WorldWideScience

Sample records for titanium-based metal matrix

  1. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  2. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  3. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  4. Effect of metal selection and porcelain firing on the marginal accuracy of titanium-based metal ceramic restorations.

    Science.gov (United States)

    Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi

    2010-01-01

    Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (Pcast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  6. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  7. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  8. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  9. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  10. Nuclear waste storage container with metal matrix

    International Nuclear Information System (INIS)

    Sump, K.R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties

  11. Nuclear waste storage container with metal matrix

    Science.gov (United States)

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  12. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  13. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  14. Corrosion of Graphite Aluminum Metal Matrix Composites

    Science.gov (United States)

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  15. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  16. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  17. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  18. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  19. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  20. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  1. Immobilization of krypton in a metal matrix

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1987-01-01

    The report presents the work carried out on the immobilization of krypton in a metallic matrix by combined ion implantation and sputtering. The process has been successfully tested using 100 curies of fully active krypton in order to demonstrate that the process operates in the radiation levels which will be obtained with active gas at a reprocessing plant. A design study for a plant for fuel reprocessing has shown that the process can be simply operated, without requiring shielded cells. These results, which complete the development programme, indicate that the process is ideal for the containment of kripton arising from the processing of nuclear fuel and that the product will retain the gas under normal storage conditions and also during simulated accident conditions

  2. Preparation of magnesium metal matrix composites by powder metallurgy process

    Science.gov (United States)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  3. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  4. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  5. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...

  6. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  7. Corrosion performance of some titanium-based hard coatings

    International Nuclear Information System (INIS)

    Matthes, B.; Broszeit, E.; Aromaa, J.; Ronkainen, H.; Hannula, S.P.; Leyland, A.; Matthews, A.

    1991-01-01

    Tools and machine parts which could benefit from wear-resistant titanium-based hard films are often subject to corrosive environments. Physically vapour-deposited coatings frequently exhibit porosity and even small defects, which can cause rapid local corrosion of the substrate material; there is therefore a requirement for dense and chemically inert coatings. This paper presents corrosion data for titanium-based hard coatings such as TiN, (Ti, Al)N, Ti(B, N) and TiB 2 and also for multilayered structures where additional aluminium-based insulating surface layers (AlN and Al 2 O 3 ) were deposited. The corrosion resistance and porosity of the films were analysed by electrochemical techniques. The degree of metallic bonding can play a significant role in influencing the corrosion resistance of refractory transition-metal-based ceramic coatings. Here we demonstrate that, under potentiodynamic corrosion test conditions, resistance to corrosive attack was relatively poor for TiB 2 , better for (Ti, Al)N and Ti(B, N) and best for TiN. It is also shown that applying the additional protective aluminium-based insulating surface layers on the coating can further improve corrosion resistance. (orig.)

  8. Dielectric matrix, dynamical matrix and phonon dispersion in hcp transition metal scandium

    International Nuclear Information System (INIS)

    Singh, Joginder; Singh, Natthi; Prakash, S.

    1976-01-01

    Complete dielectric matrix is evaluated for hcp transition metal scandium using the non-interacting s- and d-band model. The local field corrections which are consequence of the non-diagonal part of the dielectric matrix are calculated explicitly. The free electron approximation is used for the s-electrons and the simple tight-binding approximation is used for the d-electrons. The theory developed by Singh and others is used to invert the dielectric matrix and the explicit expressions for the dynamical matrix are obtained. The phonon dispersion relations are investigated by using the renormalized Animalu transition metal model potential (TMMP) for bare ion potential. The contribution due to non-central forces which arise due to local fields is found to be 20%. The results are found in resonably good agreement with the experimental values. (author)

  9. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  10. Metal matrix composites: History, status, factors and future

    Science.gov (United States)

    Cyriac, Ajith James

    The history, status, and future of metal matrix composites are presented by evaluating the progression of available literature through time. The trends that existed and issues that still prevail are discussed and a prediction of the future for MMCs is presented. The factors that govern the performance of metal matrix composites are also discussed. In many developed countries and in several developing countries there exists continued interest in MMCs. Researchers tried numerous combinations of matrices and reinforcements since work strictly on MMCs began in the 1950s. This led to developments for aerospace and defense applications, but resultant commercial applications were limited. The introduction of ceramic whiskers as reinforcement and the development of 'in-situ' eutectics in the 1960s aided high temperature applications in aircraft engines. In the late 1970s the automobile industries started to take MMCs seriously. In the last 20 years, MMCs evolved from laboratories to a class of materials with numerous applications and commercial markets. After the collapse of the Berlin Wall, prevailing order in the world changed drastically. This effect was evident in the progression of metal matrix composites. The internet connected the world like never before and tremendous information was available for researchers around the world. Globalization and the internet resulted in the transformation of the world to a more level playing field, and this effect is evident in the nature and source of research on metal matrix composites happening around the world.

  11. Metal matrix composites. Part 1. Types, properties, applications

    International Nuclear Information System (INIS)

    Edil da Costa, C.; Velasco Lopez, F.; Torralba Castello, M.

    2000-01-01

    An overview on the state of the art of metal matrix composites used in the automotive and aerospace industries is made. These materials usually are based on light alloys (Al, Ti and Mg) and reinforced with fibres or particles. In this review, it is presented a general scope on the different MMCs families, about their properties and their main applications. (Author) 61 refs

  12. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  13. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  14. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...

  15. Fabrication of metal matrix composites by powder metallurgy: A review

    Science.gov (United States)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  16. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  17. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  18. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  19. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  20. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    Smith, Don D.

    2005-01-01

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  1. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  2. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  3. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  4. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  5. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  6. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  7. Baseplates in metallic matrix composites for power and microwave applications

    International Nuclear Information System (INIS)

    Massiot, P.

    1997-01-01

    Baseplates for microelectronic devices in fields where transform environments are encountered, such as automotive or airborne must have some fundamental characteristics such as: high thermal conductivity, low density, good mechanical properties and a coefficient of thermal expansion (CTE) nearly equal to the microelectronic substrates and the components installed on the baseplates. Metallic matrix composites are very good candidates because they perfectly answer to those requirements. In this presentation, with some examples of electronic devices in power and microwave applications we will show the big interest to use this kind of material. (author)

  8. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  9. Drilling of metal matrix composites: cutting forces and chip formation

    International Nuclear Information System (INIS)

    Songmene, V.; Balout, B.; Masounave, J.

    2002-01-01

    Particulate metal matrix composites (MMCs) are known for their low weight and their high wear resistance, but also for the difficulties encountered during their machining. New aluminium MMCs containing with both soft lubricating graphite particles and hard particles (silicon carbide or alumina) with improved machinability were developed. This study investigates the drilling of these composites as compared to non-reinforced aluminium. The microstructure of chip, the cutting forces, the shear angles and the friction at tool-chip interface are used to compare the machinability of these composites. It was found that, during drilling of this new family of composites, the feed rate, and the nature of reinforcing particles govern the cutting forces. The mathematical models established by previous researchers for predicting the cutting forces when drilling metals were validated for these composites. The reinforcing particles within the composite help for chip segmentation, making the composite more brittle and easy to shear during the cutting process. (author)

  10. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  11. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  12. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  13. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  14. Machinability study of Al-TiC metal matrix composite

    Directory of Open Access Journals (Sweden)

    Siddappa P. N.

    2018-01-01

    Full Text Available Aluminum Metal Matrix Composites have emerged as an advanced class of structural materials have a combination of different, superior properties compared to an unreinforced matrix, which can result in a number of service benefits such as increased strength, higher elastic moduli, higher service temperature, low CTE, improved wear resistance, high toughness, etc. The excellent mechanical properties of these materials together with weight saving makes them very attractive for a variety of engineering applications in aerospace, automotive, electronic industries, etc. Hence, these materials provide as alternative substitutes for conventional engineering materials when specific mechanical properties necessary for required applications. In this work an attempt is made to study the machining parameters of Al6061/TiC MMC. The composite is developed by reinforcing TiC particles in varying proportions of 3, 6, 9 and 12 % weight fractions to the Al6061 matric alloy through stir casting technique. Cutting forces were measured by varying cutting speed and feed rate with constant depth of cut for different % weight fractions. The results showed that the cutting force increases with the increase of feed rate and decreases with the increase of cutting speed for all the weight fractions. Cutting parameters were optimized using Taguchi technique.

  15. Preparation and characterization of aluminium-silica metal matrix composite

    Science.gov (United States)

    Mallikarjuna, G. B.; Basavaraj, E.

    2018-04-01

    Aluminum alloys are widely used in aerospace and automobile industries due to their low density and good mechanical properties, better corrosion resistance and wear, low thermal coefficient of expansion as compared to conventional metals and alloys. The excellent properties of these materials and relatively low production cost make them a very attractive for a variety of applications. In this present work, Al alloy LM13-SiO2 composites were produced by stir casting method. The reinforcement SiO2 particle size used for preparation of composites are 106 µm, 150 µm, 250 µm and 355 µm with varying amount of 3 to 12 wt% in steps of 3. The prepared composite specimens were machined as per test standards. Effects of weight percentage of SiO2 particles on wear, tensile strength of Al alloy LM13-SiO2 composites have been investigated. The microstructures of the composites were studied to know the dispersion of the SiO2 particles in matrix. Experimental results shows that there is enhanced mechanical properties, when silica weighing 9% was added to the base aluminium alloy and also similar trend exists in all four different micron size of silica and also it has been observed that addition of SiO2 particles significantly improves wear resistance properties as compared with that of unreinforced matrix.

  16. Metal matrix composites synthesis, wear characteristics, machinability study of MMC brake drum

    CERN Document Server

    Natarajan, Nanjappan; Davim, J Paulo

    2015-01-01

    This book is dedicated to composite materials, presenting different synthesis processes, composite properties and their machining behaviour. The book describes also the problems on manufacturing of metal matrix composite components. Among others, it provides procedures for manufacturing of metal matrix composites and case studies.

  17. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  18. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  19. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  20. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  1. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yurii M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-01-31

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  2. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    International Nuclear Information System (INIS)

    Kiselev, Yurii M

    2009-01-01

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  3. Nature and morphology of the joints of metal matrix composites to metals

    International Nuclear Information System (INIS)

    Pietrzak, K.

    1997-01-01

    Metal matrix composites (MMCs) reinforced with short ceramic fibres (e.g. carbon or Al 2 O 3 fibres) or with other metals (such as e.g., tungsten) show numerous advantages since their properties can be programmed by modifying appropriately their composition and technology. A point of considerable importance is the possibility of joining the composites with metals or their alloys. The major problem here is to choose the appropriate joining technique, such that ensures the formation of a high quality joint resistant to the service conditions, avoids the degradation of the composite microstructure, in particular of the interface layer between the matrix and the reinforcement, and still, is not expensive (1). The paper presents the results of experiments on joining the following composites: 6061Al-based materials containing 15 vol.% of δ-alumina fibres, CuCrl-based materials containing 20 vol.% of carbon fibres (C f ), CuZrl-based materials containing 20 vol.% of C f and Cu-based materials with 10 vol.% of dispersed tungsten powder. The CuCrI-C f and CuZrl-C f composites were joined with austenitic steel, the 6061Al-Al 2 O 3 composite - with the 6061Al alloy and the CuW composite - with copper of 99.99 % purity. The material pairs were chosen so as to take into account their possible application. Several different joining techniques were examined. This paper discusses the results obtained when using diffusion bonding, vacuum brazing and gluing. The morphology and the nature of the interface layer after bonding process between the matrix and the reinforcement and between the MMCs and metal were examined by analysing the distributions of the elements, by SEM and by X-ray techniques. The degree of the degradation of the MMCs structure was taken to be described by the coefficient of the relative content of the reinforcing material RCRM = X/B, where X is the percent content of the reinforcing phase in the composite after the joining process, and B is the percent content of

  4. Machinability of titanium metal matrix composites (Ti-MMCs)

    Science.gov (United States)

    Aramesh, Maryam

    Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in

  5. Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM

    International Nuclear Information System (INIS)

    Selvi, S.; Rajasekar, E.

    2015-01-01

    The tribological properties such as wear rate, hardness of the aluminum-fly ash composite synthesized by stir casting were investigated by varying the weight % of fly ash from 5 to 20 with constant weight % of zinc and magnesium metal powder. A mathematical model was developed to predict the wear rate of aluminum metal matrix composites and the adequacy of the model was verified using analysis of variance. Scanning electron microscopy was used for the microstructure analysis which showed a uniform distribution of fly ash in the metal matrix. Energy - dispersive X-ray spectroscopy was used for the elemental analysis or chemical characterization of a sample. The results showed that addition of fly ash to aluminum based metal matrix improved both the mechanical and tribological properties of the composites. The fly ash particles improved the wear resistance of the metal matrix composites because the hardness of the samples taken increased as the fly ash content was increased.

  6. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  7. Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite

    International Nuclear Information System (INIS)

    Wang, Q.; Chiang, F.P.

    1994-01-01

    The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003(microm). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation

  8. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  9. The Micromechanics of Deformation and Failure in Metal-Matrix Composites

    National Research Council Canada - National Science Library

    Needleman, Alan

    1997-01-01

    .... However, metal-matrix composites often have low ductility and low fracture toughness. An improved understanding of the basic deformation and failure mechanisms is needed to overcome these problems...

  10. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  11. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.

    1993-01-01

    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...

  12. Weld microstructure in cast AlSi9/SiC(p metal matrix composites

    Directory of Open Access Journals (Sweden)

    J. Wysocki

    2009-04-01

    Full Text Available Welded joint in cast AlSi9/SiC/20(p metal matrix composite by manual TIG arc welding using AlMg5 filler metal has been described inhis paper. Cooling curves have been stated, and the influence in distribution of reinforced particles on crystallization and weldmicrostructure. Welded joint mechanical properties have been determined: hardness and tensile.

  13. Microstructure characterization of laser-deposited titanium carbide and zirconium-based titanium metal matrix composites

    CSIR Research Space (South Africa)

    Ochonogor, OF

    2012-09-01

    Full Text Available . In this work, the technique is used to fabricate metal matrix composites (MMCs) by using an elementally blended feedstock combining metal and ceramic powders in the melt pool, which melt and solidify to create the required morphology. Ti6Al4V + TiC MMCs were...

  14. Matrix-isolation studies on alkali-metal phosphates

    International Nuclear Information System (INIS)

    Jenny, S.N.; Ogden, J.S.

    1979-01-01

    This paper describes the results of a matrix-isolation i.r. study on the vaporisation of trisodium orthophosphate. When this material is heated in vacuo to ca. 1600 K, and the products condensed in a low-temperature argon matrix, the i.r. spectrum obtained is shown to be due to a trapped species NaPO 3 . With the aid of 18 O-enrichment, this molecule is shown to have a Csub(2v) bidentate structure with characteristic i.r. bands at 1 341.7, 1 211.1, 1 004.0, 536.6, 474.0 and 287.0 cm -1 . (author)

  15. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  16. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  17. Transfer matrix treatment of atomic chemisorption on transition metal surface

    International Nuclear Information System (INIS)

    Mariz, A.M.; Koiller, B.

    1980-05-01

    The atomic adsorption of hydrogen on paramagnetic nickel 100 surface is studied, using the Green's function formalism and the transfer matrix technique, which allows the treatment of the geometry of the system in a simple manner. Electronic correlation at the adatom orbital in a self consistent Hartree-Fock approach is incorporated. The adsorption energy, local density of states and charge transfer between the solid and the adatom are calculated for different crystal structures (sc and fcc) and adatom positions at the surface. The results are discussed in comparison with other theories and with available experimental data, with satisfactory agreement. (Author) [pt

  18. THERMOPLASTIC MATRIX SELECTION FOR FIBRE METAL LAMINATE USING FUZZY VIKOR AND ENTROPY MEASURE FOR OBJECTIVE WEIGHTING

    Directory of Open Access Journals (Sweden)

    N. M. ISHAK

    2017-10-01

    Full Text Available The purpose of this study is to define the suitable thermoplastic matrix for fibre metal laminate for automotive front hood utilisation. To achieve the accurate and reliable results, the decision making process involved subjective and objective weighting where the combination of Fuzzy VIKOR and entropy method have been applied. Fuzzy VIKOR is used for ranking purpose and entropy method is used to determine the objective weighting. The result shows that polypropylene is the best thermoplastic matrix for fibre metal laminate by satisfying two compromise solutions with validation using least VIKOR index value scored 0.00, compared to low density polyethylene, high density polyethylene and polystyrene. Through a combination of Fuzzy VIKOR and entropy, it is proved that this method gives a higher degree of confidence to the decision maker especially for fibre metal laminate thermoplastic matrix selection due to its systematic and scientific selection method involving MCDM.

  19. A Novel Route for Development of Bulk Al/SiC Metal Matrix Nanocomposites

    Directory of Open Access Journals (Sweden)

    Payodhar Padhi

    2011-01-01

    Full Text Available Addition of nano particles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying, vertex process, and spray deposition and so forth. However, the above processes are expensive. Solidification processing is a relatively cheaper route. During solidification processing, nano particulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano particulate in metal matrix is a challenge. In the present study a noncontact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nanosized SiC particulates in aluminum matrix. In this method, the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by this method.

  20. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  1. Phase boundary effects in metal matrix embedded glasses

    International Nuclear Information System (INIS)

    Schiewer, E.

    1979-01-01

    An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables

  2. Wear study of Al-SiC metal matrix composites processed through microwave energy

    Science.gov (United States)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  3. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  4. Sintering by infiltration of loose mixture of powders, a method for metal matrix composite elaboration

    International Nuclear Information System (INIS)

    Constantinescu, V.; Orban, R.; Colan, H.

    1993-01-01

    Starting from the observation that Sintering by Infiltration of Loose Mixture of Powders confers large possibilities for both complex shaped and of large dimensions Particulate Reinforced Metal Matrix Composite components elaboration, its mechanism comparative with those of the classical melt infiltration was investigated. Appropriate measures in order to prevent an excessive hydrostatic flow of the melt and, consequently, reinforcement particle dispersion, as well as to promote wetting in both infiltration and liquid phase sintering stages of the process were established as necessary. Some experimental results in the method application to the fusion tungsten carbide and diamond reinforced metal matrix composite elaboration are, also, presented. (orig.)

