transport properties at high O 2 gas flow rate

  6. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  7. Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals

    Science.gov (United States)

    Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi

    2014-06-01

    The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.

  8. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  9. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Hung, Sung-Po [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2014-02-15

    Highlights: ► Sb-doped nonpolar a-plane ZnO layers were epitaxially grown on sapphire substrates. ► Crystallinity and electrical properties were studied upon growth condition and doping concentration. ► The out-of-plane lattice spacing of ZnO films reduces monotonically with increasing Sb doping level. ► The p-type conductivity of ZnO:Sb film is closely correlated with annealing condition and Sb doping level. -- Abstract: In this study, the epitaxial growth of Sb-doped nonpolar a-plane (112{sup ¯}0) ZnO thin films on r-plane (11{sup ¯}02) sapphire substrates was performed by radio-frequency magnetron sputtering. The influence of the sputter deposition conditions and Sb doping concentration on the microstructural and electrical properties of Sb-doped ZnO epitaxial films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Hall-effect measurement. The measurement of the XRD phi-scan indicated that the epitaxial relationship between the ZnO:Sb layer and sapphire substrate was (112{sup ¯}0){sub ZnO}//(11{sup ¯}02){sub Al{sub 2O{sub 3}}} and [11{sup ¯}00]{sub ZnO}//[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. The out-of-plane a-axis lattice parameter of ZnO films was reduced monotonically with the increasing Sb doping level. The cross-sectional transmission electron microscopy (XTEM) observation confirmed the absence of any significant antimony oxide phase segregation across the thickness of the Sb-doped ZnO epitaxial film. However, the epitaxial quality of the films deteriorated as the level of Sb dopant increased. The electrical properties of ZnO:Sb film are closely correlated with post-annealing conditions and Sb doping concentrations.

  10. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  11. Origin for the shape of Au small crystals formed inside sapphire by ion implantation

    International Nuclear Information System (INIS)

    Ohkubo, M.; Hioki, T.

    1989-01-01

    In ion-implanted oxides, precipitation is usually formed except the case of forming solid solution. The precipitation comprises the metallic particles of implanted atoms, the oxide of implanted atoms, the metal of matrix elements, the compound of implanted atoms and matrix and so on. In particular, the metallic particles of implanted atoms are frequently faceted. From the facets, the equilibrium shape of crystals can be imagined. The equilibrium shape is determined so that the surface free energy is to be minimized. However, the shape of the metallic particles precipitated inside oxides should not be such equilibrium shape because they come in contact with foreign crystals. As the result, in the precipitation phenomena induced by ion implantation, the crystal structures of precipitated particles and substrates, the crystallographic relation between two crystals, interfacial energy and so on must be taken in consideration. In this paper, the report is made on the shape of the metallic gold particles formed inside sapphires by ion implantation that it was caused by only the crystal habit of sapphires regardless of the above-mentioned complexity. (K.I.)

  12. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  13. Numerical simulation of terahertz-wave propagation in photonic crystal waveguide based on sapphire shaped crystal

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Katyba, Gleb M; Mukhina, Elena E; Kudrin, Konstantin G; Karasik, Valeriy E; Yurchenko, Stanislav O; Kurlov, Vladimir N; Shikunova, Irina A; Reshetov, Igor V

    2016-01-01

    Terahertz (THz) waveguiding in sapphire shaped single crystal has been studied using the numerical simulations. The numerical finite-difference analysis has been implemented to characterize the dispersion and loss in the photonic crystalline waveguide containing hollow cylindrical channels, which form the hexagonal lattice. Observed results demonstrate the ability to guide the THz-waves in multi-mode regime in wide frequency range with the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. This shows the prospectives of the shaped crystals for highly-efficient THz waveguiding. (paper)

  14. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    International Nuclear Information System (INIS)

    Castro, A.L.; Nunes, M.R.; Carvalho, M.D.; Ferreira, L.P.; Jumas, J.-C.; Costa, F.M.; Florencio, M.H.

    2009-01-01

    Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO 2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 , whereas no photocatalytic activity was detected for the Fe:TiO 2 and Co:TiO 2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 .

  15. Occurrence and elimination of in-plane misoriented crystals in AlN epilayers on sapphire via pre-treatment control

    International Nuclear Information System (INIS)

    Wang Hu; Xiong Hui; Wu Zhi-Hao; Yu Chen-Hui; Tian Yu; Dai Jiang-Nan; Fang Yan-Yan; Zhang Jian-Bao; Chen Chang-Qing

    2014-01-01

    AlN epilayers are grown directly on sapphire (0001) substrates each of which has a low temperature AlN nucleation layer. The effects of pretreatments of sapphire substrates, including exposures to NH 3 /H 2 and to H 2 only ambients at different temperatures, before the growth of AlN epilayers is investigated. In-plane misoriented crystals occur in N-polar AlN epilayers each with pretreatment in a H 2 only ambient, and are characterized by six 60°-apart peaks with splits in each peak in (101-bar 2) phi scan and two sets of hexagonal diffraction patterns taken along the [0001] zone axis in electron diffraction. These misoriented crystals can be eliminated in AlN epilayers by the pretreatment of sapphire substrates in the NH 3 /H 2 ambient. AlN epilayers by the pretreatment of sapphire substrates in the NH 3 /H 2 ambient are Al-polar. Our results show the pretreatments and the nucleation layers are responsible for the polarities of the AlN epilayers. We ascribe these results to the different strain relaxation mechanisms induced by the lattice mismatch of AlN and sapphire. (interdisciplinary physics and related areas of science and technology)

  16. Dispersion Free Doped and Undoped AlGaN/GaN HEMTs on Sapphire and SiC Substrates

    NARCIS (Netherlands)

    Kraemer, M.C.J.C.M.; Jacobs, B.; Kwaspen, J.J.M.; Suijker, E.M.; Hek, A.P. de; Karouta, F.; Kaufmann, L.M.F.; Hoskens, R.C.P.

    2004-01-01

    We present dispersion free pulsed current voltage (I-V) and radio frequency (RF) power results of undoped and doped AlGaN/GaN HEMTs on sapphire and SiC substrates. The most significant processing step leading to these results is the application of a reactive ion etching (RIE) argon (Ar) plasma

  17. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    Science.gov (United States)

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  18. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  19. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    Science.gov (United States)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  20. Facet Appearance on the Lateral Face of Sapphire Single-Crystal Fibers during LHPG Growth

    Directory of Open Access Journals (Sweden)

    Liudmila D. Iskhakova

    2016-08-01

    Full Text Available Results of the study of the lateral surface of single-crystal (SC sapphire fibers grown along crystallographic directions [ 0001 ] and [ 11 2 ¯ 0 ] by the LHPG method are presented. The appearance or absence of faceting of the lateral surface of the fibers depending on the growth direction is analyzed. The crystallographic orientation of the facets is investigated. The microstructure of the samples is investigated with the help of an optical microscope and a JSM-5910LV scanning electronic microscope (JEOL. The crystallographic orientations of the facets on the SC sapphire fiber surface are determined by electron backscatter diffraction (EBSD. The seed orientation is studied by means of XRD techniques.

  1. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  2. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    Science.gov (United States)

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  3. Intracavity doubling of CW Ti:sapphire laser to 392.5 nm using BiBO-crystal

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; Thorhauge, Morten; Tidemand-Lichtenberg, Peter

    2005-01-01

    In this work we present results obtained for intra-cavity frequency-doubling of a 785 nm CW Ti:sapphire laser utilising BiBO as the non-linear crystal. Intracavity doubling offers several advantages compared to extra-cavity doubling, such as no need to couple to an external resonance cavity...

  4. RBS and XRD analysis of silicon doped titanium diboride films

    International Nuclear Information System (INIS)

    Mollica, S.; Sood, D.K.; Ghantasala, M.K.; Kothari, R.

    1999-01-01

    Titanium diboride is a newly developed material suitable for protective coatings. Its high temperature oxidation resistance at temperatures of 700 deg C and beyond is limited due to its poor oxidative behaviour. This paper presents a novel approach to improving the coatings' oxidative characteristics at temperatures of 700 deg C by doping with silicon. Titanium diboride films were deposited onto Si(100) wafer substrates using a DC magnetron sputtering system. Films were deposited in two different compositions, one at pure TiB 2 and the other with 20 % Si doping. These samples were vacuum annealed at 700 deg C at 1x10 -6 Torr to investigate the anaerobic behaviour of the material at elevated temperatures and to ensure that they were crystalline. Samples were then oxidised in air at 700 deg C to investigate their oxidation resistance. Annealing the films at 700 deg C in air results in the oxidation of the film as titanium and boron form TiO 2 and B 2 O 3 . Annealing is seen to produce only minor changes in the films. There is some silicon diffusion from the substrate at elevated temperatures, which is related to the porous nature of the deposited film and the high temperature heat treatments. However, silicon doped films showed relatively less oxidation characteristics after annealing in air compared with the pure TiB 2 samples

  5. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    KAUST Repository

    Sun, Haiding; Wu, Feng; Altahtamouni, Talal Mohammed Ahmad; Alfaraj, Nasir; Li, Kun; Detchprohm, Theeradetch; Dupuis, Russell; Li, Xiaohang

    2017-01-01

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  6. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    KAUST Repository

    Sun, Haiding

    2017-08-08

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  7. Giant coercivity in ferromagnetic Co doped ZnO single crystal thin film

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Dileep, K.; Kumar, N.; Ghatak, Jay; Datta, R.

    2013-01-01

    The origin of ferromagnetism in ZnO doped with transition metal impurities has been discussed extensively and appeared to be a highly controversial and challenging topic in today's solid state physics. Magnetism observed in this system is generally weak and soft. We have grown Co:ZnO up to 30 at% Co in single crystal thin film form on c-plane sapphire. A composition dependent coercivity is observed in this system which reaches peak value at 25 at% Co, the values are 860 Oe and 1149 Oe with applied field along parallel and perpendicular to the film substrate interface respectively. This giant coercivity might pave the way to exploit this material as a magnetic semiconductor with novel logic functionalities. The findings are explained based on defect band itinerant ferromagnetism and its partial interaction with localized d electrons of Co through charge transfer. Besides large coercivity, an increase in the band gap with Co concentration has also been observed along with blue emission peak with long tail confirming the formation of extended point defect levels in the host lattice band gap. - Highlights: • Co doped ZnO ferromagnetic single crystal thin film. • Giant coercivity in Co:ZnO thin film which may help to turn this material into application. • Cathodoluminescence (CL) data showing increase in band gap with Co concentrations. • A theoretical proposal is made to explain the observed giant coercivity

  8. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    International Nuclear Information System (INIS)

    Nian, Qiong; Zhang, Martin Y.; Schwartz, Bradley D.; Cheng, Gary J.

    2014-01-01

    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm 2 /V s at a low carrier concentration of 7.9 × 10 +19  cm −3 . This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity.

  9. Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping.

    Science.gov (United States)

    Castells-Gil, Javier; Padial, Natalia M; Almora-Barrios, Neyvis; Albero, Josep; Ruiz-Salvador, A Rabdel; González-Platas, Javier; García, Hermenegildo; Martí-Gastaldo, Carlos

    2018-06-06

    We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H 2 production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of a slight mis-orientation angle of c-plane sapphire substrate on surface and crystal quality of MOCVD grown GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Woo; Suzuki, Toshimasa [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Saitama, 345-8501 (Japan); Aida, Hideo [NAMIKI Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511 (Japan)

    2004-09-01

    The effect of a slight mis-orientation of c-plane sapphire substrate on the surface morphology and crystal quality of GaN thin films grown by MOCVD has been investigated. The mis-orientation angle of vicinal c-plane sapphire substrate was changed within the range of 0.00(zero)-1.00(one) degree, and the experimental results were compared with those on just angle (zero degree) c-plane sapphire substrate. The surface morphology and crystal quality were found to be very sensitive to mis-orientation angle. Consequently, the mis-orientation angle was optimized to be 0.15 . (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  12. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  13. Scintillation and radiation damage of doped BaF2 crystals

    International Nuclear Information System (INIS)

    Gong Zufang; Xu Zizong; Chang Jin

    1992-01-01

    The emission spectra and the radiation damage of BaF 2 crystals doped Ce and Dy have been studied. The results indicate that the doped BaF 2 crystals have the intrinsic spectra of impurity besides the intrinsic spectra of BaF 2 crystals. The crystals colored and the transmissions decrease with the concentration of impurity in BaF 2 crystals after radiation by γ-ray of 60 Co. The doped Ce BaF 2 irradiated by ultraviolet has faster recover of transmissions but for doped Dy the effect is not obvious. The radiation resistance is not good as pure BaF 2 crystals

  14. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  15. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals

    Science.gov (United States)

    Kudarauskas, D.; Tamošauskas, G.; Vengris, M.; Dubietis, A.

    2018-01-01

    We present a comparative spectral study of filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals. We show that supercontinuum spectra generated by femtosecond filamentation in undoped and doped YAG crystals are essentially identical in terms of spectral extent. On the other hand, undoped and doped YAG crystals exhibit remarkably different filament-induced luminescence spectra whose qualitative features are independent of the excitation wavelength and provide information on the energy deposition to embedded dopants, impurities, and the crystal lattice itself. Our findings suggest that filament-induced luminescence may serve as a simple and non-destructive tool for spectroscopic studies in various transparent dielectric media.

  17. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  18. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  19. Response of Seven Crystallographic Orientations of Sapphire Crystals to Shock Stresses of 16 to 86 GPa

    OpenAIRE

    Kanel, G. I.; Nellis, W. J.; Savinykh, A. S.; Razorenov, S. V.; Rajendran, A. M.

    2009-01-01

    Shock-wave profiles of sapphire (single-crystal Al2O3) with seven crystallographic orientations were measured with time-resolved VISAR interferometry at shock stresses in the range 16 to 86 GPa. Shock propagation was normal to the surface of each cut. The angle between the c-axis of the hexagonal crystal structure and the direction of shock propagation varied from 0 for c-cut up to 90 degrees for m-cut in the basal plane. Based on published shock-induced transparencies, shock-induced optical ...

  20. Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi; Cameron, D.C.

    2012-12-30

    Titanium dioxide films have been created by atomic layer deposition using titanium chloride as the metal source and a solution of ammonium hydroxide in water as oxidant. Ammonium hydroxide has been used as a source of nitrogen for doping and three thickness series have been deposited at 350 Degree-Sign C. A 15 nm anatase dominated film was found to possess the highest photocatalytic activity in all film series. Furthermore almost three times better photocatalytic activity was discovered in the doped series compared to undoped films. The doped films also had lower resistivity. The results from X-ray photoemission spectroscopy showed evidence for interstitial nitrogen in the titanium dioxide structure. Besides, there was a minor red shift observable in the thickest samples. In addition the film conductivity was discovered to increase with the feeding pressure of ammonium hydroxide in the oxidant precursor. This may indicate that nitrogen doping has caused the decrease in the resistivity and therefore has an impact as an enhanced photocatalytic activity. The hot probe test showed that all the anatase or anatase dominant films were p-type and all the rutile dominant films were n-type. The best photocatalytic activity was shown by anatase-dominant films containing a small amount of rutile. It may be that p-n-junctions are formed between p-type anatase and n-type rutile which cause carrier separation and slow down the recombination rate. The combination of nitrogen doping and p-n junction formation results in superior photocatalytic performance. - Highlights: Black-Right-Pointing-Pointer We found all N-doped and undoped anatase dominating films p-type. Black-Right-Pointing-Pointer We found all N-doped and undoped rutile dominating films n-type. Black-Right-Pointing-Pointer We propose that p-n junctions are formed in anatase-rutile mixture films. Black-Right-Pointing-Pointer We found that low level N-doping has increased TiO{sub 2} conductivity. Black

  1. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  2. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    International Nuclear Information System (INIS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-01-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution

  3. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, C., E-mail: canandan@nal.res.in; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution.

  4. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  5. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO 2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Peter T.; Marcial, José; McCloy, John; McDonald, Benjamin S.; Lynn, Kelvin G.

    2017-10-01

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10 mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.

  6. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    Science.gov (United States)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  7. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    International Nuclear Information System (INIS)

    Vetrov, V. N.; Ignatenkov, B. A.

    2013-01-01

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  8. Optical and magneto-optical properties of the electron-doped and hole-doped C{sub 82} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Rostampour, E., E-mail: el_rostampour@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Koohi, A. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-01-15

    The optical and magnetic properties of the doped C{sub 82} crystal have been investigated by Su–Schrieffer–Heeger (SSH) model, which is based on the Ewald method. When the C{sub 82} molecule is doped with one electron (or hole), a single electron is remained in the energy level that affects the optical and magnetic properties of the C{sub 82} crystal. The lattice and electronic structures of C{sub 82} changed with doping electron (or hole) in the molecule of C{sub 82}. Therefore, polarons are predicted in doped fullerenes. The obtained results showed that the dielectric tensor of the C{sub 82} crystal increased with doping electron (or hole) in the molecule of C{sub 82}. The spectral shapes of the dielectric tensor, circular dichroism and birefringence coefficient of the C{sub 82} crystal turn out to be determined mainly by the geometrical distributions of the pentagons in the fullerene structures.

  9. Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.; Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Center (Russian Federation); Kharitonova, E. P.; Orlova, E. I.; Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-01-15

    Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТР and KTP:6%Nb crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.

  10. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    International Nuclear Information System (INIS)

    Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J.

    2012-01-01

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO 2 ) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO 2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO 2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  11. Gas-phase Crystallization of Titanium Dioxide Nanoparticles

    International Nuclear Information System (INIS)

    Ahonen, P.P.; Moisala, A.; Tapper, U.; Brown, D.P.; Jokiniemi, J.K.; Kauppinen, E.I.

    2002-01-01

    We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20-1200 deg. C with 5-1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21-23-nm at 600 deg. C and above. Precursor decomposition occurred between 20 deg. C and 500 deg. C. The increased mobility particle size at 700 deg. C and above was observed to coincide with irregular particles at 700 deg. C and 800 deg. C and faceted particles between 900 deg. C and 1200 deg. C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500-1200 deg. C and above 600 deg. C the particles were single crystals. Indications of minor rutile formation were observed at 1200 deg. C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal-crystal attachment points

  12. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping

    Science.gov (United States)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-03-01

    Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.

  13. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-Ning; ZHANG Zhi-Yong; ZHANG Fu-Chun; DONG Jun-Tang; ZHAO Wu; ZHAI Chun-Xue; ZHANG Wei-Hu

    2012-01-01

    An electrophoresis solution,prepared in a specific ratio of titanium (Ti)-doped nano-diamond,is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis.After high-temperature vacuum annealing,the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope,scanning electron microscopy and Raman spectroscopy.The field emission characteristics and luminescence features are also tested,and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed.The experimental results show that under the same conditions,the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti powder.Compared with the undoped nano-diamond cathode,the turn-on fields decline from 6.95 to 5.95 V/μm.When the electric field strength is 13.80 V/μm,the field emission current density increases to 130.00 μA/cm2.Under the applied fields,the emission current is stable and the luminescence is at its best,while the field emission characteristics of the 10 mg Ti-doped coating become worse,as does the luminescence.The reason for this could be that an excessive amount of TiC is generated on the surface of the coating.%An electrophoresis solution, prepared in a speciGc ratio of titanium (Ti)-doped nano-diamond, is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis. After high-temperature vacuum annealing, the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope, scanning electron microscopy and Raman spectroscopy. The field emission characteristics and luminescence features are also tested, and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed. The experimental results show that under the same conditions, the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti

  14. Influence of substrate temperature and silver-doping on the structural and optical properties of TiO_2 films

    International Nuclear Information System (INIS)

    Fischer, Dieter

    2016-01-01

    Evaporation of titanium together with activated oxygen is used to grow TiO_2 films and simultaneously with silver to grow Ag–TiO_2 films (5 at.% Ag) onto sapphire substrates at three different substrate temperatures: − 190, 30, and 200 °C. The obtained films were characterized by X-ray powder diffraction, Raman, X-ray photoelectron, ultraviolet–visible spectroscopy, and transmission electron microscope investigations. The properties of TiO_2 films varied with the substrate temperature. Amorphous, transparent TiO_2 films were grown at − 190 °C and opaque, polycrystalline films at 200 °C, respectively. Surprisingly, at room temperature black, amorphous TiO_2 films are obtained which transform at 350 °C into a mixture of the anatase and brookite polymorph. In the amorphous state of the TiO_2 films a predefined rutile arrangement is suggested by Raman investigations, and the contraction of the lattice constant c of anatase phases (tetragonal, space group I 4_1/amd) depending on the substrate temperature is experimentally observed. The silver-doped TiO_2 films deposited at − 190 and 30 °C contain Ag-particles with 2 nm in size inside the TiO_2 matrix, which after annealing segregate under increasing particle sizes. The silver-doping stabilizes the anatase polymorph and yields to reduced titanium species in the films especially during deposition at 30 °C. The Ag–TiO_2 films deposited at − 190 °C are transparent up to 350 °C. In the undoped as well as silver-doped TiO_2 films the rutile polymorph is directly formed at 200 °C as main phase. - Highlights: • At room temperature black, amorphous TiO_2 films are obtained. • A predefined rutile arrangement is suggested in amorphous TiO_2 films. • Annealed TiO_2 films crystallize to a mixture of the anatase and brookite polymorph. • In TiO_2 and Ag-doped TiO_2 films the rutile polymorph is directly formed at 200 °C. • Ag-doped TiO_2 films stabilize the anatase polymorph and reduced titanium

  15. 1/f noise in titanium doped aluminum thin film deposited by electron beam evaporation method and its dependence on structural variation with temperature

    Science.gov (United States)

    Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.

    2018-05-01

    A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.

  16. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    Science.gov (United States)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  17. Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Mazzolini, P.; Casari, C. S.; Russo, V.; Li Bassi, A.; Kavan, Ladislav

    2017-01-01

    Roč. 232, APR 2017 (2017), s. 44-53 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : titanium dioxide * tantalum doping * electrochemistry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  18. Sodium doping in ZnO crystals

    Science.gov (United States)

    Parmar, N. S.; Lynn, K. G.

    2015-01-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1-3.5) × 1017 cm-3. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a NaZn level at ˜(220-270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4-5) orders of magnitude at room temperature.

  19. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    Science.gov (United States)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  20. Order in nanometer thick intergranular films at Au-sapphire interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baram, Mor [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Garofalini, Stephen H. [Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ 08854-8065 (United States); Kaplan, Wayne D., E-mail: kaplan@tx.technion.ac.il [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2011-08-15

    Highlights: {yields} Au particles were equilibrated on (0 0 0 1) sapphire in the presence of anorthite. {yields} 1.2 nm thick equilibrium films (complexions) were formed at the Au-sapphire interfaces. {yields} Quantitative HRTEM was used to study the atomistic structure of the films. {yields} Structural order was observed in the 1.2 nm thick films adjacent to the sapphire crystal. {yields} This demonstrates that ordering is an intrinsic part of equilibrium intergranular films. - Abstract: In recent years extensive studies on interfaces have shown that {approx}1 nm thick intergranular films (IGF) exist at interfaces in different material systems, and that IGF can significantly affect the materials' properties. However, there is great deal of uncertainty whether such films are amorphous or partially ordered. In this study specimens were prepared from Au particles that were equilibrated on sapphire substrates in the presence of anorthite glass, leading to the formation of 1.2 nm thick IGF at the Au-sapphire interfaces. Site-specific cross-section samples were characterized using quantitative high resolution transmission electron microscopy to study the atomistic structure of the films. Order was observed in the 1.2 nm thick films adjacent to the sapphire crystal in the form of 'Ca cages', experimentally demonstrating that ordering is an intrinsic part of IGF, as predicted from molecular dynamics and diffuse interface theory.

  1. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations.

    Science.gov (United States)

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.

  2. The investigation of the effect of niobium artificial doping with titanium on Nb3Sn superconductors properties

    International Nuclear Information System (INIS)

    Nikulin, A.; Shikov, A.; Beliakov, N.; Semin, M.

    1997-01-01

    The effect on titanium doping of Nb filaments, and thus on the properties of bronze processed multifilamentary Nb 3 Sn wires and wires with internal tin sources with copper volume fraction up to 65 %, has been analysed. Either titanium rods or rods of the Nb-50Ti alloy, inserted in the axial area of each filament, were used as a source of titanium. The influence of doping on the quantity, composition, structure and superconducting properties of intermetallic compound Nb 3 Sn after heat treatments at 570-750 degrees C with duration up to 350 h was investigated by means of electrical measurements, optical metallography and methods of microanalysis and X-ray analysis. It was shown that the non-copper critical current density of the doped wires attained 600 and 270 A/mm 2 in 12.5 and 16 T respectively for bronze processed wires and 800 and 300 A/mm 2 for wires with internal tin source. Upper critical field calculated in accordance with Kramer's extrapolation was equal to 29-32 T

  3. Computational study of pristine and titanium-doped sodium alanates for hydrogen storage applications

    Science.gov (United States)

    Dathar, Gopi Krishna Phani

    The emphasis of this research is to study and elucidate the underlying mechanisms of reversible hydrogen storage in pristine and Ti-doped sodium aluminum hydrides using molecular modeling techniques. An early breakthrough in using complex metal hydrides as hydrogen storage materials is from the research on sodium alanates by Bogdanovic et al., in 1997 reporting reversible hydrogen storage is possible at moderate temperatures and pressures in transition metal doped sodium alanates. Anton reported titanium salts as the best catalysts compared to all other transition metal salts from his further research on transition metal doped sodium alanates. However, a few questions remained unanswered regarding the role of Ti in reversible hydrogen storage of sodium alanates with improved thermodynamics and kinetics of hydrogen desorption. The first question is about the position of transition metal dopants in the sodium aluminum hydride lattice. The position is investigated by identifying the possible sites for titanium dopants in NaAlH4 lattice and studying the structure and dynamics of possible compounds resulting from titanium doping in sodium alanates. The second question is the role of titanium dopants in improved thermodynamics of hydrogen desorption in Ti-doped NaAlH4. Though it is accepted in the literature that formation of TiAl alloys (Ti-Al and TiAl3) is favorable, reaction pathways are not clearly established. Furthermore, the source of aluminum for Ti-Al alloy formation is not clearly understood. The third question in this area is the role of titanium dopants in improved kinetics of hydrogen absorption and desorption in Ti-doped sodium alanates. This study is directed towards addressing the three longstanding questions in this area. Thermodynamic and kinetic pathways for hydrogen desorption in pristine NaAlH4 and formation of Ti-Al alloys in Ti-doped NaAlH 4, are elucidated to understand the underlying mechanisms of hydrogen desorption. Density functional theory

  4. Sodium doping in ZnO crystals

    International Nuclear Information System (INIS)

    Parmar, N. S.; Lynn, K. G.

    2015-01-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10 17  cm −3 . Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na Zn level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature

  5. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  6. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya; Yang, Yang; Khan, Jafar I.; Alarousu, Erkki; Guo, Zaibing; Zhang, Xixiang; Zhang, Qiang; Mohammed, Omar F.

    2014-01-01

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  7. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  8. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    International Nuclear Information System (INIS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S.M.

    2009-01-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T c =51 deg. C (for pure TGS, T c =48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  9. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2009-11-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  10. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting

    International Nuclear Information System (INIS)

    Le, Thanh Son; Ngo, Quoc Buu; Nguyen, Viet Dung; Nguyen, Hoai Chau; Dao, Trong Hien; Tran, Xuan Tin; Kabachkov, E N; Balikhin, I L

    2014-01-01

    Nitrogen-doped TiO 2 nanoparticle photocatalysts were synthesized by a sol–gel procedure using tetra-n-butyl orthotitanate as a titanium precursor and urea as a nitrogen source. Systematic studies for the preparation parameters and their impact on the material's structure were carried out by multiple techniques: thermogravimetric and differential scanning calorimetric analysis, x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray spectroscopy and UV–Vis diffuse reflectance spectrophotometry showed that the nitrogen-doped TiO 2 calcined at 500 °C for 3 h exhibited a spherical form with a particle size about 15–20 nm and crystal phase presented a mixture of 89.12% anatase. The obtained product was deposited on a porous quartz tube (D = 74 mm; l = 418 mm) to manufacture an air photocatalytic cleaner as a prototype of the TIOKRAFT company's equipment. The created air cleaner was able to remove 60% of 10 ppm acetone within 390 min and degrade 98.5% of bacteria (total aerobic bacteria and fungi, 300 cfu m −3 ) within 120 min in a 10 m 3 box. These photodegradation activities of N-TiO 2 are higher than that of the commercial nano-TiO 2 (Skyspring Inc., USA, particle size of 5–10 nm). (paper)

  11. Radiative recombination in doped indium phosphide crystals

    International Nuclear Information System (INIS)

    Negreskul, V.V.; Russu, E.V.; Radautsan, S.I.; Cheban, A.G.; AN Moldavskoj SSR, Kishinev. Inst. Prikladnoj Fiziki)

    1975-01-01

    Photoluminiscence spectra of nondoped n-InP and their change upon doping with silicon, cadmium, zinc and copper impurities were studied. The shortest wave band at 1.41 eV is connected with radiative electron transition from a shallow donor level (probably silicon) to valent zone, while the band with maximum at 1.37 - 1.39 eV is due to radiative electron transition to an acceptor level whose energy depends upon the nature and concentration of impurity implanted. The luminescence of Light-doped p-InP crystals enables to estimate the ionization energies of acceptor levels in cadmium (Esub(a)=0.043 eV) and zinc (Esub(a)=0.027 eV). Energies of acceptor levels (0.22 and 0.40 eV) due to copper impurity are determined. Intensity of edge emission in the specimens light-doped with silicon is higher than in the nondoped n-InP crystals

  12. Sodium doping in ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, N. S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States)

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  13. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Chitharanjan, E-mail: raichitharanjan@gmail.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India); Kalpataru First Grade Science College, Tiptur 572 202 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dharmaprakash, S.M., E-mail: smdharma@yahoo.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India)

    2009-11-15

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T{sub c}=51 deg. C (for pure TGS, T{sub c}=48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  14. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  15. Growth and characterization of magnesium chloride and lanthanum chloride doped strontium tartrate crystals - gel method

    International Nuclear Information System (INIS)

    Kalaiarasi, S.; Jaikumar, D.

    2014-01-01

    Growth of single crystals of doped strontium tartrate by controlled diffusion of strontium chloride into the silica gel charged with tartaric acid at room temperature is narrated. In this study, we synthesized magnesium chloride (5% and 10%) doped strontium tartrate crystals and Lanthanum chloride (5%, 10% and 15%) doped strontium tartrate crystals are grown. The crystal structure of the compound crystals was confirmed by single crystal X-ray diffraction. The Fourier transform infrared spectrum of pure and doped crystals are recorded and analyzed. The UV-Vis-NIR spectrum analysis reveals that the optical study of the grown crystals. The second harmonic generation efficiency was measured by using Kurtz powder technique with Nd:YAG laser of wavelength 1064 nm. (author)

  16. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Bassou, M. [Tunis Univ. (Tunisia)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Rotter, M. [Karlova Univ., Prague (Czech Republic)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Bernier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Chapellier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France)

    1996-02-11

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.).