  5. Feasibility study on development of metal matrix composite by microwave stir casting

    Science.gov (United States)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  6. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model......, in which continuum damage mechanics is incorporated to model fatigue damage evolution. This material model uses a superposition of kinematic and isotropic hardening, and is able to account for the Bauschinger effect as well as ratchetting, mean stress relaxation, and cyclic hardening or softening. The cell...... model represents a material with transversely staggered fibres. With focus on low cyclic fatigue, the effect of different fibre aspect ratios, different triaxial stress states, and balanced as well as unbalanced cyclic loading is studied....

  7. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    Science.gov (United States)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  8. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Jay C. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: jay.hanan@okstate.edu; Mahesh, Sivasambu [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: ersan@caltech.edu; Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swift, Geoffrey A. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al{sub 2}O{sub 3}-fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture.

  9. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    International Nuclear Information System (INIS)

    Hanan, Jay C.; Mahesh, Sivasambu; Uestuendag, Ersan; Beyerlein, Irene J.; Swift, Geoffrey A.; Clausen, Bjorn; Brown, Donald W.; Bourke, Mark A.M.

    2005-01-01

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al 2 O 3 -fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture

  10. Mobile plant for encapsulating of solid high-level radioactive waste in metal matrix

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.Eh.; Shiryaev, V.V.; Ozhovan, M.I.; Semenov, K.N.; Kachalov, M.B.

    1993-01-01

    Technology for disposal of spent radionuclide sources of ionizing radiation into the standard well-type storage facilities is considered. Universal mobile facility, providing for incorporation of high-level solid wastes into metallic matrices, is proposed. The facility consists of separate moduli, assembled on a transport platform. Electrical meter, wherein the matrix metal (lead and its alloys) is melted and heated up to 600-800 C constitutes the basic modulus in the facility. 4 refs., 4 figs

  11. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  12. Nuclear-waste encapsulation by metal-matrix casting

    International Nuclear Information System (INIS)

    Nelson, R.G.; Nesbitt, J.F.; Slate, S.C.

    1981-05-01

    Several encapsulation casting processes are described that were developed or used at the Pacific Northwest Laboratory to embed simulated high-level wastes of two different forms (glass marbles and ceramic pellets) in metal matrices. Preliminary evaluations of these casting processes and the products are presented. Demonstrations have shown that 5- to 10-mm-dia glass marbles can be encapsulated on an engineering scale with lead or lead alloys by gravity or vacuum processes. Marbles approx. 12 mm in dia were successfully encapsulated in a lead alloy on a production scale. Also, 4- to 9-mm-dia ceramic pellets in containers of various sizes were completely penetrated and the individual pellets encased with aluminum-12 wt % silicon alloy by vacuum processes. Indications are that of the casting processes tested, aluminum 12 wt % silicon alloy vacuum-cast around ceramic pellets had the highest degree of infiltration or coverage of pellet surfaces

  13. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  14. Non-self-similar cracking in unidirectional metal-matrix composites

    International Nuclear Information System (INIS)

    Rajesh, G.; Dharani, L.R.

    1993-01-01

    Experimental investigations on the fracture behavior of unidirectional Metal Matrix Composites (MMC) show the presence of extensive matrix damage and non-self-similar cracking of fibers near the notch tip. These failures are primarily observed in the interior layers of an MMC, presenting experimental difficulties in studying them. Hence an investigation of the matrix damage and fiber fracture near the notch tip is necessary to determine the stress concentration at the notch tip. The classical shear lag (CLSL) assumption has been used in the present study to investigate longitudinal matrix damage and nonself-similar cracking of fibers at the notch tip of an MMC. It is seen that non-self-similar cracking of fibers reduces the stress concentration at the notch tip considerably and the effect of matrix damage is negligible after a large number of fibers have broken beyond the notch tip in a non-self-similar manner. Finally, an effort has been made to include non-self-similar fiber fracture and matrix damage to model the fracture behavior of a unidirectional boron/aluminum composite for two different matrices viz. a 6061-0 fully annealed aluminum matrix and a heat treated 6061-T6 aluminum matrix. Results have been drawn for several characteristics pertaining to the shear stiffnesses and the shear yield stresses of the two matrices and compared with the available experimental results

  15. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  16. Metallic microwires obtained as replicas of etched ion tracks in polymer matrixes: Microscopy and emission properties

    International Nuclear Information System (INIS)

    Zagorski, D.L.; Bedin, S.A.; Oleinikov, V.A.; Polyakov, N.B.; Rybalko, O.G.; Mchedlishvili, B.V.

    2009-01-01

    Specially prepared porous matrixes (with through and dead-end pores of cylindrical or conical forms) were used as the templates for making ensembles of microwires. The process of electrodeposition of metal (Cu) into these pores was investigated. AFM technique was used for studying the 'composite material' (metal microwires embedded into the polymer matrix). It was shown that the combination of different modes of AFM (tapping with phase-contrast mode, contact with lateral force mode) makes it possible to detect metal in the polymer matrix. Additional spread resistance mode in the contact regime allowed to measure the electrical conductivity of a single wire. The ensembles of free-standing microwires (metallic replicas of the pores obtained after removing of the polymer matrix) were used as the substrates (for deposition of the probe) for ion emission in the mass-spectrometer. It was shown that the intensity of formed ion beam increases with increasing of power of the laser pulse and with increasing of the mass of the probe. The intensity of mass-spectra signal on the power of laser pulse has a threshold character with saturation accompanied with the appearance of dimer ions. At the same time this intensity decreases with the increasing of the surface density of wires. The effect of degradation of wires during the laser pulse irradiation was found.

  17. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    1998-01-01

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with referenc...

  18. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available . In these experiments the laser power was varied from 3 to 4.0 kW, the laser scan speed was varied from 0.8 to 2.0 m/min. The powder feed rate was varied from 2 to 5 g/min. The structural characterisation of the metal matrix composite included X-ray diffraction (XRD...

  19. Microstructure and wear behaviour of Al/TiB2 metal matrix composite

    CSIR Research Space (South Africa)

    Popoola, AP

    2010-10-01

    Full Text Available Al/TiB2 metal matrix composite (MMCs) was fabricated on aluminium AA1200 with the aim of improving the wear resistance property of the substrate. The characterization of the MMCs was carried out by Optical Microscopy (OM), Scanning Electron...

  20. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  1. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process

    International Nuclear Information System (INIS)

    Kong, C.Y.; Soar, R.C.

    2005-01-01

    Ultrasonic consolidation (UC) has been used to embed thermally sensitive and damage intolerant fibres within aluminium matrix structures using high frequency, low amplitude, mechanical vibrations. The UC process can induce plastic flow in the metal foils being bonded, to allow the embedding of fibres at typically 25% of the melting temperature of the base metal and at a fraction of the clamping force when compared to fusion processes. To date, the UC process has successfully embedded Sigma silicon carbide (SiC) fibres, shape memory alloy wires and optical fibres, which are presented in this paper. The eventual aim of this research is targeted at the fabrication of adaptive composite structures having the ability to measure external stimuli and respond by adapting their structure accordingly, through the action of embedded active and passive functional fibres within a freeform fabricated metal-matrix structure. This paper presents the fundamental studies of this research to identify embedding methods and working range for the fabrication of adaptive composite structures. The methods considered have produced embedded fibre specimens in which large amounts of plastic flow have been observed, within the matrix, as it is deformed around the fibres, resulting in fully consolidated specimens without damage to the fibres. The microscopic observation techniques and macroscopic functionality tests confirms that the UC process could be applied to the fabrication of metal-matrix composites and adaptive composites, where fusion techniques are not feasible and where a 'cold' process is necessary

  2. On the homogenization of metal matrix composites using strain gradient plasticity

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2014-01-01

    The homogenized response of metal matrix composites (MMC) is studied using strain gradient plasticity. The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free...

  3. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  4. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    Science.gov (United States)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  5. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  6. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)

  7. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions

  8. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  9. METAL MATRIX COMPOSITE BRAKE ROTORS: HISTORICAL DEVELOPMENT AND PRODUCT LIFE CYCLE ANALYSIS

    Directory of Open Access Journals (Sweden)

    M.M. Rahman

    2011-12-01

    Full Text Available Metal matrix composites (MMCs have become attractive for engineering structural applications due to their excellent specific strength and are increasingly seen as an alternative to conventional materials, particularly in the automotive industry. In this study, a historical background on the development and application of metal matrix composites for automotive brake rotors is presented. The discussion also includes an analysis of the product life cycle with stir casting as a case study. The historical review analysis revealed that gradual development of material and processing techniques have led to lighter weight, lower cost and higher performance brake rotors as a result of a better understanding of the mechanics of metal matrix composites. It emerged from the study that the stir casting technique provides ease of operation, sustainability and, most significantly, very competitive costs without sacrificing quality relative to other techniques; as such, it is the most attractive manufacturing process in the industry. These findings can be used for future design and manufacture of an efficient and effective aluminium matrix composite brake rotor for automotive and other applications.

  10. Interfaces in graded coatings on titanium-based implants.

    Science.gov (United States)

    Lopez-Esteban, S; Gutierrez-Gonzalez, C F; Gremillard, L; Saiz, E; Tomsia, A P

    2009-03-15

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na(2)O-K(2)O-P(2)O(5) system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (>60 wt % SiO(2)) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti(5)Si(3) layer. A surface layer containing a mixture of a low-silica glass ( approximately 53 wt % SiO(2)) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions.

  11. Residual strain evolution during the deformation of single fiber metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, J.C.; Uestuendag, E.; Clausen, B. [Dept. of Materials Science, California Inst. of Tech., Pasadena, CA (United States); Sivasambu, M.; Beyerlein, I.J. [Theoretical Div., Los Alamos National Lab., Los Alamos, NM (United States); Brown, D.W.; Bourke, M.A.M. [Materials Science and Technology Div., Los Alamos National Lab., Los Alamos, NM (United States)

    2002-07-01

    Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each phase. Yet, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. An approach is presented that quantifies the deformation parameters of each phase using neutron diffraction measurements before, during, and after failure under tensile loading in model composites consisting of a single alumina fiber embedded in an aluminum matrix. The evolution of residual strains after loading was examined including the effects of fiber failure. (orig.)

  12. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  13. Shielding of electromagnetic fields by metallic glasses with Fe and Co matrix

    International Nuclear Information System (INIS)

    Nowosielski, R.; Griner, S.

    1997-01-01

    The influence of chemical composition and magnetic and electric properties for shielding of electromagnetic fields with frequency 10-1000 kHz, by metallic glasses has been analysed. For investigation were selected two groups of metallic glasses with matrix of Fe and Co. Particularly, in there were selected metallic glasses as follows; Fe 78 Si 9 B 13 , Co 68 Fe 4 Mo 1.5 Si 13.5 B 13 , Co 69 Mo 2 Fe 4 Si 14 B 11 , Co 70.5 Fe 2.5 Mn 4 Mo 1 Si 9 B 15 . The experiments were realised for casting metallic glasses by the CMBS method in the form of strips with width 10 mm. Obtained results of shielding indicate clear for very good shielding effectiveness of one layer shields both electric and magnetic components of electromagnetic fields, although shielding of magnetic component is smaller than electric. (author). 17 refs, 5 figs, 9 tabs

  14. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail: aguileraba@inta.es; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-07-30

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  15. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  16. Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment

    International Nuclear Information System (INIS)

    Singh, Nirbhay; Vadera, K.K.; Ramesh Kumar, A.V.; Singh, R.S.; Monga, S.S.; Mathur, G.N.

    1999-01-01

    Aluminium alloy based particle reinforced metal matrix composites (MMCs) are being considered for a range of applications. Their mechanical properties have been investigated in detail, but more information about their corrosion resistance is needed. In this investigation, the corrosion behaviour of silicon carbide particulates (SiC p )-2124 aluminium metal matrix composites was studied in 3 wt% sodium chloride solution by means of electrochemical technique and optical microscope. The effects of weight percentages and particle size of silicon carbide particulates on corrosion behaviour of the composite were studied in NaCl and it was observed that corrosion rate increases linearly with the increasing weight percentage of SiC p . The corrosion rate of the MMC increases by increasing the size of SiC particles. Anodization improved corrosion resistance of the composites. (author)

  17. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  18. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  19. Enhancement of the mechanical properties of an aluminum metal matrix nanocomposite by the hybridization technique

    Directory of Open Access Journals (Sweden)

    Kalidindi Sita Rama Raju

    2016-07-01

    Full Text Available A uniform distribution of nanoparticles in the matrix plays a prominent role in improving the composite strength. In the present investigation, two types of launching vehicles, such as aluminum powder (primary and CNTs (secondary, are considered to uniformly carry and launch ultra-fine nanoparticles (13 nm into molten metal. The use of a secondary launching vehicle is identified to promote strengthening compared to a regular primary vehicle, as indicated by the good distribution observed from electron micrographs. CNTs are responsible for hybridizing the composite and also assist strengthening by anchoring to the matrix through the destroyed outer-walls and their axial orientation with the matrix. These results help us in attaining a strength of 197 MPa and a hardness of 93 BHN, with a minimal loss in ductility for the H-3 sample.

  20. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  1. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  2. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  3. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    Science.gov (United States)

    2017-12-04

    Air Mass CNT Carbon Nanotubes DIV Dark Current -Voltage DMA Dynamic Mechanical Analysis EL Electroluminescence FEM Finite Element Method IMM...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR...research which is exempt from public affairs security and policy review in accordance with AFI 61-201, paragraph 2.3.5.1. This report is available to

  4. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    Science.gov (United States)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-04-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  5. A study of microstructure and wear behaviour of TiB2/Al metal matrix composites

    Directory of Open Access Journals (Sweden)

    A. Sreenivasan

    Full Text Available The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs. Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.

  6. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Vokáč, M.; Kolísko, J.; Pokorný, P.; Kubatík, Tomáš František

    2017-01-01

    Roč. 56, 1-2 (2017), s. 79-82 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : tungsten wires * tungsten fibers * plasma spraying * metallic coatings * ceramic coatings Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics http://hrcak.srce.hr/168890

  7. Effect of Metallic Additives to Polymer Matrix on Properties of Composite Adhesives Dedicated for Light Metal Joining

    Directory of Open Access Journals (Sweden)

    Mamala A.

    2017-12-01

    Full Text Available The most recent and promising trends in development of renewable sources of energy are Combined Heat and Power (CHP systems. The newest solutions from this field are hybrid compact solar panels. The correct operation of both systems, i.e. the photovoltaic panel and the heat exchanger requires an effective connection between the two. The adhesives utilized to interconnect above elements should provide a stable and hermetic joint able to withstand mechanical and thermal impacts of the surrounding environment factors. The paper presents the research results over the impact of the type and the amount of reinforcing phase on the physical and mechanical properties of epoxy resin matrix composites reinforced with particles of non-ferrous metals (Ag, Cu, W, Al, dedicated as adhesives for connections between photovoltaic panels and heat exchangers. Based on the experimental findings the usefulness of classical analytic models for valuation of polymer-metal composites properties was validated.

  8. Effect of matrix constitution on interface of aluminium/δ-Al2O3 and strength of metal matrix composites

    International Nuclear Information System (INIS)

    Johansson, P.; Hutchinson, B.; Savage, S.J.

    1992-06-01

    Aluminium based fiber composites have been made by squeeze casting. The 'saffil' pre-forms used in the work employed aluminium oxide binder or silica binder. Two families of alloys have been used based either on high purity aluminium or 3% copper containing alloys. These were both alloyed with a range of magnesium contents from 0.1% to 5% with the aim of varying the degree of reaction and bonding between the matrix and the reinforcing fibres. Studies of macro- and micro structures have been performed as well as non-destructive testing by X-ray radiography. Tensile testing, three point bend tests on notched bars and wetting studies in a wetting balance are also included in the investigation. The structure of the squeeze cast products shows different zones. The extension and appearance of the zones are dependent on the alloy constitution. In general the surface of the casting have small equiaxed grains. This surface zone is replaced by a columnar grain zone which, in the center, transforms to an equiaxed crystal zone. Defects such as pores, fibre-free zones, and 'pockets' in the interface matrix/fiber have been found. Of these defects, only pores can be detected by X-ray radiography. Evaluation of tensile testing shows a relatively large scatter of results. The results reveal a dominant role of matrix composition on strength level. For the 20 vol% reinforced metals, with performs with silica binder, the maximum measured elongation was 3.5%. With alumina binder approximately half of the above mentioned ductility is obtained. The use of grain-refiner, Al-5Ti-B, decreases the ductility of the composite below 2%, independent of the type of binder. From 3-point bend tests fracture energies are estimated to vary between 0.3 and 0.6 Joule. The toughness is low. Studies of the wetting between pieces of ceramic pre-forms and molten Al-2Mg show that generally the wetting is poor. At the same time, the wettability of d-alumina with silicon oxide as binding medium was slightly

  9. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  10. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  11. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  12. X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A. [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Haribabu, Nadendla [BCAST, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-12-15

    X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearing helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.

  13. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  14. Immobilization of krypton in a metallic matrix by combined ion implantation and sputtering

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1980-01-01

    With the increase in nuclear power, it may be necessary to contain for 100 to 200 years the radioactive 85 krypton released during fuel reprocessing. The ideal method of immobilizing radioactive materials is in the form of stable, monolithic solids which are resistant to the effects of the environment or accidents, and which can retain the radioactivity under all envisaged conditions. Since krypton is a rare gas, not forming thermally stable compounds, conventional methods of storage are not possible. A process is being developed to immobilize the krypton in the form of small gas bubbles in a metal matrix by implanting the gas into a metal layer from a glow discharge and then burying the implanted layer by sputter deposition. By repeating the process, a thick layer of deposit is built up with the krypton dispersed throughout the matrix as bubbles of diameter less than 20 A. This process offers an ideal form of storage since gas in bubbles is not thermally released until the temperature of the matrix is close to the melting point, and also leakage of gas by corrosion or mechanical damage will be small. A pilot plant is being built in order to demonstrate the process on a scale comparable with that required for a reprocessing plant. The efficiency of the process is dependent upon the amount of gas which can be implanted at low energy into a thin layer and its subsequent retention. (author)

  15. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    International Nuclear Information System (INIS)

    Indyka, P; Beltowska-Lehman, E; Bigos, A

    2012-01-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al 2 O 3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al 2 O 3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al 2 O 3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al 2 O 3 composite coatings have been determined.