  17. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    International Nuclear Information System (INIS)

    Bassou, M.; Rotter, M.; Bernier, M.; Chapellier, M.

    1996-01-01

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.)

  18. PHOTOCATALYTIC ACTIVITIES of Ag+ DOPED ZIF-8 and ZIF-L CRYSTALS

    Directory of Open Access Journals (Sweden)

    Berna Topuz

    2016-09-01

    Full Text Available Photocatalysis is expected to contribute to the solution of environmental problems such as water and air pollution in the near future. The design of photocatalysts with high electron-hole generation rates, high surface areas and high light absorption capacities is crucial in producing sustainable and cost-effective photocatalytic processes. Titania, zirconia, copper oxide, zinc oxide, iron oxide are widely used photocatalysts which have good light absorption capacities with moderate surface areas depending on the synthesis conditions. In the last decade metal organic frameworks (MOFs have been used in photocatalytic applications due to their very high surface areas up to 1000s of m2/g and adequate light absorption capacities. In this study zeolitic imidazolate framework (ZIF based MOF photocatalytsts were prepared and the effect of silver (Ag doping on the photocatalytic activity of ZIF-8 and ZIF-L crystals was investigated. Ag doped ZIF-8 and ZIF-L crystals were prepared and their activities in the photocatalytic removal of methylene blue (MB dye under UV irradiation were determined for the first time in the literature. Doped ZIF-8 and ZIF-L crystals showed better photocatalytic activities compared to the undoped crystals. 100% of MB was removed with 5 mole% Ag+ doped ZIF-8 in 40 min. The photocatalytic activity decreased beyond 5% doping level since Ag+ ions may have segregated due to a possible solid state solubility limit of Ag+ ions in the crystal lattice of ZIF-8. ZIF-L crystals possessed lower photocatalytic activities compared to ZIF-8 crystals.

  19. Polishing Sapphire Substrates by 355 nm Ultraviolet Laser

    Directory of Open Access Journals (Sweden)

    X. Wei

    2012-01-01

    Full Text Available This paper tries to investigate a novel polishing technology with high efficiency and nice surface quality for sapphire crystal that has high hardness, wear resistance, and chemical stability. A Q-switched 355 nm ultraviolet laser with nanosecond pulses was set up and used to polish sapphire substrate in different conditions in this paper. Surface roughness Ra of polished sapphire was measured with surface profiler, and the surface topography was observed with scanning electronic microscope. The effects of processing parameters as laser energy, pulse repetition rate, scanning speed, incident angle, scanning patterns, and initial surface conditions on surface roughness were analyzed.

  20. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.

    2018-05-01

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  1. Towards rhombohedral SiGe epitaxy on 150mm c-plane sapphire substrates

    Science.gov (United States)

    Duzik, Adam J.; Park, Yeonjoon; Choi, Sang H.

    2015-04-01

    Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions. This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of microelectromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.

  2. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  3. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  4. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-10-01

    We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.

  5. A Century of Sapphire Crystal Growth

    Science.gov (United States)

    2004-05-17

    should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty for failing to comply with a collection of...and ruby were oxides of the elements aluminum and silicon.1 In 1817, J. L. Gay- Lussac found that pure aluminum oxide (also called alumina) could...thought to consist of Al2O3 and SiO2 •1817: Gay- Lussac : •1840: Rose: Found SiO2 in sapphire is from agate mortar used for grinding •1837-72: Gaudin

  6. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  7. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  8. High p-Type Doping, Mobility, and Photocarrier Lifetime in Arsenic-Doped CdTe Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagaoka, Akira [Kyoto University; University of Utah; McCoy, Jedidiah [Washington State University; Scarpulla, Michael A. [University of Utah

    2018-05-08

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10^16 and 10^20 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10^17 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 10^17/cm3 range is observed for samples quenched at 200-300 degrees C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10^16 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10^18 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  9. Electrolytic coloration and spectral properties of hydroxyl-doped potassium chloride single crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Wu Yanru

    2011-01-01

    Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH - spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O - , OH - , U, V 2 , V 3 , O 2- -V a + , F, R 2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained. - Highlights: → Expanded the traditional electrolysis method. → Hydroxyl-doped potassium chloride crystals were colored electrolytically for the first time. → Useful V, F and F-aggregate color centers were produced in colored crystals. → V color centers were produced directly and F and F-aggregate color centers indirectly.

  10. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    Science.gov (United States)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  11. Photorefractive effect at 775 nm in doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V. [Department of Electrical, Computer, and Biomedical Engineering, and CNISM, University of Pavia, 27100 Pavia (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C. [Physics and Astronomy Departement, University of Padova, 35131 Padova (Italy)

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  12. Sapphire: A kinking nonlinear elastic solid

    Science.gov (United States)

    Basu, S.; Barsoum, M. W.; Kalidindi, S. R.

    2006-03-01

    Kinking nonlinear elastic (KNE) solids are a recently identified large class of solids that deform fully reversibly by the formation of dislocation-based kink bands [Barsoum et al. Phys. Rev. Lett. 92, 255508 (2004)]. We further conjectured that a high c/a ratio-that ensures that only basal slip is operative-is a sufficient condition for a solid to be KNE. The c/a ratio of sapphire is 2.73 and thus, if our conjecture is correct, it should be a KNE solid. Herein by repeatedly loading-up to 30 times-the same location of sapphire single crystals of two orientations-A and C-with a 1 μm radius spherical nanoindenter, followed by atomic force microscopy, we showed that sapphire is indeed a KNE solid. After pop-ins of the order of 100 nm, the repeated loadings give rise to fully reversible, reproducible hysteresis loops wherein the energy dissipated per unit volume per cycle Wd is of the order of 0.5 GJ/m3. Wd is due to the back and fro motion of the dislocations making up the incipient kink bands that are fully reversible. The results presented here strongly suggest that-like in graphite and mica-kink bands play a more critical role in the room temperature constrained deformation of sapphire than had hitherto been appreciated. Our interpretation is also in agreement with, and can explain most, recent nanoindentation results on sapphire.

  13. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  14. Electrolytic coloration and spectral properties of hydroxyl-doped potassium bromide single crystals

    International Nuclear Information System (INIS)

    Qi, Lan; Song, Cuiying; Gu, Hongen

    2013-01-01

    Hydroxyl-doped potassium bromide single crystals are colored electrolytically at various temperatures and voltages by using a pointed cathode and a flat anode. The characteristic OH − spectral band is observed in absorption spectrum of uncolored single crystal. The characteristic O − , OH − , U, V 2 , O 2− −V a + , M L1 , F and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current–time curve for electrolytic coloration of hydroxyl-doped potassium bromide single crystal and its relationship with electrolytic coloration processes are given. Production and conversion of color centers are explained. - Highlights: ► We expanded the traditional electrolysis method. ► Hydroxyl-doped potassium bromide crystals were colored electrolytically for the first time. ► Useful V, F and F-aggregate color centers were produced in colored crystals. ► V color centers were produced directly and F as well as F-aggregate color centers indirectly.

  15. Growth and characterization of KDP crystals doped with L-aspartic acid.

    Science.gov (United States)

    Krishnamurthy, R; Rajasekaran, R; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Crystal growth and luminescence properties of Pr-doped LuLiF4 single crystal

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF 4 (Pr:LuLiF 4 ) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr 3+ 4f-4f transitions. Intense absorption bands related with the Pr 3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr 3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137 Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137 Cs γ-ray. -- Highlights: ► 0.1, 1, and 3% Pr-doped LuLiF 4 single crystals were grown by the μ-PD method. ► Pr 3+ 5d-4f emission peaks appeared at 220, 240, 340, and 405 nm ► The Pr 3%:LuLiF 4 crystal showed the highest light yield of 2050 photons/MeV

  17. Influence of zirconium doping on the activities of zirconium and iodine co-doped titanium dioxide in the decolorization of methyl orange under visible light irradiation

    International Nuclear Information System (INIS)

    Song Shuang; Hong Fangyue; He Zhiqiao; Wang Hongyu; Xu Xianghong; Chen Jianmeng

    2011-01-01

    Zirconium and iodine co-doped titanium dioxide (Zr-I-TiO 2 ) was prepared by the hydrolysis of tetrabutyl titanate, premixed with zirconium nitrate in an iodic acid aqueous solution, followed by calcination in air. The structure and properties of the resultant catalyst powders were characterized by X-ray diffraction, the Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, transmission electron microscopy, and UV-vis absorption spectroscopy. The catalytic activity of the catalyst was evaluated by monitoring the photocatalytic decolorization of methyl orange under visible light irradiation. The results showed that the activities of Zr-I-TiO 2 catalysts were higher than that of TiO 2 doped with iodine alone (I-TiO 2 ), and the optimal doping concentration in the Zr-I-TiO 2 calcined at 400 deg. C was determined to be about 0.05 (molar ratio of Zr:Ti). In addition, the photocatalytic activity of Zr-I-TiO 2 calcined at 400 deg. C was found to be significantly higher than that calcined at 500 or 600 deg. C. Based on the physico-chemical characterization, we concluded that the role of zirconium on the I-TiO 2 surface is to increase the number of reactive sites by generating a small crystal size and large surface area. The inhibition of electron-hole pair recombination, by trapping photo-generated electrons with Zr 4+ , did not contribute markedly to the improved photocatalytic activity of Zr-I-TiO 2 .

  18. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    Science.gov (United States)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  19. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  20. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  1. V color centers in electrolytically colored hydroxyl-doped sodium chloride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Song Cuiying; Han Li

    2006-01-01

    Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V 2 and V 3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V 2 and V 3 color center migration was determined. Production of the V 2 and V 3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained

  2. Sublimation Properties of Pentaerythritol Tetranitrate Single Crystals Doped with Its Homologs

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharia, Sanjoy K.; Maiti, Amitesh; Gee, Richard H.; Weeks, Brandon L.

    2012-07-20

    Pentaerythritol tetranitrate (PETN) is a secondary explosive used extensively in military and commercial applications. Coarsening of PETN during long-term storage changes the physical properties such as surface area and particle morphology which are important factors in initiation and performance. Doping of impurities was proposed to slow the coarsening process since impurities were shown to modify both the kinetic and thermodynamic properties. In this paper, we discuss how doping of PETN with its homologs of dipentaerythritol hexanitrate (diPEHN) and tripentaerytritol octanitrate (triPEON) affect kinetic and thermodynamic parameters. Pure and homolog doped PETN single crystals were prepared by solvent evaporation in acetone at room temperature. Doping concentrations for this study were 1000 ppm, 5000 ppm, and 10000 ppm. Activation energy and vapor pressure of pure and doped PETN single crystals were obtained from thermogravimetric analysis data.

  3. Scintillation properties of pure and Ca-doped ZnWO4 crystals

    International Nuclear Information System (INIS)

    Danevich, F.A.; Shkulkova, O.G.; Henry, S.; Kraus, H.; McGowan, R.; Mikhailik, V.B.; Telfer, J.

    2008-01-01

    Following the investigations of the structure and scintillation properties of Ca-doped zinc tungstate powder [phys. stat. sol. (a) 204, 730 (2007)] a single-crystal of ZnWO 4 -Ca (0.5 mol%) was grown and characterised. The relative light output, energy resolution and decay characteristics were measured for pure and Ca-doped ZnWO 4 scintillators. An increase in the light yield of ∝40% compared with the undoped crystal, and an energy resolution 9.6% ( 137 Cs) were obtained for Ca-doped ZnWO 4 . The observed improvement is attributed to the reduction of self-absorption (bleaching) of the crystal. The cause of bleaching as well as the possible contribution of scattering is discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  5. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    . However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy.......A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser...

  6. Improvement of electrical property of Si-doped GaN grown on r-plane sapphire by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, K.; Furuzuki, T.; Ohkawa, K.

    2006-01-01

    Electrical property of Si-doped GaN layers grown on r-plane sapphire substrates by atmospheric metalorganic vapor-phase epitaxy was investigated. The electron mobility was drastically improved when GaN was grown by means of optimized combinations of growth temperature and low-temperature GaN buffer thickness. The highest room-temperature mobility of 220cm 2 /Vs was recorded at the carrier density of 1.1x10 18 cm -3 . Temperature dependence of electrical property revealed that the peak mobility of 234cm 2 /Vs was obtained at 249K. From the slope of carrier density as a function of inverse temperature, the activation energy of Si-donors was evaluated to be 11meV

  7. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  8. Superconductivity in Sm-doped CaFe2As2 single crystals

    Science.gov (United States)

    Dong-Yun, Chen; Bin-Bin, Ruan; Jia, Yu; Qi, Guo; Xiao-Chuan, Wang; Qing-Ge, Mu; Bo-Jin, Pan; Tong, Liu; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    In this article, the Sm-doping single crystals Ca1 - x Sm x Fe2As2 (x = 0 ˜ 0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset T c varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x > 0.10. The doping dependences of the c-axis length and onset T c were summarized. The high-T c observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution. Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

  9. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  10. Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Dongqi; Hu Lizhong; Qiao Shuangshuang; Zhang Heqiu; Fu Qiang; Chen Xi; Sun Kaitong; Len, Song-En Andy; Len, L K

    2009-01-01

    Novel phosphorus-doped and undoped single crystal ZnO nanotetrapods were fabricated on sapphire by a simple chemical vapour deposition method, using phosphorus pentoxide (P 2 O 5 ) as the dopant source. The optical properties of the samples were investigated by photoluminescence (PL) spectroscopy. Low-temperature PL measurements of phosphorus-doped and undoped samples were compared, and the results indicated a decrease in deep level defects due to the incorporation of a phosphorus acceptor dopant. The PL spectrum of the phosphorus-doped sample at 10 K exhibited several acceptor-bound exciton related emission peaks. The effect of phosphorus doping on the optical characteristics of the samples was investigated by excitation intensity and temperature dependent PL spectra. The acceptor-binding energies of the phosphorus dopant were estimated to be about 120 meV, in good agreement with the corresponding theoretical and experimental values in phosphorus-doped ZnO films and nanowires.

  11. Structural and electronic characterization of graphene grown by chemical vapor deposition and transferred onto sapphire

    International Nuclear Information System (INIS)

    Joucken, Frédéric; Colomer, Jean-François; Sporken, Robert; Reckinger, Nicolas

    2016-01-01

    Highlights: • CVD graphene is transferred onto sapphire. • Transport measurements reveal relatively low charge carriers mobility. • Scanning probe microscopy experiments reveal the presence of robust contaminant layers between the graphene and the sapphire, responsible for the low carriers mobility. - Abstract: We present a combination of magnetotransport and local probe measurements on graphene grown by chemical vapor deposition on copper foil and subsequently transferred onto a sapphire substrate. A rather strong p-doping is observed (∼9 × 10 12 cm −2 ) together with quite low carrier mobility (∼1350 cm 2 /V s). Atomic force and tunneling imaging performed on the transport devices reveals the presence of contaminants between sapphire and graphene, explaining the limited performance of our devices. The transferred graphene displays ridges similar to those observed whilst graphene is still on the copper foil. We show that, on sapphire, these ridges are made of different thicknesses of the contamination layer and that, contrary to what was reported for hBN or certain transition metal dichalcogenides, no self-cleansing process of the sapphire substrate is observed.

  12. Yb-doped rod-type photonic crystal fibers for single-mode amplification

    DEFF Research Database (Denmark)

    Poli, Frederica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression.......The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression....

  13. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  14. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    International Nuclear Information System (INIS)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2015-01-01

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO 3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH 4 F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO 2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl 2 ] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO 2 ), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO 2 –Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst

  15. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Nakasu, T.; Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-01-01

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  16. Space growth studies of Ce-doped Bi12SiO20 single crystal

    International Nuclear Information System (INIS)

    Zhou, Y.F.; Wang, J.C.; Tang, L.A.; Pan, Z.L.; Chen, N.F.; Chen, W.C.; Huang, Y.Y.; He, W.

    2004-01-01

    Ce-doped Bi 12 SiO 20 (BSO) single crystal was grown on board of the Chinese Spacecraft-Shenzhou No. 3. A cylindrical crystal, 10 mm in diameter and 40 mm in length, was obtained. The morphology of crystals is significantly different for ground- and space-grown portions. The space- and ground-grown crystals have been characterized by Ce concentration distribution, X-ray rocking curve absorption spectrum and micro-Raman spectrum. The results show that the quality of Ce-doped BSO crystal grown in space is more homogeneous and more perfect than that of ground grown one

  17. Molecular reorientation of dye doped nematic liquid crystals in the laser illumination

    International Nuclear Information System (INIS)

    San, S. E.; Koeysal, O.; Ecevit, F. N.

    2002-01-01

    In this study it is investigated how dye doped nematic liquid crystals reorient under the illumination of laser beam whose wavelength is appropriate to absorbance characteristics of the doping dye. Nematic liquid crystal E7 is used with anthraquinone dye 1% wt/wt in the preparation of the sample and this material is filled in homegenously aligned measurement cell having 15 μm thickness. Mechanism of molecular reorientation includes the absorbance effects of the energy of laser by doping dye and this reorientation causes the refractive index of the material to be changed. There are potential application possibilities of such molecular reorientation based effects in nonlinear optics such as real time holography whose basis is grating diffraction that is observed and investigated in the frame of fundamentals of molecule light interaction mechanisms. Experimental analyses allowed finding characteristic values of diffraction signals depending on physical parameters of set up for a dye doped liquid crystal system and this system provided a 20 % diffraction efficiency under the optimum circumstances

  18. Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, A; Behr, G; Griessmann, H; Teichert, S; Lange, H

    1997-07-01

    The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

  19. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyo-Soo; Choi, Nak-Jung [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Kim, Kyoung-Bo [Department of Metallurgical and Materials Engineering, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Moojin [Department of Renewable Energy, Jungwon University, Goesan-gun, Chungbuk 367-805 (Korea, Republic of); Lee, Sung-Nam, E-mail: snlee@kpu.ac.kr [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of)

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  20. Stabilization and enhanced energy gap by Mg doping in ɛ-phase Ga2O3 thin films

    Science.gov (United States)

    Bi, Xiaoyu; Wu, Zhenping; Huang, Yuanqi; Tang, Weihua

    2018-02-01

    Mg-doped Ga2O3 thin films with different doping concentrations were deposited on sapphire substrates using laser molecular beam epitaxy (L-MBE) technique. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-vis) absorption spectrum were used to characterize the crystal structure and optical properties of the as-grown films. Compared to pure Ga2O3 thin film, the Mg-doped thin films have transformed from the most stable β-phase into ɛ-phase. The absorption edge shifted to about 205 nm and the optical bandgap increased to ˜ 6 eV. These properties reveal that Mg-doped Ga2O3 films may have potential applications in the field of deep ultraviolet optoelectronic devices, such as deep ultraviolet photodetectors, short wavelength light emitting devices and so on.

  1. Synthesis and characterization of titanium and yttrium precursors with unsaturated ligands: application to the doping of low-density micro-molecular materials oxides

    International Nuclear Information System (INIS)

    Gamet-Cauro, L.-C.

    2001-01-01

    The laser-matter interaction experiments for high-power pulsed lasers require doped micro-targets. The ablator is a Low-Density Microcellular Material,foam namely a styrene-divinylbenzene copolymer obtained by a HIPE process (High Internal Polymerisation Emulsion). The spectroscopic tracers selected for doping are titanium, yttrium and aluminium as oxides. For obtaining these hybrid organic-inorganic materials, precursors with polymerizable ligands were introduced during the emulsification step since the unsaturation of the ligands could participate in the copolymerization reaction. We report here in the synthesis and characterization of titanium and yttrium precursors with polymerizable ligands. The structures of [Ti(O i Pr) 3 (AMP)] 2 (HAMP allyl-methylphenol), [Ti(OEt) 3 (AAA)] 2 (HAAA allylacetoacetate), Y 8 O 2 (OH) 4 (OEt) 6 (AAA) 10 were established by X-ray diffraction. Ti 4 O 3 (OR) 8 (AAA) 2 (R Et, i Pr).[TiO(O i Pr)(oleate)] m , Y 4 (OH) 2 (AAA) 5 , Y 4 O(O i Pr) 5 (AAA) 5 , Y 4 (OH) 4 Cl 5 (AAA) 3 (THF) 3 have been prepared as well and characterized by FT-IR, 1 HNMR and elemental analysis. Micro-hydrolysis reactions of titanium derivatives were investigated. The rates of polymerisation and copolymerization with styrene were evaluated for the titanium precursors with polymerizable ligands. The parameters of the HIPE process were adapted to the fabrication of doped foams, only the dopant and initiator change. We discuss incorporation mechanisms of titanium oxide and yttrium oxo-hydroxides: precursor-surfactant interaction, copolymerization of precursors with unsaturated ligands and physical or chemical retention. The foams have been characterized by scanning electron microscopy (morphology), elemental analysis and fluorescence X cartography (amount, distribution of metal oxide), adsorption isotherms (BET, texture), compression tests (mechanical strength). Due to this systematic study, a good control of doping has become possible and allowed us to develop

  2. Water activated doping and transport in multilayered germanane crystals

    International Nuclear Information System (INIS)

    Young, Justin R; Johnston-Halperin, Ezekiel; Chitara, Basant; Cultrara, Nicholas D; Arguilla, Maxx Q; Jiang, Shishi; Fan, Fan; Goldberger, Joshua E

    2016-01-01

    The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe 2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues. (paper)

  3. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  4. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    Science.gov (United States)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  5. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  6. Studies on various properties of pure and Li-doped Barium Hydrogen Phosphate (BHP) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nallamuthu, D. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Selvarajan, P., E-mail: pselvarajanphy@yahoo.co.i [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Freeda, T.H. [Physics Research Centre, S.T. Hindu College, Nagercoil 629002 (India)

    2010-12-15

    Single crystals of pure and Li-doped barium hydrogen phosphate (BHP) were grown by solution method with gel technique. Various properties of the harvested crystals were studied by carrying out single crystal and powder XRD, FTIR, TG/DTA, microhardness and dielectric studies. Atomic absorption study was carried out for Li-doped BHP crystal to check the presence of Li dopants. Unit cell dimensions and diffracting planes of the grown crystals have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Density of the grown crystals was calculated using the XRD data. Thermal stability of the samples was checked by TG/DTA studies. Mechanical and dielectric characterizations of the harvested pure and Li-doped BHP crystals reveal the mechanical strength and ferroelectric transition. The observed results are reported and discussed.

  7. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    International Nuclear Information System (INIS)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-01-01

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern

  8. MBE growth and characterization of ZnTe epilayers on m-plane sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakasu, Taizo; Sun, Wei-Che; Yamashita, Sotaro; Aiba, Takayuki; Taguri, Kosuke [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Tokyo 169-0051 (Japan); Asahi, Toshiaki [Technology Development Center, JX Nippon Mining and Metals Corporation, Hitachi 317-0056 (Japan); Togo, Hiroyoshi [NTT Microsystem Integration Laboratories, Atsugi 243-0198 (Japan)

    2014-07-15

    ZnTe epilayers were grown on transparent (10-10) oriented (m -plane) sapphire substrates by molecular beam epitaxy (MBE). Pole figure imaging was used to study the domain distribution within the layer. (211)-oriented ZnTe domains were formed on m -plane sapphire. The presence of only one kind of (211) ZnTe domain formed on the 2 -tilted m -plane sapphire substrates was confirmed. Thus, single domain (211) ZnTe epilayers can be grown on the m -plane sapphire using MBE. Although differences in the crystal structure and lattice mismatch are large, precise control of the substrate surface lattice arrangement result in the formation of high-quality epitaxial layers. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    DEFF Research Database (Denmark)

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  10. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  11. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  12. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  13. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  14. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  15. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Zheng, J.; Li, S.L.

    2006-01-01

    Ti 4+ -doped SnO 2 nano-powders were prepared by the sol-gel process using tin tetrachloride and titanium tetrachloride as the starting materials. The crystallinity and purity of the powders were analyzed by X-ray diffraction (XRD) and the size and distribution of Ti 4+ -doped SnO 2 grains were studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that Ti 4+ has been successfully incorporated into the SnO 2 crystal lattice and the electrical conductivity of the doped materials improves significantly

  16. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    Science.gov (United States)

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    Science.gov (United States)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  18. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  19. Characterization of pure and copper-doped iron tartrate crystals

    Indian Academy of Sciences (India)

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies ...

  20. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals

    Science.gov (United States)

    Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.

    2013-03-01

    In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.

  1. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  2. Stabilization and enhanced energy gap by Mg doping in ε-phase Ga2O3 thin films

    Directory of Open Access Journals (Sweden)

    Xiaoyu Bi

    2018-02-01

    Full Text Available Mg-doped Ga2O3 thin films with different doping concentrations were deposited on sapphire substrates using laser molecular beam epitaxy (L-MBE technique. X-ray diffraction (XRD, x-ray photoelectron spectroscopy (XPS and ultraviolet-visible (UV-vis absorption spectrum were used to characterize the crystal structure and optical properties of the as-grown films. Compared to pure Ga2O3 thin film, the Mg-doped thin films have transformed from the most stable β-phase into ε-phase. The absorption edge shifted to about 205 nm and the optical bandgap increased to ∼ 6 eV. These properties reveal that Mg-doped Ga2O3 films may have potential applications in the field of deep ultraviolet optoelectronic devices, such as deep ultraviolet photodetectors, short wavelength light emitting devices and so on.

  3. Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Junjie Qian

    2012-01-01

    Full Text Available Nitrogen-doped titanium dioxide (N-doped TiO2 photocatalyst was synthesized from nanotube titanic acid (denoted as NTA; molecular formula H2Ti2O5·H2O precursor via a hydrothermal route in ammonia solution. As-synthesized N-doped TiO2 catalysts were characterized by means of X-ray diffraction, transmission electron microscopy, diffuse reflectance spectrometry, X-ray photoelectron spectroscopy, electron spin resonance spectrometry and Fourier transform infrared spectrometry. It was found that nanotube ammonium titanate (NAT was produced as an intermediate during the preparation of N-doped TiO2 from NTA, as evidenced by the N1s X-ray photoelectron spectroscopic peak of NH4 + at 401.7 eV. The catalyst showed much higher activities to the degradation of methylene blue and p-chlorophenol under visible light irradiation than Degussa P25. This could be attributed to the enhanced absorption of N-doped TiO2 in visible light region associated with the formation of single-electron-trapped oxygen vacancies and the inhibition of recombination of photo-generated electron-hole pair by doped nitrogen.

  4. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  5. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    Science.gov (United States)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  6. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    Science.gov (United States)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  7. Effects of Na and K co-doping on growth and scintillation properties of Eu:SrI_2 crystals

    International Nuclear Information System (INIS)

    Ito, Tomoki; Yokota, Yuui; Kurosawa, Shunsuke; Kral, Robert; Pejchal, Jan; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2016-01-01

    We grew Na and K co-doped Eu:SrI_2 [Na,Eu:SrI_2 and K,Eu:SrI_2] crystals by a modified micro-pulling-down method to reveal the co-doping effects on the crystal growth and scintillation properties. The non-codoped, Na0.5%, Na1.0%, K0.5% and K1.0%,Eu:SrI_2 crystals indicated high transparency while the milky parts were generated in the Na5.0% and K5.0%,Eu:SrI_2 crystals. The light yields of Na,Eu:SrI_2 and K,Eu:SrI_2 crystals under γ-ray irradiation were decreased by the Na and K co-doping. On the other hand, there was a small change within 940–1020 ns in the decay times by the Na and K co-doping. In the light yield proportionality under γ-ray irradiation, the non-proportionality in the low energy region was improved by Na and K co-doping. - Highlights: • Na or K co-doped Eu:SrI_2crystals were grown by the modified μ-PD method. • The milky parts were generated in the Na5.0% and K5.0%,Eu:SrI_2crystals. • The light yield of Eu:SrI_2was decreased by the Na or K co-doping. • The decay times of Eu:SrI_2were almost constant by the Na or K co-doping. • The non-proportionalitywas improved in the low energy region by the K co-doping.

  8. Potassium acceptor doping of ZnO crystals

    Directory of Open Access Journals (Sweden)

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  9. Potassium acceptor doping of ZnO crystals

    Science.gov (United States)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  10. Potassium acceptor doping of ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Corolewski, Caleb D.; McCluskey, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  11. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  12. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  13. Use of sapphire as a neutron damage monitor for pressure vessel steels

    International Nuclear Information System (INIS)

    Pells, G.P.; Fudge, A.J.; Murphy, M.J.; Watt, S.

    1989-01-01

    Single crystal α-Al 2 O 3 (sapphire) has been neutron irradiated over a range of dose, dose rate and neutron energy spectra at temperatures from 60 to 310 0 C. Values of optical absorption at 400 nm, the peak of the aluminum vacancy absorption band, were plotted against damage dose expressed in terms of dpa of Al in sapphire obtained from measurements of induced radio-activity in activation foils irradiated with the sapphires and from calculation of the neutron energy spectrum at the irradiation position. The neutron energy spectrum was calculated using modern neutron transport computer codes and adjusted in the light of measurements obtained from multiple foil activation experiments. A simple response curve was obtained for all sapphires irradiated at temperatures between 220 to 310 0 C and for sapphires irradiated below 200 0 C which had been annealed at 290 0 C irrespective of dose rate or neutron beam energy spectrum. The single response curve for irradiations performed in a variety of neutron energy spectra validate the neutron energy spectrum computational procedures

  14. Chemical forms of 35S in KCl crystals doped with elementary 35S. Pt. 1

    International Nuclear Information System (INIS)

    Maddock, A.G.; Todorovsky, D.S.

    1983-01-01

    KCl crystals have been doped with 35 S at low chemical concentrations. Upon solution of the doped crystals in cyanide solution and analysis by the method of Kasrai and Maddock, the 35 S appears in the same chemical forms as are found for the 35 S produced in similar crystals by the (n, p) reaction. Reactions are suggested whereby these products may be produced. (orig.)

  15. Programming of the Wavelength Stabilization for a Titanium:Sapphire Laser using LabVIEW and Implementation into the CERN ISOLDE RILIS Measurement System

    CERN Document Server

    Rossel, Ralf Erik; Wendt, K; Rothe, S

    In the context of this work the foundation for the commissioning of a comprehensive environmental and operational data acquisition system was established. This development was performed for the Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE radioactive ion beam facility within the European Organization for Nuclear Research CERN. As an essential step towards long-term automated operation, a remote control and wavelength stabilization system for the RILIS titanium:sapphire lasers was put into operation. This required the installation of a data recording infrastructure to work with a distributed sensor network. After operational data within the CERN technical computing network was collected and analyzed, the required wavelength adjustment was automatically performed by a stepper motor-driven correction system. The configuration of the hardware for acquisition and control and the integration of the dedicated system modules was performed using the graphical and data flow oriented programming language ...

  16. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  17. Anomalous doping of a molecular crystal monitored with confocal fluorescence microscopy: Terrylene in a p-terphenyl crystal

    Science.gov (United States)

    Białkowska, Magda; Deperasińska, Irena; Makarewicz, Artur; Kozankiewicz, Bolesław

    2017-09-01

    Highly terrylene doped single crystals of p-terphenyl, obtained by co-sublimation of both components, showed bright spots in the confocal fluorescence images. Polarization of the fluorescence excitation spectra, blinking and bleaching, and saturation behavior allowed us to attribute them to single molecules of terrylene anomalously embedded between two neighbor layers of the host crystal, in the (a,b) plane. Such an orientation of terrylene molecules results in much more efficient absorption and collection of the fluorescence photons than in the case of previously investigated molecules embedded in the substitution sites. The above conclusion was supported by quantum chemistry calculations. We postulate that the kind of doping considered in this work should be possible in other molecular crystals where the host molecules are organized in a herringbone pattern.

  18. Crystal growth, optical properties, and laser operation of Yb3+-doped NYW single crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Yang, X. B.; Xin, Z.; Cao, D. H.; Xu, J.

    2009-11-01

    Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.

  19. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  20. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-doped GaN crystals

    International Nuclear Information System (INIS)

    Mezdrogina, M.M.; Krivolapchuk, V.V.; Petrov, V.N.; Rodin, S.N.; Cherenkov, A.V.

    2006-01-01

    It is shown that the effect of dopants on the photoluminescence spectrum depends on the conductivity type of the initial GaN crystals. The sensitizing effect of emission is observed in wurtzite p-GaN crystals doped with Er. The same effect was previously observed in such crystals doped with Eu and Zn. In n-type GaN crystals sequentially doped with Eu, Zn, and Er, the emission is observed in visible and infrared ranges of the photoluminescence spectrum [ru

  1. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  2. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  3. Wetting behavior of liquid Fe-C-Ti alloys on sapphire

    International Nuclear Information System (INIS)

    Gelbstein, M.; Froumin, N.; Frage, N.

    2008-01-01

    Wetting behavior in the (Fe-C-Ti)/sapphire system was studied at 1823 K. The wetting angle between sapphire and Fe-C alloys is higher than 90 deg. (93 deg. and 105 deg. for the alloys with 1.4 and 3.6 at.% C, respectively). The presence of Ti improves the wetting of the iron-carbon alloys, especially for the alloys with carbon content of 3.6 at.%. The addition of 5 at.% Ti to Fe-3.6 at.% C provides a contact angle of about 30 deg., while the same addition to Fe-1.4 at.% C decreases the wetting angle to 70 deg. only. It was established that the wetting in the systems is controlled by the formation of a titanium oxicarbide layer at the interface, which composition and thickness depend on C and Ti contents in the melt. The experimental observations are well accounted for by a thermodynamic analysis of the Fe-Ti-Al-O-C system

  4. Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals

    Science.gov (United States)

    Nakamura, Masaru; Higuchi, Shinji; Takekawa, Shunji; Terabe, Kazuya; Furukawa, Yasunori; Kitamura, Kenji

    2002-04-01

    Undoped and MgO (0.5 and 1.0-mol%)-doped near-stoichiometric LiTaO3 (SLT) crystals were grown from off-congruent Li-rich solutions (Li˜ 60 mol%) by the double-crucible Czochralski method using a continuous SLT ceramic grain charging system. Curie temperatures of the undoped and MgO (0.5 and 1.0-mol%)-doped SLT crystals are 688, 694 and 695°C, respectively. The ordinary and extraordinary refractive indices (no, ne) of these crystals were measured by the prism coupling technique in the wavelength range from 0.440 to 1.050 μm at room temperature, and the temperature-independent Sellmeier equations for each crystal were derived from the measured refractive index data. no of the SLT crystal was almost the same as that of a congruent-melt LiTaO3 (CLT) crystal, while ne of the SLT crystal was lower than that of the CLT crystal. ne was lower than no for the SLT crystal, similar to as in the case of the LiNbO3 crystal. The refractive indices of the SLT crystal, no and ne, were found to be almost independent of MgO concentration at the doping level of 0.5 and 1.0 mol%.

  5. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Zhong, Yuanhong; Zhu, Sanyuan; Ma, Lingya; Yuan, Peng; Zhu, Jianxi; He, Hongping; Jiang, Zheng

    2012-01-01

    Highlights: ► Ti-V co-doped magnetite has strong catalytic activity in UV-Fenton reaction. ► Ti 4+ is more positive to adsorption and catalytic activity of magnetite than V 3+ . ► Mechanism of substitution increasing the adsorption and catalytic activity. ► The obtained results are benefit for application of magnetite in treating wastewater. - Abstract: This study investigated the methylene blue (MB) decolorization through heterogeneous UV-Fenton reaction catalyzed by V-Ti co-doped magnetites, with emphasis on comparing the contribution of V and Ti cations on improving the adsorption and catalytic activity of magnetite. In the well crystallized spinel structure, both Ti 4+ and V 3+ occupied the octahedral sites. Ti 4+ showed a more obvious effect on increasing specific surface area and superficial hydroxyl amount than V 3+ did, resulting in a significant improvement of the adsorption ability of magnetite to MB. The UV introduction greatly accelerated MB degradation. And magnetite with more Ti and less V displayed better catalytic activity in MB degradation through heterogeneous UV-Fenton reaction. The transformation of degradation products and individual contribution from vanadium and titanium on improving adsorption and catalytic activity of magnetite were also investigated. These new insights are of high importance for well understanding the interface interaction between contaminants and metal doped magnetites, and the environmental application of natural and synthetic magnetites.

  6. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-Doped GaN crystals

    International Nuclear Information System (INIS)

    Mezdrogina, M. M.; Krivolapchuk, V. V.; Petrov, V. N.; Rodin, S. N.; Cherenkov, A. V.

    2006-01-01

    It is shown that the effect of dopants on the photoluminescence spectrum depends on the conductivity type of the initial GaN crystals. Sensitization of emission is observed in wurtzite p-GaN crystals doped with Er. The same effect was previously observed in such crystals doped with Eu and Zn. In n-type GaN crystals sequentially doped with Eu, Zn, and Er, emission is observed in the visible (λ = 360-440 and 530-560 nm) and IR (λ = 1.54 μm) spectral regions

  7. Ultralow Self-Doping in 2D Hybrid Perovskite Single Crystals

    KAUST Repository

    Peng, Wei

    2017-06-28

    Unintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 (n=1, 2, and 3)—over three orders of magnitude lower than those of typical three-dimensional hybrid perovskites—by analyzing their conductivity behavior. We propose that crystallization of hybrid perovskites containing large organic cations suppresses defect formation and thus favors a low self-doping level. To exemplify the benefits of this effect, we demonstrate extraordinarily high light-detectivity (1013 Jones) in (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 photoconductors due to the reduced electronic noise, which makes them particularly attractive for the detection of weak light signals. Furthermore, the low self-doping concentration reduces the equilibrium charge carrier concentration in (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1, advantageous in the design of p-i-n heterojunction solar cells by optimizing band alignment and promoting carrier depletion in the intrinsic perovskite layer, thereby enhancing charge extraction.

  8. Development of high quality large laser crystals for a CPA laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Fukuyama, Hiroyasu; Nagai, Shiro; Katsurayama, Masamichi; Anzai, Yutaka

    2000-01-01

    Uniform doped concentration along growth direction of Nd 3+ :YAG crystal with 110 mm length was successfully grown by the Czochralski furnace with a double crucible. The fluctuation of doped concentration was less than 4%, nearly 1/4 of the Nd 3+ :YAG crystal grown by a conventional method. We also demonstrated direct bonding without the use of adhesive materials on Ti:sapphire laser crystals with a bonding surface dimension of 12 mm x 6 mm. The bonding surfaces were treated with chemical processes to clean up and to create a hydrophilic layer for hydrogen bonding in an atmospheric furnace. Successive heat treatment in a vacuum furnace transformed the hydrogen bonding into the direct bonding. From the observation by a transmission electron microscope (Hitachi: HF-2000), atomic level bonding was succeeded in the bonding surface. The performance of the bonded crystal was also tested by laser oscillation with a second harmonics of Q-switched Nd 3+ :YAG at a 20 Hz repetition rate. In comparison with a normal laser crystal, there were no difference in output power or spatial profile in an input condition of 30 mJ. The optical damaged threshold on the bonding surface was estimated over 660 MW/cm 2 . (author)

  9. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films

    Science.gov (United States)

    Guo, Daoyou; Qin, Xinyuan; Lv, Ming; Shi, Haoze; Su, Yuanli; Yao, Guosheng; Wang, Shunli; Li, Chaorong; Li, Peigang; Tang, Weihua

    2017-11-01

    Highly (201) oriented Zn-doped β-Ga2O3 thin films with different dopant concentrations were grown on (0001) sapphire substrates by radio frequency magnetron sputtering. With the increase of Zn dopant concentration, the crystal lattice expands, the energy band gap shrinks, and the oxygen vacancy concentration decreases. Both the metal semiconductor metal (MSM) structure photodetectors based on the pure and Zn-doped β-Ga2O3 thin films exhibit solar blind UV photoelectric property. Compared to the pure β-Ga2O3 photodetector, the Zn-doped one exhibits a lower dark current, a higher photo/dark current ratio, a faster photoresponse speed, which can be attributed to the decreases of oxygen vacancy concentration.[Figure not available: see fulltext.

  10. The effects of ZnO buffer layers on the properties of phosphorus doped ZnO thin films grown on sapphire by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, K-W; Lugo, F J; Lee, J H; Norton, D P

    2012-01-01

    The properties of phosphorus doped ZnO thin films grown on sapphire by pulsed laser deposition were examined, specifically focusing on the effects of undoped ZnO buffer layers. In particular, buffer layers were grown under different conditions; the transport properties of as-deposited and rapid thermal annealed ZnO:P films were then examined. As-deposited films showed n-type conductivity. After rapid thermal annealing, the film on buffer layer grown at a low temperature showed the conversion of carrier type to p-type for specific growth conditions while the films deposited on buffer layer grown at a high temperature remained n-type regardless of growth condition. The films deposited on buffer layer grown at a low temperature showed higher resistivity and more significant change of the transport properties upon rapid thermal annealing. These results suggest that more dopants are incorporated in films with higher defect density. This is consistent with high resolution x-ray diffraction results for phosphorus doped ZnO films on different buffer layers. In addition, the microstructure of phosphorus doped ZnO films is substantially affected by the buffer layer.

  11. Dye sensitized solar cell based on environmental friendly eosin Y dye and Al doped titanium dioxide nano particles

    Science.gov (United States)

    Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.

    2018-03-01

    Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.

  12. Ultralow Self-Doping in 2D Hybrid Perovskite Single Crystals

    KAUST Repository

    Peng, Wei; Yin, Jun; Ho, Kang-Ting; Ouellette, Olivier; de Bastiani, Michele; Banavoth, Murali; El Tall, Omar; Shen, Chao; Miao, Xiaohe; Pan, Jun; Alarousu, Erkki; He, Jr-Hau; Ooi, Boon S.; Mohammed, Omar F.; Sargent, Edward H.; Bakr, Osman

    2017-01-01

    -processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 (n=1, 2, and 3)—over three orders

  13. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  14. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    Science.gov (United States)

    Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.

    2009-05-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.

  15. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  16. HOMO-LUMO analysis of multi walled carbon nanotubes doped Tetrafluoro Phthalate crystals for nonlinear optical applications

    Science.gov (United States)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2018-01-01

    The MWCNTs doped Tetrafluoro Phthalate (C6H2F4O4) precious stones are constantly having higher transmission rate contrasted with immaculate Tetrafluoro Phthalate crystal. The dependability of Tetrafluoro Phthalate crystal was enhanced by doping MWCNTs.The basic, synthetic, optical, mechanical and non-direct optical properties of the doped precious crystals were dissected with the portrayal concentrates, for example, powder XRD, FT-IR, UV-Visible, Hardness and SHG estimations individually. The dopants are relied upon to substitute the carbon iotas in the Tetrafluoro Phthalate grid because of their change of valency and in addition vicinity of ionic sweep. The strength and charge delocalization of the particle were additionally concentrated on by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the atom. Atomic electrostatic potential has been dissected. The SHG productivity of the immaculate and colors doped TFP crystals were additionally contemplated utilizing Nd:YAG Q-exchanged laser.

  17. CRYSTAL-QUASICHEMICAL ANALYSIS OF DEFECT SUBSYSTEM OF DOPED PbTe: Sb CRYSTALS AND Pb-Sb-Te SOLID SOLUTIONS

    Directory of Open Access Journals (Sweden)

    D.M. Freik

    2014-05-01

    Full Text Available Within crystalquasichemical formalism models of point defects of crystals in the Pb-Sb-Te system were specified. Based on proposed crystalquasichemical formulae of antimony doped crystals PbTe:Sb amphoteric dopant effect was explained. Mechanisms of solid solution formation for РbТе-Sb2Те3: replacement of antimony ions lead sites  with the formation of cation vacancies  (I or neutral interstitial tellurium atoms  (II were examined. Dominant point defects in doped crystals PbTe:Sb and РbТе-Sb2Те3 solid solutions based on p-PbTe were defined. Dependences of concentration of dominant point defects, current carriers and Hall concentration on content of dopant compound and the initial deviation from stoichiometry in the basic matrix were calculated.

  18. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication

    International Nuclear Information System (INIS)

    Duan Xuanming; Sun Hongbo; Kaneko, Koshiro; Kawata, Satoshi

    2004-01-01

    We have investigated two-photon polymerization of metal ions doped acrylate monomers and oligomers which is applied for three-dimensional (3D) micro/nano-structure fabrication. Titanium (IV) ions doped urethane acrylate photopolymerizable resins were synthesized, and their optical and polymerization properties were investigated. The resolution of two-photon polymerization for micro/nanofabrication was evaluated. Titanium dioxide (TiO 2 ) nanoparticles were generated in the polymer matrix of micron-sized polymer structures. A 3D diamond photonic crystal structure, which consisted of polymer composite materials of TiO 2 nanoparticles, was successfully fabricated by direct laser writing and its photonic bandgap was confirmed. This work would give us a new solution for producing 3D micro/nanodevices of functional polymer composite materials

  19. Development of Cr,Nd:GSGG laser as a pumping source of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Arisawa, Takashi

    1999-08-01

    Since efficiency of Cr,Nd doped gadolinium scandium gallium garnet (GSGG) laser is in principle higher than that of Nd:YAG laser, it can be a highly efficient pumping source for Ti:sapphire laser. We have made GSGG laser, and measured its oscillation properties. It was two times more efficient than Nd:YAG laser at free running mode operation. At Q-switched mode operation, fundamental output of 50 mJ and second harmonics output of 8 mJ were obtained. The developed laser had appropriate spatial profile, temporal duration, long time stability for solid laser pumping. Ti:sapphire laser oscillation was achieved by the second harmonics of GSGG laser. (author)

  20. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  1. Enhanced photorefractive properties in Hf, Ce and Cu co-doped LiNbO{sub 3} crystals for holographic application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao, E-mail: tzhang_hit02@yahoo.com [Key Laboratory of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); College of Science, Harbin Engineering University, Harbin 150001 (China); Postdoctoral Research Station of Mechanical Engineering, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001 (China); Wang, Xin; Geng, Tao; Tong, Chengguo [Key Laboratory of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); College of Science, Harbin Engineering University, Harbin 150001 (China); Kang, Chong [Key Laboratory of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); College of Science, Harbin Engineering University, Harbin 150001 (China); Postdoctoral Research Station of Mechanical Engineering, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2015-04-25

    Graphical abstract: Correlation spots of 200 holograms in a Hf, Ce and Cu co-doped LiNbO{sub 3}. - Highlights: • Several doped LiNbO{sub 3} crystals with various level of Hf doping were grown by Cz method. • IR peak shift is attributed to the complex defect change at different level of Hf. • Enhanced photorefractive properties have been got with higher Hf-doping level. • Reduced defect and increased photoconductivity are responsible for optical properties. • 200 holograms’ experiment is realized in a coherent volume 0.073 cm{sup 3}. - Abstract: Hf, Ce and Cu co-doped LiNbO{sub 3} crystals with various level of Hf doping were grown in air by a conventional Cz method. The infrared spectra were measured to discuss the defect structures and the mechanism of the absorption peak shift in these crystals. The light-induced scattering of the crystals was evaluated by the transmitted light method. The influence of the Hf-doping level on the photorefractive properties of Hf, Ce and Cu co-doped LiNbO{sub 3} crystals was studied via two-beam coupling. It is found that proper doping Hf is an efficient method to enhance the comprehensive photorefractive properties of the LiNbO{sub 3}. Using one of these crystals as medium, 200 holograms storage and correlation experiments based on angle fractal multiplexing have been realized in a coherent volume 0.073 cm{sup 3}. Moreover the diffraction efficiency is uniform and the storage density has reached 2.2 Gb/cm{sup 3}.

  2. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...... laser was coupled into the fiber together with the pulsed pump laser of 2.3 mW and we have demonstrated a modulation frequency of up to 2 kHz....

  3. Improvement of several properties of lead tungstate crystals with different doping ions

    CERN Document Server

    Auffray, Etiennette; Baccaro, Stefania; Cecilia, Angelica; Dafinei, Ioan; Diemoz, Marcella; Jarolímek, O; Korzhik, Mikhail; Lecoq, Paul; Nikl, M

    1998-01-01

    A very good radiation resistance of Lead Tungstate crystals is mandatory for their use in the high precision electromagnetic calorimeter of the CMS experiment at LHC. Since the beginning of 1996 we have organised systematic investigations of the parameters influencing the radiation hardness of this crystal. Two classes of parameters have been particularly studied, the first one related to the control of the stoichiometry and structure associated defects, the second one connected with the suppression and the charge compensation of existing defects with different kinds of doping ions. This paper reports about the second part of this study and complements a first paper where the role of the stoichiometry was already discussed. Results of tests are given on a significant statistical sample of full size crystals ( 23cm) which show a considerable improvement in the optical properties and the radiation resistance of appropriately doped crystals.

  4. Crystal growth and doping

    International Nuclear Information System (INIS)

    Paorici, C.

    1980-01-01

    Section 1 contains a self-consistent review of the basic growth features. After a short introduction concerning the driving force acting in a crystallization process, three main topics are broadly discussed: (i) interface kinetics; (ii) transport kinetics, and (iii) growth stability conditions. On point (i), after definition of the nature of interface, using Temkin's model, the growth mechanisms predicted by Burton, Cabrera and Frank (BCF) and bidimensional nucleation theories are fully developed. On points (ii) and (iii), the differential equations of the constitutional (concentration) and thermal fields are presented and discussed in terms of relevant approximations, suitable boundary conditions and limit values expected in order to have growth stability. Section 2 reports various experimental procedures for growing bulk crystals from the melt, from solutions and from the vapour phase. The basic concepts of Section 1 are amply employed for a critical discussion of possibilities, advantages and drawbacks of the methods described. Along the same lines, in Section 3 the principal epitaxial deposition procedures are highlighted. Section 4 contains a brief account of doping and of stoichiometry-defect control procedures. There is a long, carefully chosen list of bibliographical references. (author)

  5. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    International Nuclear Information System (INIS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-01-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF 6 crystal. Eu doped and Eu, Y co-doped LiCaAlF 6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded

  6. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  7. Transformation of a Plane Wavefront in Hemispherical Lenses Made of Leuco-Sapphire

    Science.gov (United States)

    Vetrov, V. N.; Ignatenkov, B. A.; Yakobson, V. E.

    2018-01-01

    An algorithm for wavefront calculation of ordinary and extraordinary waves after propagation through hemispherical components made of a uniaxial crystal is developed. The influence of frequency dispersion of n o and n e , as well as change in the direction of the optic axis of the crystal, on extraordinary wavefront in hemispheres made of from leuco-sapphire and a plastically deformed analog thereof is determined.

  8. Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks

    International Nuclear Information System (INIS)

    Khulbe, Pramod K.; Hurst, Terril; Mansuripur, Masud; Horie, Michikazu

    2002-01-01

    We report laser-induced crystallization behavior of binary Sb-Te and ternary Ge-doped eutectic Sb70Te30 thin film samples in a typical quadrilayer stack as used in phase-change optical disk data storage. Several experiments have been conducted on a two-laser static tester in which one laser operating in pulse mode writes crystalline marks on amorphous film or amorphous marks on crystalline film, while the second laser operating at low-power cw mode simultaneously monitors the progress of the crystalline or amorphous mark formation in real time in terms of the reflectivity variation. The results of this study show that the crystallization kinetics of this class of film is strongly growth dominant, which is significantly different from the crystallization kinetics of stochiometric Ge-Sb-Te compositions. In Sb-Te and Ge-doped eutectic Sb70Te30 thin-film samples, the crystallization behavior of the two forms of amorphous states, namely, as-deposited amorphous state and melt-quenched amorphous state, remains approximately same. We have also presented experiments showing the effect of the variation of the Sb/Te ratio and Ge doping on the crystallization behavior of these films

  9. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  10. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  11. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  12. Synthesis of cerium and nickel doped titanium nanofibers for hydrolysis of sodium borohydride.

    Science.gov (United States)

    Tamboli, Ashif H; Gosavi, S W; Terashima, Chiaki; Fujishima, Akira; Pawar, Atul A; Kim, Hern

    2018-07-01

    A recyclable titanium nanofibers, doped with cerium and nickel doped was successfully synthesized by using sol-gel and electrospinning method for hydrogen generation from alkali free hydrolysis of NaBH 4 . The resultant nanocomposite was characterized to find out the structural and physical-chemical properties by a series of analytical techniques such as FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscope), EDX (energy-dispersive X-ray spectroscopy),N 2 adsorption-desorption and BET (Brunauer-Emmett-Teller), etc. The results revealed that cerium and nickel nanoparticles were homogeneously distributed on the surface of the TiO 2 nanofibers due to having similar oxidation state and atomic radium of TiO 2 nanofibers with CeO 2 and NiO for the effective immobilization of metal ions. The NiO doped catalyst showed superior catalytic performance towards the hydrolysis reaction of NaBH 4 at room temperature. These catalysts have ability to produce 305 mL of H 2 within the time of 160 min at room temperature. Additionally, reusability test revealed that the catalyst is active even after five runs of hydrolytic reaction, implying the as-prepared NiO doped TiO 2 nanofibers could be considered as a potential candidate catalyst for portable hydrogen fuel system such as PEMFC (proton exchange membrane fuel cells). Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  14. Thermal, dielectric studies on pure and amino acid ( L-glutamic acid, L-histidine, L-valine) doped KDP single crystals

    Science.gov (United States)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-05-01

    Amino acids ( L-glutamic acid, L-histidine, L-valine) doped potassium dihydrogen phospate crystals are grown by solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mol% to 10 mol%. The solubility data for all dopants concentration were determined. There is variation in pH value and hence, there is habit modification of the grown crystals were characterized with UV-VIS, FT-IR studies, SHG trace elements and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. UV-Visible spectra confirm the improvement in the transparency of these crystals on doping metal ions. FT-IR spectra reveal strong absorption band between 1400 and 1600 cm -1 for metal ion doped crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material and it also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  15. Bulk growth of undoped and Nd3+ doped zinc thiourea chloride (ZTC) monocrystal: Exploring the remarkably enhanced structural, optical, electrical and mechanical performance of Nd3+ doped ZTC crystal for NLO device applications

    Science.gov (United States)

    Anis, Mohd; Muley, Gajanan. G.

    2017-05-01

    In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption

  16. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    Science.gov (United States)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  17. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  18. Large circular dichroism and optical rotation in titanium doped chiral silver nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Titus, Jitto; Perera, A.G. Unil [Department of Physics and Astronomy, Optoelectronics Laboratory, GSU, Atlanta, GA (United States); Larsen, George; Zhao, Yiping [Department of Physics and Astronomy, Nanolab, UGA, Athens, GA (United States)

    2016-10-15

    The circular dichroism of titanium-doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. These films are found to have significant circular polarization effects across broad ranges of the visible to NIR spectrum, including large values for optical rotation. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Thus, the morphological control of the optical activity in these nanostructures demonstrates significant optimization capability of the GLAD technique for fabricating chiral plasmonic materials. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. The characterization of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Huang, Y.S.; Tiong, K.K.; Liang, C.H.; Chen, C.H.

    2007-01-01

    Single crystals of WS 2 doped with gold (WS 2 :Au) have been grown by the chemical vapour transport method using iodine as a transporting agent. Hall measurements indicate that the samples are p-type in nature. The doping effect of the materials are characterized by conductivity, surface photovoltage and piezo reflectance measurements. The higher conductivity respect to that of the undoped one suggests that more charge carriers are available for conduction in the doped compound. The surface photovoltage spectrum reveals an impurity level located below the A exciton. The direct band-edge excitonic transition energies for WS 2 :Au show redshifts and the broadening parameters of the excitonic transition features increase due to impurity scattering. (authors)

  20. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  1. Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Gueell, F.; Mateos, X.; Gavalda, Jna.; Sole, R.; Aguilo, M.; Diaz, F.; Massons, J.

    2004-01-01

    Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO 4 ) 2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO 4 ) 2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3 F 2 + 3 F 3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3 H 6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength

  2. Specific features of doping with antimony during the ion-beam crystallization of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A. S., E-mail: as.pashchenko@gmail.com; Chebotarev, S. N.; Lunin, L. S. [Russian Academy of Sciences, Southern Scientific Center (Russian Federation); Irkha, V. A. [Special Engineering and Technology Department “Inversiya” Ltd. (Russian Federation)

    2016-04-15

    A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 10{sup 18} cm{sup –3} are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~10{sup 0} to ~10{sup –3}.

  3. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Erbium medium temperature localised doping into lithium niobate and sapphire: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Macková, Anna; Peřina, Vratislav; Červená, Jarmila; Čapek, P.; Schrofel, J.; Špirková, J.; Oswald, Jiří

    90-91, - (2003), s. 559-564 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z1048901 Keywords : lithium niobate * sapphire * erbium Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2003

  5. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF{sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kentaro, E-mail: ken-fukuda@tokuyama.co.jp [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan)

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF{sub 6} crystal. Eu doped and Eu, Y co-doped LiCaAlF{sub 6} were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  6. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  7. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  8. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    Science.gov (United States)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  9. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    International Nuclear Information System (INIS)

    Prasanyaa, T; Haris, M; Amgalan, M; Mathivanan, V; Jayaramakrishnan, V

    2013-01-01

    Optically transparent Cu 2+ and Cd 2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet–visible–near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu 2+ and Cd 2+ . The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu 2+ doped LATF is 2.8 times greater and Cd 2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus. (paper)

  10. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-01

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.

  11. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface

    International Nuclear Information System (INIS)

    Lim, P.Y.; Lin, F.Y.; Shih, H.C.; Ralchenko, V.G.; Varnin, V.P.; Pleskov, Yu.V.; Hsu, S.F.; Chou, S.S.; Hsu, P.L.

    2008-01-01

    The film quality and electrochemical properties of BDD (boron-doped diamond) thin films grown by hot-filament chemical vapor deposition technique on titanium substrates that had been subjected to a range of pre-treatment processes were evaluated. The pre-roughened Ti-substrates are shown to support more adherent BDD films. It is evident that acid-etching the Ti-substrate involves surface hydrogenation that enhances nucleation and formation of diamond thereon. The prepared BDD film exhibits wide potential window and electrochemical reversibility. It also demonstrated a better long-term electrochemical stability based on the low variation in voltametric background current upon the exposing of the electrodes to repeated cycles of electrochemical metal deposition/stripping process

  12. Investigation of the crystallization process of titanium alloy ingots produced by vacuum arc melting method

    International Nuclear Information System (INIS)

    Tetyukhin, V.V.; Kurapov, V.N.; Trubin, A.N.; Demchenko, M.V.; Lazarev, V.G.; Ponedilko, S.V.; Dubrovina, N.T.; Kurapova, L.A.

    1978-01-01

    The process of crystallization and hardening of the VT3-1 and VT9 titanium alloys ingots during the vacuum-arc remelting (VAR) has been studied. In order to investigate the kinetics of the hole shape changing and the peculiarities of the ingot formation during the VAR, the radiography method has been used. It is established that the VAR of the titanium alloy ingots is basically a continuous process. An intense heating of the liquid bath mirror and the availability of high temperature gradients in the hole are the typical features of the VAR process

  13. A comparative study of strontium and titanium doped mullite in PVDF matrix and their phase behavior, microstructure and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Biplab Kumar; Roy, Debasis; Batabyal, Sreejita [Department of Physics, Jadavpur University, Kolkata 700 032 (India); Bhattacharya, Alakananda [West Bengal State University, Kolkata (India); Nandy, Papiya [Department of Physics, Jadavpur University, Kolkata 700 032 (India); Das, Sukhen, E-mail: sdasphysics@gmail.com [Department of Physics, Jadavpur University, Kolkata 700 032 (India); Indian Institute of Engineering Science and Technology, Shibpur (India)

    2017-02-01

    We have discussed the dielectric behavior, phase behavior, microstructure and electrical properties of strontium and titanium induced aluminno-silicate ceramic composite system doped in PVDF (Polyvinyliden fluoride) matrix, with different molar concentration of titanium and strontium salts prepared via sol-gel route. The frequency dispersions of permittivity, conductivity and dissipation factor were investigated in detail. This paper demonstrates that the loading of a conductive component into a highly insulating matrix is an effective way to fabricate composites with simultaneously high permittivity. The incorporation of these metal doped mullite composites on PVDF can be used as dielectric material for the fabrication of high charge storing multilayer capacitors and also a promising candidate for electronic industries. - Highlights: • We have synthesized mullite composites with high dielectric constants. • High charge storing multilayer capacitors require a material with high dielectric constant. • The material developed will be perfect for the applications of embedded capacitors. • The material we have synthesized is a promising candidate for electronic industries.

  14. Crystal growth, characterization and theoretical studies of alkaline earth metal-doped tetrakis(thiourea)nickel(II) chloride.