  16. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  17. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    Science.gov (United States)

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  18. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    International Nuclear Information System (INIS)

    Banker, J.G.; Anderson, R.C.

    1975-01-01

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure

  19. Gas transport in metal organic framework–polyetherimide mixed matrix membranes: The role of the polyetherimide backbone structure

    NARCIS (Netherlands)

    Hegde, Maruti; Shahid, S.; Norder, Ben; Dingemans, Theo J.; Nijmeijer, Dorothea C.

    2015-01-01

    We report on how the morphology of the polymer matrix, i.e. amorphous vs. semi-crystalline, affects the gas transport properties in a series of mixed matrix membranes (MMMs) using Cu3(BTC)2 as the metal organic framework (MOF) filler. The aim of our work is to demonstrate how incorporation of

  20. Gas transport in metal organic framework-polyetherimide mixed matrix membranes: The role of the polyetherimide backbone structure

    NARCIS (Netherlands)

    Hegde, Maruti; Shahid, Salman; Norder, Ben; Dingemans, T.J.; Nijmeijer, Kitty

    2015-01-01

    We report on how the morphology of the polymer matrix, i.e. amorphous vs. semi-crystalline, affects the gas transport properties in a series of mixed matrix membranes (MMMs) using Cu3(BTC)2 as the metal organic framework (MOF) filler. The aim of our work is to demonstrate how incorporation of

  1. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  2. Mobile unit for enclosing hot solid waste in a metal matrix

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.E.; Shiryaev, V.V.; Ozhovan, M.I.; Semenov, K.N.; Kachalov, M.B.

    1993-01-01

    After termination of their service life, the sources of ionizing radiation are transported to special burial points of radioactive waste in pitlike repositories near the surface. The repositories are cylindrical 200-litter cavities of stainless steel and are situated at a depth of 6 m in a concrete pit. The pit is concrete enveloped. The spent sources enter the cavity via a curve loading a tube. Water was observed in repositories of this type; in a powerful radiation field (with up to 10 4 R/sec), water accelerates the corrosion of the shells of the sources and liberates radiolytic hydrogen. In order to obtain reliable isolation of the sources, a new technique of enclosing the sources in a metal matrix of low-melting metals (layer-by-layer and directly in the repository) has been used since 1986 in the Moscow Scientific Planning Department 'Radon'. This makes it possible to preserve the traditional burial of spent sources and, in addition, to use the radiation shielding of the repository proper. Investigations have shown that this technique is very reliable: There are no radiolytic gases, the radiation field and the temperature field in the repository are substantially reduced, and therefore the volume of the repositories is increased by a factor of 5-6. The total activity of the spent sources enclosed in a metal matrix in accordance with this technique amounted to about 500,000 Ci in test units and semi-industrial units

  3. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2017-01-01

    Full Text Available Tungsten fibers have high tensile strength but a poor oxidation resistance at elevated temperatures. Using this first characteristic and to prevent oxidation of tungsten coated composite materials in which the primary requirement: reinforcement against destruction or deformation, was studied on tungsten fibers and tungsten wires which were coated by applying the metal and ceramic powders via plasma spraying device in plasma generator WSP®. Deposition took place in an atmosphere of Ar + 7 % H2, sufficient to reduce the oxidized trace amounts of tungsten.

  4. Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds.

    Science.gov (United States)

    Hernandez-Gordillo, Victor; Chmielewski, Jean

    2014-08-01

    Natural and synthetic three-dimensional (3-D) scaffolds that mimic the microenvironment of the extracellular matrix (ECM), with growth factor storage/release and the display of cell adhesion signals, offer numerous advantages for regenerative medicine and in vitro morphogenesis and oncogenesis modeling. Here we report the design of collagen mimetic peptides (CMPs) that assemble into a highly crosslinked 3-D matrix in response to metal ion stimuli, that may be functionalized with His-tagged cargoes, such as green fluorescent protein (GFP-His8) and human epidermal growth factor (hEGF-His6). The bound hEGF-His6 was found to gradually release from the matrix in vitro and induce cell proliferation in the EGF-dependent cell line MCF10A. The additional incorporation of a cell adhesion sequence (RGDS) at the N-terminus of the CMP creates an environment that facilitated the organization of matrix-encapsulated MCF10A cells into spheroid structures, thus mimicking the ECM environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Metal-insulator transition in disordered systems from the one-body density matrix

    DEFF Research Database (Denmark)

    Olsen, Thomas; Resta, Raffaele; Souza, Ivo

    2017-01-01

    The insulating state of matter can be probed by means of a ground state geometrical marker, which is closely related to the modern theory of polarization (based on a Berry phase). In the present work we show that this marker can be applied to determine the metal-insulator transition in disordered...... the one-body density matrix. The approach has a general ab initio formulation and could in principle be applied to realistic disordered materials by standard electronic structure methods....... systems. In particular, for noninteracting systems the geometrical marker can be obtained from the configurational average of the norm-squared one-body density matrix, which can be calculated within open as well as periodic boundary conditions. This is in sharp contrast to a classification based...

  6. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  7. Fabrication of BN/Al(-Mg) metal matrix composite (MMC) by pressureless infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.G.; Kwon, H. [School of Advanced Materials Eng., Kookmin Univ., Seoul (Korea)

    2004-07-01

    BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg{sub 3}N{sub 2} and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg{sub 3}N{sub 2}, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg) MMC was derived from the phase analysis results and the thermodynamic investigation. (orig.)

  8. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  9. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  10. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  11. Investigation of metal-matrix composite containing liquid-phase dispersion

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Mukherji, D.; Gilles, R.; Geue, T.; Rösler, J.

    2012-01-01

    Roč. 340, 012098 (2012), s. 1-15 ISSN 1742-6588. [5th European Conference on Neutron Scattering. Praha, 17.07.2011-21.07.2011] R&D Projects: GA MPO FR-TI1/378 Grant - others:European Commission(XE) RII3-CT-2003-505925 Program:FP6 Institutional support: RVO:61389005 Keywords : metal-matrix composite * liquid-phase dispersion * strengthening * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism http://iopscience.iop.org/1742-6596/340/1/012098

  12. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    Science.gov (United States)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  13. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  14. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  15. Micro structural analysis of nanocomposite of metallic matrix of aluminum reinforced by 2% of NTC

    International Nuclear Information System (INIS)

    Dias, Fabio Saldanha; LavaredaCarlos Romulo; Mendes, Luiz Fernando; Queiroz, Jennyson Luz

    2016-01-01

    The study of based on aluminum materials has a high importance level, mainly when is intense wanted in automobile and aerospace industry to transform in light and high perform parts. Aluminum has low specific weight and easiness to join with other materials and these qualities can supply excellent properties and lots of technological applications. Components based on aluminum represents good examples to develop optimized micro structures during the fabrication process that can be basic on properties mechanical performance. As a result this work analyses the micro structure's composites with metallic matrix reinforced by 2% of Multi-Walled Carbon Nanotubes manufactured by aluminum splinters mixed to CNT (author)

  16. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Data.gov (United States)

    U.S. Environmental Protection Agency — A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology has been synthesized and its application as a recyclable...

  17. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Science.gov (United States)

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  18. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Data.gov (United States)

    U.S. Environmental Protection Agency — A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon...

  19. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix.

    NARCIS (Netherlands)

    Natal da Luz, T.; Ojeda, G.; Pratas, J.; van Gestel, C.A.M.; Sousa, J.P.

    2011-01-01

    Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of

  20. An approximate method for calculating electron-phonon matrix element of a disordered transition metal and relevant comments on superconductivity

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given

  1. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  2. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    Science.gov (United States)

    Terrani, K. A.; Silva, C. M.; Kiggans, J. O.; Cai, Z.; Shin, D.; Snead, L. L.

    2013-06-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  3. Multiplicity dependence of matrix-induced frequency shifts for atomic transitions of the group 12 metals in rare gas solids

    International Nuclear Information System (INIS)

    Laursen, S.L.; Cartland, H.E.

    1991-01-01

    Atomic resonances of the group 12 metal atoms, Hg, Cd, and Zn, undergo frequency shifts from the gas phase atomic line when trapped in rare gas matrices of Ar, Kr, and Xe at 12 K. As expected, the shifts are approximately linear in polarizability of the rare gas, but the slope of this line depends on whether the transition in question is 1 P 1 left-arrow 1 S 0 or 3 P 1 left-arrow 1 S 0 . Thus the matrix-induced frequency shift is dependent on the singlet or triplet nature of the excited state as well as on the matrix material. This dependence on multiplicity is discussed in terms of interactions between the excited-state atomic orbitals and the matrix. The results are compared to matrix studies of other metals and to related gas-phase work on diatomic van der Waals complexes of group 12 metals with rare gases

  4. Evaluation of wetlands designed to transfer and transform selected metals in an aqueous matrix

    International Nuclear Information System (INIS)

    Hawkins, W.B.; Gillespie, W.B. Jr.; Rodgers, J.H. Jr.

    1995-01-01

    Constructed wetlands can be used as an alternative to traditional wastewater treatment. Two wetlands were constructed at a Louisiana petroleum refinery and were used to study transfers and transformations of selected metals (Zn, Pb, and Cu) in a refinery effluent. In order to optimize metal removal from the aqueous matrix and subsequently decrease metal bioavailability, the hydroperiod, hydrosoil, and vegetation were specifically selected and incorporated into the wetland design. To test the metal removal efficiency of the constructed wetlands, refinery effluent was amended with 4 mg Zn/L as ZnCl 2 for 150 d. From influent to effluent, average total recoverable and soluble zinc concentrations decreased by 41 and 72%, respectively. Toxicity tests (7 d) using Ceriodaphnia dubia and Pimephales promelas illustrated a decrease in zinc bioavailability. Average C. dubia survival increased from 0--73% as a result of wetland treatment; for P. promelas, the increase in average survival was 37--94%. Based upon this field experiment, constructed wetlands can be specifically designed for zinc removal and concomitant decreases in toxicity

  5. Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linul, Emanoil, E-mail: emanoil.linul@upt.ro [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Marsavina, Liviu [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Kováčik, Jaroslav [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava (Slovakia)

    2017-04-06

    The collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions were experimentally and analytically investigated. Closed-cell aluminium foam AlSi10 with 325±10 kg/m{sup 3} density was used as core material, while stainless-steel-mesh is the faces materials. Prior to characterizing the composite sandwich structure, the stainless steel mesh face material and closed-cell aluminium foam were characterized by tensile testing and compression testing, respectively. Experimental tests were performed on sandwich beams using both High Speed Camera and Digital Image Correlation system for strain distribution. All experimental tests were performed at room temperature with constant crosshead speed of 1.67×10{sup −4} m/s for static tests and 2 m/s impact loading speed for dynamic tests. Two main deformation behaviours of investigated metal foam matrix composites were observed following post-failure collapse: face failure and core shear. It was showed that the initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical parameters.

  6. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  7. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  8. Nanoindentation studies of ex situ AlN/Al metal matrix nanocomposites

    International Nuclear Information System (INIS)

    Fale, Sandeep; Likhite, Ajay; Bhatt, Jatin

    2014-01-01

    Highlights: • Formation of in-situ phases nucleated on AlN particles strengthens the matrix. • Formation of in-situ phases increases with AlN content in nanocomposites. • Stronger in-situ phases results in increased hardness and modulus of elasticity. - Abstract: Nanocrystalline Aluminium nitride (AlN) powder is dispersed in different weight ratio in Aluminum matrix to fabricate metal matrix nanocomposite (MMNC) using ex situ melt metallurgy process. The synthesized Al–AlN nanocomposites are studied for phase analysis using high resolution scanning electron microscopy (FEG-SEM) and for hardness behavior using microindentation and nanoindentation tests. Quantitative analysis of the oxide phases is calculated from thermodynamic data and mass balance equation using elemental data obtained from energy dispersive spectroscopy (EDS) results. Role of oxide phases in association with AlN particles is investigated to understand the mechanical behavior of composites using nanoindentation tester. Load–displacement profile obtained from nanoindentation test reveals distribution of oxide phases along with AlN particle and their effect on indent penetration

  9. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  10. An Assessment of Mechanical and Tribological Property of Hybrid Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    R. Santosh Kumar

    2017-04-01

    Full Text Available Composite materials has huge requirement in the area of automobile, aerospace, and wear resistant applications. This study presents the synthesis of composite reinforced with SiC and Al2O3 using gravity stir casting. Stir casting is the manufacturing process that is incorporated to produce the composite material because of its extreme bonding capacity with base material. The composition of reinforcement with 6061 aluminium matrix is SiC-7.5% and Al2O3 -2.5% respectively. The average size of reinforcement particle is 30-40 microns. The synthesised composite casting is machined using EDM to prepare specimens for various tests. Microstructure study was carried and the microstructure images prove the existence and dispersion of reinforcement particles in the metal matrix. There is no visible porosity is observed. The hardness of the specimen is tested using Vickers hardness tester and found considerable increase when compare with parent alloy Al 6061. Also mechanical and tribological properties of hybrid Aluminium metal matrix composite were employed. The fortifying material, Silicon Carbide is composed of tetrahedral of carbon and silicon atoms with strong bonds in crystal lattice along with its excellent wear resistance property and alumina have high strength and wear resistance. To avoid enormous material wastage and to achieve absolute accuracy, wire-cut EDM process is capitalised to engrave the specimen as per required dimensions. Three Tensile test specimens were prepared, in order to achieve reliability in results as per ASTM- E8 standard, and the values were tabulated. Impact test was carried out and the readings were tabulated. Wear test was carried out using pin on disc wear test apparatus and the results show considerable increase in wear resistant property when compare with parent alloy Al6061.The above work proves the successful fabrication of composite and evaluation of properties.

  11. Immobilisation of krypton in a metallic matrix by combined ion implantation and sputtering

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1980-01-01

    With the increase in nuclear power, it may be necessary to contain for 100 to 200 years the radioactive 85 krypton released during fuel reprocessing. The ideal method of immobilising radioactive materials is in the form of stable, monolithic solids which are resistant to the effects of the environment or accidents, and which can retain the radioactivity under all envisaged conditions. Since krypton is a rare gas, not forming thermally stable compounds, conventional methods of storage are not possible. A process is being developed to immobilise the krypton in the form of small gas bubbles in a metal matrix by implanting the gas into a metal layer from a glow discharge and then burying the implanted layer by sputter deposition. By repeating the process, a thick layer of deposit is built up with the krypton dispersed throughout the matrix as bubbles of diameter less than 20 A. This process offers an ideal form of storage since gas in bubbles is not thermally released until the temperature of the matrix is close to the melting point, and also leakage of gas by corrosion or mechanical damage will be small. A pilot plant is being built in order to demonstrate the process on a scale comparable with that required for a reprocessing plant. The efficiency of the process is dependent upon the amount of gas which can be implanted at low energy into a thin layer and its subsequent retention. More information is required on the processes occurring when krypton ions are implanted close to the surface, in particular, the retention and re-emission of the gas, and the formation of clusters and bubbles. (author)

  12. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  13. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  14. Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix.

    Science.gov (United States)

    Neri, L M; Bortul, R; Zweyer, M; Tabellini, G; Borgatti, P; Marchisio, M; Bareggi, R; Capitani, S; Martelli, A M

    1999-06-01

    The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the

  15. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    International Nuclear Information System (INIS)

    Aguilera, Angeles; Souza-Egipsy, Virginia; San Martin-Uriz, Patxi; Amils, Ricardo

    2008-01-01

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g -1 biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p -1 dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g -1 dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p -1 biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected

  16. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Girand, C.; Lormand, G.; Fougeres, R.; Vincent, A. (GEMPPM, Villeurbanne (France))

    1993-05-01

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's, stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.

  17. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  18. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    Science.gov (United States)

    Kothari, Kunal B.

    -sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was

  19. Magnetic response from a composite of metal-dielectric particles in the visible range: T-matrix simulation

    Directory of Open Access Journals (Sweden)

    O. Zhuromskyy

    2011-09-01

    Full Text Available The optical response of a particle composed of a dielectric core surrounded by a densely packed shell of small metal spheres is simulated with the superposition Tmatrix method for realistic material parameters. In order to compute the electric and magnetic particle polarizabilities a single expansion T-matrix is derived from a particle centered T-matrix. Finally the permeability of a medium comprising such particles is found to deviate considerable from unity resulting in a noticeable optical response.

  20. Effect of nano size 3% wt TaC particles dispersion in two different metallic matrix composites

    International Nuclear Information System (INIS)

    Gomes, U.U.; Oliveira, L.A.; Souza, C.P.; Menezes, R.C.; Furukava, M.; Torres, Y.

    2009-01-01

    This work studies the characteristics of two different metallic matrixes composites, ferritic and austenitic steels, reinforced with 3% wt nano size tantalum carbide by powder metallurgy. The starting powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of the nano sized carbide dispersion on the matrix microstructures and its consequences on the mechanical properties were identified. The preliminary results showed that the sintering were influenced by morphology and the distribution of carbide and the alloys. (author)

  1. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  2. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  3. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    Science.gov (United States)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  4. Modelling of End Milling of AA6061-TiCp Metal Matrix Composite

    Science.gov (United States)

    Vijay Kumar, S.; Cheepu, Muralimohan; Venkateswarlu, D.; Asohan, P.; Senthil Kumar, V.

    2018-03-01

    The metal-matrix composites (MMCs) are used in various applications hence lot of research has been carried out on MMCs. To increase the properties of Al-based MMCs many ceramic reinforcements have been identified, among which TiC is played vital role because of its properties like high hardness, stiffness and wear resistance. In the present work, a neural network and statistical modelling approach is going to use for the prediction of surface roughness (Ra) and cutting forces in computerised numerical control milling machine. Experiments conducted on a CNC milling machine based on the full factorial design and resulted data used to train and checking the network performance. The sample prepared from in-situ technique and heat treated to get uniform properties. The ANN model has shown satisfactory performance comparatively.

  5. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

  6. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  7. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  8. An investigation of flow properties of metal matrix composites suspensions for injection molding

    International Nuclear Information System (INIS)

    Ahmad, F.; Bevis, M.J.

    1997-01-01

    Flow properties of metal matrix composites suspensions have significant effects on the fibre orientation during mould filling. The results presented in this paper relate to the flow properties of aluminium powder and glass fibres compounded into a sacrificial thermoplastics binder. For this purpose, a range of aluminium compounds and aluminium composite suspensions were investigated over a wide shear rate range expected to occur during injection mould process. Aluminium composites wee prepared by substituting glass fibres for aluminium in aluminium compound. Aluminium composite containing a maximum critical volume fraction of fibres which did not exhibit an increase n viscosity was determined. The effect of temperature on the flow behaviour of aluminium composite was also investigated. (author)

  9. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  10. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  11. Comparison of various tool wear prediction methods during end milling of metal matrix composite

    Science.gov (United States)

    Wiciak, Martyna; Twardowski, Paweł; Wojciechowski, Szymon

    2018-02-01

    In this paper, the problem of tool wear prediction during milling of hard-to-cut metal matrix composite Duralcan™ was presented. The conducted research involved the measurements of acceleration of vibrations during milling with constant cutting conditions, and evaluation of the flank wear. Subsequently, the analysis of vibrations in time and frequency domain, as well as the correlation of the obtained measures with the tool wear values were conducted. The validation of tool wear diagnosis in relation to selected diagnostic measures was carried out with the use of one variable and two variables regression models, as well as with the application of artificial neural networks (ANN). The comparative analysis of the obtained results enable.

  12. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  13. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  14. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  15. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  16. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  17. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  18. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    Science.gov (United States)

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  19. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  20. Improved Mechanical and Tribological Properties of Metal-Matrix Composites Dispersion-Strengthened by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Evgenii Levashov

    2009-12-01

    Full Text Available Co- and Fe-based alloys produced by powder technology are being widely used as a matrix for diamond-containing composites in cutting, drilling, grinding pplications, etc. The severe service conditions demand that the mechanical and tribological properties of these alloys be improved. Development of metal-matrix composites (MMCs and alloys reinforced with nanoparticles is a promising way to resolve this problem. In this work, we have investigated the effect of nano-sized WC, ZrO2, Al2O3, and Si3N4 additives on the properties of sintered dispersion-strengthened Co- and Fe-based MMCs. The results show an increase in the hardness (up to 10 HRB, bending strength (up to 50%, wear resistance (by a factor of 2–10 and a decrease in the friction coefficient (up to 4-fold of the dispersion-strengthened materials. The use of designed alloys as a binder of cutting diamond tools gave a 4-fold increment in the service life, without reduction in their cutting speed.

  1. Cu-TiB metal matrix composites prepared by powder metallurgy route

    Directory of Open Access Journals (Sweden)

    Guo Z.

    2015-01-01

    Full Text Available Titanium boride (TiB is characterized by good conductivity, high strength and high melting point. In this work, TiB was used to make Cu-TiB metal matrix composites (MMCs. Amounts of TiB added into Cu matrix were 2wt.%, 5wt.%, 10 wt.% and 15 wt.%. The samples were pressed at pressures of 500MPa, 600MPa, 700MPa and 800MPa and sintered at 820o and 920o, respectively. The properties of the sintered composites such as hardness and impact toughness were studied. Hardness and impact toughness of samples increased with increasing pressures and decreased with increasing contents of TiB. Composite with good mechanical properties and high conductivity was obtained from the sample containing 2wt.%TiB compacted at 800MPa and sintered at 920o. It was shown that 2wt.% TiB is a suitable content to make Cu-TiB MMCs with good mechanical properties and excellent conductivity.

  2. Fabrication process optimization for improved mechanical properties of Al 7075/SiCp metal matrix composites

    Directory of Open Access Journals (Sweden)

    Dipti Kanta Das

    2016-04-01

    Full Text Available Two sets of nine different silicon carbide particulate (SiCp reinforced Al 7075 Metal Matrix Composites (MMCs were fabricated using liquid metallurgy stir casting process. Mean particle size and weight percentage of the reinforcement were varied according to Taguchi L9 Design of Experiments (DOE. One set of the cast composites were then heat treated to T6 condition. Optical micrographs of the MMCs reveal consistent dispersion of reinforcements in the matrix phase. Mechanical properties were determined for both as-cast and heat treated MMCs for comparison of the experimental results. Linear regression models were developed for mechanical properties of the heat treated MMCs using list square method of regression analysis. The fabrication process parameters were then optimized using Taguchi based grey relational analysis for the multiple mechanical properties of the heat treated MMCs. The largest value of mean grey relational grade was obtained for the composite with mean particle size 6.18 µm and 25 weight % of reinforcement. The optimal combination of process parameters were then verified through confirmation experiments, which resulted 42% of improvement in the grey relational grade. Finally, the percentage of contribution of each process parameter on the multiple performance characteristics was calculated through Analysis of Variance (ANOVA.

  3. Use of titanium-based materials as bactericides

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David T; Elvington, Mark C; Wataha, John; Chung, Whasun O; Rutherford, R. Bruce; Chan, Daniel C

    2013-10-01

    Compositions containing metal ions bound into a titanate are described which have demonstrated an ability to suppress bacterial growth of a number of organisms associated with periodontal disease and caries.

  4. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    Science.gov (United States)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  5. Polymer-Derived In- Situ Metal Matrix Composites Created by Direct Injection of a Liquid Polymer into Molten Magnesium

    Science.gov (United States)

    Sudarshan; Terauds, Kalvis; Anilchandra, A. R.; Raj, Rishi

    2014-02-01

    We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 °C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites.

  6. Metal Matrix Composite Coatings of Cupronickel Embedded with Nanoplatelets for Improved Corrosion Resistant Properties

    Directory of Open Access Journals (Sweden)

    Casey R. Thurber

    2018-01-01

    Full Text Available The deterioration of metals under the influence of corrosion is a costly problem faced by many industries. Therefore, particle-reinforced composite coatings are being developed in different technological fields with high demands for corrosion resistance. This work studies the effects of nanoplatelet reinforcement on the durability, corrosion resistance, and mechanical properties of copper-nickel coatings. A 90 : 10 Cu-Ni alloy was coelectrodeposited with nanoplatelets of montmorillonite (Mt embedded into the metallic matrix from electrolytic baths containing 0.05, 0.10, and 0.15% Mt. X-ray diffraction of the coatings indicated no disruption of the crystal structure with addition of the nanoplatelets into the alloy. The mechanical properties of the coatings improved with a 17% increase in hardness and an 85% increase in shear adhesion strength with nanoplatelet incorporation. The measured polarization resistance increased from 11.77 kΩ·cm2 for pure Cu-Ni to 33.28 kΩ·cm2 for the Cu-Ni-0.15% Mt coating after soaking in a simulated seawater environment for 30 days. The incorporation of montmorillonite also stabilized the corrosion potential during the immersion study and increased resistance to corrosion.

  7. Homogeneous metal matrix composites produced by a modified stir-casting technique

    International Nuclear Information System (INIS)

    Kennedy, A.R.; McCartney, D.G.; Wood, J.V.

    1995-01-01

    Al-based metal matrix composites have been made by a novel liquid processing route which is not only cheap and versatile but produces composites with extremely uniform distributions of the reinforcing phase. Particles of TiB 2 , TiC and B 4 C have been spontaneously incorporated, that is without the use of external mechanical agitation, into Al and Al-alloy melts in volume fractions as high as 0.3. This has been achieved through the use of wetting agents which produce K-Al-F based slags on the melt surface. Spontaneous particle entry and the chemistry of the slag facilitate the generation of good distributions of the reinforcing phase in the solidified composite castings. Non-clustered, near homogeneous distributions have been achieved irrespective of the casting conditions and the volume fraction, type or size of the reinforcement. The majority of the reinforcement becomes engulfed into the solid metal grains during solidification rather than, what is more commonly the case, being pushed to the inter-granular regions. This intra-granular distribution of the reinforcement is likely to improve the mechanical properties of the material

  8. Microstructure characteristics of nickel reinforced metal matrix composites (Ni/AC8A) by low-pressure metal infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jun; Rong, Hua Wei; Jun, Ji Ang; Park, Sung Ho; Huh, Sun Chul; Park, Won Jo [Gyeongsang National University, Jinju (Korea, Republic of)

    2009-07-01

    MMCs(Metal Matrix Composites) can obtain mechanical characteristics of application purposes that a single material is difficult to obtain. Al alloy composite material that nickel is added by reinforcement is used for piston of diesel engine, because high temperature properties, strength, corrosion resistant are improved excellently than existent Al alloy. And, in case of processing, interface between Ni and Al improves wear resistant by intermetallic compound of high hardness. Also, in the world, industrial circles are proceeding research to apply excellent composite material. Existent process methods of MMC using preform were manufactured by high-pressure. But, it cause deformation of preform or fault of completed MMC. Using low-pressure as infiltration pressure can prevent this problem, and there is an advantage that is able to reduce the cost of production by small scale of production equipment. Accordingly, process methods of MMC have to consider low-pressure infiltration for the strength of preform, and nowadays, there are many studies about reducing infiltration pressure. In this study produced Al composite material that Ni is added by reinforcement by low-pressure infiltration, and observed microstructure of completed MMCs.

  9. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  10. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  11. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  12. Multi-objective Optimization of Friction Welding Process Parameters using Grey Relational Analysis for Joining Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sreenivasan KONGANAPURAM SUNDARARAJAN

    2018-05-01

    Full Text Available Aluminium metal matrix composites has gained importance in recent time because of its improved mechanical and metallurgical properties. The welding of aluminium metal matrix composites using conventional welding process has got many demerits so in order to overcome them a solid state welding process is to be employed. To achieve a good strength weld in the aluminium metal matrix composite bars an efficient and most preferred technique is friction welding. In this work the aluminium metal matrix composite AA7075 + 10 % vol SiC-T6 is selected and friction welded. The combination of friction welding process parameters such as spindle speed, friction pressure, upset pressure and burn-off- length for joining the AA7075 + 10 % vol SiCP-T6 metal matrix composite bars are selected by Taguchi’s design of experiment. The optimum friction welding parameters were determined for achieving improved ultimate tensile strength and the hardness using grey relational analysis. A combined grey relational grade is found from the determined grey relational coefficient of the output responses and the optimum friction welding process parameters were obtained as spindle speed – 1200 rpm, friction pressure – 100 MPa, upset pressure – 250 MPa, Burn-off-Length – 2 mm. Analysis of variance (ANOVA performed shows that the friction pressure is the most significant friction welding parameter that influences the both the ultimate tensile strength and hardness of friction welded AA7075 + 10 % volSiCP-T6 joints. The fractured surface under microstructure study also revealed good compliance with the grey relational grade result. DOI: http://dx.doi.org/10.5755/j01.ms.24.2.17725

  13. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    1998-01-01

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  14. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle

    International Nuclear Information System (INIS)

    Vijayarangan, S.; Rajamanickam, N.; Sivananth, V.

    2013-01-01

    Highlights: ► A FE model is developed to study the suitability of MMC for steering knuckle. ► Structural analysis of steering knuckle is carried out for 12 load cases. ► The cross section of the critical region is optimized using genetic algorithm. ► The life of the MMC (Al-10 wt.% TiC) knuckle is compared before and after optimization. ► MMC material could replace SG iron for automotive steering knuckle. -- Abstract: Steering knuckle is considered as one of the critical component in automotive suspension system. It is subjected to time varying loads during its service life, leading to fatigue failure. Therefore, its design is an important aspect in the product development cycle. Currently, spheroidal graphite (SG) iron is widely used to manufacture steering knuckle in the commercial automobile sector. It has been observed from the knuckle manufacturers that advanced materials and weight reduction are the real need for the current automobile industry. Due to their high strength to weight ratio, Metal Matrix Composites (MMCs) have the potential to meet the demanded design requirements of the automotive industry, compared to conventional materials. In this work, an aluminum alloy reinforced with titanium carbide particulate is suggested as an alternate material in place of existing SG iron. Structural analysis of steering knuckle made of alternate material Al-10 wt.% TiC was performed using commercial code ANSYS. The results of steering knuckle made of MMC (Al-10 wt.% TiC) were compared with that of aluminum alloy and SG iron steering knuckles for its performance based on real time load cases. It is found from this analysis, the knuckle strut region has maximum stress and deflection during its life time. The critical strut region cross section area of knuckle was analyzed and geometrically optimized for minimum bending stress and deflection using genetic algorithm available in MatLab. Since, the knuckle experiences time varying loads, fatigue analysis also

  15. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  16. Improvement of Tribological Properties of Metal Matrix Composites by Means of Slide Burnishing

    Directory of Open Access Journals (Sweden)

    Piotr BEDNARSKI

    2013-12-01

    Full Text Available Burnishing of metal surfaces can affect positively tribological and mechanical properties such as fatigue strength, wear resistance, contact stiffness and bearing capacity. Burnishing affects the entire surface topography, including surface roughness, radii of curvature of peaks and valleys, slope angles and more. We have studied A1Mg1SiCu (6xxx series aluminum matrix composites with a reinforcing phase of Al2O3 which exhibits good workability but poor machinability. The second series studied was based on an AlSi alloy (A-390 reinforced with SiC – this one characterized by poor workability but good machinability. Materials have been prepared by mixing metal powders with the reinforcement, cold pressing, sintering, hot extrusion and heat treatment. We have determined surface roughness with a Hommel tester; the arithmetical mean for A1Mg1SiCu (A6061 + Al2O3 was ~1 µm before burnishing and ~0.15 mm after burnishing. We have also determined the bearing capacity at 50 % with the same tester: before burnishing 2.30 µm and 0.47 µm afterwards for A6061 + Al2O3; before 2.30 µm, afterwards 0.37 µm for A390 + SiC. Vickers microhardness at the surface with respect to the core increases 30 % for the Al2O3 containing composite and 50 % for the SiC containing composite.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2404

  17. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  18. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  19. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  20. Characteristic of improved fatigue performance for Zr-based bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Qiao, J.W.; Huang, E.W.; Wang, G.Y.; Yang, H.J.; Liang, W.; Zhang, Y.; Liaw, P.K.

    2013-01-01

    Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 bulk metallic glass matrix composites exhibit improved four-point-bending fatigue endurance with a fatigue limit of 567 MPa, compared to that under the tension–tension fatigue, due to the high-volume-fractioned dendrites, which can effectively blunt the fatigue-induced cracks. Illuminated by high-energy synchrotron X-ray at 200 and 100 K, the corresponding diffraction peaks, such as (110), (200), and (211) shift rightward to small lattice spacings, compared to those at 298 K. However, the peak widths at 100 K and 200 K are almost identical to that of room temperature. Since an identical fatigue specimen was measured under room temperature, 200 K, and 100 K, the invariant of the peak widths reveal the fact of the irreversible microstructure developments induced by fatigue. Even if the fatigue fracture stress is distinguishingly lower than the yielding strength, the deformation of dendrites locally prevails, evidenced by the occurrence of dislocations

  1. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    International Nuclear Information System (INIS)

    Fatchurrohman, N; Marini, C D; Suraya, S; Iqbal, AKM Asif

    2016-01-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc. (paper)

  2. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  3. Analysis of semi-solid processing for metal matrix composite synthesis using factorial design

    Directory of Open Access Journals (Sweden)

    Kratus Ranieri

    2012-02-01

    Full Text Available The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semi-solid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.

  4. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  5. Effect of Silicon Nitride Incorporation on Microstructure and Hardness of Ni-Co Metal Matrix Nanocomposite

    Directory of Open Access Journals (Sweden)

    Ridwan

    2015-01-01

    Full Text Available Ni-Co-Si3N4 nanocomposite coatings were prepared by electrodeposition technique. The deposition was performed at 50 mA cm-2 on copper substrate. The working temperature of electrodepostion was constant at 500C in an acidic environment of pH 4. The effects of silicon in the nickel-cobalt metal matrix composite were investigated. Energy dispersive X-ray spectroscopy was used to determine the composition. The Co content in the coatings is in the range 27-49 at.%. The phase present in the Ni-Co-Si3N4 were examined with an X-ray diffraction analysis. All the reflection patterns indicate that the coatings are having face-centered cubic (fcc structure. The microhardness of the Ni-Co-Si3N4 nanocomposite coating increases with increasing silicon content. The microhardness of the Ni-Co-Si3N4 nanocomposite coating increased from 549 HV for Nickel-cobalt alloy coating to 641 HV for Ni-Co-Si3N4 nanocomposite coating with 5.47 at.% Si.

  6. Sample preparation technique for transmission electron microscopy anodized Al-Li-SiC metal matrix composite

    International Nuclear Information System (INIS)

    Shahid, M.; Thomson, G.E.

    1997-01-01

    Along with improved mechanical properties, metal matrix composites (MMC) have a disadvantage of enhanced corrosion susceptibility in aggressive environments. Recent studies on corrosion behaviour of an Al-alloy 8090/SiC MMC, revealed considerably high corrosion rates of the MMC in near neutral solutions containing chloride ions. Anodizing is one of the potential surface treatment for the MMC to provide protective coating against corrosion. The surface and cross section of the anodized MMC can easily be observed using scanning electron microscope. The anodizing behaviour of the MMC can be understood further if the anodized cross section in examined under transmission electron microscope (TEM). However, it is relatively difficult to prepare small (3 mm diameter) electron transparent specimens of the MMC supporting an anodic film. In the present study a technique has been developed for preparing thin electron transparent specimens of the anodized MMC. This technique employed conventional ion beam thinning process but the preparation of small discs was a problem. A MMMC consisting of Al-alloy 8090 with 20 % (by weight) SiC particulate with an average size of 5 Mu m, was anodized and observed in TEM after preparing the samples using the above mentioned techniques. (author)

  7. Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles

    International Nuclear Information System (INIS)

    Yildirim, G.