    Science.gov (United States)

    Agilandeshwari, R; Muthu, K; Meenatchi, V; Meena, K; Rajasekar, M; Aditya Prasad, A; Meenakshisundaram, S P

    2015-02-25

    The influence of Sr(II)-doping on the properties of tetrakis(thiourea)nickel(II) chloride (TTNC) has been described. The reduction in the intensity observed in powder X-ray diffraction of doped specimen and slight shifts in vibrational frequencies of doped specimens confirm the lattice stress as a result of doping. Surface morphological changes due to doping of the Sr(II) are observed by scanning electron microscopy. The incorporation of metal into the host crystal lattice was confirmed by energy dispersive X-ray spectroscopy. Lattice parameters are determined by single crystal XRD analysis. The thermogravimetric and differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. The nonlinear optical properties of the doped and undoped specimens were studied. Theoretical calculations were performed using the Density functional theory (DFT) method with B3LYP/LANL2DZ as the basis set. The molecular geometry and vibrational frequencies of TTNC in the ground state were calculated and the observed structural parameters of TTNC are compared with parameters obtained from single crystal X-ray studies. The atomic charge distributions are obtained by Mulliken charge population analysis. The first-order molecular hyperpolarizability, polarizability and dipole moment were derived. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development of Auto-Seeding System Using Image Processing Technology in the Sapphire Crystal Growth Process via the Kyropoulos Method

    Directory of Open Access Journals (Sweden)

    Churl Min Kim

    2017-04-01

    Full Text Available The Kyropoulos (Ky and Czochralski (Cz methods of crystal growth are used for large-diameter single crystals. The seeding process in these methods must induce initial crystallization by initiating contact between the seed crystals and the surface of the melted material. In the Ky and Cz methods, the seeding process lays the foundation for ingot growth during the entire growth process. When any defect occurs in this process, it is likely to spread to the entire ingot. In this paper, a vision system was constructed for auto seeding and for observing the surface of the melt in the Ky method. An algorithm was developed to detect the time when the internal convection of the melt is stabilized by observing the shape of the spoke pattern on the melt material surface. Then, the vision system and algorithm were applied to the growth furnace, and the possibility of process automation was examined for sapphire growth. To confirm that the convection of the melt was stabilized, the position of the island (i.e., the center of a spoke pattern was detected using the vision system and image processing. When the observed coordinates for the center of the island were compared with the coordinates detected from the image processing algorithm, there was an average error of 1.87 mm (based on an image with 1024 × 768 pixels.

  16. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2014-01-08

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO 2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti3+ can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands. © 2013 American Chemical Society.

  17. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature

  18. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  19. Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures

    Science.gov (United States)

    Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong

    2018-02-01

    (11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.

  20. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  1. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  2. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  3. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  4. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  5. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  6. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  7. Optical properties of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Hsu, H.P.; Huang, Y.S.; Liang, C.H.; Tiong, K.K.; Du, C.H.

    2008-01-01

    Single crystals of WS 2 doped with gold have been grown by the chemical vapour transport method using iodine as a transporting agent. X-ray diffraction (XRD) pattern analysis revealed presence of mixed three-layer rhombohedral (3R) and two-layer hexagonal (2H) polytypes for the doped crystals while the undoped one shows only 2H form. Hall measurements indicate that the samples are p-type in nature. The doping effects of the materials are characterized by surface photovoltage (SPV), photoconductivity (PC) and piezoreflectance (PzR) measurements. Room temperature SPV and PC spectra reveal a feature located at ∼60 meV below the A exciton and has been tentatively assigned to be an impurity level caused by Au dopant. Excitonic transition energies of the A, B, d and C excitons detected in PzR spectra show red shift due to the presence of a small amount of Au and the broadening parameters of the excitonic transition features increase due to impurity scattering. The values of the parameters that describe the electron (exciton)-phonon interaction of excitonic transitions of A-B are about two times larger than that of d-C excitonic pairs. The possible assignments of the different origins of A-B and d-C excitonic pairs have been discussed

  8. Crystallization characteristics of Mg-doped Ge2Sb2Te5 films for phase change memory applications

    International Nuclear Information System (INIS)

    Fu Jing; Shen Xiang; Nie Qiuhua; Wang Guoxiang; Wu Liangcai; Dai Shixun; Xu Tiefeng; Wang, R.P.

    2013-01-01

    Highlights: ► Mg-doped Ge 2 Sb 2 Te 5 (GST) phase change films with higher resistance and better thermal stability have been proposed. ► The increase of Mg content result in an enhancement in crystallization temperature, activation energy and electrical resistance. ► The proper Mg addition in GST can lead to a one-step crystallization process from amorphous to faced-centered cubic (fcc) phase. ► The formation of covalent Mg-Sb and Mg-Te bonds contribute to the enhancement thermal stability in Mg-doped GST films. - Abstract: Mg-doped Ge 2 Sb 2 Te 5 (GST) films with different Mg doping concentrations have been prepared, and their crystallization behavior, structure and electrical properties have been systematically investigated for phase-change memory applications. The results show that the addition of Mg into GST films could result in an enhancement in crystallization temperature, activation energy and electrical resistance compared with the conventional GST films, indicating that a good amorphous thermal stability. On the other hand, the proper Mg concentration ranging from 13.6 to 31.1 at.% can lead to a one-step crystallization process from amorphous to faced-centered cubic (fcc) phase and suppress the formation of the hexagonal close-packed (hcp) crystalline phase. X-ray photoelectron spectra (XPS) further confirm that the formation of covalent Mg-Sb and Mg-Te bonds contribute to the enhanced thermal stability in Mg-doped GST films.

  9. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  10. Crystal growth and properties of PbI2 doped with Fe and Ni

    International Nuclear Information System (INIS)

    Rybak, O.V.; Lun', Yu.O.; Bordun, I.M.; Omelyan, M.F.

    2005-01-01

    A procedure is described for doping PbI 2 monocrystals with Fe and Ni during vapor-phase growth in a closed system in the presence of excess iodine. The rate of mass transfer in the system and the doping level of the crystals are shown to be governed by the dopant content in the source material and the source temperature. The effect of Fe and Ni doping on the low-temperature (5 K) exciton photoluminescence spectrum of PbI 2 is discussed [ru

  11. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  12. Electrolytic coloration of O22--doped NaCl crystals

    International Nuclear Information System (INIS)

    Qin Fang; Gu Hongen; Song Cuiying; Wang Na; Guo Meili; Wang Fen; Liu Jia

    2007-01-01

    O 2 2- -doped NaCl crystals are colored electrolytically by using a pointed cathode and a flat anode at various temperatures and voltages, which mainly benefit from appropriate coloration temperatures and voltages as well as anode structure of used electrolysis apparatus. Characteristic OH - , U, V 2 m , U A , V 2 , V 3 , O 2- -V a + complex, F, R 1 , R 2 and M absorption bands are observed in absorption spectra of the colored crystals. Production and conversion of color centers in electrolytic coloration is explained. Current-time curves for electrolytic colorations and their relationships with electrolytic colorations were given

  13. Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers

    International Nuclear Information System (INIS)

    Syvorotka, I.I.; Sugak, D.; Wierzbicka, A.; Wittlin, A.; Przybylińska, H.; Barzowska, J.; Barcz, A.; Berkowski, M.; Domagała, J.; Mahlik, S.; Grinberg, M.; Ma, Chong-Geng

    2015-01-01

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce 3+ related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce 3+ multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce 3+ by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG

  14. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    Science.gov (United States)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  15. Influence of microgravity on Ce-doped Bi12 SiO20 crystal defect

    Indian Academy of Sciences (India)

    TECS

    studied by comparing space grown BSO crystal with ground grown one. These results show ... fractive properties (Aldrich et al 1971; Peltier and. Micheron ... The shape of interface changes from concave to convex by suppressing ... cations. Figure 1. Parts of Ce doped BSO crystals: (a) space growth and (b) ground growth.

  16. Scintillation and optical properties of Pb-doped YCa{sub 4}O(BO{sub 3}){sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka, E-mail: fuji-you@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); JSPS, 8 Ichibanmachi, Chiyoda-ku, Tokyo 102-8472 (Japan); Yanagida, Takayuki; Yokota, Yuui [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tokuyama Corporation, 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Totsuka, Daisuke [Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho Tatebayashi Gunma (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-10-01

    This communication reports optical properties and radiation responses of Pb{sup 2+} 0.5 and 1.0 mol%-doped YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystals grown by the micro-pulling-down ({mu}-PD) method for neutron scintillator applications. The crystals had no impurity phases according to the results of X-ray powder diffraction. These Pb{sup 2+}-doped crystals demonstrated blue-light luminescence at 330 nm because of Pb{sup 2+1}S{sub 0}-{sup 3}P{sub 0,1} transition in the photoluminescence spectra. The main emission decay component was determined to be about 250-260 ns under 260 nm excitation wavelength. When irradiated by a {sup 252}Cf source, the relative light yield of 0.5% Pb{sup 2+}-doped crystal was about 300 ph/n that was determined using the light yield of a reference Li-glass scintillator.

  17. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  18. Induced Magnetic Anisotropy in Liquid Crystals Doped with Resonant Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vicente Marzal

    2016-01-01

    Full Text Available Currently, there are many efforts to improve the electrooptical properties of liquid crystals by means of doping them with different types of nanoparticles. In addition, liquid crystals may be used as active media to dynamically control other interesting phenomena, such as light scattering resonances. In this sense, mixtures of resonant nanoparticles hosted in a liquid crystal could be a potential metamaterial with interesting properties. In this work, the artificial magnetism induced in a mixture of semiconductor nanoparticles surrounded by a liquid crystal is analyzed. Effective magnetic permeability of mixtures has been obtained using the Maxwell-Garnett effective medium theory. Furthermore, permeability variations with nanoparticles size and their concentration in the liquid crystal, as well as the magnetic anisotropy, have been studied.

  19. Thickness-dependent photovoltaic effects in miscut Nb-doped SrTiO3 single crystals

    International Nuclear Information System (INIS)

    Yue Zengji; Zhao Kun; Zhao Songqing; Lu Zhiqing; Li Xiaoming; Ni Hao; Wang Aijun

    2010-01-01

    The photovoltaic effects of Nb-doped SrTiO 3 single crystals with different thicknesses were investigated under the illumination of ultraviolet pulsed lasers. The peak photovoltage increased and then decreased quickly with the decrease in crystal thickness, and a maximum photovoltage occurred for the 180 μm-thick crystal. The photovoltaic response time decreased monotonically with decreasing crystal thickness. The present results suggested the promising potential of reducing crystal thickness in high sensitivity detectors with fast response.

  20. Photoluminescence of Copper-Doped Lithium Niobate Crystals

    Science.gov (United States)

    Gorelik, V. S.; Pyatyshev, A. Yu.; Sidorov, N. V.

    2018-05-01

    The photoluminescence (PL) of copper-doped lithium niobate single crystals is studied using different UV-Vis light-emitting diodes and a pulse-periodic laser with a wavelength of 266 nm as excitation radiation sources. With the resonance excitation from a 527-nm light-emitting diode, the intensity of PL increases sharply (by two orders of magnitude). When using a 467-nm light-emitting diode for excitation, the PL spectrum is characterized by the presence of multiphonon lines in the range of 520-620 nm.

  1. Contribution to the microwave characterisation of superconductive materials by means of sapphire resonators

    International Nuclear Information System (INIS)

    Hanus, Xavier

    1993-01-01

    The objective of this research thesis is to find a compact resonant structure which would allow the residual surface impedance of superconductive samples to be simply, quickly and economically characterised. The author first explains why he decided to use a sapphire single-crystal as inner dielectric, given some performance reached by resonant structures equipped with such inner dielectrics, and given constraints adopted from the start. He explains the origin of microwave losses which appear in this type of resonant structure, i.e. respectively the surface impedance as far as metallic losses are concerned, and the sapphire dielectric loss angle for as far as dielectric losses are concerned. The experimental installation and the principle of microwave measurements are described. The performance of different possible solutions of resonant structures from starting criteria is presented. The solution of the cavity-sapphire with a TE 011 resonant mode is derived [fr

  2. Exploiting the natural doping gradient of Nd:YLF crystals for high-power end pumped lasers

    CSIR Research Space (South Africa)

    Bollig, C

    2008-01-01

    Full Text Available decided to use crystals of a doping concentration below the 0.5% previously used. In addition, researchers decided to exploit the natural doping gradient along the length of the boule, which is especially pronounced at low concentrations but commonly...

  3. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  4. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  5. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    DEFF Research Database (Denmark)

    Selleri, Stefano; Poli, Federica; Passaro, Davide

    2009-01-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which...... can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Yb-doped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has...

  6. Influence of MgSO{sub 4} doping on the properties of zinc tris–thiourea sulphate (ZTS) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Selvapandiyan, M., E-mail: mselvapandiyan@rediffmail.com [Department of Physics, Sri Vidya Mandir Arts and Science College, Uthangarai 635 207 (India); Arumugam, J. [Department of Physics, Sri Vidya Mandir Arts and Science College, Uthangarai 635 207 (India); Sundaramoorthi, P. [Department of Physics, Thiruvalluvar Government Arts College, Rasipuram 637 401 (India); Sudhakar, S. [CSIR–National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India)

    2013-12-15

    Highlights: •The influence of MgSO{sub 4} doping on the properties of ZTS single crystals grown at room temperature. •Thermal stability of the crystals increased with incorporation of Mg atom. •Energy band gap was estimated from UV–vis spectra. •ZTS is a potential material for frequency conversion. •Both pure and doped ZTS crystals are belonging to category of typical insulating materials. -- Abstract: The influence of MgSO{sub 4} doping on the properties of zinc tris–thiourea sulphate single crystals grown at room temperature by slow evaporation solution growth technique was studied. Powder XRD analysis confirmed the orthorhombic crystal structure with noncentrosymmetric space group Pca2{sub 1}. The mechanical properties of the grown crystals were analysed by Vicker’s microhardness method. Functional groups present in the materials were identified by FTIR spectral analysis in the range between 4000 and 400 cm{sup −1}. The UV–Vis spectrum indicates that the UV cut-off wavelength of the crystals has less than 297 nm. The thermal stability of the grown crystals was determined with the aid of thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Second order nonlinear optical behaviour of the grown crystals have been confirmed by Kurtz powder second harmonic generation (SHG) test.

  7. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    OpenAIRE

    Jianhong Zhou; Lingzhou Zhao

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited t...

  8. Effect of L-Cysteine doping on growth and some characteristics of potassium dihydrogen phosphate single crystals

    Science.gov (United States)

    Mahadik, Ashwini; Soni, P. H.; Desai, C. F.

    2017-12-01

    Among quite a number of technologically important NLO materials, Potassium Dihydrogen Phosphate (KDP) is one of the most favourable ones for second harmonic generation applications, such as in electro-optic modulators, parametric oscillators and harmonic generators. The authors report here their studies on KDP crystals doped with L-Cysteine (1 mol% and 2 mol%). The dopant inclusion in the crystals was confirmed using Fourier transform infrared (FT-IR) spectroscopy and Powder X-Ray Diffraction (XRD). The XRD results also confirm the tetragonal structure with lattice parameters a = b = 7.45 Å and c = 6.98 Å. The presence of functional groups of crystals was analyzed using the FTIR spectra. For band gap evaluation, UV-Vis spectra were used and it was found to be 3.41 eV, 4.40eVand 4.50 eV, respectively in the cases of pure KDP, 1 mol% and 2 mol% L-Cysteine dopings. The spectra quality indicates good transparency of the doped crystals in the visible region, a feature quite desirable for applications in optoelectronics.

  9. Refractometry of TGS crystals doped with L-threonine impurity under uniaxial pressure

    Energy Technology Data Exchange (ETDEWEB)

    Stadnyk, V. I., E-mail: vasylstadnyk@ukr.net; Kiryk, Yu. I. [Lviv National University (Ukraine)

    2013-07-15

    The temperature and spectral dependences of the refractive indices of triglycine sulphate (TGS) crystals doped with L-threonine impurity have been investigated. It is established that the introduction of an impurity weakens the temperature dependence of refractive indices. The electronic polarizability, refractions, and parameters of UV oscillators of mechanically deformed impurity crystals are calculated. The temperature coefficients of the phase transition shift are determined.

  10. Refractometry of TGS crystals doped with L-threonine impurity under uniaxial pressure

    International Nuclear Information System (INIS)

    Stadnyk, V. I.; Kiryk, Yu. I.

    2013-01-01

    The temperature and spectral dependences of the refractive indices of triglycine sulphate (TGS) crystals doped with L-threonine impurity have been investigated. It is established that the introduction of an impurity weakens the temperature dependence of refractive indices. The electronic polarizability, refractions, and parameters of UV oscillators of mechanically deformed impurity crystals are calculated. The temperature coefficients of the phase transition shift are determined

  11. Electrical Properties of Zn-Phthalocyanine and Poly (3-hexylthiophene Doped Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Y. Karakuş

    2011-01-01

    Full Text Available An E7 coded nematic liquid crystal was doped with zinc phthalocyanine and poly (3-hexylthiophene. A variety of properties including relaxation time, absorption coefficient, and critical frequency of this doped system were investigated using impedance spectroscopy. The doped systems displayed increased absorption coefficients in the range 0.22–0.55 and relaxation times from 5.05×10−7 s to 3.59×10−6 s with a decrease in the critical frequency from 3.54 MHz to 2.048 MHz.

  12. An injection modelocked Ti-sapphire laser for synchronous photoinjection

    International Nuclear Information System (INIS)

    Hovater, C.; Poelker, M.

    1997-01-01

    The CEBAF 4 GeV accelerator has recently begun delivering spin-polarized electrons for nuclear physics experiments. Spin-polarized electrons are emitted from a GaAs photocathode that is illuminated with pulsed laser light from a diode laser system synchronized to the injector chopping frequency (499 MHz). The present diode laser system is compact, reliable and relatively maintenance-free; however, output power is limited to less than 500 mW. In an effort to obtain higher average power and thereby prolong the effective operating lifetime of the source, they have constructed an injection modelocked Ti-sapphire laser with picosecond pulsewidths and gigahertz repetition rates. Modelocked operation is obtained through gain modulation within the Ti-sapphire crystal as a result of injection seeding with a gain-switched diode laser. Unlike conventional modelocked lasers, the pulse repetition rate of this laser can be discretely varied by setting the seed laser repetition rate equal to multiples of the Ti-sapphire laser cavity fundamental frequency. They observe pulse repetition rates from 223 MHz (fundamental) to 1,560 MHz (seventh harmonic) with average output power of 700 mW for all repetition rates. Pulsewidths ranged from 21 to 39 ps (FWHM) under various pump laser conditions

  13. Detection of beryllium treatment of natural sapphires by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  14. Studies on transport properties of copper doped tungsten diselenide single crystals

    Science.gov (United States)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  15. Thermoluminescence studies of Nd doped Bi_4Ge_3O_1_2 crystals irradiated by UV and beta sources

    International Nuclear Information System (INIS)

    Karabulut, Y.; Canimoglu, A.; Ekdal, E.; Ayvacikli, M.; Can, N.; Karali, T.

    2016-01-01

    Thermoluminescence (TL) glow curves of pure and rare earth doped bismuth germanate (BGO) were investigated under UV and beta radiation. The glow curves of pure BGO crystal present different patterns for both kinds of radiation. The TL glow curves of BGO crystals doped with Nd ions are similar to that of pure BGO under UV radiation. The kinetic parameters, kinetic order (b), activation energy (E) and frequency factor (s) of the TL glow curves of pure BGO crystal have been determined by peak shape method. Activation energies of 3 peaks obtained by PS were found to be 1.81, 1.15 and 1.78, respectively. - Highlights: • Thermoluminescence properties of pure and Nd doped BGO crystals. • Irradiated by UV and beta for TL glow curve analysis. • Evaluation of kinetic parameters by PS method.

  16. Investigation of self-frequency doubling crystals, yttrium calcium oxyborate (YCOB), doped with neodymium or ytterbium

    Science.gov (United States)

    Ye, Qing

    1999-09-01

    There is a need for low cost red, green, and blue (RGB) lasers for a number of commercial applications such as high-resolution laser printing, full color laser display. While semiconductor lasers still have both availability (green and blue) and beam quality (red) problems, nonlinear frequency conversion of diode-pumped solid state lasers are good alternatives. Among them, self- frequency doubling is an attractive approach because of its simpler design and lower cost. Unfortunately, few known crystals possess self-frequency doubling property. A newly discovered yttrium calcium oxyborate (YCOB) can fill in the role because it has adequate lasing and nonlinear frequency conversion efficiency. More importantly, YCOB crystal melts congruently so that high quality, large size single crystals can be grown using conventional Czochralski melt pulling technique. The thermal mechanical properties, linear and nonlinear optical properties of YCOB, laser properties of Nd:YCOB and Yb:YCOB crystals were investigated. Based on the calculated second harmonic phase matching angles, Nd:YCOB laser rods were fabricated. Self-frequency doubled green emission with 62 mW output power and red emission with 16 mW output power were successfully demonstrated using diode-pumping. It is the first time to achieve the continuous wave (cw) red lasing in Nd doped rare-earth calcium oxyborates. Rare-earth ions doping in YCOB crystal can not only achieve lasing, but also affect the physical and chemical properties of the crystal. The stability field of YCOB is reduced in proportion to both the ionic size differences from yttrium and doping concentrations of the rare-earth ions. The doping also changes the linear and nonlinear optical properties of the material. For example, the second harmonic conversion efficiency of 20% Yb doped YCOB was enhanced by more than 15% compared to undoped YCOB. The absorption cutoff edge of 20% Yb:YCOB was red- shift by more than 60 nm. Similar effects were observed in

  17. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  18. Recombination luminescence of Cu and/or Ag doped lithium tetraborate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romet, I. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); Aleksanyan, E. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); A. Alikhanyan National Science Laboratory, 2 Br. Alikhanyan Str., 0036 Yerevan (Armenia); Brik, M.G. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); College of Sciences, Chongqing University of Posts and Telecommunications, 400065 Chongqing (China); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Corradi, G. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Kotlov, A. [Photon Science at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Nagirnyi, V., E-mail: vitali.nagirnoi@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); Polgár, K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2016-09-15

    Complex investigations of thermostimulated luminescence (TSL) and radioluminescence properties of Li{sub 2}B{sub 4}O{sub 7} (LTB), LTB:Cu, LTB:Ag and LTB:Cu, Ag crystals suitable for tissue equivalent dosimeters were carried out in the temperature range 4.2–700 K. TSL, cathodoluminescence and X-ray excited luminescence spectra are compared to those measured under photoexcitation. The emission band at 4.6 eV in LTB:Ag is reliably related to Ag{sup +} ions based on the comparison of the results of optical spectroscopy studies and first principle calculations. Energy transfer from the relaxed exited state of the Ag{sup +} ion to the Cu{sup +} ion in double-doped LTB:Cu, Ag crystals is demonstrated. Thermostimulated recombination of charge carriers in irradiated crystals is seen to take place mainly at oxygen sites at low temperatures and at impurity sites at high temperatures. For the first time, the appearance of the low-temperature TSL peak at 90 K is assigned to ionic processes in LTB crystals. The appearance of pyroelectric flashes due to the lattice relaxation in the temperature region 90–240 K is demonstrated and their surface-related nature clarified. In accordance with EPR studies the dosimetric TSL peaks in copper and silver doped LTB crystals are attributed to thermally released electrons recombining with Cu{sup 2+} and Ag{sup 2+} centres.

  19. Characteristics of a Ti:sapphire laser pumped by a Nd:YAG laser and its analysis. Nd:YAG laser reiki Ti:sapphire laser no dosa tokusei to sono kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T.; Masumoto, J.; Mizunami, T.; Maeda, M.; Muraoka, K. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1991-06-29

    Although Ti: Sapphire expects of a possibility of being a light source much superior to a dye laser having been used as a wavelength variable laser for spectral analyses, it has a limitation that it does not oscillate directly in the visible and ultraviolet regions. In order to develop a light source that is synchronizable over ultraviolet-near infrared regions, by means of combining a Ti: Sapphire laser of a high peak power, comprising an oscillator and a multistage amplifier, with a non-linear frequency conversion method for harmonic generation and Raman conversion, a prototype Ti:Sapphire laser that is excited by YAG laser second harmonic, and that synchronizes with a prism was fabricated, and its operational characteristics were investigated. As a result, an output energy of 35.6 mJ at a maximum was obtained at a wavelength of 773 nm against an excitation energy of 129 mJ, a conversion efficiency of 38.2% was obtained against the absorption energy of the crystals, and a continuous synchronism was achieved over 750 to 900 nm. 4 refs., 9 figs., 1 tab.

  20. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  1. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  2. Engineering the switching dynamics of TiO{sub x}-based RRAM with Al doping

    Energy Technology Data Exchange (ETDEWEB)

    Trapatseli, Maria, E-mail: mt3c13@soton.ac.uk; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis [Nano Group, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2016-07-14

    Titanium oxide (TiO{sub x}) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiO{sub x} thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  3. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  4. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    Science.gov (United States)

    Mitzi, D. B.; Lombardo, L. W.; Kapitulnik, A.; Laderman, S. S.; Jacowitz, R. D.

    1990-04-01

    A directional solidification method for growing large single crystals in the Bi2Sr2CaCu2O8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20-25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)×1021 cm-3 (0.34 holes per Cu site) to 4.6(3)×1021 cm-3 (0.50 holes per Cu site). No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen-doped Bi2Sr2CaCu2O8+δ is a suitable system for pursuing doping studies. The decrease in Tc with concentration for 0.34<=n<=0.50 indicates that a high-carrier-concentration regime exists in which Tc decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. An examination of the variation of Tc with the density of states and lattice constants for all of the doped and undoped superconducting samples considered here indicates that changes in Tc with doping are primarily affected by changes in the density of states (or carrier concentration) rather than by structural variation induced by the doping.

  5. Phase transformations in sputter-deposited W-doped TiO2 films during annealing in air

    International Nuclear Information System (INIS)

    Saladukhin, I. A.; Abadias, G.

    2013-01-01

    Pure and tungsten-doped TiO 2 films are characterized as amorphous in the as-deposited state by XRD. A crystallization of titanium dioxide occurs during their annealing in air. Depending on the tungsten and nitrogen doping level, anatase or rutile phase formation is observed. Both of these phases are thermally stable in all interval of the temperatures used during annealing. Phase composition and lattice parameter analysis indicates on the formation of substitutional Ti 1 -xW x O 2 films. N-doped Ti 0 .75W 0 .25O 2 film is more resistant against high-temperature oxidation as compared to Ti 0 .74W 0 .26O 2 film and, especially, as compared to Ti 0 .60W 0 .40O 2 film. (authors)

  6. Single Crystal Filters for Neutron Spectrometry

    International Nuclear Information System (INIS)

    Habib, N.

    2008-01-01

    A study of neutron transmission properties trough a large single crystals specimens of Si, Ge, Pb, Bi and sapphire at 300 K and 80 K have been made for a wide range of neutron energies. The effectiveness of such filters is given by the ratio of the total cross-section of unwanted epithermal neutrons to that the desired thermal neutron beam and by the optimum choice of the crystal orientation, its mosaic spread, thickness and temperature.Our study indicates that sapphire is significantly more effective than the others for a wide range of neutron energies

  7. Physical and chemical properties of a Ga-doped ZnO crystal

    International Nuclear Information System (INIS)

    Stashans, Arvids; Olivos, Katia; Rivera, Richard

    2011-01-01

    First-principles calculations based on density functional theory and strengthened by Hartree-Fock computations have been performed to study a Ga-doped wurtzite-type ZnO crystal. The large 108-atom supercell used throughout this work allows one to model a single point defect within the periodic supercell model. Thus, the Ga impurity produced purely local effects on the properties of the material. The electronic band structure was obtained for both pure and impurity-doped materials. The occurrence of free electrons in the conduction band was observed after the incorporation of Ga, implying the Ga dopant's contribution to n-type electrical conductivity in the ZnO crystal, in agreement with known experimental data. An analysis of the charges on atoms and obtained atomic displacements in the region surrounding the defect showed that there is some alteration in the chemical bonding because of the presence of Ga atoms. In particular, the ionic bonding is strengthened in the defect's neighbourhood.

  8. Physical and chemical properties of a Ga-doped ZnO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids; Olivos, Katia; Rivera, Richard, E-mail: arvids@utpl.edu.e [Grupo de FisicoquImica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2011-06-01

    First-principles calculations based on density functional theory and strengthened by Hartree-Fock computations have been performed to study a Ga-doped wurtzite-type ZnO crystal. The large 108-atom supercell used throughout this work allows one to model a single point defect within the periodic supercell model. Thus, the Ga impurity produced purely local effects on the properties of the material. The electronic band structure was obtained for both pure and impurity-doped materials. The occurrence of free electrons in the conduction band was observed after the incorporation of Ga, implying the Ga dopant's contribution to n-type electrical conductivity in the ZnO crystal, in agreement with known experimental data. An analysis of the charges on atoms and obtained atomic displacements in the region surrounding the defect showed that there is some alteration in the chemical bonding because of the presence of Ga atoms. In particular, the ionic bonding is strengthened in the defect's neighbourhood.

  9. Mixed garnet laser crystals for water vapour DIAL transmitter

    Science.gov (United States)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  10. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  11. Growth and characterization of β-Ga2O3 crystals

    Science.gov (United States)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  12. Simple method of preparing nitrogen - doped nanosized TiO2 powders of high photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Dang Thi Thanh Le

    2014-01-01

    Nitrogen-doped nanosized TiO 2 powders were prepared by a simple thermal treatment method of the mixture of titanium dioxide and urea. The prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis-DRS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the crystal structure of N-TiO 2 was a mixture of anatase and rutile phases, and the average particle size was 31 nm calculated from XRD results. The UV-vis spectra indicate an increase in absorption of visible light when compared to undoped TiO 2 . The photocatalytic activity of nitrogen-doped TiO 2 powder was evaluated by the decomposition of methylene blue under visible light irradiation. And it was found that nitrogen-doped TiO 2 powders exhibited much higher photocatalytic activity than undoped TiO 2 . Moreover, the study also showed that, the doping N atoms improve the growth of the TiO 2 crystal and phase transformation. (author)

  13. Inorganic ion exchanger based on tin/titanium mixed oxide doped with europium to be used in radioactive waste

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.

    2009-01-01

    This work presents the results of synthesis and characterization of an inorganic ion exchanger based on tin/titanium mixed oxides doped with europium (SnO 2 /TiO 2 :Eu 3+ ) to be used in environmental field. The adsorption study of nickel was realized in this exchanger to recover the nickel metal which is in thorium-nickel alloys used as electrode of discharge lamps. The studied exchanger was synthesized by neutralization of tin chloride (IV) and titanium chloride (III) mixed solution and characterized by thermogravimetric measurement (TG), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM). The adsorption study showed that these inorganic ion exchangers are good materials to recovery nickel with high weight distribution ratios (Dw Ni 2+ ) and percent adsorption. (author)

  14. Energy transfer processes in Er-doped crystals

    International Nuclear Information System (INIS)

    Georgescu, Serban; Toma, Octavian

    2005-01-01

    In this paper, the microparameters characteristic to various energy-transfer processes in erbium doped crystals are estimated using the Dexter theory. For all the investigated processes, electric dipole-dipole interaction between donor and acceptor ions is assumed. The spectra appearing in Dexter's expression of the microparameter are simulated as a superposition of Lorentzian lines, knowing the positions of both initial and final Stark levels, and calibrated using the Judd-Ofelt model. This approach can give an estimation of the importance of the energy-transfer processes. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Alumina and Hafnia ALD Layers for a Niobium-Doped Titanium Oxide Photoanode

    Directory of Open Access Journals (Sweden)

    Naji Al Dahoudi

    2012-01-01

    Full Text Available Niobium-doped titanium dioxide (TiO2 nanoparticles were used as a photoanode in dye-sensitized solar cells (DSCs. They showed a high photocurrent density due to their higher conductivity; however, a low open-circuit voltage was exhibited due to the back-reaction of photogenerated electrons. Atomic layer deposition is a useful technique to form a conformal ultrathin layer of Al2O3 and HfO, which act as an energy barrier to suppress the back electrons from reaching the redox medium. This resulted in an increase of the open-circuit voltage and therefore led to higher performance. HfO showed an improvement of the light-to-current conversion efficiency by 74%, higher than the 21% enhancement obtained by utilizing Al2O3 layers.