    2013-01-01

    Highlights: •Standard measurements such as bulk density, ρ-T, J ct , XRD, SEM and EDX examinations for characterization of the samples. •Role of Eu inclusions on the microstructural, electrical and superconducting properties of Bi-2223 phase. •Determination of metal to insulator transition due to Eu impurities in the Bi-2223 superconducting matrix. •From the Eu content level of x = 0.5 onwards, destruction of the superconducting phases. •Constant retrogression of the microstructural and superconducting properties with the Eu individuals. -- Abstract: This comprehensive study examines the change of the microstructural, electrical and superconducting properties of the Eu doped Bi 1.8 Pb 0.4 Eu x Sr 2 Ca 2.2 Cu 3.0 O y ceramic cuprates (with x ⩽ 0.7) produced by the conventional solid state reaction method at the constant annealing temperature of 840 °C for 24 h with the aid of the standard characterization measurements such as bulk density, dc resistivity (ρ-T), transport critical current density (J c ), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) examinations. For the full characterization of the pure and Eu doped Bi-2223 samples, the degree of granularity (from the bulk density and porosity measurements); the room temperature resistivity, onset–offset critical transition temperature, variation of transition temperature, hole carrier concentration, spin-gap opening temperature and thermodynamic fluctuations (from the dc resistivity experiments); the texturing, crystal structure, crystallite size, phase purity and cell parameters (from the XRD investigations); the variation of the flux pinning centers and the boundary weak-links between the superconducting grains (from the critical current density values); the crystallinity, specimen surface morphology, grain connectivity between the superconducting grains and grain size distribution (from the SEM examinations), the elemental compositions and

  8. Interfaces in graded coatings on titanium-based implants

    OpenAIRE

    Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.; Gremillard, L.; Saiz, E.; Tomsia, A. P.

    2009-01-01

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na2O-K2O-P2O5 system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The...

  9. Effect of Cryogenic Treatment on Microstructure and Micro Hardness of Aluminium (LM25 - SiC Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    G Elango

    2014-06-01

    Full Text Available The basic aim of this paper is to increase awareness amongst the researchers and to draw their attention towards the present approach to deal with the cryogenic treatment for the nonferrous metals. Cryogenic treated nonferrous metals will exhibit longer wear and more durability. During metal making process, when solidification takes place, some molecules get caught in a random pattern. The molecules do move about at subzero and deep cryogenic treatment slowly. In this experimental study, the effect of cryogenic treatment on microstructure changes and the hardness properties varies for LM25 alloy and LM25-SiC metal matrix composite at -196°C. It is analyzed for different durations. The execution of cryogenic treatment on both alloy and MMCs changed the distribution of

  10. Metal-organic frameworks in mixed-matrix membranes for gas separation.

    Science.gov (United States)

    Tanh Jeazet, Harold B; Staudt, Claudia; Janiak, Christoph

    2012-12-14

    Mixed-matrix membranes (MMMs) with metal-organic frameworks (MOFs) as additives (fillers) exhibit enhanced gas permeabilities and possibly also selectivities when compared to the pure polymer. Polyimides (Matrimid®) and polysulfones are popular polymer matrices for MOF fillers. Presently investigated MOFs for MMMs include [Cu(SiF(6))(4,4'-BIPY)(2)], [Cu(3)(BTC)(2)(H(2)O)(3)] (HKUST-1, Cu-BTC), [Cu(BDC)(DMF)], [Zn(4)O(BDC)(3)] (MOF-5), [Zn(2-methylimidazolate)(2)] (ZIF-8), [Zn(purinate)(2)] (ZIF-20), [Zn(2-carboxyaldehyde imidazolate)(2)] (ZIF-90), Mn(HCOO)(2), [Al(BDC)(μ-OH)] (MIL-53(Al)), [Al(NH(2)-BDC)(μ-OH)] (NH(2)-MIL-53(Al)) and [Cr(3)O(BDC)(3)(F,OH)(H(2)O)(2)] (MIL-101) (4,4'-BIPY = 4,4'-bipyridine, BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, terephthalate). MOF particle adhesion to polyimide and polysulfone organic polymers does not represent a problem. MOF-polymer MMMs are investigated for the permeability of the single gases H(2), N(2), O(2), CH(4), CO(2) and of the gas mixtures O(2)/N(2), H(2)/CH(4), CO(2)/CH(4), H(2)/CO(2), CH(4)/N(2) and CO(2)/N(2) (preferentially permeating gas named first). Permeability increases can be traced to the MOF porosity. Since the porosity of MOFs can be tuned very precisely, which is not possible with polymeric material, MMMs offer the opportunity of significantly increasing the selectivity compared to the pure polymeric matrix. Additionally in most of the cases the permeability is increased for MMM membranes compared to the pure polymer. Addition of MOFs to polymers in MMMs easily yields performances similar to the best polymer membranes and gives higher selectivities than those reported to date for any pure MOF membrane for the same gas separation. MOF-polymer MMMs allow for easier synthesis and handability compared to pure MOF membranes.

  11. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  12. Effect of processing parameters on Cu-Co-Fe-based diamond impregnated metal matrix composite for stone cutting

    International Nuclear Information System (INIS)

    Mawani, K.; Shahid, M.; Arshad, S.N.; Hasaini, M.H.; Khan, B.S.

    2005-01-01

    Diamond Impregnated Metal Matrix Composites (DIMMC), manufactured by powder metallurgy route, playa major role in stone cutting tool industry. Unfortunately, these diamond tools are not manufactured locally. Our industry relies heavily on the import of these diamond tools to meet the local demand. This study was undertaken as a first step towards indigenous development of these diamond tools. Most of the diamond tools exist in the form of a composite structure with diamond grits embedded in a metallic matrix. This paper investigates the effect of various processing variables on the properties of DIMMC. Effect of pressure on the compaction behavior, sintering time and temperature has been investigated. Relatively better homogeneity has been observed with dry mixing of individual powders using zinc stearate as lubricant compared to wet mixing. A linear increase in green density has been found by increasing compaction pressure up to 400 MPa. (author)

  13. Consolidation of titanium matrix composites to maximum density by different hot pressing techniques

    International Nuclear Information System (INIS)

    Montealegre Melendez, I.; Neubauer, E.; Danninger, H.

    2010-01-01

    In this present work, TiMMCs were manufactured through conventional and inductive hot pressing techniques. The starting materials were two titanium based powders as metal matrices, and two types of reinforcements, carbon nanofibres and nano-micro-boron particles. After several manufacturing runs with varying parameters, especially, optimized hot pressing parameters, the titanium compacts were characterized. Density and hardness measurements, chemical analyses and microstructural studies were conducted. The two objectives of this work were achieved. On one hand the influence, in the properties of TiMMCs, of the starting materials as matrix powder and reinforcements was determined. Higher content of impurities from the starting materials affected the hardness and the microstructure of the composites, independently of the manufacturing process. On another hand, the study of variations of the manufacturing process as temperature of consolidation and soaking time was reported. Higher densification was obtained at higher consolidation temperature; however, reaction between the matrix and the carbonaceous reinforcement was detected.

  14. Evaluation of titanium carbide metal matrix composites deposited via laser cladding

    Science.gov (United States)

    Cavanaugh, Daniel Thomas

    Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.

  15. Investigations on thermal properties, stress and deformation of Al/SiC metal matrix composite based on finite element method

    Directory of Open Access Journals (Sweden)

    K. A. Ramesh Kumar

    2014-09-01

    Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.

  16. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  17. Diffusion Control in the in Situ Synthesis of Iconic Metal-Organic Frameworks within an Ionic Polymer Matrix.

    Science.gov (United States)

    Lim, Jungho; Lee, Eun Ji; Choi, Jae Sun; Jeong, Nak Cheon

    2018-01-31

    Ionic polymers that possess ion-exchangeable sites have been shown to be a greatly useful platform to fabricate mixed matrices (MMs) where metal-organic frameworks (MOFs) can be in situ synthesized, although the in situ synthesis of MOF has been rarely studied. In this study, alginate (ALG), an anionic green polymer that possesses metal-ion-exchangeable sites, is employed as a platform of MMs for the in situ synthesis of iconic MOFs, HKUST-1, and MOF-74(Zn). We demonstrate for the first time that the sequential order of supplying MOF ingredients (metal ion and deprotonated ligand) into the alginate matrix leads to substantially different results because of a difference in the diffusion of the MOF components. For the examples examined, whereas the infusion of BTC 3- ligand into Cu 2+ -exchanged ALG engendered the eggshell-shaped HKUST-1 layers on the surface of MM spheres, the infusion of Cu 2+ ions into BTC 3- -included alginate engendered the high dispersivity and junction contact of HKUST-1 crystals in the alginate matrix. This fundamental property has been exploited to fabricate a flexible MOF-containing mixed matrix membrane by coincorporating poly(vinyl alcohol). Using two molecular dyes, namely, methylene blue and rhodamine 6G, further, we show that this in situ strategy is suitable for fabricating an MOF-MM that exhibits size-selective molecular uptake.

  18. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    International Nuclear Information System (INIS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-01-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light–matter interactions and the realization of future metamaterials. (fast track communication)

  19. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    Science.gov (United States)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  20. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R. Karthigeyan

    2013-01-01

    Full Text Available This paper deals with metal matrix composites (MMCs of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10 basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  1. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  2. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  3. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, K.; Levisson, M.; Stamatialis, D.F.

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 µm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  4. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, Katarzyna; Levisson, M.; Stamatialis, Dimitrios

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 μm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  5. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  6. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    Science.gov (United States)

    Fudger, Sean James

    Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is

  7. Manufacturing Challenges Associated with the Use of Metal Matrix Composites in Aerospace Structures

    Science.gov (United States)

    Prater, Tracie

    2014-01-01

    Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramic particles or fibers. These materials possess a very high strength to weight ratio, good resistance to impact and wear, and a number of other properties which make them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as NASA's Orion Crew Exploration Vehicle and Space Launch System. A current focus of FSW research is to extend the process to new materials, such as MMCs, which are difficult to weld using conventional fusion techniques. Since Friction Stir Welding occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This chapter summarizes the challenges encountered when joining MMCs to themselves or to other materials in structures. Specific attention is paid to the influence of process variables in Friction Stir Welding on the wear process characterizes the effect of process parameters (spindle speed, traverse rate, and length

  8. Characterization of Corrosion on Outdoor-Exposed Aluminum Metal-Matrix Composites as a Function of Reinforcement Specie and Volume Fraction

    National Research Council Canada - National Science Library

    Adler, Ralph P; Snoha, Daniel J; Hawthorn, George; Hihara, Lloyd H

    2008-01-01

    The Hawaii Corrosion Laboratory and the U.S. Army Research Laboratory collaborated to prepare, environmentally expose for up to 2 years, and evaluate multivariant sets of metal matrix composites (MMCs...

  9. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  10. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal-matrix composites

    International Nuclear Information System (INIS)

    Ilo, S.; Just, Ch.; Badisch, E.; Wosik, J.; Danninger, H.

    2010-01-01

    Research highlights: The dissolution reaction kinetics and the formation of intermediate layers of tungsten carbides in Ni-(Cr)-B-Si matrices were studied in liquid-phase sintering with well-defined temperature/time relationship. → The internal intermediate layer formation, close to the original primary tungsten carbide showed diffusion-controlled kinetic (∼t 0.5 ), whereas the outside layer thickness formation, proportional to the processing time (∼t), was formed by the subsequent eutectic reaction of the Ni-(Cr)-B-Si matrix with the WC/W 2 C component. → Cr-addition in the matrix highly influences the inner layer thickness caused probably by increasing the C-diffusion rate, whereas the outer layer thickness was not dependent on the initial Cr-content in the matrix. Generally, the Cr-addition in the Ni-based matrix increased the hardness and elastic modulus of the intermediate phases along the carbide/matrix interface. → The different microstructure gradients are depended mainly on the interface growth kinetics. → The intermediate layers are hard phases (carbides, borides or carbo-borides). → The hardness of the carbide/matrix interface area is significantly lower as the hardness of the original primary tungsten carbides. - Abstract: Hard-particle metal-matrix composites (MMC) are generally used to increase the lifetime of machinery equipment exposed to severe wear conditions. Depending on the manufacturing technology, dissolution reactions of hard phases undergo different temperature/time profiles during processing affecting the microstructure and mechanical properties of the MMCs. Therefore, quantification of the carbide dissolution effects on the microstructure and micro-mechanical properties is the key to success in the development and optimisation of MMCs. Dissolution kinetics of WC/W 2 C in Ni-based matrices were determined in the liquid-sintering with a well-defined temperature/time profile. Microscopic evaluation of the samples showed two

  11. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  12. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  13. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  14. Sediment matrix characterization as a tool for evaluating the environmental impact of heavy metals in metal mining, smelting, and ore processing areas.

    Science.gov (United States)

    Ružičková, Silvia; Remeteiová, Dagmar; Mičková, Vladislava; Dirner, Vojtech

    2018-02-21

    In this work, the matrix characterization (mineralogy, total and local chemical composition, and total organic (TOC) and inorganic carbon (TIC) contents) of different types of sediments from mining- and metallurgy-influenced areas and the assessment of the impact of the matrix on the association of potentially hazardous metals with the mineral phases of these samples, which affect their mobility in the environment, are presented. For these purposes, sediment samples with different origins and from different locations in the environment were analyzed. Anthropogenic sediments from metal-rich post-flotation tailings (Lintich, Slovakia) represent waste from ore processing, natural river sediments from the Hornád River (Košice, Slovakia) represent areas influenced predominantly by the metallurgical industry, and lake sediments from a water reservoir Ružín (inflow from the Hornád and Hnilec Rivers, Slovakia) represent the impact of the metallurgical and/or mining industries. The total metal contents were determined by X-ray fluorescence (XRF) analysis, the local chemical and morphological microanalysis by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the TOC and TIC contents by infrared (IR) spectrometry. The mobility/bioavailability of Cu, Pb, and Zn in/from sediments at the studied areas was assessed by ethylenediaminetetraacetic acid (EDTA) and acetic acid (AA) extraction and is discussed in the context of the matrix composition. The contents of selected potentially hazardous elements in the extracts were determined by the high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

  15. Metal ion attachment to the matrix meso-tetrakis(pentafluorophenyl)porphyrin, related matrices and analytes: an experimental and theoretical study.

    Science.gov (United States)

    van Kampen, Jeroen J A; Luider, Theo M; Ruttink, Paul J A; Burgers, Peter C

    2009-11-01

    In a previous study [van Kampen et al. Analytical Chemistry 2006; 78: 5403], we found that meso-tetrakis (pentafluorophenyl)porphyrin (F20TPP), in combination with lithium salts, provides an efficient matrix to cationize small molecules by Li+ attachment and that this combination can be successfully applied to the quantitative analysis of drugs, such as antiretroviral compounds using matrix-assisted laser desorption ionization in conjunction with a time-of-flight analyzer (MALDI-TOF). In the present study, we further explore the mechanism of metal ion attachment to F20TPP and analytes by MALDI-FTMS(/MS). To this end, we have studied the interaction of F20TPP and analytes with various mono-, di- and trivalent metal ions (Li+, Na+, K+, Rb+, Cs+, Co2+, Cu2+, Zn2+, Fe2+, Fe3+ and Ga3+). For the alkali cations, we find that F20TPP forms complexes only with Li+ and Na+; in addition, model analyte molecules such as poly(ethyleneglycol)s, mixed with F20TPP and the alkali cations, also only form Li+ and Na+ adducts. This contrasts sharply with the commonly used matrix 2,5-dihydroxybenzoic acid, where analytes are most efficiently cationized by Na+ or K+. Reasons for this difference are delineated. Ab initio calculations on porphyrin itself reveal that even the smallest alkali cation, Li+, does not fit in the porphyrin cavity, but lies on top of it, pushing the 21H and 23 H hydrogen atoms out of and below the plane with concomitant bending of the porphyrin skeleton in the opposite direction, i.e. toward the cation. Thus, the Li+ ion is not effectively sequestered and is in fact exposed and thus accessible for donation to analyte molecules. Interaction of F20TPP with di- and trivalent metal ions leads to protoporphyrin-metal ions, where the metal ion is captured within the protoporphyrin dianion cavity. The most intense signal is obtained when F20TPP is reacted with CuCl2 and then subjected to laser ablation. This method presents an easy general route to study the metal

  16. A comparative study on the property determination of metal matrix composites using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1997-01-01

    Ultrasonic and eddy current methods were developed for the quantitative determination of material properties in particulate reinforced metal matrix composites. The proposed techniques employed measurements of ultrasonic velocity and eddy current conductivity, together with theoretical models which relate the effective anisotropic properties of the composites to their microstructures. The approach was used for a wide range of SiC particulate reinforced Al matrix(SiC p /Al) composites to estimate the particulate volume fractions of the composites. The SiC p volume fraction was calculated by coupling the measured velocity and conductivity with their corresponding model predictions. Both methods were shown to be reliable in determining the reinforcement volume fractions. However, the ultrasonic method was found to be better than the eddy current method, since the electrical conductivity was sensitive to the presence of intermetallic compounds formed during processing stage.

  17. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  18. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  19. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  20. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  1. Wear and Friction Behavior of Stir Cast Al-TiB2 Metal Matrix Composites with Various Lubricants

    Directory of Open Access Journals (Sweden)

    S. Poria

    2016-12-01

    Full Text Available Al- TiB2 metal matrix composites are fabricated using stir cast method and its tribological characterization is done using three different lubricants. Tribological studies are performed in a multi-tribotester using block-on-roller configuration under 25-75 N loads and 400-600 rpm rotational speeds. Four different weight percentages of TiB2 are considered in this study. Comparison between dry condition and lubricated conditions is gleaned to differentiate wear and friction characteristics and SEM images are taken to fortify them. Lubricated conditions yield large reduction in wear and friction compared to dry condition.

  2. Magnetic Properties and Phase Composition of Metamaterials Based on an Opal Matrix with 3 d-Transition Metal Particles

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoilovich, M. I.; Perov, D. V.; Nemytova, O. V.

    2018-02-01

    The magnetic properties of metamaterials based on an opal matrix with transition-metal (iron, nickel, cobalt) particles have been studied. Magnetization curves and magnetic hysteresis loops have been measured and the dependences of real and imaginary parts of magnetization have been determined using the dynamic ac susceptibility measuring procedure. Structural studies of metamaterials have been performed. The saturation magnetization and coercive force of the studied metamaterials have been found to depend weakly on the temperature. The temperature dependence of magnetic susceptibility at a temperature above 30 K can be described adequately by Curie-Weiss law and, at lower temperature, deviates from the law.

  3. Data characterizing compressive properties of Al/Al2O3 syntactic foam core metal matrix sandwich

    Directory of Open Access Journals (Sweden)

    Mohammed Yaseer Omar

    2015-12-01

    Full Text Available Microstructural observations and compressive property datasets of metal matrix syntactic foam core sandwich composite at quasi-static and high strain rate (HSR conditions (525–845 s−1 are provided. The data supplied in this article includes sample preparation procedure prior to scanning electron and optical microscopy as well as the micrographs. The data used to construct the stress–strain curves and the derived compressive properties of all specimens in both quasi-static and HSR regions are included. Videos of quasi-static compressive failure and that obtained by a high speed image acquisition system during deformation and failure of HSR specimen are also included.

  4. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Manos, George

    2015-01-01

    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms. (paper)

  5. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  6. Memristor comprising film with comb-like structure of nanocolumns of metal oxide embedded in a metal oxide matrix

    Science.gov (United States)

    Driscoll, Judith L; Lee, ShinBuhm; Jia, Quanxi

    2015-05-12

    Films having a comb-like structure of nanocolumns of Sm.sub.2O.sub.3 embedded in a SrTiO.sub.3 formed spontaneously on a substrate surface by pulsed laser deposition. In an embodiment, the nanocolumns had a width of about 20 nm with spaces between nanocolumns of about 10 nm. The films exhibited memristive behavior, and were extremely uniform and tunable. Oxygen deficiencies were located at vertical interfaces between the nanocolumns and the matrix. The substrates may be single-layered or multilayered.

  7. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction ... crystalline alloys [2], which led to an abnormal phenomenon that the wear ... of BMGs does not follow the empirical Archard's wear equa- tion which ...

  8. Characterization of Al-Cu alloy reinforced fly ash metal matrix ...

    African Journals Online (AJOL)

    user

    Graphite crucible was used for melting of matrix alloy, and the addition and mixing of particulates were made into ... specimen was cut as per ASTM-E23 by diamond blade using CNC machine. ... there will be no change in the size of the flyash.

  9. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  10. Metal particles constraint in glass matrix composites and its impact on fracture toughness enhancement

    Czech Academy of Sciences Publication Activity Database

    Kotoul, M.; Dlouhý, Ivo

    387-389 (2004), s. 404-408 ISSN 0921-5093 R&D Projects: GA ČR GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : brittle matrix composites * crack bridging * crack trapping Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.445, year: 2004

  11. A study on the manufacturing conditions of metal matrix composites by low pressure infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Hessian, Md Anowar; Park, Sung Ho [Gyeongsang National University, Tongyoung (Korea, Republic of); Huh, Sun Chul [Gyeongsang National University, JinJu (Korea, Republic of)

    2007-10-15

    Metal fiber preform reinforced aluminum alloy composite as made by the infiltration of molten metal under low pressure casting process. The infiltration behavior of filling pattern and the velocity profile with low-pressure casting process was investigated. The thermocouple was inserted into the preform in order to observe the infiltration behavior. The infiltration of applied pressure time, 1, 2 and 5 s under constant pressure of 0.4 MPa was completely filled during 0.4 s. In these conditions, molten aluminum alloy has successfully infiltrated to FeCrSi metal fiber preform by low-pressure casting process. It was observed the porosity of composites for reliability of composites. The automobile piston was developed with FeCrSi reinforced aluminum alloy that is 0% porosity by the optimal applied pressure and applied pressure time.

  12. Parameters affecting the production of Al-Al/sub 2/O/sub 3/ metal matrix particulate composite, (MMPC)

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Jaber, F.

    2003-01-01

    Aluminum-ceramic composites were made by powder metallurgy up to early 80's. Since then several attempts Metal have been made to produce these composites by liquid metallurgy method. Different techniques have been reported to produce these composites by this method and many difficulties have been encountered in wetting the particles by the molten metal due to the difference in densities which caused non uniform distribution of the particles in the matrix resulting in poor mechanical strength. In this paper, the production of aluminum-aluminum oxide (Al-Al/sub 2/O/sub 3/) metal matrix composite by different techniques is investigated. These include injection, centrifugal vortex, compocasting and a newly suggested method, modified vortex technique. The effect of the process parameters are investigated and discussed and the optimum process conditions were determined. It was found that preheating of the alumina powder for one hour at 1050 deg. before introducing it to the aluminum melt is vital to be accepted by the melt. Incorporation of the alumina particles by injecting them below the surface of the melt resulted in better wettability of the particles but no more than 10% volume fraction was achieved. Similarly, in the centrifuged casting technique, the same volume fraction of the Al/sub 2/O/sub 3/ particles was obtained and in both techniques existence of porosity was observed. The vortex technique, when its parameters were optimized resulted in higher volume fraction, as 25% of alumina particles was achieved with better particle distribution than those obtained by the injection and centrifuged casting methods. Comparison among the different techniques is made based on volume fraction, particle distribution, soundness and micro segregation. A new method, based on modifying the vortex technique is given and discussed. The mechanical strength and hardness of Al-Al/sub 2/O/sub 3/ MMPC produced by this method were determined. It was found that an increase of 100% in

  13. Fracture of coherent interfaces between an fcc metal matrix and the Cr23C6 carbide precipitate from first principles

    Science.gov (United States)

    Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime

    2018-02-01

    It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.

  14. Non-local plasticity effects on the tensile properties of a metal matrix composite

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2001-01-01

    For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...

  15. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    Science.gov (United States)

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Deposition and Characterization of the Titanium-Based Coating by a Multi-Chamber Detonation Sprayer

    Directory of Open Access Journals (Sweden)

    Arseenko M.Yu.

    2015-01-01

    Full Text Available This work introduces some of the aspects of the deposition of titanium-based coating (80-120 μm thick on aluminium samples using a multi-chamber detonation sprayer (MCDS. The characteristic feature of MCDS is that the powder is accelerated by using combustion products that are formed in MCDS chambers and are converged before entering the nozzle, where they interact with the two-phase gas-powder cloud. The microstructures and properties of the coating were characterized with the use of scanning electronic microscopes (SEM, optical microscope (OM, X-ray Diffraction (XRD techniques, and Vickers hardness tester with a 50 g test load. Wear tests were carried out using a computer controlled pin-on-disc type tribometer. It was established that MCDS has provided the conditions for formation of a dense titanium-based coating with a porosity of less than 1.0%, microhardness 810±250 HV0.05 and a specific wear rate of 2.077∙10-4 mm3(m∙N-1.

  17. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    Science.gov (United States)

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  18. Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres

    Science.gov (United States)

    2012-01-01

    predicting the properties of interest listed above. Kiser et al. [12] extended a metal foam model to account for ceramic reinforcement to predict the...Daoud A. J Alloys Compd. 2009; 487:618. 11. Drury WJ, Rickles SA, Sanders Jr TH, Cochran JK. In Light-Weight Alloys for Aerospace Applications, ed. Loe

  19. Breakage and debonding of short brittle fibres among particulates in a metal matrix

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    or fracture of a relatively long discontinuous fibre among particulates that do not fail. A cohesive zone model that accounts for normal separation as well as tangential separation is used to represent debonding, while fibre fracture is represented by a critical value of the average tensile stress on a cross......The competition of failure by fibre cracking or decohesion of the fibre-matrix interface is analysed for aluminium reinforced by aligned, short SiC fibres. An axisymmetric unit-cell model containing a number of differently shaped fibres or particulates is used here to represent failure by debonding...

  20. Studies of permittivity and permeability of dielectric matrix with cuboid metallic inclusions in different orientations

    Directory of Open Access Journals (Sweden)

    W. M. Wu

    2014-10-01

    Full Text Available In this paper, we investigate the possibility of using the heterogeneous materials, with cuboid metallic inclusions inside a dielectric substrate (host to control the effective permittivity. We find that in the gigahertz range, such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate. Three principal orientations of microscale cuboid inclusions have been taken into account in this study. The highest permittivity is observed when the orientation provides the largest polarization (electric dipole moment. The detrimental side effect of the metallic inclusion, which leads to the decrease of the effective magnetic permeability, can be suppressed by the proper choice of shape and orientation of the inclusions. This choice can in fact reduce the induced current and hence maximize the permeability. The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.

  1. Dynamic densification of metal matrix-coated fibre composites: modelling and processing

    International Nuclear Information System (INIS)

    Peng, H.X.; Dunne, F.P.E.; Grant, P.S.; Cantor, B.

    2005-01-01

    The consolidation processing of Ti-6Al-4V matrix-coated fibre (MCF) composite under vacuum hot pressing (VHP) has been investigated. A new test methodology has been developed for the determination of in situ matrix coating creep properties. In using the methodology, only a single, simple test is required, together with finite element modelling of the single fibre compression test. The creep coefficient and stress index have been determined for electron beam evaporated physical vapour deposited Ti-6Al-4V at 900 deg. C to be 1.23 x 10 -5 and 1.3, respectively. Consolidation experiments have been carried out on multi-ply MCF arrays under vacuum hot pressing. Finite element models have been developed for the dynamic consolidation of both square and hexagonal fibre packings. The creep constants for the Ti-6Al-4V, determined using the single fibre test, were assigned to the coating in the finite element models. Excellent agreement between predicted and experimental results was achieved, providing verification of the single fibre test methodology for the determination of creep constants

  2. Investigation of the low-speed impact behavior of dual particle size metal matrix composites

    International Nuclear Information System (INIS)

    Cerit, Afşın Alper

    2014-01-01

    Highlights: • AA2124 matrix composites reinforced with SiC particles were manufactured. • Low-speed impact behaviors of composites were investigated. • Composites were manufactured with single (SPS) and dual particle sizes (DPS). • Impact behaviors of DPS composites are more favorable than the SPS composites. • Approximately 50–60% of input energy was absorbed by the composite samples. - Abstract: SiC-reinforced aluminum matrix composites were manufactured by powder metallurgy using either single or dual particle sized SiC powders and samples sintered under argon atmosphere. Quasi-static loading, low-speed impact tests and hardness tests were used to investigate mechanical behavior and found that dual particle size composites had improved hardness and impact performance compared to single particle size composites. Sample microstructure, particle distributions, plastic deformations and post-testing damages were examined by scanning electron microscopy and identified microstructure agglomerations in SPS composites. Impact traces were characterized by broken and missing SiC particles and plastically deformed composite areas

  3. An analytical/numerical correlation study of the multiple concentric cylinder model for the thermoplastic response of metal matrix composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1993-01-01

    The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.

  4. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    International Nuclear Information System (INIS)

    Xu Jiang; Li Zhengyang; Zhu Wenhui; Liu Zili; Liu Wenjin

    2007-01-01

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of α-Al, TiB, Al 3 Ti and Al 3 Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al 5 Fe 2 phase and definite crystallographic relationship between the Al 5 Fe 2 phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase

  5. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    Science.gov (United States)

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  6. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)]. E-mail: xujiang73@nuaa.edu.cn; Li Zhengyang [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhu Wenhui [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Zili [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Wenjin [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2007-02-25

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of {alpha}-Al, TiB, Al{sub 3}Ti and Al{sub 3}Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al{sub 5}Fe{sub 2} phase and definite crystallographic relationship between the Al{sub 5}Fe{sub 2} phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase.

  7. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  8. Development of in-Situ Al-Si/CuAl2 Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Tash

    2016-06-01

    Full Text Available In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15% into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  9. Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology

    Science.gov (United States)

    Barekar, N.; Tzamtzis, S.; Dhindaw, B. K.; Patel, J.; Hari Babu, N.; Fan, Z.

    2009-12-01

    To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (ɛ) is obtained compared with composites produced by conventional processes.

  10. Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Syed Nasimul, E-mail: syedn@nitrkl.ac.in; Kumar, Lailesh

    2016-06-14

    In this work Al-matrix composites reinforced by exfoliated graphite nanoplatelets (xGnP) is fabricated by powder metallurgy route and their microstructure, mechanical properties and sliding wear behaviour were investigated. Here, xGnP has been synthesized from the thermally exfoliated graphite produced from a graphite intercalation compound (GIC) through rapid evaporation of the intercalant at an elevated temperature. The xGnP synthesized was characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), differential scanning calorimetry and thermogravimetric analysis (DSC/TGA), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The Al and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 550 °C for 2 h in an inert atmosphere. Al-1, 2, 3 and 5 wt% xGnP nanocomposites were developed. Results of the wear test show that there was a significant improvement in the wear resistance of the composites up to the addition of 3 wt% of xGnP in the Al matrix. The hardness of the various Al-xGnP composites also shows improvement upto the addition of 1 wt% xGnP beyond which there was a decrease in the hardness of the composites. The tensile strength of the Al-xGnP composites continuously reduced with the addition of xGnP due to the formation of Al{sub 4}C{sub 3} particles at the interface of the Al and xGnP in the composite.

  11. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    Science.gov (United States)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al

  12. Diurnal and seasonal trends and source apportionment of redox-active metals in Los Angeles using a novel online metal monitor and Positive Matrix Factorization (PMF)

    Science.gov (United States)

    Mousavi, Amirhosein; Sowlat, Mohammad H.; Sioutas, Constantinos

    2018-02-01

    In the present study, we identified the sources of four redox-active metals, including Iron (Fe), Chromium (Cr), Cupper (Cu), and Manganese (Mn) and quantified the contribution of these sources to PM2.5 concentrations in central Los Angeles, California, by employing time-resolved measurements (i.e., a time resolution of 2 h) with a recently developed online metal monitor and Positive Matrix Factorization (PMF). Size distribution of ambient PM (14 nm-10 μm) was measured using the Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS). Auxiliary variables were also collected, including elemental (EC) and organic carbon (OC), gaseous pollutants (NO2 and O3), meteorological parameters (including relative humidity (RH) and temperature), and traffic data (for heavy- (HDVs) and light-duty vehicles (LDVs)). A 4-factor solution was found to be optimum for the chemically-speciated dataset, whereas a 5-factor solution appeared to be most plausible for the size distribution data. The factors included fresh traffic, soil/road dust, urban background aerosol, secondary aerosol, and nucleation (only resolved for the size distribution data). Fresh traffic was the major contributor to Fe and Cu concentrations, whereas Cr was mostly found in the urban background aerosol (reflecting a mixture of small local sources as well as aged traffic emissions), and Mn mostly came from both soil/road dust and was to a lesser degree found in urban background aerosol. Secondary aerosol did not contribute to the concentrations of any of these metals, but was associated with very high loading of OC, as expected. Even though the urban background aerosol and secondary aerosol appeared to be characterized by "aged" particles and have a rather homogeneous spatial distribution, the reactions and processes involved in their formation are entirely different. Our results provide insights into the sources of redox-active metals in central Los Angeles. They also underscore the benefits of

  13. Double Pulse LIBS of Titanium-Based PVD-Coatings with Submicron Resolution

    Directory of Open Access Journals (Sweden)

    K. Ermalitskaia

    2016-01-01

    Full Text Available The possibility for double pulse LIBS in the process of a direct layer-by-layer analysis of the titanium-based PVD-coatings on polished flat blank samples of steel and silicon and also of the TiAlN/TiN-coating on a milling cutter is considered. A method is proposed to control thickness of the radiation evaporated layer by defocusing the laser beam with respect to the surface, making it possible to attain the depth resolution of 0.1 μm. The Ti and Ti-Zr-coatings produced using the ion-assisted condensation method and subjected to streams of the nitrogen plasma in a magnetic-plasma compressor are studied.

  14. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  15. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  16. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    International Nuclear Information System (INIS)

    Cox, Sophie C.; Jamshidi, Parastoo; Eisenstein, Neil M.; Webber, Mark A.; Hassanin, Hany; Attallah, Moataz M.; Shepherd, Duncan E.T.; Addison, Owen; Grover, Liam M.

    2016-01-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  17. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings

    Directory of Open Access Journals (Sweden)

    Chengjuan Qu

    2016-10-01

    Full Text Available The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs.

  18. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  19. Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis

    Science.gov (United States)

    Hussain Idrisi, Amir; Ismail Mourad, Abdel-Hamid; Thekkuden, Dinu Thomas; Christy, John Victor

    2018-03-01

    This paper reports study on statistical analysis of the wear characteristics of AA5083/SiC nanocomposite. The aluminum matrix composites with different wt % (0%, 1% and 2%) of SiC nanoparticles were fabricated by using stir casting route. The developed composites were used in the manufacturing of spur gears on which the study was conducted. A specially designed test rig was used in testing the wear performance of the gears. The wear was investigated under different conditions of applied load (10N, 20N, and 30N) and operation time (30 mins, 60 mins, 90 mins, and 120mins). The analysis carried out at room temperature under constant speed of 1450 rpm. The wear parameters were optimized by using Taguchi’s method. During this statistical approach, L27 Orthogonal array was selected for the analysis of output. Furthermore, analysis of variance (ANOVA) was used to investigate the influence of applied load, operation time and SiC wt. % on wear behaviour. The wear resistance was analyzed by selecting “smaller is better” characteristics as the objective of the model. From this research, it is observed that experiment time and SiC wt % have the most significant effect on the wear performance followed by the applied load.

  20. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Kiran, T.S.; Prasanna Kumar, M.; Basavarajappa, S.; Viswanatha, B.M.

    2014-01-01

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  1. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    Science.gov (United States)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  2. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  3. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang

    2009-08-01

    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  4. High-sensitive detection by direct interrogation of 14 MeV Acc neutrons, (1). Uranium-contained metal matrix in a waste dram

    International Nuclear Information System (INIS)

    Haruyama, Mitsuo; Takase, Misao; Tobita, Hiroshi; Mori, Takamasa

    2004-01-01

    Previously, authors reported that the 14 MeV-neutron direct interrogation method has made possible measure for the discrimination of clearance levels of concrete solidification uranium waste. In this paper, applicability of the method to metal waste matrix is discussed based on the results of simulation experiments by the continuation energy Monte Carlo calculation code (MVP). The problem is that self-neutron moderation effect in a waste cannot be expected when a waste matrix is metal. To solve this, a moderator is adopted so as to surround a metal waste drum and to slow down suitably a 14 MeV neutrons. The simulation calculation showed that this effect is satisfactorily large. The detection limit of radioactivity concentration to 4.5% enriched uranium has been found to be 0.0973 Bq/g in the metal waste model of 215.59 kg gross weight, in which 61 pipes are stuffed into its drum. Moreover, the position-dependent sensitivity difference in a metal waste drum can be settled as small as to ±13.5%. In conclusion, it can be said that 14 MeV-neutron direct interrogation method can be applied to the waste of a metal system: the detection sensitivity is high enough and the position-dependent sensitivity difference is small admittedly. Hence the method can be applied also to discrimination measurement of the clearance level of metal uranium waste. (author)

  5. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  6. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  7. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  8. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    Science.gov (United States)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the

  9. Mechanical Properties and Wear Characteristics Al-ZrO2-SiCp and Graphite Hybrid Metal Matrix Composites

    Science.gov (United States)

    Nayak, S. K.; Mahanta, T.; Sahoo, J. K.; Mishra, A.