  16. Photodynamic Processes in Fluoride Crystals Doped with Ce3+

    Directory of Open Access Journals (Sweden)

    Pavlov V.V.

    2015-01-01

    Full Text Available Integrated studies of photoelectric phenomena and their associated photodynamic processes in LiCaAlF6, LiLuF4, LiYF4, LiY0,5Lu0,5F4, SrAlF5 crystals doped with Ce3+ ions have been carried out using the combination of the methods of optical and dielectric spectroscopy. The numerical values of the basic parameters of photodynamic processes and their spectral dependence in 240 – 310 nm spectral range are evaluated. It has been shown that the most probable process, which leads to the photoionization of Ce3+ ions in LiYxLu1-xF4:Ce3+ (x=0; 0,5; 1 and LiCaAlF6:Ce3+ crystals, is excited-state absorption to the states of mixed configurations of Ce3+ ions localized near/in the conduction band of crystal.

  17. Coloration dependence in the thermoluminescence properties of the double doped NaCl single crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Sanchez-Mejorada, G.; Gelover-Santiago, A.L.; Frias, D.

    2006-01-01

    In this work the behaviour of calcium manganese doped NaCl single crystals under gamma irradiation is reported. Various single crystals of NaCl doped with Ca and Mn have been irradiated at different doses with ionising radiation. The production of defects has been correlated to the increase in the intensity of the thermo luminescent glow curve as a function of doses. The glow curves intensity as a function of doses shows the potential use of these materials as dosimeters. Optical properties of such crystals after irradiation with gamma rays have also been studied; results have shown their potentiality as a good detector and optical store memory devices. Since the creations of colour centres by photons with energy less than the band gap energy has been detected also in ns 2 -ion doped alkali halides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Particle detection through the quantum counter concept in YAG:Er{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Borghesani, A. F. [CNISM Unit, Dip. di Fisica e Astronomia and INFN, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C., E-mail: Caterina.Braggio@unipd.it; Carugno, G.; Chiossi, F.; Guarise, M. [Dip. di Fisica e Astronomia and INFN, Via F. Marzolo 8, I-35131 Padova (Italy); Di Lieto, A.; Tonelli, M. [Dip. di Fisica and INFN, Largo Bruno Pontecorvo, 3, I-56127 Pisa (Italy); Ruoso, G. [INFN, Laboratori Nazionali di Legnaro, Viale dell' Università 2, I-35020 Legnaro (Italy)

    2015-11-09

    We report on a scheme for particle detection based on the infrared quantum counter concept. Its operation consists of a two-step excitation process of a four level system, which can be realized in rare earth-doped crystals when a cw pump laser is tuned to the transition from the second to the fourth level. The incident particle raises the atoms of the active material into a low lying, metastable energy state, triggering the absorption of the pump laser to a higher level. Following a rapid non-radiative decay to a fluorescent level, an optical signal is observed with a conventional detector. In order to demonstrate the feasibility of such a scheme, we have investigated the emission from the fluorescent level {sup 4}S{sub 3∕2} (540 nm band) in an Er{sup 3+}-doped YAG crystal pumped by a tunable titanium sapphire laser when it is irradiated with 60 keV electrons delivered by an electron gun. We have obtained a clear signature that this excitation increases the {sup 4}I{sub 13∕2} metastable level population that can efficiently be exploited to generate a detectable optical signal.

  19. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  20. Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals

    International Nuclear Information System (INIS)

    Kobor, Diouma; Guiffard, Benoit; Lebrun, Laurent; Hajjaji, Abdelowahed; Guyomar, Daniel

    2007-01-01

    AC-impedance spectroscopic studies in the temperature range 550-700 deg. C are carried out on undoped and Mn doped PZN-PT single crystals grown by the flux method. The variation of dielectric permittivity with temperature at different frequencies shows normal ferroelectric and relaxor-like dependence for the doped and undoped crystals, respectively. Temperature-dependent spectroscopic modulus plots reveal a much broader peak for PZN-4.5PT + 1%Mn compared with that for PZN-4.5PT, which is different from the dielectric behaviour of the doped one. Complex modulus imaginary part (Z-prime) versus real part (Z') plots fit well with one semicircle thus indicating only bulk contribution. The relaxation observed in the spectroscopic plots was assigned to mobile relaxor species such as oxygen vacancies and ions. No such relaxation could be observed for PZN-4.5PT + 1%Mn in the dielectric measurements. For both undoped and Mn doped crystals, the conduction behaviour was modelled by the universal dynamic response equation and by the NTC (negative temperature coefficient) materials resistance-temperature behaviour. A large difference in behaviour was found between the two single crystals such as the thermistor coefficients and the activation energy values, which could explain the increase in the thermal stability observed in the Mn doped PZN-PT single crystals by many studies

  1. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia

    Science.gov (United States)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure

    2017-05-01

    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  2. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Mitzi, D.B.; Lombardo, L.W.; Kapitulnik, A.; Laderman, S.S.; Jacowitz, R.D.

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20--25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)x10 21 cm -3 (0.34 holes per Cu site) to 4.6(3)x10 21 cm -3 (0.50 holes per Cu site)

  3. Synthesis and characterization of lithium fluoride nano crystals doped with silver

    International Nuclear Information System (INIS)

    Rosario M, B. R.; Ramirez C, G.; Encarnacion E, E. K.; Sosa A, M. A.

    2017-10-01

    Thermoluminescence (Tl) is the emission of light by certain materials to be heated below its incandescence temperature, having previously been exposed to an exciting agent such as ionizing radiation. Lithium fluoride (LiF) is the thermoluminescent material used in the manufacture of Tl-100 dosimeters. What morphological characteristics (size, crystallinity) do the nano crystals of pure lithium fluoride (LiF) have when doped with silver (Ag) by the precipitation method? The objective of this study was to synthesize and characterize the LiF nano crystals doped with silver (Ag) in concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 and 0.2%. The samples were synthesized using as reagents; distilled water, ammonium fluoride (NH 4 F), lithium chloride (LiCl), silver nitrate (AgNO 3 ); and materials such as: 0.1 mg precision balance, spatulas, test piece, magnetic stirrer, beaker, volumetric flask, burette, burette clamp, key and magnetic stirring wand. In the characterization process we used and X-ray diffractometer (XRD) with which we obtained the X-ray diffraction spectrum with well-defined peaks that are characteristic of LiF. Using the Scherrer equation we calculate the sizes of nano crystals. This study demonstrates that is possible to synthesize LiF using new dopant materials. (Author)

  4. Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering

    NARCIS (Netherlands)

    Yan, L.T.; Schropp, R.E.I.

    2011-01-01

    Tungsten- and titanium-doped indium oxide (IWO and ITiO) filmswere deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly

  5. Studies in crystal structure and luminescence properties of Eu3+-doped metal tungstate phosphors for white LEDs

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Kang, Shinhoo

    2011-01-01

    The correlation between the crystal structure and luminescent properties of Eu 3+ -doped metal tungstate phosphors for white LEDs was investigated. Red-emitting A 4-3x (WO 4 ) 2 :Eu x 3+ (A=Li, Na, K) and B (4-3x)/2 (WO 4 ) 2 :Eu x 3+ (B=Mg, Ca, Sr) phosphors were synthesized by solid-state reactions. The findings confirmed that these phosphors exhibited a strong absorption in the near UV to green range, due to the intra-configurational 4f-4f electron transition of Eu 3+ ions. The high doping concentration of Eu 3+ enhanced the absorption of near UV light and red emission without any detectable concentration quenching. Based on the results of a Rietveld refinement, it was attributed to the unique crystal structure. In the crystal structure of the Eu 3+ -doped metal tungstate phosphor, the critical energy transfer distance is larger than 5 A so that exchange interactions between Eu 3+ ions would occur with difficulty, even at a high doping concentration. The energy transfer between Eu 3+ ions, which causes a decrease in red emission with increasing concentration of Eu 3+ , appears to be due to electric multi-polar interactions. In addition, the Eu-O distance in the host lattice affected the shape of emission spectrum by splitting of emission peak at the 5 D 0 → 7 F 2 transition of Eu 3+ . - Highlights: → Eu 3+ -doped metal tungstate was synthesized as a red phosphor for white LEDs. → Crystal structure is tetragonal with a space group of I4 1 /c. → A strong absorption in the near UV to green range was observed. → High doping of Eu 3+ enhanced the absorption of near UV light and red emission.

  6. Optical spectroscopy of Nd3+/Mg2+ co-doped LiTaO3 laser crystal

    International Nuclear Information System (INIS)

    Zhang, P X; Hang, Y; Gong, J; Zhao, C C; Yin, J G; Zhang, L H; Zhu, Y Y

    2013-01-01

    A Nd 3+ and Mg 2+ co-doped LiTaO 3 single crystal has been grown successfully by the Czochralski method. The polarized absorption spectra of the crystal were measured and investigated. The peak absorption cross-sections at 806 and 810 nm were 4.17 × 10 −20 cm 2 and 4.47 × 10 −20 cm 2 with a full width at half maximum of 29 and 17 nm for σ- and π-polarization, respectively. Based on the Judd–Ofelt theory, the spectral parameters of Nd 3+ in the as-grown crystal were investigated in detail. Moreover, the emission probabilities, branching ratio and radiative lifetime for the transitions from 4 F 3/2 were calculated. The radiative lifetime of 4 F 3/2 was calculated to be 159 μs and the luminescent quantum efficiency of the 4 F 3/2 manifold was about 81.13%. The results were also compared with other Nd 3+ doped crystals. (paper)

  7. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    International Nuclear Information System (INIS)

    Zheng, Dahuai; Yao, Jiaying; Kong, Yongfa; Liu, Shiguo; Zhang, Ling; Chen, Shaolin; Xu, Jingjun

    2015-01-01

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm 2 ). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals

  8. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dahuai; Yao, Jiaying [School of Physics, Nankai University, Tianjin 300071 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Kong, Yongfa, E-mail: kongyf@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China); MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); R and D Center, Taishan Sports Industry Group, Leling 253600 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Liu, Shiguo [School of Physics, Nankai University, Tianjin 300071 (China); Zhang, Ling; Chen, Shaolin [MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); Xu, Jingjun [School of Physics, Nankai University, Tianjin 300071 (China); MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-01-15

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm{sup 2}). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  9. Spectroscopic, Homo-Lumo and NLO studies of tetra fluoro phthalate doped Coumarin crystals using DFT method

    Science.gov (United States)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2017-08-01

    In the present examination, a methodical study has been done on the development of unadulterated and Coumarin doped Tetrafluoro Phthalate precious stones. Powder X-beam diffraction studies were done and the cross section parameters were computed by minimum square technique in pure and doped crystals. FT-IR, UV-Vis, Thermal, Micro-hardness and Dielectric studies were additionally done for the pure and doped crystals. The tentatively watched FT-IR and FT-Raman groups were allotted to various ordinary methods of the atom. The steadiness and charge delocalization of the particle were likewise concentrations were done by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the particle. Atomic electrostatic potential has been broken down the electronic properties such as excitation energies, oscillator quality, wavelengths and HOMO-LUMO energies were acquired by time-subordinate DFT (TD-DFT) approach. The SHG of pure and doped TFP stones were examined through Nd:YAG Q-exchanged laser.

  10. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    De La Roche, J. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); González, J.M. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Restrepo-Parra, E., E-mail: erestrepop@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Alleh, V.; Scharf, T.W. [The University of North Texas, Department of Materials Science and Engineering, Denton, TX 76203 (United States)

    2014-11-30

    Highlights: • Ti-doped WS{sub 2} films were grown via the magnetron co-sputtering technique. • At a high Ti percentage, the crystalline structure of WS{sub 2} coatings tends to be amorphous. • As the Ti percentage increases in WS{sub 2} coatings, nanocomposites tend to form. • Ti-doped WS{sub 2} films have elastic behavior compared with the plastic response of pure WS{sub 2} films. • A high Ti percentage increases the corrosion resistance of WS{sub 2} films. - Abstract: Titanium-doped tungsten bisulfide thin films (WS{sub 2}-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS{sub 2} was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS{sub 2}. Using the scratch test, the coatings’ adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  11. On the laser lift-off of lightly doped micrometer-thick n-GaN films from substrates via the absorption of IR radiation in sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Voronenkov, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Virko, M. V.; Kogotkov, V. S.; Leonidov, A. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Pinchuk, A. V.; Zubrilov, A. S.; Gorbunov, R. I.; Latishev, F. E.; Bochkareva, N. I.; Lelikov, Y. S.; Tarkhin, D. V.; Smirnov, A. N.; Davydov, V. Y. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sheremet, I. A. [Financial University under the Government of the Russian Federation (Russian Federation); Shreter, Y. G., E-mail: y.shreter@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The intense absorption of CO{sub 2} laser radiation in sapphire is used to separate GaN films from GaN templates on sapphire. Scanning of the sapphire substrate by the laser leads to the thermal dissociation of GaN at the GaN/sapphire interface and to the detachment of GaN films from the sapphire. The threshold density of the laser energy at which n-GaN started to dissociate is 1.6 ± 0.5 J/cm{sup 2}. The mechanical-stress distribution and the surface morphology of GaN films and sapphire substrates before and after laser lift-off are studied by Raman spectroscopy, atomic-force microscopy, and scanning electron microscopy. A vertical Schottky diode with a forward current density of 100 A/cm{sup 2} at a voltage of 2 V and a maximum reverse voltage of 150 V is fabricated on the basis of a 9-μm-thick detached n-GaN film.

  12. Optical switching in nonlinear photonic crystals lightly doped with nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Lipson, R H [Department of Chemistry, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2008-01-14

    A possible switching mechanism has been investigated for nonlinear photonic crystals doped with an ensemble of non-interacting three-level nanoparticles. In this scheme, an intense pump laser field is used to change the refractive index of the nonlinear photonic crystal while a weaker probe field monitors an absorption transition in the nanoparticles. In the absence of the strong laser field the system transmits the probe field when the resonance energy of the nanoparticles lies near the edge of the photonic band gap due to strong coupling between the photonic crystal and the nanoparticles. However, upon application of an intense pump laser field the system becomes absorbing due to a band edge frequency shift that arises due to a nonlinear Kerr effect which changes the refractive index of the crystal. It is anticipated that the optical switching mechanism described in this work can be used to make new types of photonic devices.

  13. Crystal growth and scintillation properties of Pr-doped oxyorthosilicate for different concentration

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Daisuke, E-mail: totsuka@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co. Ltd (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Pejchal, Jan [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2011-07-01

    0.05, 0.1 and 0.25 mol% Pr (with respect to Lu) doped Lu{sub 2}SiO{sub 5} (LSO) single crystals were grown by the micro-pulling down ({mu}-PD) method. The grown crystals were transparent, and a slight segregation of Pr{sup 3+} was observed both in the crystal cross-section and growth direction. Transparency in the visible wavelength range was about 80% in all the crystals. Intense absorptions related with the Pr{sup 3+} 4f-5d transitions were observed around 230 and 255 nm, and weak absorptions due to the 4f-4f transitions were detected around 450 nm. In radioluminescence spectra, the Pr{sup 3+} 5d-4f transitions were observed around 275and 310 nm, and emissions due to the 4f-4f transition were observed around 500 nm. In the pulse height analysis using {sup 137}Cs gamma-ray excitation, Pr 0.1% doped sample showed the highest light yield of 2,800 ph/MeV. In the decay time measurements using different excitation sources (photoluminescence, X- and gamma-ray), two different processes related to the 5d-4f emission peaks were found. Fast decay component corresponds to direct excitation of Pr{sup 3+} (4-6 ns) and slower component (25 ns) reflects the energy migration process from the host lattice to the emission center.

  14. Optical properties of Ho3+-doped NaGd(WO4)2 crystal for laser materials

    International Nuclear Information System (INIS)

    Wang, Hongyan; Li, Jianfu; Jia, Guohua; You, Zhenyu; Yang, Fugui; Wei, Yanping; Wang, Yan; Zhu, Zhaojie; Lu, Xiuai; Tu, Chaoyang

    2007-01-01

    Holmium doped sodium gadolinium tungstate crystals with sizes of about O20 mm x 40 mm were grown successfully by the Czochralski technique along the (0 0 1) orientation. Polarized absorption spectra, fluorescence spectra and fluorescence decay curve of Ho 3+ -doped NaGd(WO 4 ) 2 have been recorded at room temperature. Based on the Judd-Ofelt theory, three intensity parameters were obtained. The spectroscopic parameters of this crystal such as the oscillator strengths, radiative transition probabilities, radiative lifetimes as well as the branching ratios were calculated. The fluorescence lifetime τ f of the 5 S 2 level was measured to be 5 μs

  15. Fabricating large two-dimensional single colloidal crystals by doping with active particles

    NARCIS (Netherlands)

    van der Meer, B; Filion, L; Dijkstra, M

    2016-01-01

    Using simulations we explore the behaviour of two-dimensional colloidal (poly)crystals doped with active particles. We show that these active dopants can provide an elegant new route to removing grain boundaries in polycrystals. Specifically, we show that active dopants both generate and are

  16. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  17. Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W. [Chemical; Saslow, Sarah A. [Earth

    2017-11-17

    Technetium-99 (Tc) is a problematic fission product that complicates the long-term disposal of nuclear waste due to its long half-life, high fission yield, and the environmental mobility of pertechnetate, its stable form in aerobic environments. One approach to preventing Tc contamination is through incorporation into durable waste forms based on weathering-resistant minerals such as rutile (titanium dioxide). Here, the incorporation of technetium into titanium dioxide by means of simple, aqueous chemistry is presented. X-ray absorption fine structure spectroscopy and diffuse reflectance spectroscopy indicate that Tc(IV) replaces Ti(IV) within the structure. Rather than being incorporated as isolated Tc(IV) ions, Tc is present as pairs of edge-sharing Tc(IV) octahedra similar to molecular Tc(IV) complexes such as [(H2EDTA)TcIV](u-O)2. Technetium-doped TiO2 was suspended in deionized water under aerobic conditions, and the Tc leached under these conditions was followed for 8 months. The normalized release rate of Tc (LRTc) from the TiO2 particles is low (3×10-6 g m-2 d-1), which illustrates the potential utility of TiO2 as waste form. However, the small size of the as-prepared TiO2 nanoparticles results in estimated retention of Tc for 104 years, which is only a fraction of the half-life of Tc (2×10-5 years).

  18. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

    International Nuclear Information System (INIS)

    Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-01-01

    A comparative study of the properties of topological insulator Bi 2 Te 2 Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10 14  cm −3 . Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E F ) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E F . Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed

  19. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  20. Direct pumping of ultrashort Ti:sapphire lasers by a frequency doubled diode laser

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    electro-optical efficiency of the diode laser. Autocorrelation measurements show that pulse widths of less than 20 fs can be expected with an average power of 52 mW when using our laser. These results indicate the high potential of direct diode laser pumped Ti: sapphire lasers to be used in applications....... When using our diode laser system, the optical conversion efficiencies from green to near-infrared light reduces to 75 % of the values achieved with the commercial pump laser. Despite this reduction the overall efficiency of the Ti: sapphire laser is still increased by a factor > 2 due to the superior...... like retinal optical coherence tomography (OCT) or pumping of photonic crystal fibers for CARS (coherent anti-stokes Raman spectroscopy) microscopy....

  1. Formation of Sol Gel Dried Droplets of Carbon Doped Titanium Dioxide (TiO2) at Low Temperature via Electrospraying

    Science.gov (United States)

    Halimi, S. U.; Hashib, S. Abd; Abu Bakar, N. F.; Ismail, S. N.; Nazli Naim, M.; Rahman, N. Abd; Krishnan, J.

    2018-05-01

    The high band gap energy of TiO2 and inconsistency in particles size has imposed a significant drawback on TiO2 applications. Dried droplets of carbon-doped TiO2 fine particles were produced by using electrospraying technique. The C-doped TiO2 particles were prepared by hydrolysis of titanium isopropoxide with the addition of carbon precursor followed by electrospraying the suspension in stable Taylor cone-jet mode. Coulomb fission of charged droplets from the electrospraying technique successfully transformed dispersed liquid C-doped TiO2 particles into solid. The deposited C-doped TiO2 droplets were collected on aluminium substrates placed at working distances of 10 to 20 cm from the tip of the electrospray needle. The collected C-doped TiO2 droplets were characterized by using FESEM, UV-Vis, FTIR and XRD. By increasing the working distance, the average droplets size of the deposited C-doped TiO2 was reduced from ±163.2 nm to ±147.56 nm. UV-Vis analysis showed a strong absorption in the visible-light region and about 93 nm red shift of the onset spectrum for C-doped TiO2. The red shift indicates an increase in photocatalytic efficiency by reducing the TiO2 band gap energy from 3.0 eV to 2.46 eV and shifting its activity to the visible-light region. FTIR analysis indicated the presence of Ti-C and C-O chemical bonding in the C-doped TiO2.

  2. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    International Nuclear Information System (INIS)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv

    2011-01-01

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  3. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  4. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    Science.gov (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  6. Growth and characterization of La2CoMnO6 crystals doped with Pb

    International Nuclear Information System (INIS)

    Milenov, T.I.; Rafailov, P.M.; Abrashev, M.V.; Nikolova, R.P.; Nakatsuka, A.; Avdeev, G.V.; Veleva, M.N.; Dobreva, S.; Yankova, L.; Gospodinov, M.M.

    2010-01-01

    Crystals of La 2 CoMnO 6 doped with Pb were grown by the high temperature solution growth method. Several crystals were examined by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), X-ray single-crystal diffractometry and polarized Raman spectroscopy. Some variations in the composition of different crystals are observed, however, within the volume of each distinct crystal the composition is found to be fairly constant. Crystals with lateral dimensions larger than 2 mm and thicker than 1 mm contain structural defects as twin lamellae and surface roughness. The results from the characterization of the grown crystals with X-ray diffraction and Raman spectroscopy are consistent with an assumption for a coexistence of an ordered monoclinic and a disordered orthorhombic phase.

  7. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  8. Raman and NMR study in MgO-doped LiNbO3 crystal

    International Nuclear Information System (INIS)

    Hu, L.J.; Chang, Y.H.; Chang, C.S.; Yang, S.J.; Hu, M.L.; Tse, W.S.

    1991-01-01

    This paper reports on the MgO-doped LiNbO 3 crystal grown and studied by NMR and Raman techniques. The solubility of MgO in the LiNbO 3 crystal is as much as 30 mole %. It is shown in NMR spectra that the number of Nb 5+ cations at A-site (Li-site) decrease as Mg concentration increased when the Mg content is lower than 5 mole %. The vibration of (NbO 6 ) octahedron and translations involving Li + and Mg 2+ cations motion can be identified by replacing Nb 5+ and Li + cations with Ta 5+ and Mg 2+ cations through Raman spectra. The 115 cm -1 and 151 cm -1 peaks are due to the translational modes of Mg 2+ and Li + cations. The doping mechanisms of MgO are proposed

  9. The investigation of Ce doped ZnO crystal: The electronic, optical and magnetic properties

    Science.gov (United States)

    Wen, Jun-Qing; Zhang, Jian-Min; Qiu, Ze-Gang; Yang, Xu; Li, Zhi-Qin

    2018-04-01

    The electronic, optical and magnetic properties of Ce doped ZnO crystal have been studied by using first principles method. The research of formation energies show that Ce doped ZnO is energetically stable, and the formation energies reduce from 6.25% to 12.5% for Ce molar percentage. The energy band is still direct band gap after Ce doped, and band gap increases with the increase of Cesbnd Ce distance. The Fermi level moves upward into conduction band and the DOS moves to lower energy with the increase of Ce concentration, which showing the properties of n-type semiconductor. The calculated optical properties imply that Ce doped causes a red-shift of absorption peaks, and enhances the absorption of the visible light. The transition from ferromagnetic to antiferromagnetic has been found in Ce doped ZnO.

  10. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  11. Effects of Nb and Sr doping on crystal structure of epitaxial BaTiO3 thin films on MgO substrates

    International Nuclear Information System (INIS)

    Kim, Yongsam; Chen, Chunhua; Saiki, Atsushi; Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2002-01-01

    Niobium (Nb) and strontium (Sr) doped barium titanate (BT) films were deposited by radio frequency (RF) magnetron sputtering with Nb and Sr doped BT ceramic targets, respectively. The effect of Nb and Sr doping on the crystal structure of epitaxial BaTiO 3 thin films on MgO substrates was investigated. The crystal structure of the films was examined using the reciprocal space mapping measurement. All the films exhibit a cube-on-cube relation with respect to the substrates. As the amount of doped Sr increased, both of the in-plane and out-of-plane lattice constants of Sr doped BT films slowly approached the BT bulk values. On the other hand, the lattice constants of Nb doped BT films were rapidly coming close to the bulk values. These indicated that the lattices of doped BT films were relaxed as the amount of doped elements increased. In addition, Nb doping had greater influence on the relaxation of the films than Sr doping for the same content of dopant. (author)

  12. Study of thermoluminescence in K Cl crystals doped with Sr2+

    International Nuclear Information System (INIS)

    Russo, D.M.B.

    1990-01-01

    An attempt is made to correlate the F and Z 1 (F center modified by the presence of a two-valence impurity pair and and positive ion vacancy) and a V center, with the T L curve peaks observed in pure K Cl crystals doped with Sr 2+ , irradiated at room temperature. (L.C.J.A.)

  13. Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    LI Yao

    2017-11-01

    Full Text Available VO2 sol was firstly prepared using vanadyl sulfate as a vanadium source by precipitation-peptization method. Then tungsten(W doping vanadium dioxide(W-VO2 was prepared by hydrothermal crystallization of prepared sol with the presence of ammonium metatungstate. The morphologies, crystal structure of the as-prepared samples and phase transition properties were studied by X-ray diffraction(XRD, field emission scanning electron microscope(FESEMand differential scanning calorimetry(DSC analysis. The results indicate that rod-like W-VO2(B crystal with length of 1-2μm and radius of 100-200nm is firstly formed during hydrothermal treatment for 4-48h at 280℃, then the rod-like crystal dissolves gradually and sheet-like or snowflake-like crystal is formed with the phase transition from W-VO2(B to W-VO2(M and eventually, the W-VO2(M crystals can further grow up while the W-VO2(B gradually dissolves; the phase transition temperature of VO2 decreases with the increase in W doping content, and the phase transition temperature of W-VO2(M reduces to about 28℃ when the nominal dopant concentration is 6.0%(atom fraction.The "nucleation-growth-transformation-ripening" mechanism is proposed as the formation mechanism based on the hydrothermal crystallization and morphological evolution process of W-VO2(M.

  14. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride

    International Nuclear Information System (INIS)

    Wu Zhongbiao; Dong Fan; Zhao Weirong; Guo Sen

    2008-01-01

    Nitrogen doped TiO 2 nanocrystals with anatase and rutile mixed phases were prepared by incomplete oxidation of titanium nitride at different temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), core level X-ray photoelectron spectroscopy (CL XPS), valence band X-ray photoelectron spectroscopy (VB XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and visible light excited photoluminescence (PL). The photocatalytic activity was evaluated for photocatalytic degradation of toluene in gas phase under visible light irradiation. The visible light absorption and photoactivities of these nitrogen doped TiO 2 nanocrystals can be clearly attributed to the change of the additional electronic (N - ) states above the valence band of TiO 2 modified by N dopant as revealed by the VB XPS and visible light induced PL. A band gap structure model was established to explain the electron transfer process over nitrogen doped TiO 2 nanocrystals under visible light irradiation, which was consistent with the previous theoretical and experimental results. This model can also be applied to understand visible light induced photocatalysis over other nonmetal doped TiO 2

  15. Nonlinear Optical Characteristics of Crystal VioletDye Doped Polystyrene Films by Using Z-Scan Technique

    Directory of Open Access Journals (Sweden)

    Mahasin F. Hadi

    2017-07-01

    Full Text Available Z-scan technique was employed to study the nonlinear optical properties (nonlinear refractive index and nonlinear absorption coefficient for crystal violet doped polystyrene films as a function of doping ratio in chloroform solvent. Samples exhibits in closed aperture Z-scan positive nonlinear refraction (self-focusing. While in the open aperture Z-scan gives reverse saturation absorption (RSA (positive absorption for all film with different doping ratio making samples candidates for optical limiting devices for protection of sensors and eyes from energetic laser light pulses under the experimental conditions.

  16. Growth and scintillation properties of Ce{sup 3+}-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    The optical and scintillation properties of 0.5% fixed Ce-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} single crystals have been investigated at three different levels of Gd doping: x = 0.2, 0.4 and 0.6. Single crystal of the Ce{sup 3+}-doped (Y{sub 0.8}Gd{sub 0.2})AlO{sub 3}, (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} and (Y{sub 0.4}Gd{sub 0.6})AlO{sub 3} were successfully grown by {mu}-PD technique in nitrogen atmosphere. From X-ray diffraction analysis, no impurity phase was detected for the grown Ce-doped crystals. Ce-doped (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} crystal demonstrated highest fluorescence quantum efficiency ({proportional_to} 25%) with improvement of excitation efficiency due to the Gd-doping. When irradiated by the alpha-rays from a {sup 241}Am source, all the Ce-doped crystals showed luminescence band that corresponding to 5d (t{sub 2g})-4f transition of Ce{sup 3+}. The scintillation decay time was characterized by two components; the fast component (5-15 ns) is ascribed to 5d-4f transition of Ce{sup 3+}, while the slow one (100-200 ns) may be related to energy transfer between Ce{sup 3+} and Gd{sup 3+} ion. According to the result of {sup 137}Cs gamma-ray irradiated pulse height spectra compared with BGO scintillator, the relative scintillation light output was found to be about 12200 {+-} 1220 (Gd 20%) and 16000 {+-} 1600 (Gd 40%) ph/MeV. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Silver doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  18. Silver-doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness. (paper)

  19. Radiation Induced Color Centers in a La Doped PWO Crystal

    CERN Document Server

    Deng, Qun

    1998-01-01

    This report presents result of a study on radiation induced color center densities in a La doped lead tungstate ( PWO) crystal. The creation and annihilation constants of radiation induced color centers were determined by using transmittance data measured for a PWO sample before and during Co-60 gamma ray irradiation at a dose rate of 15 rad/hr. Following a model of color center kinetics, these constants were used to calculate color center densities under irradiations at 100 rad/hr. The result was found to be in a good agreement with experimental data, indicating that this model of color center kinetics can be used to predict behavior of PWO crystals under irradiation.