    2018-03-01

    Development of Aluminum Metal Matrix Co mposites (AMMCs) has been one of the major requirements in engineering applicat ions due to their excellent mechanical properties, light weight and high strength. In the present investigation, Stir casting technique has been used for fabrication of co mposites, taking Alu miniu m as parent metal, Silicon Carbide (SiCp) of 7 vol. % of 220 mesh size and 1.75 vol. % of graphite as reinforcements. The Zirconia content was varied as 2.75, 4.5 and 6 vol. % to fabricate three d ifferent types of hybrid composites. The tensile strength and hardness were measured in UTM and Vickers hardness tester respectively and the wear characteristics were studied in a pin on disc friction monitor under dry sliding condition against steel counter face. The tensile strength was found to be 90 MPa, 120 MPa, 130 MPa and hardness 80.25 VHN, 103.22 VHN, 103.77 VHN for 2.75, 4.5 and 6vol. % of Zirconia respectively. Fro m the above investigation, it is recommended that composition with Al, 7 %-SiCp, 1.75 % -Gr and 6 vol %-ZrO2 showed better mechanical p roperties i.e . h igh tensile strength (130MPa) and reasonably good hardness (103.77 VHN) . The co mposite with Al, 7 % - SiCp, 1.75 % -Gr and 6 %-ZrO2 is good for short run frictional applicat ion and the composite with Al, 7 %- SiCp, 1.75 % -Gr and 4.5 %- ZrO2 may be used for long run frictional applicat ions after testing.

  10. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sophie C. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Jamshidi, Parastoo [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Eisenstein, Neil M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ (United Kingdom); Webber, Mark A. [School of Biosciences, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hassanin, Hany [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); School of Mechanical and Automotive Engineering, Kingston University, London SW15 3DW (United Kingdom); Attallah, Moataz M. [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Shepherd, Duncan E.T. [Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Addison, Owen [School of Dentistry, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Grover, Liam M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  11. Electrochemical Corrosion Behaviour of Alumina-Al 6061 and Silicon Carbide-Al 6061 Metal-Matrix Composites

    International Nuclear Information System (INIS)

    Mohamed, K.E.; Gad, M.M.A.; El-Sayed, A.A.; Moustafa, O.H.

    2001-01-01

    The electrochemical corrosion behaviour of powder metallurgy-processed metal-matrix composites (MMCs)based on Al alloy 6061 reinforced with particulate Al 2 O 3 or Sic has been studied in chloride-containing environment. Also, the corrosion behaviour of the unrein forced Al 6061 produced by the same route investigated. Electrochemical tests were conducted on composites containing 10 and 20 vo l% of both reinforced particulates. Potentiodynamic polarization tests have been carried out in neutral as well as acidic and alkaline de-aerated 10 -3 M Na CI solution. In the neutral environment, the addition of Al 2 O 3 particulates was found to shift both the corrosion potential (E corr ) and the break down potential (E b ) slightly into the positive direction irrespective of the volume fraction added (10 and 20 vo l%). On the other hand , Sic caused a shift of E corr into the active site while the E b value was slightly ennobled. For both composites, the corrosion current values at the break down potentials were almost the same as the unrein forced alloy. In an attempt to further clarify the role of both particulate addition, cathodic polarization runs were conducted in both acidic (ph 3) and alkaline (ph 9)solutions for 20 vo l% of Al 2 O 3 and 20 vo l% Sic composite specimens. This indicated that cathodic current values for Sic composites were higher than those corresponding to the unrein forced alloy 6061, and those for the Al 2 O 3 composites were lower

  12. Microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix in situ composite

    International Nuclear Information System (INIS)

    Nami, H.; Halvaee, A.; Adgi, H.; Hadian, A.

    2010-01-01

    In this research, Al/Mg 2 Si composite produced by gravity casting, was joined by diffusion welding technique at 6 MPa pressure with various welding temperatures and durations. This metal matrix composite (MMC) containing 15% Mg 2 Si particles was produced by in situ technique. Specific diffusion bonding process was introduced as a low vacuum technique. Microstructure and shear strength of the joined areas were determined. Scanning electron microscopy examination was carried out on the welded interfaces and shear tests were conducted to the samples interface to find out the effect of welding temperatures and durations on the weldability. It was found that high welding temperatures resulted in increase of shear strength. However, increase in welding duration did not make any detectable changes. The bonded interface could be developed as a wavy state depending on the amount of parent material deformation that was associated with bonding temperature. Results indicated that MMC can be joined by diffusion welding technique successfully with satisfactory shear strength.

  13. Optimization of mechanical properties of Al-metal matrix composite produced by direct fusion of beverage cans

    International Nuclear Information System (INIS)

    Carrasco, C.; Inzunza, G.; Camurri, C.; Rodríguez, C.; Radovic, L.; Soldera, F.; Suarez, S.

    2014-01-01

    The collection of used beverage cans is limited in countries where they are not fabricated; their low value does not justify the extra charge of exporting them for further processing. To address this increasingly serious problem, here we optimize the properties of an aluminum metal matrix composite (Al-MMC) obtained through direct fusion of beverage cans by using the slag generated in the melting process as reinforcement. This method consists of a modified rheocasting process followed by thixoforming. Our main operational variable is the shear rate applied to a semi-solid bath, subsequent to which a suitable heat treatment (T8) is proposed to improve the mechanical properties. The microstructure, the phases obtained and their effect on composite mechanical properties are analyzed. The composite material produced has, under the best conditions, a yield stress of 175 MPa and a tensile strength of 273 MPa. These results demonstrate that the proposed process does indeed transform the used beverage cans into promising composite materials, e.g., for structural applications

  14. Choice of materials for the immobilization of 85-krypton in a metallic matrix by combined ion implantation and sputtering

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1985-01-01

    Immobilization in a metal matrix by combined ion implantation and sputtering promises to offer an ideal method for the containment of krypton-85 arising from the reprocessing of nuclear fuel. A 50 kW inactive pilot plant has been built and operated to prepare a copper deposit 22 mm thick weighing 23 kg and containing over 30 liters of inactive gas. The gas incorporation rate exceeded the design figure of 0.3 liters/hour and the vessel was operated at powers up to 30 kW, which corresponds to that envisaged for the industrial vessel. The power consumption was less than 100 kWh/liter. A full-scale vessel (1 m long, 0.26 m diameter) has also been tested at low power. Samples of alternative candidate materials: stainless steel, incoloy, nickel and nickel-lanthanum have been prepared and tested. Nickel appears to be the most promising since it incorporates gas with an efficiency 70% greater than copper and also retains the gas to a temperature at least 100 0 C higher than copper. Tests are being carried out with 100 Curies of radioactive krypton in order to demonstrate that the process will operate satisfactorily at the high internal β irradiation levels that will exist in an active plant and to prepare samples containing krypton-85 for long term leakage measurements and for assessment of any effects caused by the build-up of the decay product rubidium

  15. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  16. Optimization of mechanical properties of Al-metal matrix composite produced by direct fusion of beverage cans

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, University of Concepción, Edmundo Larenas 270, Concepción (Chile); Inzunza, G.; Camurri, C.; Rodríguez, C. [Department of Materials Engineering, University of Concepción, Edmundo Larenas 270, Concepción (Chile); Radovic, L. [Department of Chemical Engineering, University of Concepción, Edmundo Larenas 129, Concepción (Chile); Department of Energy and Geo-Environmental Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Soldera, F.; Suarez, S. [Department of Materials Science, Saarland University, Campus D3.3, 66123 Saarbrücken (Germany)

    2014-11-03

    The collection of used beverage cans is limited in countries where they are not fabricated; their low value does not justify the extra charge of exporting them for further processing. To address this increasingly serious problem, here we optimize the properties of an aluminum metal matrix composite (Al-MMC) obtained through direct fusion of beverage cans by using the slag generated in the melting process as reinforcement. This method consists of a modified rheocasting process followed by thixoforming. Our main operational variable is the shear rate applied to a semi-solid bath, subsequent to which a suitable heat treatment (T8) is proposed to improve the mechanical properties. The microstructure, the phases obtained and their effect on composite mechanical properties are analyzed. The composite material produced has, under the best conditions, a yield stress of 175 MPa and a tensile strength of 273 MPa. These results demonstrate that the proposed process does indeed transform the used beverage cans into promising composite materials, e.g., for structural applications.

  17. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  18. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites

    International Nuclear Information System (INIS)

    Dinaharan, I.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → In situ fabrication of aluminium metal matrix composite reinforced ZrB 2 particles. → Colour metallography of composites. → Improvement of matrix properties by ZrB 2 particles. → Sliding wear behaviour of in situ composites. - Abstract: Particulate reinforced metal matrix composites (PMMCs) have gained considerable amount of research emphasis and attention in the present era. Research is being carried out across the globe to produce new combination of PMMCs. PMMCs are prepared by adding a variety of ceramic particles with monolithic alloys using several techniques. An attempt has been made to produce aluminium metal matrix composites reinforced with zirconium boride (ZrB 2 ) particles by the in situ reaction of K 2 ZrF 6 and KBF 4 salts with molten aluminium. The influence of in situ formed ZrB 2 particles on the microstructure and mechanical properties of AA6061 alloy was studied in this work. The in situ formed ZrB 2 particles significantly refined the microstructure and enhanced the mechanical properties of AA6061 alloy. The weight percentage of ZrB 2 was varied from 0 to 10 in steps of 2.5. Improvement of hardness, ultimate tensile strength and wear resistance of AA6061 alloy was observed with the increase in ZrB 2 content.

  19. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Miklaszewski, Andrzej, E-mail: andrzej.miklaszewski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Kaczmarek, Mariusz [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczyslaw [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. - Highlights: • Nano and microscale size precursor influence the final composite microstructure and properties. • Obtained from the nanoscale precursor sinters, characterise with a uniform and highly dispersed microstructure • Mechanical properties favoured Nano scale size precursor • Boron addition could be significantly reduced for moderate properties range. • A possible candidate for dental implants and other medical applications.

  20. Solid-state (49/47)Ti NMR of titanium-based MCM-41 hybrid materials.

    Science.gov (United States)

    Ballesteros, Ruth; Fajardo, Mariano; Sierra, Isabel; Force, Carmen; del Hierro, Isabel

    2009-11-03

    Titanium solid-state NMR spectroscopy data for a series of organic-inorganic titanium MCM-41 based materials have been collected. These materials have been synthesized by first modifying the mesoporous silica MCM-41 in one step with a mixture of silanes: a triazine propyl triethoxysilane acting as functional linker and methyltrimethoxysilane or hexamethyldisilizane as capped agents to mask the remaining silanol groups. Second, the appropiate titanium precursor Ti(OPr(i))(4), [{Ti(OPr(i))(3)(OMent)}(2)] (OMent = 1R,2S,5R-(-)-menthoxo), Ti(OPr(i))(4), or [Ti(eta(5)-C(5)HMe(4))Cl(3)], has been immobilized by reaction with the modified MCM-41. Finally, after Ti(OPr(i))(4) immobilization onto the organomodified support the reaction with the chiral (+)-diethyl-l-tartrate was accomplished. The materials without functional linker have been also prepared by reaction in one step of the capped agent and the titanium precursor with the mesoporous silica. Relevant correlations of titanium NMR resonance chemical shifts and line widths can be inferred depending on different factors. The immobilization procedure used to prepare titanium-based MCM-41 hybrid materials and the choice of the silylating reagents employed to mask the silanol groups present on the silica surfaces produce significant differences in the Ti NMR spectra. Furthermore, depending on the electronic and sterical influence of the substituents directly attached to the titanium center, chemical shifts and line widths are modified providing novel information about titanium structure.

  1. Introduction of Nickel Coated Silicon Carbide Particles in Aluminum Metal Matrix Hardfaced by MIG/TIG Processes on Precoated Flux Layer

    Directory of Open Access Journals (Sweden)

    V. Kamburov

    2018-03-01

    Full Text Available The aim of the study was to investigate an aluminium metal matrix surface layer hardfaced by shielded gas metal arc welding processes applying either metal inert gas (MIG or tungsten inert gas (TIG, with standard wire filler onto the precoated flux layer - a baked resistant film containing electroless nickel coated micro/nano SiC particles. During baking, the components of the flux (MgCl2, NaCl, KCl and Na3AlF6 form a low melting eutectic, which: protects the hardfaced surface from oxidation, provides electrical conductance and keeps the particles on the surface during welding, as well as facilitates particles wettability and their interfacial bonding with the molten metal into the weld puddle.

  2. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  3. Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane.

    Science.gov (United States)

    Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen

    2016-03-23

    MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM.

  4. Performance Evaluation of PCD Insert 1600 Grade on Turning of Al 6061 Reinforced with 7.5% ZrB2 Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Ramanathan M.

    2016-01-01

    Full Text Available Aluminum matrix composite is the innovation of high performance material technology and it has superior interfacial integrity and thermodynamic stability between the matrix and reinforcement. Making the engineering components from this composite material require subsequent machining operations. This paper presents the detailed experimental investigation of the machining behaviour in turning of Al 6061-7.5% ZrB2 Metal Matrix Composite (MMC by using Poly Crystalline Diamond (PCD insert of 1600 grade. The effect of ZrB2 reinforcement particles on machinability behaviour need to be studied. It is concluded that the feed rate has great influence on surface roughness and depth of cut has great influence on cutting force. The confirmation experiment indicates that there is a good agreement between the estimated value and experimental Value. Tool wear study also carried out for time duration of 15 minutes.

  5. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    Science.gov (United States)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  6. Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite.

    Science.gov (United States)

    Xiong, Ding-Bang; Cao, Mu; Guo, Qiang; Tan, Zhanqiu; Fan, Genlian; Li, Zhiqiang; Zhang, Di

    2015-07-28

    Metals can be strengthened by adding hard reinforcements, but such strategy usually compromises ductility and toughness. Natural nacre consists of hard and soft phases organized in a regular "brick-and-mortar" structure and exhibits a superior combination of mechanical strength and toughness, which is an attractive model for strengthening and toughening artificial composites, but such bioinspired metal matrix composite has yet to be made. Here we prepared nacre-like reduced graphene oxide (RGrO) reinforced Cu matrix composite based on a preform impregnation process, by which two-dimensional RGrO was used as "brick" and inserted into "□-and-mortar" ordered porous Cu preform (the symbol "□" means the absence of "brick"), followed by compacting. This process realized uniform dispersion and alignment of RGrO in Cu matrix simultaneously. The RGrO-and-Cu artificial nacres exhibited simultaneous enhancement on yield strength and ductility as well as increased modulus, attributed to RGrO strengthening, effective crack deflection and a possible combined failure mode of RGrO. The artificial nacres also showed significantly higher strengthening efficiency than other conventional Cu matrix composites, which might be related to the alignment of RGrO.

  7. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Saha, Partha, E-mail: psaha@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Kishore, Shyam [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India)

    2010-07-15

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  8. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha; Kishore, Shyam

    2010-01-01

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  9. Characterization of Anodized Titanium Based Novel Paradigm Supercapacitors: Impact of Salt Identity and Frequency on Dielectric Values, Power, and Energy Densities

    Science.gov (United States)

    2017-03-01

    solution, sufficient charge carriers to counteract the applied but not cause ion- lock , are energy densities at their maximum. For the salt identities and...OF ANODIZED TITANIUM- BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER, AND ENERGY DENSITIES...SUBTITLE CHARACTERIZATION OF ANODIZED TITANIUM-BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER

  10. Core/Shell Structure of TiO2-Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodriguez

    2018-01-01

    Full Text Available The production of metal matrix composites with elevated mechanical properties depends largely on the reinforcing phase properties. Due to the poor oxidation resistance of multiwalled carbon nanotubes (MWCNTs as well as their high reactivity with molten metal, the processing conditions for the production of MWCNT-reinforced metal matrix composites may be an obstacle to their successful use as reinforcement. Coating MWCNTs with a ceramic material that acts as a thermal protection would be an alternative to improve oxidation stability. In this work, MWCNTs previously functionalized were coated with titanium dioxide (TiO2 layers of different thicknesses, producing a core-shell structure. Heat treatments at three different temperatures (500°C, 750°C, and 1000°C were performed on coated nanotubes in order to form a stable metal oxide structure. The MWCNT/TiO2 hybrids produced were evaluated in terms of thermal stability. Thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy (RS, and X-ray photoelectron spectroscopy (XPS were performed in order to investigate TiO2-coated MWCNT structure and thermal stability under oxidative atmosphere. It was found that the thermal stability of the TiO2-coated MWCNTs was dependent of the TiO2 layer morphology that in turn depends on the heat treatment temperature.

  11. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    Science.gov (United States)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  12. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  13. Application of the positive matrix factorization approach to identify heavy metal sources in sediments. A case study on the Mexican Pacific Coast.

    Science.gov (United States)

    González-Macías, C; Sánchez-Reyna, G; Salazar-Coria, L; Schifter, I

    2014-01-01

    During the last two decades, sediments collected in different sources of water bodies of the Tehuantepec Basin, located in the southeast of the Mexican Pacific Coast, showed that concentrations of heavy metals may pose a risk to the environment and human health. The extractable organic matter, geoaccumulation index, and enrichment factors were quantified for arsenic, cadmium, copper, chromium, nickel, lead, vanadium, zinc, and the fine-grained sediment fraction. The non-parametric SiZer method was applied to assess the statistical significance of the reconstructed metal variation along time. This inference method appears to be particularly natural and well suited to temperature and other environmental reconstructions. In this approach, a collection of smooth of the reconstructed metal concentrations is considered simultaneously, and inferences about the significance of the metal trends can be made with respect to time. Hence, the database represents a consolidated set of available and validated water and sediment data of an urban industrialized area, which is very useful as case study site. The positive matrix factorization approach was used in identification and source apportionment of the anthropogenic heavy metals in the sediments. Regionally, metals and organic matter are depleted relative to crustal abundance in a range of 45-55 %, while there is an inorganic enrichment from lithogenous/anthropogenic sources of around 40 %. Only extractable organic matter, Pb, As, and Cd can be related with non-crustal sources, suggesting that additional input cannot be explained by local runoff or erosion processes.