  20. Efficient polymer:fullerene bulk heterojunction solar cells with n-type doped titanium oxide as an electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youna [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Geunjin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Heejoo, E-mail: heejook@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Sun Hee [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Kwanghee, E-mail: klee@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2015-05-29

    We have reported a highly n-type doped solution-processed titanium metal oxide (TiO{sub x}) for use as an efficient electron-transport layer (ETL) in polymer:fullerene bulk heterojunction (BHJ) solar cells. When the metal ions (Ti) in TiO{sub x} are partially substituted by niobium (Nb), the charge carrier density increased, by an order of magnitude, because of the large electronegativity of Nb compared to that of Ti. Therefore, the work function (WF) of Nb-doped metal oxide (Nb-TiO{sub x}) decreases from 4.75 eV (TiO{sub x}) to 4.66 eV (Nb-TiO{sub x}), leading to an enhancement in the power conversion efficiency (PCE) of BHJ solar cells with a Nb-TiO{sub x} ETL (from 7.99% to 8.40%). - Highlights: • Solution processable Nb-doped TiO{sub x} was developed by simple sol-gel synthesis. • Charge carrier density in TiO{sub x} is significantly increased by introducing Nb element. • The work function value of Nb-doped TiO{sub x} is reduced by introducing Nb element. • A charge recombination inside of PSC with Nb-TiO{sub x} was effectively suppressed.

  1. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery

    Directory of Open Access Journals (Sweden)

    Pokrowiecki R

    2017-06-01

    Full Text Available Rafał Pokrowiecki,1,2 Tomasz Zaręba,3 Barbara Szaraniec,4 Krzysztof Pałka,5 Agnieszka Mielczarek,6 Elżbieta Menaszek,7 Stefan Tyski3,8 1Center for Cranio-Maxillo-Facial Surgery, Voivodeship Children’s Hospital, Olsztyn, 2Department of Oral Surgery, Jagiellonian Medical University, Kraków, 3Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, 4Faculty of Material Science and Ceramics, AGH University of Science and Technology, Kraków, 5Department of Materials Engineering, Lublin University of Technology, Lublin, 6Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, 7Department of Cytobiology, Collegium Medicum, Jagiellonian University, Kraków, 8Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland Abstract: The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure

  2. Using a novel spectroscopic reflectometer to optimize a radiation-hardened submicron silicon-on-sapphire CMOS process

    International Nuclear Information System (INIS)

    Do, N.T.; Zawaideh, E.; Vu, T.Q.; Warren, G.; Mead, D.; Do, N.T.; Li, G.P.; Tsai, C.S.

    1999-01-01

    A radiation-hardened sub-micron silicon-on-sapphire CMOS process is monitored and optimized using a novel optical technique based on spectroscopic reflectometry. Quantitative measurements of the crystal quality, surface roughness, and device radiation hardness show excellent correlation between this technique and the Atomic Force Microscopy. (authors)

  3. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    Science.gov (United States)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  4. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  5. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals.

    Science.gov (United States)

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-09-01

    NaYF4 micro-crystals with various concentrations of Yb(3+) /Tm(3+) /Ho(3+) were prepared successfully via a simple and reproducible hydrothermal route using EDTA as the chelating agent. Their phase structure and surface morphology were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns revealed that all the samples were pure hexagonal phase NaYF4. SEM images showed that Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 were hexagonal micro-prisms. Upconversion photoluminescence spectra of Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 micro-crystals with various dopant concentrations under 980 nm excitation with a 665 mW pump power were studied. Tunable multicolor (purple, purplish blue, yellowish green, green) and white light were achieved by simply adjusting the Ho(3+) concentration in 20%Yb(3+)/1%Tm(3+)/xHo(3+) tri-doped NaYF4 micro-crystals. Furthermore, white-light emissions could be obtained using different pump powers in 20%Yb(3+)/1%Tm(3+)/1%Ho(3+) tri-doped NaYF4 micro-crystals at 980 nm excitation. The pump power-dependent intensity relationship was studied and relevant energy transfer processes were discussed in detail. The results suggest that Yb(3+)/Tm(3+) Ho(3+) tri-doped NaYF4 micro-crystals have potential applications in optoelectronic devices such as photovoltaic, plasma display panel and white-light-emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Single mode dye-doped polymer photonic crystal lasers

    International Nuclear Information System (INIS)

    Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material

  7. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    Science.gov (United States)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  8. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    Science.gov (United States)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  9. Formation of Au nanoparticles in sapphire by using Ar ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Zhou, L.H.; Zhang, C.H.; Yang, Y.T.; Li, B.S.; Zhang, L.Q.; Fu, Y.C.; Zhang, H.H.

    2009-01-01

    In this paper, we present results of the synthesis of gold nanoclusters in sapphire, using Ar ion implantation and annealing in air. Unlike the conventional method of Au implantation followed by thermal annealing, Au was deposited on the surface of m- and a- cut sapphire single crystal samples including those pre-implanted with Ar ions. Au atoms were brought into the substrate by subsequent implantation of Ar ions to form Au nanoparticles. Samples were finally annealed stepwisely in air at temperatures ranging from 400 to 800 deg. C and then studied using UV-vis absorption spectrometry, transmission electron microscopy and Rutherford backscattered spectrometry. Evidence of the formation Au nanoparticles in the sapphire can be obtained from the characteristic surface plasmon resonance (SPR) absorption band in the optical absorption spectra or directly from the transmission electron microscopy. The results of optical absorption spectra indicate that the specimen orientations and pre-implantation also influence the size and the volume fraction of Au nanoparticles formed. Theoretical calculations using Maxwell-Garnett effective medium theory supply a good interpretation of the optical absorption results.

  10. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    Science.gov (United States)

    Ganz, P. R.; Schaadt, D. M.

    2011-12-01

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  11. Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2

    Science.gov (United States)

    Liu, J.; Cano-Torres, J. M.; Cascales, C.; Esteban-Betegón, F.; Serrano, M. D.; Volkov, V.; Zaldo, C.; Rico, M.; Griebner, U.; Petrov, V.

    2005-03-01

    Single crystals of disordered NaLa(WO4)2 and NaLa(MoO4)2 doped with Yb3+ are grown by the Czochralski method from the melt. Continuous-wave laser operation with Ti:sapphire laser pumping is demonstrated at room temperature without special cooling. Tunability from 1017 to 1057 nm and from 1015 to 1053 nm is achieved for Yb:NaLa(WO4)2 and Yb:NaLa(MoO4)2, respectively. A maximum output power of 205 mW is obtained with Yb:NaLa(WO4)2.

  12. N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering

    OpenAIRE

    Kohei Ueno; Eiji Kishikawa; Jitsuo Ohta; Hiroshi Fujioka

    2017-01-01

    High-quality N-polar GaN epitaxial films with an atomically flat surface were grown on sapphire (0001) via pulsed sputtering deposition, and their structural and electrical properties were investigated. The crystalline quality of N-polar GaN improves with increasing film thickness and the full width at half maximum values of the x-ray rocking curves for 0002 and 101¯2 diffraction were 313 and 394 arcsec, respectively, at the film thickness of 6μm. Repeatable p-type doping in N-polar GaN films...

  13. Research Progress and Development of Sapphire Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Guochang ZHAO

    2014-07-01

    Full Text Available Sapphire fiber thermometers have become a new potential option in the field of high-temperature measurements. Recent research progress of sapphire fiber sensors is summarized; operational principles, advantages, disadvantages, and applications of sapphire fiber sensors are introduced. Research has shown that sapphire fiber sensors can be used to accurately measure very high temperatures in harsh environments and has been widely applied in fields such as aviation, metallurgy, the chemical industry, energy, and other high temperature measurement areas. Sapphire optical fiber temperature measurement technology will move toward miniaturization, intelligence following the advances in materials, micro-fabrication and communication technologies.

  14. Spontaneous and stimulated emission in Sm3+-doped YAl3(BO3)4 single crystal

    International Nuclear Information System (INIS)

    Ryba-Romanowski, Witold; Lisiecki, Radosław; Beregi, Elena; Martín, I.R.

    2015-01-01

    Single crystals of YAl 3 (BO 3 ) 4 doped with trivalent samarium were grown by the top-seeded high temperature solution method and their absorption and emission spectra were investigated. Optical pumping into prominent absorption band around 405 nm feeds the 4 G 5/2 metastable level giving rise to intense visible luminescence distributed in several spectral lines with the most intense line around 600 nm characterized by a branching ratio of 0.42 and peak emission cross section of 0.25×10 −20 cm 2 . Optical amplification at 600 nm with a gain coefficient of 2.9 cm −1 was achieved during a pump-and-probe experiment. - Highlights: • YAB:Sm crystal grown by the top-seeded high temperature solution method. • Spectroscopic qualities relevant for visible laser operation. • YAB:Sm single crystal used in a pump-and-probe experiment. • Optical amplification properties of samarium doped YAl 3 (BO 3 ) 4

  15. Thermal, Dielectric Studies on Pure and Amino Acid L-Glutamic Acid, L-Histidine L-Valine Doped Potassium Dihydrogen Phosphate Single Crystals

    Science.gov (United States)

    Kumaresan, P.; Babu, S. Moorthy; Anbarasan, P. M.

    Amino acids (L-Glutamic acid, L-Histidine, L-Valine) doped potassium dihydrogen phosphate crystals were grown by the solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mole % to 10 mole %. The solubility data for all dopant concentrations were determined. The variation in pH and the corresponding habit modification of the grown crystals were characterized with UV - VIS, FT-IR and SHG trace elements, and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material, which also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  16. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N., E-mail: trushin@phys.unn.ru; Chuprunov, E. V. [Nizhni Novgorod State University (Russian Federation)

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  17. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  18. Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals

    Science.gov (United States)

    Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.

  19. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    Science.gov (United States)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  20. Gold wetting effects on sapphire irradiated with GeV uranium ions

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1997-01-01

    Single crystals of α-Al 2 O 3 were irradiated with 238 U ions using two different energies: 3.4 MeV/u and 1.7 MeV/u. The irradiations were performed at a temperature of ∼80 K, with fluences ranging from 1.2 x 10 12 to 2.5 x 10 12 ions cm -2 . After irradiation, thin gold films were deposited on the sapphire surfaces by using a sputtering method. Subsequent annealing in air at a temperature of 723 and 923 K were applied to investigate the influence of the pre-damage on the adhesion of the gold layer on the sapphire surface. Rutherford backscattering analysis and scanning electron microscopy performed in both virgin and irradiated areas, show that the pre-irradiation damage inhibits the gold film of breaking up into islands after annealing. A wetting effect, which could depend on the damage morphology, is clearly observed. (orig.)

  1. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    International Nuclear Information System (INIS)

    Gontad, F.; Conde, J.C.; Filonovich, S.; Cerqueira, M.F.; Alpuim, P.; Chiussi, S.

    2013-01-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p + -nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm 2 is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm 2 promote partial crystallization of the amorphous structures

  2. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  3. The effect of hydrostatic pressure on conductivity behaviour of needle crystals of iodine and oxygen doped niobium-sulphur compounds

    International Nuclear Information System (INIS)

    Balla, D.D.; Bondarenko, A.V.; Obolenskij, M.A.; Beletskij, V.I.; Chashka, Kh.B.

    1985-01-01

    The effect of the hydrostatic pressures up to 11 kbar on conductivity behaviour of the needle crystal of iodine and oxygen doped niobium-sulphur compounds were studied in the temperature range 4.2-300 K. It is shown that in the temperature range 110-300 K conductivity is thermal activated (P=1 bar). Below 110 K the Mott characteristic is observed. Under hydrostatic pressure the deviations from Mott characteristic occurs. The analysis of data suggested that crystals are doped semiconductors

  4. Scintillation and optical properties of Sn-doped Ga2O3 single crystals

    Science.gov (United States)

    Usui, Yuki; Nakauchi, Daisuke; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-06-01

    Sn-doped Ga2O3 single crystals were synthesized by the Floating Zone (FZ) method. In photoluminescence (PL) under the excitation wavelength of 280 nm, we observed two types of luminescence: (1) defect luminescence due to recombination of the donor/acceptor pairs which appears at 430 nm and (2) the nsnp-ns2 transitions of Sn2+ which appear at 530 nm. The PL and scintillation decay time curves of the Sn-doped samples were approximated by a sum of exponential decay functions. The faster two components were ascribed to the defect luminescence, and the slowest component was owing to the nsnp-ns2 transitions. In the pulse height spectrum measurements under 241Am α-rays irradiation, all the Sn-doped Ga2O3 samples were confirmed to show a full energy absorption peak but the undoped one. Among the present samples, the 1% Sn-doped sample exhibited the highest scintillation light yield (1,500 ± 150 ph/5.5 MeV-α).

  5. Electrical properties of Hg3In2Te6 crystals doped with gadolinium

    International Nuclear Information System (INIS)

    Gorlej, P.M.; Grushka, O.G.; Frasunyak, V.M.

    2002-01-01

    The temperature dependences of electrical conductivity, the Hall coefficient, thermoelectric power, and the transversal Nernst-Ettingshausen effect of Hg 3 In 2 Te 6 crystals doped with gadolinium are investigated. It is shown that, under strong doping, the Fermi level descends and remains in the upper half of the energy gap in the impurity miscibility range, while the transparency of crystals is decreasing essentially. It causes the impurity self-compensation and preservation of bipolar conductivity typical of intrinsic semiconductors. In this case, the band gap, mobility ratio b=μ n /μp, and effective mass ratio m p /m n (n -electrons, p-holes) are reduced. Experimental results are explained by using the model of disordered semiconductor, in which the borders between forbidden and allowed energy bands are blurred and the transfer of electrons and holes occurs on the corresponding percolation levels because of the presence of the large density of localized states

  6. Luminescence and scintillation properties of Ce-doped Cs2ZnCl4 crystals

    Science.gov (United States)

    Sugawara, K.; Koshimizu, M.; Yanagida, T.; Fujimoto, Y.; Haruki, R.; Nishikido, F.; Kishimoto, S.; Asai, K.

    2015-03-01

    In this study, we have synthesized scintillation materials based on Ce-doped Cs2ZnCl4 crystals. The light yield was enhanced by up to 20% by doping Cs2ZnCl4 with Ce3+ ions. In the scintillation time profiles, fast components exhibited decay time constants on the order of nanoseconds, which was ascribed to Auger-free luminescence (AFL). The light yield of the AFL component decreased at 10 mol% Ce3+ concentration, which is mainly attributed to the reabsorption of AFL photons inside the crystals by Ce3+ ions, as seen in the scintillation spectra. Long components had decay time constants of approximately 30 ns. In addition, at 10 mol% Ce3+ concentration, a prominent band appeared at approximately 500 nm in the scintillation spectrum, which was not observed in the photoluminescence spectra. The long components in the scintillation time profiles and the 500 nm band in the scintillation spectra were tentatively attributed to self-trapped excitons perturbed by Ce3+ ions.

  7. Photography: enhancing sensitivity by silver-halide crystal doping

    International Nuclear Information System (INIS)

    Belloni, Jacqueline

    2003-01-01

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHI eff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHI theor =1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO 2 - as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO 2 ·- radical so formed transfers an electron to another silver cation, so that the PHI eff limit may be of 2Ag 0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  8. Study of nonlinear effects in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 Ontario (Canada)

    2008-07-14

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration.

  9. Study of nonlinear effects in photonic crystals doped with nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2008-01-01

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration

  10. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    Science.gov (United States)

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  11. Growth and electrical properties of (Mn,F) co-doped 0.92Pb(Zn 1/3Nb 2/3)O 3-0.08PbTiO 3 single crystal

    Science.gov (United States)

    Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R.

    2004-06-01

    The growth and characterization of (Mn,F) doped Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZNT) single crystals are reported in this paper. The typical single crystal obtained is up to 30 mm size with dark brown color. The crystal lattice parameters of doped PZNT crystal are slightly decreased compared to the pure one. The room temperature dielectric permittivity along direction is about 6000, which is lower than that of the pure PZNT8 because of the dopants. The Curie temperature of the doped crystal is about 180°C while the ferroelectric phase transition temperature is around 100°C, which are higher than those of the pure PZNT8 single crystal. The remnant polarization and coercive field of oriented doped crystal measured at 1 Hz and 10 kV/cm field are about 27 μC/cm 2 and 4.2 kV/cm, respectively. The room temperature mechanical quality factor is ˜300. Piezoelectric coefficient of oriented doped crystal is higher than 3500 pC/N and the longitudinal electromechanical coupling factor is larger than 93%. The piezoelectric properties of doped PZNT single crystal with temperature and orientations are also reported in this paper. The valence state of the manganese dopant was determined by electron spin resonance, indicating no Mn 4+ in the crystals, suggesting the valence of manganese ions in PZNT crystals may be 2+, which acts as a hardener, stabilizes the domain wall and pins the domain wall motion, on the other hand, the dopant will enter Ti 4+ position, shifting the crystal composition to higher PT content.

  12. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, S. K., E-mail: kushwaha@princeton.edu; Gibson, Q. D.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Xiong, J.; Ong, N. P. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Pletikosic, I. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States); Weber, A. P. [National Synchrotron Light Source, Brookhaven National Lab, Upton, New York 11973 (United States); Fedorov, A. V. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Valla, T. [Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States)

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  13. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  14. Crystal Growth and Spectroscopic characterization of chloride and bromide single crystals doped with rare earth ions for the mid infrared amplification

    International Nuclear Information System (INIS)

    Ferrier, A.

    2007-12-01

    This work is devoted to the study of low phonon energy crystals doped with rare earth ions for the realisation of diode-pumped solid state laser sources emitting in the middle infrared. For that purpose, pure and (Er 3+ or Pr 3+ ) doped single crystals of KPb 2 Cl 5 and Tl 3 PbX 5 (X=Cl, Br) have been elaborated by using the Bridgman-Stockbarger method. These non-hygroscopic and congruent melting materials have been found to exhibit phase transitions during the cooling process but which do not limit the elaboration of centimeter-size single crystals. The spectroscopic study of the Er 3+ doped compounds has been performed both at high and low temperatures. It thus appears that these systems present long fluorescence lifetimes and relatively large gain cross sections favorable for a laser emission around 4.5μm. It has been demonstrated further that the up-conversion processes resulting from excited-state absorptions of the Er 3+ ions around the pumping wavelength as well as the energy transfer processes between the Er 3+ ions do not lead to significant optical losses for the laser system. The derived parameters then have been used to build a model and simulate the laser operation of the system following diode pumping around 800 nm. In the end, the spectroscopic study of the Pr 3+ ion in various materials has allowed us to evidence large emission cross sections associated with long fluorescence lifetimes, now favorable to a laser emission around 5μm. (author)

  15. Can Cu(II) ions be doped into the crystal structure of potassium hydrogen tartrate?

    OpenAIRE

    Srinivasan, Bikshandarkoil R.; Remesh, H.

    2015-01-01

    The differing binding preferences of the hydrogen tartrate ligand (HC4H4O6)- namely {\\mu}7-octadentate mode for potassium ion and bidentate mode for cupric ion rules out the doping (incorporation) of any Cu(II) ion into the crystal structure of potassium hydrogen tartrate. Hence, the claim of growth of copper doped potassium hydrogen tartrate viz. K0.96Cu0.04C4H5O6 by Mathivanan and Haris, Indian J Pure App Phys 51 (2013) 851-859 is untenable.

  16. Optical properties and radiation response of Ce3+-doped GdScO3 crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke; Kochurikhin, Vladimir; Yanagida, Takayuki; Yoshikawa, Akira

    2012-01-01

    10%-Ce doped GdScO 3 perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO 3 crystal showed photo- and radio-luminescence peaks due to Ce 3+ of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    International Nuclear Information System (INIS)

    Stoker, D. S.; Keto, J. W.; Baek, J.; Wang, W.; Becker, M. F.; Kovar, D.

    2006-01-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG (z-scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN-sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χ xxxx (3) (3ω;ω,ω,ω)=1.52±0.25x10 -13 esu. The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects

  18. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  19. Magnetism in V-/Mn-doped ZnO layers fabricated on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; El-Shaer, A.; Schlenker, E.; Bakin, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Reuss, F.; Kling, R.; Schoch, W.; Limmer, W. [University Ulm, Department of Semiconductor Physics, Ulm (Germany); Ahlers, H.; Siegner, U.; Sievers, S.; Albrecht, M. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Eisenmenger, J.; Mueller, T.; Ziemann, P. [University Ulm, Department of Solid State Physics, Ulm (Germany); Huebel, A.; Denninger, G. [Universitaet Stuttgart, 2. Physkalisches Institut, Stuttgart (Germany)

    2007-07-15

    Doping ZnO with transition metals (TM) is an obvious approach to produce diluted magnetic semiconductors for magnetoelectronic and spintronic applications. We have carried out experimental studies on the fabrication and characterisation of Mn-doped ZnO layers and V-doped ZnO layers and nanorods, the results of which are reviewed in this paper. From SQUID measurements, both epitaxial and implanted ZnMnO layers show paramagnetic behaviour. Epitaxial ZnVO layers show ferromagnetic SQUID signals, but the presence of any secondary phases in the ZnVO layers may not be ruled out. We also show that the used Al{sub 2}O{sub 3} substrates produce a ferromagnetic SQUID signal, that complicates the analysis of magnetisation data and hence the confirmation of ferromagnetism only from SQUID results. (orig.)

  20. Scintillation and optical properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Masaki, E-mail: masaki.mori.mz4@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Nakauchi, Daisuke; Okada, Go [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Fujimoto, Yutaka [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Kawaguchi, Noriaki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Yanagida, Takayuki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan)

    2017-06-15

    The single crystals of 0, 0.6, 1, 1.6 and 2 mol% Ce doped CaGdAl{sub 3}O{sub 7} (Ce:CGAM) were grown by the Floating Zone method, and investigated on photoluminescence (PL) and scintillation properties. In the PL spectra, a broad emission appeared over 380–500 nm under 280 and 360 nm excitations with the quantum yield of 33.8–38.8%. Under a vacuum ultraviolet excitation (90 nm) using a synchrotron source, non-doped CGAM single crystal showed broad emissions over 250–650 nm. The PL decay time profiles followed a monotonic exponential decay with a decay time constant of around 33 ns. The scintillation spectra were similar to those of PL. All of the samples exhibited a clear photoabsorption peak and Compton edge in the pulse height spectra measured under {sup 137}Cs γ-ray irradiation, and the absolute scintillation light yield (LY) was highest for the 2% Ce-doped sample with the value of 3300±300 ph/MeV. The scintillation decay profiles were approximated by a third order exponential decay function, and the extracted decay time of Ce{sup 3+} emission component was around 36–44 ns. Among all the samples, 2%Ce:CGAM single crystal sample showed the best afterglow level as a scintillator under X-ray irradiation. - Highlights: •Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals were synthesized by the FZ method. •Optical and scintillation properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} were investigated. •Photoabsorption peak in a pulse height spectrum was clearly observed under γ-rays.

  1. Epitaxial AlN layers on sapphire and diamond; Epitaktische AlN-Schichten auf Saphir und Diamant

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Martin

    2009-04-27

    In this work, epitaxial AlN layers deposited by molecular beam epitaxy on sapphire and diamond substrates were investigated. Starting from this AlN, the dopant silicon was added. The influence of the silicon doping on the structural properties of the host AlN crystal was investigated using high resolution X-ray diffraction. Once the silicon concentration exceeds 1 x 10{sup 19} cm{sup -3}, a significant change of the AlN:Si crystal can be observed: increasing the silicon concentration up to 5 x 10{sup 20} cm{sup -3} results in a decrease of the a lattice parameter by approximately 1.2 pm and an increase of the c lattice parameter by about 1.0 pm. The crystal is stressed additionally by adding silicon resulting in a increase of the biaxial compressive stress of up to 2.0 GPa. Further increase of the silicon concentration leads to lattice relaxation. This result from X-ray diffraction was independently confirmed by Raman spectroscopy investigations. Further increase of the silicon concentration leads to the generation of polycrystalline phases within the epitaxial layer. XTEM measurements detected these polycrystalline phases. In addition, XTEM investigations confirmed also the increase of the lateral crystal size with increasing silicon concentration, as well as a great reduction of the screw dislocation density by more than one order of magnitude as found by X-ray diffraction: in undoped, nitrogen rich grown AlN layers the screw dislocation density is about 3 x 10{sup 8} cm{sup -2}, while AlN layers with a silicon concentration of 5 x 10{sup 20} cm{sup -3} show a screw dislocation density of only 1 x 10{sup 7} cm{sup -2}. In low-doped AlN:Si ([Si]{approx}2 x 10{sup 19} cm{sup -3}) the activation energy of the electronic conductivity is about 250 meV. Increasing the silicon concentration to about 1 x 10{sup 21} cm{sup -3} leads to an increase of the activation energy up to more than 500 meV in the now much more stressed AlN:Si epilayer. Studies of the absorption

  2. Rapid synthesis of nitrogen doped titania with mixed crystal lattice via microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Peilin; Liu Bin; Yin Shu; Wang Yuhua; Petrykin, Valery; Kakihana, Masato; Sato, Tsugio

    2009-01-01

    A microwave-assisted hydrothermal method was employed to synthesize nitrogen doped titania nanoparticles. Due to the high heating efficiency of microwave, rapid synthesis could be achieved in comparison with the conventional oven. Mixed crystal lattice was found existing in the obtained product, and the phase transformation behaviour under calcination was studied by XRD measurement together with Raman spectroscopy in details. The obtained nitrogen doped titania showed high specific surface area, about 300 m 2 g -1 . Photocatalytic activity in destructing NO x gas by the prepared sample exceeded that of commercial titania (P 25) or nitrogen doped titania synthesized by conventional hydrothermal method, under both visible-light and ultraviolet-light irradiation.

  3. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    Energy Technology Data Exchange (ETDEWEB)

    Oleson, Timothy A. [University of Wisconsin, Madison; Sahai, Nita [University of Akron; Wesolowski, David J [ORNL; Dura, Joseph A [ORNL; Majkrzak, Charles F [ORNL; Giuffre, Anthony J. [University of Wisconsin, Madison

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  4. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  5. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  6. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    International Nuclear Information System (INIS)

    Yokota, Yuui; Yanagida, Takayuki; Fujimoto, Yutaka; Nikl, Martin; Yoshikawa, Akira

    2010-01-01

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce 3+ ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce 3+ 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  7. Growth and Dielectric Properties of Ta-Doped La2Ti2O7 Single Crystals

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2018-02-01

    Full Text Available High-quality Ta-doped La2Ti2O7 (Ta-LTO single crystal of about 40 mm in length and 5 mm in diameter was successfully prepared by the optical floating zone method. An X-ray rocking curve reveals that the crystal of LTO has excellent crystalline quality. As-grown crystals were transparent after annealing in air and the transmittance is up to 76% in the visible and near-infrared region. X-ray diffraction showed that this compound possessed a monoclinic structure with P21 space group. The dielectric properties were investigated as functions of temperature (0~300 °C and frequency (102 Hz~105 Hz. Dielectric spectra indicated an increase in the room-temperature dielectric constant accompanied by a drop in the loss tangent as a result of the Ta doping. One relaxation was observed in the spectra of electric modulus, which was ascribed to be related to the oxygen vacancy. The dielectric relaxation with activation energy of 1.16 eV is found to be the polaron hopping caused by the oxygen vacancies.

  8. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  9. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  10. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  11. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  12. Preparation of silica doped titania nanoparticles with thermal stability and photocatalytic properties and their application for leather surface functionalization

    Directory of Open Access Journals (Sweden)

    Carmen Gaidau

    2017-11-01

    Full Text Available Doped nanoparticles based on titanium dioxide are of interest for their multifunctional properties and enlarged photocatalytic activity in visible domain. Silica doped titanium dioxide nanoparticles were prepared by hydrothermal method and their structural characteristics and photocatalytic activity were determined, in order to be used for leather coating as alternative to halogen based flame retardants and dry cleaning solvents. A range of concentrations from 2% to 20% silica doped titanium dioxide nanoparticles (% denotes the theoretical weight percent of Si was synthesized and characterized by ICP-OES, FT-IR, UV-vis spectroscopy, XRD, HRTEM and DLS. Titanium dioxide network penetration was supported by Si-O-Ti and OH identification in FT-IR spectra mainly on surface of 10% and 20% silica doped titanium dioxide nanoparticles. The increase of Si-O-Ti bonds with Si dopant concentration acts as efficient barriers against sinterization and growth of TiO2 particles and explains the low particle size identified in HRTEM analyses as compared to undoped TiO2NPs. UV-vis diffuse reflectance spectra of doped titanium dioxide nanoparticles showed the shifting of absorption band to visible domain for 10% silica doped titanium dioxide nanoparticles. The crystallite sizes were calculated from XRD spectra, ranging between 16.2 and 18.1 nm. HRTEM measurement of hydrothermally synthesized titanium dioxide nanoparticles showed anatase crystallites in the range of 8.8–27 nm, while in the 20% silica doped titanium dioxide nanoparticle sample smaller crystallite with sizes between 2.7 nm and 3.5 nm was identified due to the constraints of the SiO2-based amorphous matrix. Nano sizes of 64 nm and 72 nm were found in water dispersions of 10% and 20% silica doped titanium dioxide nanoparticles and the Zeta potentials were of −53.6 mV and −52.9 mV, which indicate very good stabilities. The leather surface treated with composites of film forming polymers

  13. Effect of Mg$^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd$_{3}$Al$_{2}$Ga$_{3}$O$_{12}$ crystals

    CERN Document Server

    Lucchini, M.T.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  14. Reduced cost and improved figure of sapphire optical components

    Science.gov (United States)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  15. Growth and properties of oxygen doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Kapitulnik, A.; Mitzi, D.B.

    1990-01-01

    This paper reports results on oxygen doped single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system grown by a directional solidification method. Annealing of as made crystals in increasing partial pressure of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed). Magnetic and photoemission properties of these crystals will be discussed

  16. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yuui, E-mail: y-yokota@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Nikl, Martin [Institute of Physics, Academy of Sciences of the Czech Republic/6253, Prague (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan)

    2010-03-15

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce{sup 3+} ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce{sup 3+} 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  17. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    Science.gov (United States)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  18. Narrow linewidth operation of the RILIS titanium: Sapphire laser at ISOLDE/CERN

    CERN Document Server

    Rothe, S; Wendt, K D A; Fedosseev, V N; Kron, T; Marsh, B A

    2013-01-01

    A narrow linewidth operating mode for the Ti:sapphire laser of the CERN ISOLDE Resonance Ionization Laser Ion Source (RILIS) has been developed. This satisfies the laser requirements for the programme of in-source resonance ionization spectroscopy measurements and improves the selectivity for isomer separation using RILIS. A linewidth reduction from typically 10 GHz down to 1 GHz was achieved by the intra-cavity insertion of a second (thick) Fabry-Perot etalon. Reliable operation during a laser scan was achieved through motorized control of the tilt angle of each etalon. A scanning, stabilization and mode cleaning procedure was developed and implemented in LabVIEW. The narrow linewidth operation was confirmed in a high resolution spectroscopy study of francium isotopes by the Collinear Resonance Ionization Spectroscopy experiment. The resulting laser scans demonstrate the suitability of the laser, in terms of linewidth, spectral purity and stability for high resolution in-source spectroscopy and isomer select...

  19. Crystal growth, spectroscopic characterization, and continuous wave laser operation of Nd3+-doped LiLuF4 crystal

    Science.gov (United States)

    Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Li, R.; Yu, T.; Chen, W. B.

    2011-04-01

    Nd3+-doped LiLuF4 single crystal with high optical quality was grown by Czochralski technique. The segregation coefficient of Nd3+ in LiLuF4 crystal was determined by the inductively coupled plasma atomic emission spectrometry method. Polarized absorption and fluorescence spectra were investigated. The peak absorption cross section at 792 nm and peak emission cross section at 1053 nm are 6.94×10-20 and 7.60×10-20 cm2, respectively. With a laser-diode as the pump source, a maximum 6.22 W continuous-wave laser output at 1053 nm has been obtained with a slope efficiency of 37.2% with respect to the pump power.

  20. A study of the ac Stark effect in doped photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haque, I; Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2007-04-16

    In this paper we present calculations of level populations and susceptibility for an ensemble of five-level atoms doped in a photonic crystal, using the master equation method. The atoms in the ensemble interact with the crystal which acts as a reservoir and are coupled with two strong pump fields and a weak probe field. It is found that, by manipulating the resonance energy associated with one of the decay channels of the atom, the system can be switched between an inverted and a non-inverted state. We have also observed the ac Stark effect in these atoms and have shown that due to the role played by the band structure of the photonic crystal, it is possible to switch between an absorption state and a non-absorption state of the atomic system. This is a very important finding as techniques of rendering material systems transparent to resonant laser radiation are very desirable in the fabrication of novel optical and photonic devices.

  1. Structural, Morphological and Optical Characterization of Eu3+ and Nd3+ Co-Doped Tio2 Nano Particles by Sol Gel Method

    Directory of Open Access Journals (Sweden)

    P. Sanjay

    2017-06-01

    Full Text Available Semiconductor nano crystals have been widely studied for their fundamental properties. The Eu3+ and Nd3+ doped titanium dioxide nano powder was successfully synthesized by sol-gel method. The morphological and structural properties of as-prepared samples were characterized by X-ray diffraction (XRD, High Resolution Transmission Electron Microscope (HRTEM. The Powder X- ray diffraction is carried out in order to examine the phase formation and substitution of Eu3+ and Nd3+ doped in TiO2 matrix. The UV-Vis spectral analysis was carried out between 200 nm and 1200 nm. The band gap of the Eu3+ and Nd3+ doped Tio2 nanoparticles was calculated. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The strong PL intensity confirms a blue shift.

  2. Mechanical properties of pure and doped InP single crystals under concentrated loading

    International Nuclear Information System (INIS)

    Boyarskaya, Yu.S.; Grabko, D.Z.; Medinskaya, M.I.; Palistrant, N.A.

    1997-01-01

    The mechanical properties of pure and doped (Fe, Zn, Sn) InP single crystals were investigated in the temperature interval from 293 to 600 K. It was shown that impurity hardening (the microhardness increase) was more pronounced at elevated temperatures than at 293 K. This is conditioned by braking of the moving dislocations with impurities which is more observed in the the high temperature region. The obvious anisotropy of the scratch hardness was revealed at room temperature for the (001) face of crystals under investigation. This anisotropy decreased sharply in increasing the temperature from 293 to 600 K

  3. Simulation of core-level binding energy shifts in germanium-doped lead telluride crystals

    International Nuclear Information System (INIS)

    Zyubin, A.S.; Dedyulin, S.N.; Yashina, L.V.; Shtanov, V.I.

    2007-01-01

    To simulate the changes in core-level binding energies in germanium-doped lead telluride, cluster calculations of the changes in the electrostatic potential at the corresponding centers have been performed. Different locations of the Ge atom in the crystal bulk have been considered: near vacancies, near another dopant site, and near the surface. For calculating the potential in the clusters that model the bulk and the surface of the lead telluride crystal (c-PbTe), the electron density obtained in the framework of the Hartree-Fock and hybrid density functional theory (DFT) methods has been used [ru

  4. Luminescence of single crystals of manganese doped zinc indium binary sulfides

    International Nuclear Information System (INIS)

    Arama, Efim; Vovc, Victor; Gheorghita, Eugene Iv.; Pintea, Valentina

    2013-01-01

    Radiative recombination spectra of Mn-doped ZnIn 2 S 4 single crystals have been analyzed in the work. The emission spectra interval close to its maximum (1,91±0,2) eV contains a number of the special features which were identified by us as intra-center transitions. We attribute the special features observed on the complex emission spectra to this type of transition by their decomposition into simple lines, using Alentsev -Foch method. (authors)

  5. Study of the transverse lasing in big size crystals of Ti:Sa. Application to the design of the peta-watt high-energy amplifier of the pilot laser of the LASERIX facility; Etude de l'amplification parasite transverse de la fluorescence dans les cristaux de Ti:Sa de grandes dimensions. Application a la realisation de l'amplificateur petawatt haute energie du laser pilote de la station LASERIX

    Energy Technology Data Exchange (ETDEWEB)

    Ple, F

    2007-11-15

    This manuscript presents experimental and theoretical works accomplished for the development of the LASERIX laser driver. The main goal of this thesis work was to design a high energy and high repetition rate titanium doped sapphire amplifier (Ti:Sa) allowing to reach an energy of 40 J at a repetition rate of 0.1 Hz before compression. After a general description of amplification in chirped pulse amplification Ti:Sa laser systems (Chapter 1), I present the two particular developments we made during this work for high energy amplification (Chapter 2). First, the spatial shaping and the homogenization based on micro-lens array (MLA) systems of the eight Nd-Glass pump lasers dedicated to the pumping of the last booster amplifier.Secondly, the suppression of parasitic effects due to transverse amplification of the fluorescence in the last booster amplifier Ti:Sa crystal. The developments performed as part of this thesis allowed us to amplify an impulsion of 2 J of energy up to 39 J in a crystal of 10 cm diameter. I also present the simulation program I developed (Chapter 3) in order to simulate the three dimensional parasitic lasing effect and fluorescence transverse amplification phenomena in large Ti:Sa crystals. A parametric study of these parasitic effects is also presented. Finally, the last part of this manuscript (Chapter 4) gives prospects of this work as part of the large future ELI and ILE projects. (author)

  6. X-ray diffraction topography observations of the core in Bi12SiO20 crystals doped with Mn

    International Nuclear Information System (INIS)

    Milenov, T.I.; Botev, P.A.; Rafailov, P.M.; Gospodinov, M.M.

    2004-01-01

    The core region in a bismuth silicate--Bi 12 SiO 20 (BSO) crystal doped with Mn was examined by X-ray double-crystal diffraction topography. Specific features were observed in the topographies as lines and contrast differences that point to defects occupying the central part of the crystal. We discuss the nature of these defects and propose an explanation in terms of stacking faults arranged in different structures

  7. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Science.gov (United States)

    Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade; LaDuca, Holly; Breitzer, Jonathan G.; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C 2O 4) 2] 2- was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 °C, then to rutile above 600 °C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of ∼350 mAh g -1. On crystallizing at 400 °C to a carbon-coated anatase the capacity drops to 210 mAh g -1, and finally upon carbon burn-off to 50 mAh g -1. Mixtures of the amorphous titanium dioxide and Li 4Ti 5O 12 showed a similar electrochemical profile and capacity to Li 4Ti 5O 12 but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li 4Ti 5O 12.

  8. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  9. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  10. Effect of Mg"2"+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd_3Al_2Ga_3O_1_2 crystals

    International Nuclear Information System (INIS)

    Lucchini, M.T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd_3Al_2Ga_3O_1_2 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd_3Al_2Ga_3O_1_2 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd_3Al_2Ga_3O_1_2 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  11. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    Science.gov (United States)

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  12. Sapphire capillary interstitial irradiators for laser medicine

    Science.gov (United States)

    Shikunova, I. A.; Dolganova, I. N.; Dubyanskaya, E. N.; Mukhina, E. E.; Zaytsev, K. I.; Kurlov, V. N.

    2018-04-01

    In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.

  13. Dielectric Losses and Charge Transfer in Antimony-Doped TlGaS2 Single Crystal

    Science.gov (United States)

    Asadov, S. M.; Mustafaeva, S. N.

    2018-03-01

    Effect of semimetallic antimony (0.5 mol % Sb) on the dielectric properties and ac-conductivity of TlGaS2-based single crystals grown by the Bridgman-Stockbarger method has been studied. The experimental results on the frequency dispersion of dielectric coefficients and the conductivity of TlGa0.995Sb0.005S2 single crystals allowed the revealing of the dielectric loss nature, the charge transfer mechanism, and the estimation of the parameters of the states localized in the energy gap. The antimony-doping of the TlGaS2 single crystal leads to an increase in the density of states near the Fermi level and a decrease in the average time and average distance of hopes.

  14. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis

    Science.gov (United States)

    Zaw, Khin; Sutherland, Lin; Yui, Tzen-Fu; Meffre, Sebastien; Thu, Kyaw

    2015-01-01

    Rubies and sapphires are of both scientific and commercial interest. These gemstones are corundum colored by transition elements within the alumina crystal lattice: Cr3+ yields red in ruby and Fe2+, Fe3+, and Ti4+ ionic interactions color sapphires. A minor ion, V3+ induces slate to purple colors and color change in some sapphires, but its role in coloring rubies remains enigmatic. Trace element and oxygen isotope composition provide genetic signatures for natural corundum and assist geographic typing. Here, we show that V can dominate chromophore contents in Mogok ruby suites. This raises implications for their color quality, enhancement treatments, geographic origin, exploration and exploitation and their comparison with rubies elsewhere. Precise LA-ICP-MS analysis of ruby and sapphire from Mogok placer and in situ deposits reveal that V can exceed 5,000 ppm, giving V/Cr, V/Fe and V/Ti ratios up to 26, 78, and 97 respectively. Such values significantly exceed those found elsewhere suggesting a localized geological control on V-rich ruby distribution. Our results demonstrate that detailed geochemical studies of ruby suites reveal that V is a potential ruby tracer, encourage comparisons of V/Cr-variation between ruby suites and widen the scope for geographic typing and genesis of ruby. This will allow more precise comparison of Asian and other ruby fields and assist confirmation of Mogok sources for rubies in historical and contemporary gems and jewelry.

  15. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  16. The effect of cadmium doping of Pbsub(1-x)Snsub(x)Te crystals and thin layers on the electrical properties of the system

    International Nuclear Information System (INIS)

    Silberg, E.

    1982-06-01

    In the present work the doping characteristics and electrical properties of Cd-doped bulk crystals (as-grown and annealed) and LPE layers of Pbsub(1-x)Snsub(x)Te, 0<=x<=0.25, were studied using Hall effect, resistivity and Cd-solubility measurements. The bulk crystals were doped by Cd-diffusion in a two-temperature-zone furnace and the LPE layers by adding Cd to the growth solution. Cd doping was used to produce uniform n-type LPE layers of Pbsub(1-x)Snsub(x)Te and the process proved to be a controllable and reproducible method for the production of good quality material with low electron concentration and high electron mobility. These qualities are very important in obtaining improved electrooptical devices. (H.K.)

  17. A thermoluminescence study of Z2-centres in terbium-doped NaCl crystals

    International Nuclear Information System (INIS)

    Reddy, K.N.; Ahmed, I.M.; Pandaraiah, N.; Rao, U.V.S.; Babu, V.H.

    1983-01-01

    Thermoluminescence (TL), optical absorption are used to correlate thermal annealing of Z 2 -centres with TL peak occurring around 110 0 C in terbium-doped NaCl crystals. The TL glow peak occurring around 190 0 C is attributed to the thermal annealing of F-centres. The thermal activation parameters are calculated for both Z 2 - and F-centre peaks. (author)

  18. Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors

    Science.gov (United States)

    Chakraborti, D.; Trichy, G.; Narayan, J.; Prater, J. T.; Kumar, D.

    2007-12-01

    The effect of Al doping on the magnetic properties of Zn(Cu)O based dilute magnetic semiconducting thin films has been systematically investigated. Epitaxial thin films have been deposited onto sapphire c-plane single crystals using pulsed laser deposition technique. X-ray diffraction and high resolution transmission electron microscopy studies show that the Zn(Cu,Al)O films are epitaxially grown onto (0001) sapphire substrates with a 30°/90° rotation in the basal plane. The large lattice misfit of the order of 16% is accommodated by matching integral multiples of lattice and substrate planes. In these large mismatch systems, the resulting films are fully relaxed following deposition of the first complete monolayer of ZnO (consistent with a critical thickness that is less than one monolayer). Magnetic hysteresis measurements indicate that the pure Zn(Cu)O thin films are ferromagnetic at room temperature. Doping with up to 5% Al (n type) does not significantly affect the ferromagnetism even though it results in an increase in carrier densities of more than 3 orders of magnitude, rising from 1×1017 to 1.5×1020 cm-3. However, for Al additions above 5%, a drop in net magnetization is observed. Annealing the films in an oxygen atmosphere at 600 °C also resulted in a dramatic drop in magnetic moment of the samples. These results strongly suggest that carrier induced exchange is not directly responsible for the magnetic properties of these materials. Rather, a defect mediated exchange mechanism needs to be invoked for this system.

  19. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al

    Science.gov (United States)

    Galazka, Zbigniew; Ganschow, Steffen; Fiedler, Andreas; Bertram, Rainer; Klimm, Detlef; Irmscher, Klaus; Schewski, Robert; Pietsch, Mike; Albrecht, Martin; Bickermann, Matthias

    2018-03-01

    We experimentally evaluated segregation of Cr, Ce and Al in bulk β-Ga2O3 single crystals grown by the Czochralski method, as well as the impact of these dopants on optical properties. The segregation of Cr and Ce and their incorporation into the β-Ga2O3 crystal structure strongly depends on O2 concentration in the growth atmosphere which has a noticeable impact on decomposition of Ga2O3 and Cr2O3, as well as on the charge state of Cr and Ce. Effective segregation coefficients for Cr are in the range of 3.1-1.5 at 7-24 vol% O2, while for Ce they are roughly below 0.01 at 1.5-34 vol% O2. The effective segregation coefficient for Al is 1.1 at 1.5-21 vol% O2. Both dopants Ce and Al have a thermodynamically stabilizing effect on β-Ga2O3 crystal growth by supressing decomposition. While Ce has no impact on the optical transmittance in the ultraviolet and visible regions, in Cr doped crystals we observe three absorption bands due to Cr3+ on octahedral Ga sites, one in the ultraviolet merging with the band edge absorption of β-Ga2O3 and two in the visible spectrum, for which we estimate the absorption cross sections. Al doping also does not induce dopant related absorption bands but clearly shifts the absorption edge as one expects for a solid-solution crystal Ga2(1-x)Al2xO3 still in the monoclinic phase. For the highest doping concentration (Ga1.9Al0.1O3) we estimate an increase of the energy gap by 0.11 eV.

  20. Optical and X-ray absorption spectroscopy in lead doped lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; D' Acapito, F; Montereali, R M; Polosan, S; Secu, M; Vincenti, M A, E-mail: somma@fis.uniroma3.it

    2010-11-15

    LiF:Pb doped crystals were successfully grown by Kyropoulos method, starting with drying powders. The presence of Pb{sup 2+} ions in the LiF crystals were evidenced by the absorption band at 278 nm and by 375 nm photoluminescence. The presence of some other Pb structures with oxygen compounds in the as made samples was evidenced, decreasing after some annealing procedures. The local environment and valence state of Pb in LiF were studied by X-ray Absorption Spectroscopy at the Pb L{sub III} and L{sub I} edges. XANES data reveal that Pb is present as Pb{sup 2+} whereas EXAFS data show that it is incorporated in the crystal and not forming PbF{sub 2} precipitates. Identical spectra are obtained for samples as prepared and after thermal annealing up to 650 deg. C demonstrating the stability of the incorporation site. Also the concentration of Pb in the crystal has no effect on the location site of the metal as the same spectrum is obtained for specimens with different dopant concentrations.

  1. Crystal Growth Technology

    Science.gov (United States)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

  2. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  3. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  4. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  5. The study of nonlinear two-photon phenomenon in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)

    2007-02-28

    A theory of the nonlinear two-photon absorption has been developed in a photonic crystal doped with an ensemble of four-level nanoparticles. We have considered that the nanoparticles are interacting with the photonic crystal. An expression of two-photon absorption has been obtained by using the density matrix method. The effect of the dipole-dipole interaction has also been included in the formulation. Interesting new phenomena have been predicted. For example, it is found that the inhibition of two-photon absorption can be turned on and off when the decay resonance energies of the four-level nanoparticles are moved within the energy band.

  6. Fast neutron irradiation and thermal properties of doped nonstoichiometric lithium potassium sulphate crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gomaa, N.G.; El-Khatib, A.M.

    1990-01-01

    The influence of point defects introduced by fast neutron irradiations with neutron fluences up to 1.08 x 10 10 n/cm 2 on the thermal properties of pure and doped Li 1.4 K 0.6 SO 4 single crystals are studied in the vicinity of high temperature phase transition at 705 K. The temperature dependence of specific heat is found to be shifted towards lower temperature with the increase of neutron fluence, and can be affected by the presence of Cu 2+ dopant. The change in the value of the specific heat can be attributed to the presence of internal strain generated inside the crystal. (author)

  7. Optical and structural characterization of GaSb and Te-doped GaSb single crystals

    International Nuclear Information System (INIS)

    Tirado-Mejia, L.; Villada, J.A.; Rios, M. de los; Penafiel, J.A.; Fonthal, G.; Espinosa-Arbelaez, D.G.; Ariza-Calderon, H.; Rodriguez-Garcia, M.E.

    2008-01-01

    Optical and structural properties of GaSb and Te-doped GaSb single crystals are reported herein. Utilizing the photoreflectance technique, the band gap energy for doped samples was obtained at 0.814 eV. Photoluminescence (PL) spectra showed a peak at 0.748 eV that according to this research, belongs to electronic states of pure GaSb and not to the longitudinal optical (LO) phonon replica as has been reported by other authors. Analysis of the full width at half maximum (FWHM) values of X-ray diffraction, as well as micro-Raman peaks showed that the inclusion of Te decreases the crystalline quality

  8. Scintillation properties of Er-doped Y3Al5O12 single crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Ogino, Hiraku; Fujimoto, Yutaka; Suzuki, Akira; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Yoshikawa, Akira

    2013-01-01

    Er-doped Y 3 Al 5 O 12 single crystals with different Er concentrations of 0.1, 1.0, 10, 30, and 50% were grown by the micro-pulling down method. There were several absorption lines due to the Er 3+ 4f-4f transitions in the transmittance spectra and these lines correspond to the transitions from the ground state of 4 I 15/2 to the excited states. The photo- and radio-luminescence spectra showed Er 3+ 4f-4f emissions. Relative light yield under 5.5 MeV alpha-ray irradiation of Er 0.1%:Y 3 Al 5 O 12 was estimated to be 63% of that of Bi 4 Ge 3 O 12 . -- Highlights: •Er doped Y 3 Al 5 O 12 single crystal scintillators were grown with different Er concentrations. •Optical properties associated with 4f-4f transition were evaluated. •Radio luminescence spectra measurements were performed under 5.5 MeV alpha-ray irradiation. •The highest light yield was estimated to be 63% of that of Bi 4 Ge 3 O 12 under 5.5 MeV alpha-ray irradiation

  9. Control of N/N2 species ratio in NO plasma for p-type doping of ZnO

    International Nuclear Information System (INIS)

    Chen Xingyou; Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen; Yao Bin

    2011-01-01

    Nitrogen-doped ZnO thin films were grown on c-plane sapphire (Al 2 O 3 ) substrates via plasma-assisted molecular beam epitaxy using plasma activated nitric oxide (NO) as the oxygen source and dopant. X-ray diffraction measurements indicate that a small NO flux benefits the crystal quality of the thin films. Hall effect measurements indicate that the electron density of the ZnO films decreases gradually with decreasing NO flux, and the conduction reverses to p-type at a certain flux. Optical emission spectra indicate that the N atom content in the NO plasma increases with decreasing NO flux, and the origin of this is discussed. X-ray photoelectron spectroscopy measurements demonstrate that the number of N atom occupied O sites in the ZnO lattice increases correspondingly.

  10. Contribution to knowledge of radiation damage in KCl crystals doped with Sr

    International Nuclear Information System (INIS)

    Sordi, G.-M.A.A.

    1974-11-01

    The radiation damages in KCl crystals doped with Sr ++ using thermo-ionic technique (ITC) and optical absorption measurements were studied. The variation of the entropy for the dipole jump starting from results reported by several authors was calculated. The irradiation effects with three different exposures were analysed: irradiation with gamma rays; irradiation with fast neutrons added to gamma irradiation; and irradiation with thermal neutrons together with fast neutrons and gamma rays. (Author) [pt

  11. Mechanoluminescence by impulsive deformation of γ-irradiated Er-doped CaF2 crystals

    International Nuclear Information System (INIS)

    Brahme, Nameeta; Shukla, Manju; Bisen, D.P.; Kurrey, U.; Choubey, Anil; Kher, R.S.; Singh, Manisha

    2011-01-01

    An impulsive technique has been used for mechanoluminescence (ML) measurements in γ-irradiated Er doped CaF 2 crystals. When the ML is excited impulsively by the impact of moving piston on to γ-irradiated CaF 2 :Er crystals, two peaks are observed in ML intensity with time and it is seen that the peak intensities of first and second peaks (I m1 and I m2 ) increase with increasing impact velocity. However the time corresponding to first and second peaks (t m1 and t m2 ) shifts towards shorter time values with increasing impact velocity. It is also seen that the total ML intensity I Total initially increases with the impact velocity and then it attains a saturation value for higher values of the impact velocity. We have presented a theoretical explanation for the observed results. - Research highlights: → Impulsive technique has been used for mechanoluminescence (ML) studies in γ-irradiated Er doped CaF 2 crystals. → ML intensity exhibited two peaks with time (I m1 and I m2 ), where the intensity of both the peaks increased with increasing impact velocity. → The time of occurrence of the peaks (t m1 and t m2 ) reduced with increasing the impact velocity. → Total ML intensity (I Total ) first increases and then attains a saturation value with an increment in the impact velocity. → A theoretical explanation is presented to the observed results.

  12. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  13. Optical properties and radiation response of Ce{sup 3+}-doped GdScO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kochurikhin, Vladimir [General Physics Institute, 38 Vavilov Str., 119991 Moscow (Russian Federation); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    10%-Ce doped GdScO{sub 3} perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO{sub 3} crystal showed photo- and radio-luminescence peaks due to Ce{sup 3+} of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Growth of vertically oriented InN nanorods from In-rich conditions on unintentionally patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Terziyska, Penka T., E-mail: pterziy1@lakeheadu.ca [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); Butcher, Kenneth Scott A. [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada); Rafailov, Peter [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Alexandrov, Dimiter [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada)

    2015-10-30

    Highlights: • Vertical InN nanorods are grown on selective areas of sapphire substrates. • In metal droplets nucleate on the sharp needle apexes on the selective areas. • The preferred orientation and the growth direction of the nanorods are (0 0 0 1). • The nanorods grow from the supersaturated indium melt on their tops. - Abstract: Vertically oriented InN nanorods were grown on selective areas of unintentionally patterned c-oriented sapphire substrates exhibiting sharp needles that preferentially accommodate In-metal liquid droplets, using Migration Enhanced Afterglow (MEAglow) growth technique. We point out that the formation of AlN needles on selected areas can be reproduced intentionally by over-nitridation of unmasked areas of sapphire substrates. The liquid indium droplets serve as a self-catalyst and the nanorods grow from the supersaturated indium melt in the droplet in a vertical direction. X-ray diffraction measurements indicate the presence of hexagonal InN only, with preferred orientation along (0 0 0 1) crystal axis, and very good crystalline quality. The room temperature Raman spectrum shows the presence of the A{sub 1}(TO), E{sub 2}(high) and A{sub 1}(LO) phonon modes of the hexagonal InN.

  15. Optical spectroscopy of Ho{sup 3+}-doped SrWO{sub 4} scheelite crystal

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianfu; Jia Guohua; Zhu Zhaojie; You Zhenyu; Wang Yan; Wu Baichang; Tu Chaoyang [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry and National Engineering Research Center for Optoelectronic Crystalline Materials, Fuzhou, Fujian 350002 (China)

    2007-04-07

    Ho{sup 3+}-doped SrWO{sub 4} crystal was grown by the Czochralski method. The polarized absorption and emission spectra together with the fluorescent decay curve were measured at room temperature. The intensity parameters, radiative lifetimes and branching ratios were calculated based on the Judd-Ofelt theory. The stimulated emission cross-sections of the potential laser transitions were determined using the reciprocity method.

  16. Coating of hydroxyapatite doped Ag on commercially pure titanium surface; Recobrimento de hidroxiapatita dopada com Ag sobre superficie de titanio comercialmente puro

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva, E-mail: jonasvieira@usp.br [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO{sub 3} substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions.

  17. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    Science.gov (United States)

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Radiation-induced color centers in La-doped PbWO sub 4 crystals

    CERN Document Server

    Deng, Q; Zhu, R Y

    1999-01-01

    This report presents the result of a study on radiation-induced color center densities in La-doped lead tungstate (PbWO sub 4) crystals. The creation and annihilation constants of radiation-induced color centers were determined by using transmittance data measured for a PbWO sub 4 sample before and during sup 6 sup 0 Co gamma-ray irradiation at a dose rate of 15 rad/h. Following a model of color center kinetics, these constants were used to calculate color center densities under irradiations at 100 rad/h. The result was found to be in good agreement with experimental data, indicating that the behaviour of PbWO sub 4 crystals under irradiation can be predicted according to this model.

  19. Micro-Holograms in a Methyl Red-Doped Polymer-Dispersed Liquid Crystal (E48:PVP

    Directory of Open Access Journals (Sweden)

    N. P. Hermosa II

    2003-06-01

    Full Text Available Feasibility of a holographic point-by-point storage in a methyl red-doped Polymer-Dispersed LiquidCrystal (PDLC is determined. Micro-holograms (gratings are recorded next to each other. Smallestgrating diameter obtained is 69.9 mm, with minimum grating distance of 80 mm. Recording of adjacentgrating reduces the diffraction efficiency of existing grating by 17% (average.

  20. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  1. Single-mode amplification in Yb-doped rod-type photonic crystal fibers for high brilliance lasers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.

    2009-01-01

    This paper presents the effect of a low refractive index ring in the Yb-doped rod-type photonic crystal fibre core on the guided mode propagation and analyzed through a spatial and spectral amplifier model. The ring provides a higher differential overlap between the fundamental mode (FM...... to identify a proper ring characteristic that is width, position and refractive index. Then rod-type PCF designs have been optimized with a full-vector modal solver based on the finite-element method. Then, the amplification properties of the Yb-doped rod-type PCFs have been investigated by assuming a forward...

  2. Growth and laser action of Yb: YVO4 crystals with low Yb doping concentration

    Science.gov (United States)

    Zhong, Degao; Teng, Bing; Li, Jianhong; Zhang, Shiming; Zhang, Bingtao; Wang, Chao; Tian, Xueping; Liu, Junhai

    2012-11-01

    Yb: YVO4 single crystals with low doping concentrations of Yb3+ less than 0.3 at% were grown using the Czochralski method. The polarized absorption spectra were measured at room temperature. Strong anisotropy exists in the absorption spectra, resulting in almost entirely different features for π-polarization and σ-polarization. The laser emission spectrum and relationship curve between the output power and absorbed pump power (Pabs) were measured. The continuous-wave laser action of Yb: YVO4 single crystal in a range of 1020.4-1026.3 nm was realized by using a high-power diode laser as the pump source.

  3. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    International Nuclear Information System (INIS)

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, L.A.; Watkins, S.P.

    2016-01-01

    Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-type dopants. Here we present high-resolution photoluminescence (PL) spectroscopy studies of unintentionally doped and Sn-doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I 10 bound exciton transition that was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. The PL linewidths are exceptionally sharp for these samples, enabling a clear identification of several donor species. Temperature-dependent PL measurements of the I 10 line emission energy and intensity dependence reveal a behavior that is similar to other shallow donors in ZnO. Ionized donor bound-exciton and two-electron satellite transitions of the I 10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule) similar to recently observed carbon related donors, and confirming the shallow nature of this defect center, which was recently attributed to a Sn Zn double donor compensated by an unknown single acceptor.

  4. Ultrafast Phenomena 6. Proceedings of the International Conference (6th) Held in Kyoto, Japan on July 12-15, 1988. Springer Series in Chemical Physics, Volume 48

    Science.gov (United States)

    1988-01-01

    efficiency using Potassium Niobate. Recently, Sanchez et al. [1] reported 1.6 W of output power from the Titanium doped Sapphire laser pumped by an Argon...rhodamine-640 decreases in the order of polystyrene, PMMA, polyacrylic acid and PVOH as the host polymer. Namely, there is a correlation between the...40 High-Resolution Spectroscopy of Transient Molecules By E. Hirota Volume 41 High Resolution Spectral Atlas of Nitrogen Dioxide 559-597 nm By K

  5. Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2

    International Nuclear Information System (INIS)

    Liu, J.; Rico, M.; Griebner, U.; Petrov, V.; Cano-Torres, J.M.; Cascales, C.; Esteban-Betegon, F.; Serrano, M.D.; Volkov, V.; Zaldo, C.

    2005-01-01

    Single crystals of disordered NaLa(WO 4 ) 2 and NaLa(MoO 4 ) 2 doped with Yb 3+ are grown by the Czochralski method from the melt. Continuous-wave laser operation with Ti:sapphire laser pumping is demonstrated at room temperature without special cooling. Tunability from 1017 to 1057 nm and from 1015 to 1053 nm is achieved for Yb:NaLa(WO 4 ) 2 and Yb:NaLa(MoO 4 ) 2 , respectively. A maximum output power of 205 mW is obtained with Yb:NaLa(WO 4 ) 2 . (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    Science.gov (United States)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  7. Control of N/N{sub 2} species ratio in NO plasma for p-type doping of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xingyou [Key Laboratory of Excited State Processes and Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen [Key Laboratory of Excited State Processes and Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun, 130033 (China); Yao Bin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China)

    2011-09-01

    Nitrogen-doped ZnO thin films were grown on c-plane sapphire (Al{sub 2}O{sub 3}) substrates via plasma-assisted molecular beam epitaxy using plasma activated nitric oxide (NO) as the oxygen source and dopant. X-ray diffraction measurements indicate that a small NO flux benefits the crystal quality of the thin films. Hall effect measurements indicate that the electron density of the ZnO films decreases gradually with decreasing NO flux, and the conduction reverses to p-type at a certain flux. Optical emission spectra indicate that the N atom content in the NO plasma increases with decreasing NO flux, and the origin of this is discussed. X-ray photoelectron spectroscopy measurements demonstrate that the number of N atom occupied O sites in the ZnO lattice increases correspondingly.

  8. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai; Yang, Xiulin; Hedhili, Mohamed N.; Ahmed, Elaf S.; Shi, Le; Wang, Peng

    2014-01-01

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs

  9. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  10. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Zhou, D H; Xia, C T; Wu, F; Xu, J; Cong, Z H; Zhang, J; Tang, D Y

    2011-01-01

    High quality Nd 3+ -doped Lu 2 SiO 5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 2.59, 4.90, and 5.96×10 -20 cm 2 , respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10 -20 cm 2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material

  11. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.; Cong, Z. H.; Zhang, J.; Tang, D. Y.

    2011-01-01

    High quality Nd3+-doped Lu2SiO5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω2,4,6 were obtained to be 2.59, 4.90, and 5.96×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10-20 cm2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material.

  12. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  13. Magnetic, electric and electron magnetic resonance properties of orthorhombic self-doped La1-xMnO3 single crystals

    International Nuclear Information System (INIS)

    Markovich, V; Fita, I; Shames, A I; Puzniak, R; Rozenberg, E; Yuzhelevski, Ya; Mogilyansky, D; Wisniewski, A; Mukovskii, Ya M; Gorodetsky, G

    2003-01-01

    The effect of lanthanum deficiency on structural, magnetic, transport, and electron magnetic resonance (EMR) properties has been studied in a series of La 1-x MnO 3 (x = 0.01, 0.05, 0.11, 0.13) single crystals. The x-ray diffraction study results for the crystals were found to be compatible with a single phase of orthorhombic symmetry. The magnetization curves exhibit weak ferromagnetism for all samples below 138 K. It was found that both the spontaneous magnetization and the coercive field increase linearly with x. The pressure coefficient dT N /dP decreases linearly with self-doping, from a value of 0.68 K kbar -1 for La 0.99 MnO 3 to 0.33 K kbar -1 for La 0.87 MnO 3 . The resistivity of low-doped La 0.99 MnO 3 crystal is of semiconducting character, while that of La 0.87 MnO 3 depends weakly on temperature between 180 and 210 K. It was found that the magnetic and transport properties of the self-doped compounds may be attributed to a phase separation involving an antiferromagnetic matrix and ferromagnetic clusters. The latter phases as well as their paramagnetic precursors have been directly observed by means of EMR

  14. Structure of titanium-doped goethite rust

    International Nuclear Information System (INIS)

    Nakayama, Takenori; Ishikawa, Tatsuo; Konno, Toyohiko J.

    2005-01-01

    To investigate the influence of titanium addition on the formation and structure of goethite (α-FeOOH) rust which is one of main corrosion products of weathering steel, the artificially synthesized α-FeOOH rusts were prepared by hydrolysis of aqueous solutions of Fe(III) containing Ti(IV) at different atomic ratios (Ti/Fe) in the range 0-0.1. The obtained rusts particles were observed by TEM. Characterization by XRD, N 2 absorption, Moessbauer spectroscopy was also done. TEM observation revealed that the α-FeOOH rust particle size increased with the increase of Ti/Fe, and that Ti-enriched poorly crystalline particles were formed around the rust particles. XRD confirmed that the crystallite size increased with the increase of Ti/Fe, while the XRD peaks decreased in intensity. Specific surface area obtained by N 2 absorption increased with the increase of Ti/Fe. It is deduced from the obtained results that the addition of Ti(IV) increases the crystallite size of α-FeOOH, and produces double domain particles consisting of the particle core and a porous poorly crystalline shell. It is thought that such unique rust structure produced by titanium addition contributes to the protective properties of rust layer of the weathering steel

  15. Impacts of Co-doping on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystal studied by the electrical transport.

    Science.gov (United States)

    Urata, Takahiro; Tanabe, Yoichi; Heguri, Satoshi; Tanigaki, Katsumi

    2015-03-01

    In the FeSe with the simplest crystal structure in the Fe-based superconductor families, although both the superconductivity and the orbital ordering states are investigated, the relation between them is still unclear. Here, we report Co doping effects on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystals. The electrical transport measurements demonstrated that the superconductivity vanishes at 4 % Co doping while the orbital ordering state may be robust against Co doping. Present results suggest that the orbital ordering state is not related to the emergence of the superconductivity in FeSe.

  16. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    International Nuclear Information System (INIS)

    Siddiqua, Poppy; O'Leary, Stephen K.

    2016-01-01

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  17. Oleophobic properties of the step-and-terrace sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical–mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of the surface. The results are analyzed using the Ventsel–Deryagin homogeneous wetting model.

  18. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  19. Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant

    International Nuclear Information System (INIS)

    Tissue, B.M.; Jia, W.; Lu, L.; Yen, W.M.

    1991-01-01

    We have grown single-crystal fibers of Cr:YAG and Cr,Ca:YAG under oxidizing and reducing conditions by the laser-heated-pedestal-growth method. The Cr:YAG crystals were light green due to Cr 3+ in octahedral sites, while the Cr,Ca:YAG crystals were brown. The presence of the divalent codopant was the dominant factor determining the coloration in these single-crystal fibers, while the oxidizing power of the growth atmosphere had little effect on the coloration. The Cr,Ca:YAG had a broad absorption band centered at 1.03 μm and fluoresced from 1.1 to 1.7 μm, with a room-temperature lifetime of 3.5 μs. The presence of both chromium and a divalent codopant were necessary to create the optically-active center which produces the near-infrared emission. Doping with only Ca 2+ created a different coloration with absorption in the blue and ultraviolet. The coloration in the Cr,Ca:YAG is attributed to Cr 4+ and is produced in as-grown crystals without irradiation or annealing, as has been necessary in previous work

  20. Growth and holographic data storage properties of near-stoichiometric LiTaO{sub 3} crystals doped with Mn

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao [College of Science, Harbin Engineering University, Harbin 150001 (China)], E-mail: tzhang_hit02@yahoo.com; Dong Yantang; Geng Tao; Dai Qiang [College of Science, Harbin Engineering University, Harbin 150001 (China); Xu Yuheng [School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China)

    2009-03-15

    A series of Mn-doped near-stoichiometric LiTaO{sub 3} crystals were grown from a Li-rich (Li/Nb = 1.38, atomic ratio) and varying level of Mn-doping melt using a Cz furnace equipped with a radio frequency generator. The etching experiment reveals that as-grown polarized Mn:SLN has single ferroelectric domain structures under optical microscope. By two-beam coupling experiment, we measured and systematically analyzed the photorefractive properties such as the dynamic range, the sensitivity and the loss of signal-to-noise-ratio coefficient. Based on Mn (0.05 wt%):SLN crystal, a big capacity storage of 100 holograms in a coherent volume of 0.085 cm{sup 3} have been fulfilled successfully and the storage density arrived 0.93 Gbits cm{sup -3}.

  1. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  2. Surface study of irradiated sapphires from Phrae Province, Thailand using AFM

    Science.gov (United States)

    Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.

    2017-09-01

    The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.

  3. Properties of the generation of radiation in the near infrared part of the spectrum with a sapphire crystal laser having radiation-induced color centers

    International Nuclear Information System (INIS)

    Voitovich, A.P.; Grinkevich, V.E.; Kononov, V.A.; Kromskii, G.I.

    1986-01-01

    This paper investigates the spectral stability of the color centers in sapphire and the energy of lasers in which the active elements were colored with various techniques. Color centers were produced by neutron irradiation. The absorption spectra of the color centers are shown. The transformation of the spectra shows that the mutual conversions of color centers takes place during the thermal annealing of the sapphire; most of the color centers formed have luminescence. Generation or radiation with a tunable frequency was obtained in the case of transverse or quasi-longitudinal excitation by a ruby laser. The results show that ways for increasing the stability of the energy generated by a sapphire laser with color centers can be found

  4. Tuning the sapphire EFG process to the growth of Al2O3/YAG/ZrO2:Y eutectic

    Science.gov (United States)

    Carroz, L.; Duffar, T.

    2018-05-01

    In this work, a model is proposed, in order to analytically study the working point of the Edge defined Film-fed Growth (EFG) pulling of crystal plates. The model takes into account the heat equilibrium at the interface and the pressure equilibrium across the meniscus. It is validated on an industrial device dedicated to the pulling of sapphire ribbons. Then, the model is applied to pulling ceramic alloy plates, of the ternary eutectic Al2O3/YAG/ZrO2:Y. This allowed understanding the experimental difficulties of pulling this new material and suggested improvements of the control software. From these results, pulling net shaped ceramic alloy plates was successful in the same industrial equipment as used for sapphire.

  5. Leveraging Python Interoperability Tools to Improve Sapphire's Usability

    Energy Technology Data Exchange (ETDEWEB)

    Gezahegne, A; Love, N S

    2007-12-10

    The Sapphire project at the Center for Applied Scientific Computing (CASC) develops and applies an extensive set of data mining algorithms for the analysis of large data sets. Sapphire's algorithms are currently available as a set of C++ libraries. However many users prefer higher level scripting languages such as Python for their ease of use and flexibility. In this report, we evaluate four interoperability tools for the purpose of wrapping Sapphire's core functionality with Python. Exposing Sapphire's functionality through a Python interface would increase its usability and connect its algorithms to existing Python tools.

  6. Sapphire: Canada's Answer to Space-Based Surveillance of Orbital Objects

    Science.gov (United States)

    Maskell, P.; Oram, L.

    The Canadian Department of National Defence is in the process of developing the Canadian Space Surveillance System (CSSS) as the main focus of the Surveillance of Space (SofS) Project. The CSSS consists of two major elements: the Sapphire System and the Sensor System Operations Centre (SSOC). The space segment of the Sapphire System is comprised of the Sapphire Satellite - an autonomous spacecraft with an electro-optical payload which will act as a contributing sensor to the United States (US) Space Surveillance Network (SSN). It will operate in a circular, sunsynchronous orbit at an altitude of approximately 750 kilometers and image a minimum of 360 space objects daily in orbits ranging from 6,000 to 40,000 kilometers in altitude. The ground segment of the Sapphire System is composed of a Spacecraft Control Center (SCC), a Satellite Processing and Scheduling Facility (SPSF), and the Sapphire Simulator. The SPSF will be responsible for data transmission, reception, and processing while the SCC will serve to control and monitor the Sapphire Satellite. Surveillance data will be received from Sapphire through two ground stations. Following processing by the SPSF, the surveillance data will then be forwarded to the SSOC. The SSOC will function as the interface between the Sapphire System and the US Joint Space Operations Center (JSpOC). The JSpOC coordinates input from various sensors around the world, all of which are a part of the SSN. The SSOC will task the Sapphire System daily and provide surveillance data to the JSpOC for correlation with data from other SSN sensors. This will include orbital parameters required to predict future positions of objects to be tracked. The SSOC receives daily tasking instructions from the JSpOC to determine which objects the Sapphire spacecraft is required to observe. The advantage of this space-based sensor over ground-based telescopes is that weather and time of day are not factors affecting observation. Thus, space-based optical

  7. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  8. Biologically Active Polycaprolactone/Titanium Hybrid Electrospun Nanofibers for Hard Tissue Engineering

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Sheikh, Faheem A.; Al-Deyab, Salem S.

    2011-01-01

    In this study, a novel strategy to improve the bioactivity of polycaprolactone nanofibers is proposed. Incorporation of pure titanium nanoparticles into polycaprolactone nanofibers strongly enhances the precipitation of bone-like apatite materials when the doped nanofibers are soaked in a simulat...... nanofiber mats and the successful incorporation of the titanium nanoparticles make the prepared polycaprolactone nanofiber mat a proper candidate for the hard-tissue engineering applications....

  9. Crystal structure of a Zn-doped derivative of the Li17Ge4 compound

    International Nuclear Information System (INIS)

    Lacroix-Orio, L.; Tillard, M.; Belin, C.

    2008-01-01

    The compound Li 17-ε Zn ε Ge 4 has been obtained as a side product during the preparation of the intermetallic compound Li 8 Zn 2 Ge 3 from the elements. Its structure has been determined from single crystal X-ray diffraction intensities measured at 173 K. It crystallizes in the cubic system, F4-bar3m space group, a = 18.842(1) A, Z = 20. Its crystal structure is slightly different from those so far reported in the literature for the Zn-free phase Li 17 Ge 4 , particularly concerned are the positions and the site occupations of Li atoms. Most likely, these structural variations result from the presence of a small Zn concentration in the compound. The Zn doping atom has been found only at the specific Li 4d site (about 3 at.% Zn)

  10. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method

    Science.gov (United States)

    Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo

    2018-05-01

    The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.

  11. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  12. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  13. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  14. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  15. Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with efficient suppression of amplified spontaneous emission is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes...

  16. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  17. The temperature dependence of thermooptical properties of magnetooptical TAG ceramics doped with silicon and titanium

    Science.gov (United States)

    Starobor, Aleksey; Palashov, Oleg

    2018-04-01

    Thermal effects in terbium aluminum garnet (TAG) ceramics (thermal lens and thermally induced depolarization) doped with silicon and titanium were investigated in temperature range of 79-293K. Samples with low dopant concentrations shows decreasing of negative thermal effects with cooling to 79 K. However for most part of samples thermal depolarization starts increasing after initial decreasing with cooling. Apparently it is connected with defects in media. Best sample (0.4 at% of Si) as pure TAG shows monotonous decreasing of thermally induced depolarization and 3.5 times Verdet constant increasing with cooling to 79 K, that leads to 1.8-times advantage over common magnetooptical media - terbium gallium garnet. It allows to provide an isolation of 30 dB at a radiation power of more than 6 kW as estimated. However, the procedure for creating ceramics samples obviously needs improvement because of the large scatter in the quality of the samples.

  18. Spatial chirp in Ti:sapphire multipass amplifier

    International Nuclear Information System (INIS)

    Li Wenkai; Lu Jun; Li Yanyan; Guo Xiaoyang; Wu Fenxiang; Yu Linpeng; Wang Pengfei; Xu Yi; Leng Yuxin

    2017-01-01

    The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one-dimensional (1D) and two-dimensional (2D) Frantz–Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system. (paper)

  19. Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals

    Science.gov (United States)

    Zhan, Peng; Xie, Zheng; Li, Zhengcao; Wang, Weipeng; Zhang, Zhengjun; Li, Zhuoxin; Cheng, Guodong; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2013-02-01

    We clarified, in this Letter, that in un-doped ZnO single crystals after thermal annealing in flowing argon, the defects-induced room-temperature ferromagnetism was originated from the surface defects and specifically, from singly occupied oxygen vacancies denoted as F+, by the optical and electrical properties measurements as well as positron annihilation analysis. In addition, a positive linear relationship was observed between the ferromagnetism and the F+ concentration, which is in support with the above clarification.

  20. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  1. Titanium-dioxide nanotube p-n homojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Alivov, Yahya, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  2. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    Science.gov (United States)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  3. The impact of ScO{sub x}N{sub y} interlayers on unintentional doping and threading dislocations in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T; Moram, M A; Rao, D V Sridhara; Li, H; Kappers, M J; Oliver, R A, E-mail: tz234@cam.ac.u [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2010-02-01

    To reduce the threading dislocation density in (0001) GaN grown on c-plane sapphire, a series of samples have been grown using scandium oxynitride (ScO{sub x}N{sub y}) interlayers (ILs) on AlN-on-sapphire templates. Scanning capacitance microscopy (SCM) has been employed to investigate the unintentional doping in GaN with varying ScO{sub x}N{sub y} IL thicknesses. The use of ScO{sub x}N{sub y} ILs decreases the threading dislocation density. An unintentionally n-doped layer has been identified by SCM close to the GaN/ScO{sub x}N{sub y} interface. The average width of this conductive layer has been quantified and found to increase as the ScO{sub x}N{sub y} IL thickness increases up to 13 nm.

  4. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  5. Selective Oxidation Using Flame Aerosol Synthesized Iron and Vanadium-Doped Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2011-01-01

    Full Text Available Selective photocatalytic oxidation of 1-phenyl ethanol to acetophenone using titanium dioxide (TiO2 raw and doped with Fe or V, prepared by flame aerosol deposition method, was investigated. The effects of metal doping on crystal phase and morphology of the synthesized nanostructured TiO2 were analyzed using XRD, TEM, Raman spectroscopy, and BET nitrogen adsorbed surface area measurement. The increase in the concentration of V and Fe reduced the crystalline structure and the anatase-to-rutile ratios of the synthesized TiO2. Synthesized TiO2 became fine amorphous powder as the Fe and V concentrations were increased to 3 and 5%, respectively. Doping V and Fe to TiO2 synthesized by the flame aerosol increased photocatalytic activity by 6 folds and 2.5 folds, respectively, compared to that of pure TiO2. It was found that an optimal doping concentration for Fe and V were 0.5% and 3%, respectively. The type and concentration of the metal dopants and the method used to add the dopant to the TiO2 are critical parameters for enhancing the activity of the resulting photocatalyst. The effects of solvents on the photocatalytic reaction were also investigated by using both water and acetonitrile as the reaction medium.

  6. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  7. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  8. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M.; Kassem, M.E.; El-Khatib, A.M.

    1994-01-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C p , of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author)

  9. Photoluminescence properties of Er{sup 3+}-doped alkaline earth titanium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.V.R.; Babu, A. Mohan [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jamalaiah, B.C. [Department of Physics, Sree Vidyanikethan Engineering College, Tirupati, 517 102 (India); Moorthy, L. Rama, E-mail: lrmphysics@yahoo.co.i [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung Soo [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of)

    2010-02-18

    Er{sup 3+}-doped alkaline earth titanium phosphate (RTP) glasses with molar composition of 24 (NaPO{sub 3}){sub 6} + 30 KH{sub 2}PO{sub 4} + 25 TiO{sub 2} + 20 RCl{sub 2} + 1 Er{sub 2}O{sub 3} were prepared by melt quenching technique. Judd-Ofelt intensity parameters ({Omega}{sub 2,4,6}) were determined from the experimental oscillator strengths (f{sub exp}) of absorption bands. From these parameters spontaneous emission probabilities (A{sub R}), luminescence branching ratios ({beta}{sub R}) and radiative lifetimes ({tau}{sub R}) have been calculated. Visible and near infrared photoluminescence spectra has been recorded by exciting the samples at 380 and 970 nm respectively. An intense broad emission band at 1.53 {mu}m was observed corresponding to {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition. McCumber theory has been applied to determine the emission cross-sections ({sigma}{sub e}) of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition using the absorption cross-sections ({sigma}{sub a}). The lifetimes of {sup 4}S{sub 3/2} level were measured for the glasses by exciting the samples at 540 nm wavelength and the quantum efficiencies were also determined.

  10. Nanostructured sapphire optical fiber for sensing in harsh environments

    Science.gov (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  11. Experimental and theoretical study of pure and doped crystals: Gd2O2S, Gd2O2S:Eu3+ and Gd2O2S:Tb3+

    Science.gov (United States)

    Wang, Fei; Chen, Xiumin; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2012-08-01

    Quantum chemistry and experimental method were used to study on pure and doped Gd2O2S crystals in this paper. The band structure and DOS diagrams of pure and doped Gd2O2S crystals which calculated by using DFT (Density Functional Theory) method were illustrated to explain the luminescent properties of impurities in crystals. The calculations of the crystal structure were finished by using the program of CASTEP (Cambridge Sequential Total Energy Package). The samples showed the characteristic emissions of Tb3+ ions with 5D4-7FJ transitions and Eu3+ ions with 5D0-7FJ transitions which emit pure green luminescence and red luminescence respectively. The experimental excitation spectra of Tb3+ and Eu3+ doped Gd2O2S are in agreement of the DOS diagrams over the explored energy range, which has allowed a better understanding of different luminescence mechanisms of Tb3+ and Eu3+ in Gd2O2S crystals.

  12. Synthesis and crystal structure analysis of titanium bismuthide oxide, Ti{sub 8}BiO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Shinsaku; Yamane, Hisanori, E-mail: yamane@tagen.tohoku.ac.jp

    2016-08-05

    Silver metallic luster columnar single crystals of a novel compound, Ti{sub 8}BiO{sub 7}, were synthesized using a bismuth flux. Ti{sub 8}BiO{sub 7} having a new structure type crystallizes in an orthorhombic cell, a = 7.8473(4) Å, b = 16.8295(10) Å, c = 3.0256(2) Å, space group: Cmmm. The Ti atoms enter the sites of isosceles-triangle 3-fold and rectangular 4-fold coordination of O atoms and the site of octahedral 6-fold coordination of O and Bi atoms. O atoms are in the rectangles, tetrahedra, and orthogonal pyramids of Ti atoms. The electrical resistivity measured for a Ti{sub 8}BiO{sub 7} single crystal in the c-axis direction was 6.2 × 10{sup −7} Ωm at 300 K and 1.3 × 10{sup −7} Ωm at 10 K. - Highlights: • A novel bismuthide oxide containing titanium, Ti{sub 8}BiO{sub 7}, was synthesized. • Single crystals of Ti{sub 8}BiO{sub 7} were grown by heating a mixture of Ti and Bi{sub 2}O{sub 3}. • Single crystal X-ray diffraction revealed that Ti{sub 8}BiO{sub 7} has a new structure type. • O atoms and Bi atoms are surrounded by Ti atoms in the structure. • Metallic conduction of Ti{sub 8}BiO{sub 7} was exhibited.

  13. Optically stimulated luminescence (OSL) from Ag-doped Li2B4O7 crystals

    International Nuclear Information System (INIS)

    Kananen, B.E.; Maniego, E.S.; Golden, E.M.; Giles, N.C.; McClory, J.W.; Adamiv, V.T.; Burak, Ya.V.; Halliburton, L.E.

    2016-01-01

    Optically stimulated luminescence (CW-OSL) is observed from Ag-doped lithium tetraborate (Li 2 B 4 O 7 ) crystals. Photoluminescence, optical absorption, and electron paramagnetic resonance (EPR) are used to identify the defects participating in the OSL process. As-grown crystals have Ag + ions substituting for Li + ions. They also have Ag + ions occupying interstitial sites. During a room-temperature exposure to ionizing radiation, holes are trapped at the Ag + ions that replace Li + ions and electrons are trapped at the interstitial Ag + ions, i.e., the radiation forms Ag 2+ (4d 9 ) ions and Ag 0 (4d 10 5s 1 ) atoms. These Ag 2+ and Ag 0 centers have characteristic EPR spectra. The Ag 0 centers also have a broad optical absorption band peaking near 370 nm. An OSL response is observed when the stimulation wavelength overlaps this absorption band. Specifically, stimulation with 400 nm light produces an intense OSL response when emission is monitored near 270 nm. Electrons optically released from the Ag 0 centers recombine with holes trapped at Ag 2+ ions to produce the ultraviolet emission. The OSL response is progressively smaller as the stimulation light is moved to longer wavelengths (i.e., away from the 370 nm peak of the absorption band of the Ag 0 electron traps). Oxygen vacancies are also present in the Ag-doped Li 2 B 4 O 7 crystals, and their role in the OSL process as a secondary relatively short-lived electron trap is described.

  14. Crystal chemical substitutions and doping of YBa2Cu3Ox and related superconductors

    International Nuclear Information System (INIS)

    Skakle, J.M.S.

    1998-01-01

    This review covers the literature on cationic and anionic substitutions and their effect on the properties of YBCO. Reported solubility limits are given, together with crystal symmetry and trends in unit cell parameters with dopant concentration. The dopant site is considered; this is additionally complex in the case of copper substitution because of the two distinct copper sites in the crystal structure. The effect of the dopant on the critical temperature, T c , is reviewed; the literature is often contradictory due to the dual effects of variable oxygen content and the nature of the dopant. Preparation methods appear to have an effect on solubility limits, crystal symmetry and T c . Also, the methods used to determine solubility limits are often imprecise which can lead to contradictions. The magnetic properties of doped materials are reviewed; for some dopants, particularly the magnetic lanthanides, antiferromagnetism and superconductivity co-exist. The related RBa 2 Cu 3 O δ phases (R=lanthanide), their structure, properties and behaviour on doping are reviewed in a similar way. For the larger rare earths, the related systems R 1+x Ba 2-x Cu 3 O δ are reviewed; as x increases, the transition temperature decreases and compositions R 1.5 Ba 1.5 Cu 3 O δ are semiconducting. The upper and lower solubility limit changes with R, and for R=Dy, the upper limit is 2 Cu 3 O δ , cannot be prepared in air since substitution of La onto the Ba site occurs, forming the Ba-deficient solid solutions. (orig.)

  15. Influence of Si-doping on heteroepitaxially grown a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Bastek, Barbara; Noltemeyer, Martin; Hempel, Thomas; Rohrbeck, Antje; Witte, Hartmut; Veit, Peter; Blaesing, Juergen; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-Universitaet Magdeburg, FNW/IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2011-07-01

    Si-doped a-plane GaN samples with nominal doping levels up to 10{sup 20} cm{sup -3} were grown on r-plane sapphire by metal organic vapor phase epitaxy. Silane flow rates higher than 59 nmol/min lead to three dimensional grown crystallites as revealed by scanning electron microscopy. High resolution X-ray diffraction, photoluminescence and cathodoluminescence suggest considerably reduced defect densities in the large micrometer-sized GaN crystallites. Especially, transmission electron microscopy images verify a very low density of basal plane stacking faults less than 10{sup 4} cm{sup -1} in these crystallites consisting of heteroepitaxially grown a-plane GaN. In our presentation the influence of the Si doping on the basal plane stacking faults will be discussed.

  16. Effects of titanium on a ferritic steel oxidation at 950 C

    Energy Technology Data Exchange (ETDEWEB)

    Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; El Messki, S.; Karimi, N. [Lab. Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), IUT de Clermont-Fd1 - Dept. de Chimie - Science des materiaux, Le Puy en Velay (France); Antoni, L. [CEA Grenoble, DTEN/SCSE/LHPAC (France)

    2004-07-01

    This work presents the titanium effect on the oxidation behaviour of chromia-forming alloys at 950 C. When the amount of titanium is high enough in the substrate, in situ XRD permit to show that this element reacts with oxygen to form Cr{sub 2}TiO{sub 5}. This oxide is quickly transformed into TiO{sub 2} during the first hours of oxidation. These oxides contribute to an increase of the mass gain registered. Titanium leads to a doping effect of the chromia layer inducing an increase of the cationic vacancies concentration and chromium diffusion. (orig.)

  17. Upconverting crystal/dextran-g-DOPE with high fluorescence stability for simultaneous photodynamic therapy and cell imaging

    International Nuclear Information System (INIS)

    Wang, HanJie; Wang, Sheng; Liu, Zhongyun; Dong, Chunhong; Chang, Jin; Yang, Jiumin; Gong, Xiaoqun

    2014-01-01

    To date, the application of photodynamic therapy in deep tissue has been severely restricted by the limited penetration depth of excitation light, such as UV light and visible light. In this work, a protocol of upconverting crystal/dextran-g-DOPE nanocomplex (UCN/dextran-g-DOPE) was developed. The nanocomplex was assembled from the hydrophobic upconverting nanoparticle (UCN) core and hydrophilic lipid shell. The photosensitizer zinc phthalocyanine (ZnPc) loaded UCN/dextran-g-DOPE offers possibilities to overcome the problem mentioned above. The UCN core works as a transducer to convert deeply penetrating near-infrared light to visible light to activate ZnPc for photodynamic therapy. The dextran-g-DOPE lipid shell is used for loading ZnPc and protecting the whole system from nonspecific absorbance or corrosion during the transportation. The experiment results show that the nanocomplex is an individual sphere with an average size of 30 nm. The ZnPc was activated to produce singlet oxygen successfully by the upconverting fluorescence emitted from UCN. The nanocomplex has high fluorescence stability in alkaline or neutral buffer solutions. Importantly, the ZnPc loaded UCN/dextran-g-DOPE nanocomplex showed a significant inhibitory effect on tumor cells after NIR exposure. Our data suggest that a ZnPc loaded UCN/dextran-g-DOPE nanocomplex may be a useful nanoplatform for future PDT treatment in deep-cancer therapy based on the upconverting mechanism. (paper)

  18. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed–pump time delay

    International Nuclear Information System (INIS)

    Chu, Y X; Liang, X Y; Yu, L H; Xu, L; Lu, X M; Liu, Y Q; Leng, Y X; Li, R X; Xu, Z Z

    2013-01-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration. (letter)

  19. Investigation of crystal structure, dielectric and magnetic properties in La and Nd co-doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ompal [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Agarwal, Ashish, E-mail: aagju@yahoo.com [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Sanghi, Sujata [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Das, Amitabh [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Anju [Department of Physics, Chaudhary Devi Lal University, Sirsa 125025, Haryana (India)

    2017-03-15

    For the investigation of the crystal structure, dielectric properties and magnetic properties of La and Nd co-doped BiFeO{sub 3} multiferroics; Bi{sub 0.8}La{sub 0.2−x}Nd{sub x}FeO{sub 3} (x=0.075, 0.1, 0.125) samples were prepared through solid state reaction method. Rietveld refinement of the obtained XRD patterns shows that there is change in crystal structure in these samples. At higher concentration of La (at x=0.075), the crystal structure was found to have mixed symmetry with rhombohedral and triclinic phases, while with equal concentration of both the dopants (at x=0.1), the structure changes to mixed symmetry having rhombohedral and orthorhombic phases. At higher concentration of Nd (at x=0.125), again mixed symmetry was established having both phases of the previous composition but approximately in reverse fraction. In dielectric analysis, x=0.1 sample showed the highest values of dielectric constant (ε′) and dielectric loss (tan δ). For x=0.125 sample, it was observed that the dielectric constant and dielectric loss response are improved. The magnetic characterization (M–H loops) indicates the significant enhancement in magnetisation with increasing concentration of Nd. Nd doping leads to the destruction of spiral modulation, forming the antiferromagnets, and visualisation of improved magnetisation via canting of spins. - Highlights: • La and Nd co-doped BiFeO{sub 3} were synthesized. • Change in crystal structure is observed. • Significant enhancement in magnetisation is observed.

  20. Dielectric behaviour of sodium and potassium doped magnesium

    Indian Academy of Sciences (India)

    Pure phase of magnesium titanate (MgTiO3) was obtained at 1100°C by both the conventional solid-state method as well as by the flux method starting from hexahydrated magnesium nitrate and titanium dioxide as the reactants. MgTiO3 doped with Na or K was also prepared by the solid-state route. Na and K doped ...