  14. Modelling of high temperature interfacial reactions in continuously reinforced Ti/SiC metal matrix composites (MMCs)

    International Nuclear Information System (INIS)

    Fox, K.M.

    1993-01-01

    Previous experimental work by Gundel and Wawner showed that the matrix alloy has a strong effect on reaction layer growth in Ti alloy/SCS-6 composite systems. A finite difference technique was used to model the reaction layer growth, which predicts the same trends as those exhibited by the experimental data. Matrix alloying elements such as Mo and Cr in metastable β alloys will affect the equilibrium compositions and diffusivities in the matrix, but matrix diffusion is not found to be rate controlling. Regular solution thermodynamic models indicate that the main affect of matrix composition is in controlling carbon-flux through the reaction layer by altering equilibrium C-TiC-Ti interfacial compositions. (orig.)

  15. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process.

    Science.gov (United States)

    Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah

    2017-09-19

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  16. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR Prepared Using Hot Press Forging (HPF Process

    Directory of Open Access Journals (Sweden)

    Azlan Ahmad

    2017-09-01

    Full Text Available Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  17. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  18. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    Science.gov (United States)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-06-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  19. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    Science.gov (United States)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl "hot" particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  20. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk

    Directory of Open Access Journals (Sweden)

    Fabjola Bilo

    2015-01-01

    Full Text Available This paper is devoted to the chemical analysis of contaminated soils of India and the rice grown in the same area. Total reflection X-ray fluorescence spectroscopy is a well-established technique for elemental chemical analysis of environmental samples, and it can be a useful tool to assess food safety. Metals uptake in rice crop grown in soils from different areas was studied. In this work soil, rice husk and rice samples were analyzed after complete solubilization of samples by microwave acid digestion. Heavy metals concentration detected in rice samples decreases in the following order: Mn > Zn > Cu > Ni > Pb > Cr. The metal content in rice husk was higher than in rice. This study suggests, for the first time, a possible role of heavy metals filter played by rice husk. The knowledge of metals sequestration capability of rice husk may promote some new management practices for rice cultivation to preserve it from pollution.

  1. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    Science.gov (United States)

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of a high temperature cycle on the mechanical properties of silicon carbide/titanium metal matrix composites

    Science.gov (United States)

    Naik, R. A.; Johnson, W. S.; Pollock, W. D.

    1989-01-01

    An investigation is conducted of the effects of the SPF/DB cycle on continuous SiC fiber-reinforced Ti-15V-3Cr-3Al-3Sn composite's matrix, fiber, and matrix-fiber interface. The fibers in question, designated SCS-6, have a carbon core and thin, carbon-rich surface. The fatigue endurance limit at 50,000 cycles for the SPF/DB specimens was 50 percent lower than for the as-fabricated material. The substantial changes in tensile strength, fatigue life, and fracture-surface appearance due to the SPF-DB cycle are explained by a difference in the failure mechanisms due to SPF/DB-induced changes in the fiber/matrix interface strength.

  3. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  4. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  5. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  6. Mechanical tests imaging on metallic matrix composites. Experimental contribution to homogenization methods validation and identification of phase-related mechanical properties

    International Nuclear Information System (INIS)

    Quoc-Thang Vo

    2013-01-01

    This work is focused on a matrix/inclusion metal composite. A simple method is proposed to evaluate the elastic properties of one phase while the properties of the other phase are assumed to be known. The method is based on both an inverse homogenization scheme and mechanical field's measurements by 2D digital image correlation. The originality of the approach rests on the scale studied, i.e. the microstructure scale of material: the characteristic size of the inclusions is about few tens of microns. The evaluation is performed on standard uniaxial tensile tests associated with a long-distance microscope. It allows observation of the surface of a specimen on the microstructure scale during the mechanical stress. First, the accuracy of the method is estimated on 'perfect' mechanical fields coming from numerical simulations for four microstructures: elastic or porous single inclusions having either spherical or cylindrical shape. Second, this accuracy is estimated on real mechanical field for two simple microstructures: an elasto-plastic metallic matrix containing a single cylindrical micro void or four cylindrical micro voids arranged in a square pattern. Third, the method is used to evaluate elastic properties of αZr inclusions with arbitrary shape in an oxidized Zircaloy-4 sample of the fuel cladding of a pressurized water reactor after an accident loss of coolant accident (LOCA). In all this study, the phases are assumed to have isotropic properties. (author) [fr

  7. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meiyu Stella [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Suresh, Vignesh [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Chan, Mei Yin [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Ma, Yu Wei [Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Lee, Pooi See [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Krishnamoorthy, Sivashankar [Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Science et Analyse des Materiaux Unit (SAM), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux, 4422 (Luxembourg); Srinivasan, M.P., E-mail: srinivasan.madapusi@rmit.edu.au [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); School of Engineering, RMIT University, Building 10, Level 11, Room 14, 376-392 Swanston Street, Melbourne, Victoria, 3001 (Australia)

    2017-01-15

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10{sup 11}–10{sup 12} cm{sup −2}) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10{sup 4} s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10{sup 3} and 10{sup 4} s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  8. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    International Nuclear Information System (INIS)

    Huang, Meiyu Stella; Suresh, Vignesh; Chan, Mei Yin; Ma, Yu Wei; Lee, Pooi See; Krishnamoorthy, Sivashankar; Srinivasan, M.P.

    2017-01-01

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10"1"1–10"1"2 cm"−"2) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10"4 s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10"3 and 10"4 s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  9. Radiochemical separation and ICP-AES determination of some common metallic elements in ThO2 matrix

    International Nuclear Information System (INIS)

    Adya, V.C.; Hon, N.S.; Bangia, T.R.; Sastry, M.D.; Iyer, R.H.

    1997-01-01

    Radioactive tracer and also ICP-AES studies have been carried out to determine Al, Cd, Ca, Cr, Co, Cu, Mn, Mo and Pd in ThO 2 matrix after chemical separation. Di-2-ethyl-hexyl phosphoric acid/xylene/HNO 3 extraction system was used for quantitative separation of thorium. The recovery of elements as determined by tracers and ICP-AES was found to be quantitative within experimental error. (author). 3 refs., 1 tab

  10. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  11. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  12. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance, (France); Grassi, G. [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ({sup 3}He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the {sup 239}Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and {sup 235}U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the

  13. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  14. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    International Nuclear Information System (INIS)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C.; Grassi, G.

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ( 3 He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the 239 Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and 235 U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach

  15. Fracture Strength of Titanium based Lithium Disilicate and Zirconia Abutment Crowns

    Science.gov (United States)

    2017-06-12

    zirconia abutment/lithium-disilicate crown. INTRODUCTION Dental implants and the use of esthetic abutments are widely practiced procedures for dentists...first implant abutments were fabricated from metals of mostly gold or titanium alloy. The downside of these materials, especially in esthetic areas...abutments presented esthetic complications. Because dentists and patients desire more naturally appearing restorations, the dental manufacturers

  16. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology

    OpenAIRE

    Walsh, F.C.; Ponce de Leon, Carlos

    2014-01-01

    Following a brief overview of their history, which dates back to the 1920s with marked developments during the 1960s and 1970s, the principles of composite coatings, achieved by including particles dispersed in a bath into a growing electrodeposited metal layer, are considered. The principles and role of electroplating compared to other techniques for realising such coatings, are considered. A good quality particle dispersion (often aided by a suitable type and concentration of surfactants) a...

  17. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach

    Science.gov (United States)

    Prucker, V.; Bockstedte, M.; Thoss, M.; Coto, P. B.

    2018-03-01

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  18. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach.

    Science.gov (United States)

    Prucker, V; Bockstedte, M; Thoss, M; Coto, P B

    2018-03-28

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  19. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    International Nuclear Information System (INIS)

    Gordin, D.M.; Busardo, D.; Cimpean, A.; Vasilescu, C.; Höche, D.; Drob, S.I.; Mitran, V.; Cornen, M.; Gloriant, T.

    2013-01-01

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility

  20. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    Science.gov (United States)

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  1. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Busardo, D. [Quertech Ingénierie, 9 rue de la Girafe, 14000 Caen (France); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Vasilescu, C. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Höche, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht -Zentrum für Material- und Küstenforschung GmbH Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Drob, S.I. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, V. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Cornen, M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2013-10-15

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility.

  2. Electrical memory features of ferromagnetic CoFeAlSi nano-particles embedded in metal-oxide-semiconductor matrix

    International Nuclear Information System (INIS)

    Lee, Ja Bin; Kim, Ki Woong; Lee, Jun Seok; An, Gwang Guk; Hong, Jin Pyo

    2011-01-01

    Half-metallic Heusler material Co 2 FeAl 0.5 Si 0.5 (CFAS) nano-particles (NPs) embedded in metal-oxide-semiconductor (MOS) structures with thin HfO 2 tunneling and MgO control oxides were investigated. The CFAS NPs were prepared by rapid thermal annealing. The formation of well-controlled CFAS NPs on thin HfO 2 tunneling oxide was confirmed by atomic force microscopy (AFM). Memory characteristics of CFAS NPs in MOS devices exhibited a large memory window of 4.65 V, as well as good retention and endurance times of 10 5 cycles and 10 9 s, respectively, demonstrating the potential of CFAS NPs as promising candidates for use in charge storage.

  3. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, April-June 1978. [Advanced solvent extraction; accidents; pyrochemical; radwaste in metal matrix; waste migration

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ader, M.; Barletta, R. E.

    1979-12-01

    Fuel cycle studies reported include development of centrifugal contactors for Purex processes. Tricaprylmethyl-ammonium nitrate and di-n-amyl-n-amylphosphonate are being evaluated as Thorex extractants. Dispersion of uranium and plutonium by fires, and mechanisms for subdividing and dispersing liquids and solids were reviewed. In the pyrochemical and dry processing program, a facility for testing containment materials is under construction; a flowsheet for carbide fuel processing has been designed and studies of carbide reactions in bismuth are underway; salt transport processes are being studied; process-size refractory metal vessels are being fabricated; the feasibility of AIROX reprocessing is being determined; the solubility of UO/sub 2/, UO/sub 2/ + fission products, and PuO/sub 2/ in molten alkali metal nitrates, has been investigated; a flowsheet was developed for reprocessing actinide oxides in molten salts; preparation of Th-U carbide from the oxide is being studied; new flowsheets based on the Dow Aluminum Pyrometallurgical process for reprocessing of spent uranium metal fuel have been prepared; the chloride volitility processing of thorium-based fuels is being studied; the reprocessing of (Th,U)O/sub 2/ solid solution in KCl-LiCl-ThCl/sub 4/-Th is being studied; and a flowsheet for processing spent nuclear fuel in molten tin has been constructed. Leach rates of simulated encapsulated waste forms in a metal matrix were studied. Nine criteria for handling waste cladding hulls were established. Strontium and tin migration in glauconite columns was measured. Radioactive Sr in a stream of water moved through oolitic limestone as rapidly as water, but in a stream of water equilibrated with the limestone, Sr moved through the limestone one-tenth as fast. Migration of trace quantities of Cs and I through kaolinite was studied. 88 figures, 53 tables.

  4. Trace metals analysis in estuarine and seawater by ICP-MS using on line preconcentration and matrix elimination with chelating resin.

    Science.gov (United States)

    Nicolaı, M; Rosin, C; Tousset, N; Nicolai, Y

    1999-09-13

    The main difficulties of trace metals analysis in estuarine and seawater stem from their very low concentration (mug/l to sub-mug/l), and, by contrast, the high salt content (up to 38 g/l in the Mediterranean Sea). ICP-MS allows multi-elemental analysis and offers great sensitivity, but may be strongly affected by matrix effects induced by high salt contents (> 1 g/l). To perform trace metals analysis both in riverine, estuarine and seawater, we have developed a hyphenated method: ion chelation chromatography coupled on-line with ICP-MS. Iminodiacetate resin, Metpac CC-1 (Dionex), was used to concentrate most of the trace metals, and to separate them from alkaline and alkaline-earth metals. Behaviour of 17 elements (Pb, Cu, Cd, Ni, U, Cr, Mn, Al, Co, Ga, In, Zn, V, Tl, Bi, Ag and Sn) towards the resin was qualitatively investigated. A method validation, partly derived from AFNOR standard XPT 90-210, was carried out on 12 elements (Pb, Cu, Cd, Ni, U, Cr, Mn, Al, Co, Ga, Bi and In). Replicate measurements of multi-elemental standard solutions were used to check linearity, and to determine repeatability and detection limits. Method accuracy was then assessed by analysing two certified materials: a synthetic freshwater (SRM 1643d), and a natural filtered coastal seawater (NRCC CASS-3). An application assay of natural samples from the Rhône river (France) was eventually carried out, and the analytical results were found to be consistent with previous works.

  5. Interactions between bio-tribocorrosion phenomena and cellular response of titanium-based femoral stems

    OpenAIRE

    Runa, Maria João Carvalho

    2016-01-01

    PhD thesis in Biomedical Engineering In orthopedics, the loosening/failure of the femoral stem of hip implants is a major concern. In uncemented Ti-based implants, the tribochemical reactions occurring at the implant/bone interface due to micromotion are known to contribute to these failures. However, the bio-tribocorrosion behavior of metallic materials and related mechanisms, induced by relative movements in a biological environment, is a complex process, largely unknown at p...

  6. Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite

    International Nuclear Information System (INIS)

    Nami, H.; Adgi, H.; Sharifitabar, M.; Shamabadi, H.

    2011-01-01

    In this research, friction stir weldability of 15 wt.% Mg 2 Si particulate aluminum matrix cast composite and effects of tool rotation speed and number of welding passes on microstructure and mechanical properties of the joints were investigated. Microstructural observations were carried out by employing optical and scanning electron microscopy of the cross sections perpendicular to the tool traverse direction. Mechanical properties including microhardness and tensile strength were evaluated in detail. The results showed fragmentation of Mg 2 Si particles and Mg 2 Si needles existing in eutectic structure in stir zone. Also, homogeneous distribution of Mg 2 Si particles was observed in the stir zone as a result of stirring with high plastic strains. Tension test results indicated that tensile strength of the joint had an optimum at 1120 rpm tool rotation speed and decreased with increasing of the number of welding passes. Hardness of the joint increased due to modification of solidification microstructure of the base composite. This research indicates that friction stir welding is a good candidate for joining of 15 wt.% Mg 2 Si aluminum matrix composite castings.

  7. Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance.

    Science.gov (United States)

    Sabetghadam, Anahid; Seoane, Beatriz; Keskin, Damla; Duim, Nicole; Rodenas, Tania; Shahid, Salman; Sorribas, Sara; Le Guillouzer, Clément; Clet, Guillaume; Tellez, Carlos; Daturi, Marco; Coronas, Joaquin; Kapteijn, Freek; Gascon, Jorge

    2016-05-10

    Mixed-matrix membranes (MMMs) comprising NH 2 -MIL-53(Al) and Matrimid ® or 6FDA-DAM have been investigated. The MOF loading has been varied between 5 and 20 wt%, while NH 2 -MIL-53(Al) with three different morphologies: nanoparticles, nanorods and microneedles have been dispersed in Matrimid ® . The synthesized membranes have been tested in the separation of CO 2 from CH 4 in an equimolar mixture. At 3 bar and 298 K for 8 wt% MOF loading, incorporation of NH 2 -MIL-53(Al) nanoparticles leads to the largest improvement compared to nanorods and microneedles. The incorporation of the best performing filler, i.e. NH 2 -MIL-53(Al) nanoparticles, to the highly permeable 6FDA-DAM has a larger effect, and the CO 2 permeability increased up to 85 % with slightly lower selectivities for 20 wt% MOF loading. Specifically, these membranes have a permeability of 660 Barrer with CO 2 /CH 4 separation factor of 28, leading to a performance very close to the Robeson limit of 2008. Furthermore, a new non-destructive technique based on Raman spectroscopy mapping is introduced to assess the homogeneity of the filler dispersion in the polymer matrix. The MOF contribution can be calculated by modelling the spectra. The determined homogeneity of the MOF filler distribution in the polymer is confirmed by FIB-SEM analysis.

  8. Preliminary investigations of potential light weight metallic armour applications

    NARCIS (Netherlands)

    Voorde, M.J. van de; Diederen, A.M.; Herlaar, K.

    2005-01-01

    Now that an industrial-scale low-cost production route for ballistic-grade titanium is within reach, the potential use of titanium armour could depend on a solution for the spalling of high strength titanium. This paper addresses a titanium based metal laminate as being a possible solution for the

  9. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, David C. [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  10. AN EXACT ELASTO-PLASTIC SOLUTION OF METAL-MATRIX COMPOSITE CANTILEVER BEAM LOADED BY A SINGLE FORCE AT ITS FREE END

    Directory of Open Access Journals (Sweden)

    Onur SAYMAN

    2001-03-01

    Full Text Available In the present study, an elastic-plastic stress analysis is carried out in a metal matrix composite cantilever beam loaded by a single force at its free end. A composite consisting of stainless-steel reinforced aluminium was produced for this work. The orientation angle of the fibers is chosen as 0°, 30°, 45°, 60° and 90°. The material is assumed to be perfectly plastic in the elasto-plastic solution. An analytical solution is performed for satisfying both the governing differential equation in the plane stress case and boundary conditions for small plastic deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. The composite material is assumed as hardening linearly. The Tsai-Hill theory is used as a yield criterion.

  11. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs Manufactured by the Power Metallurgy(PM Methods- Improved PM Techniques

    Directory of Open Access Journals (Sweden)

    Xu Lina

    2016-01-01

    Full Text Available Aluminum metal matrix composites (Al-MMCs with Al2O3 particulates as reinforcement fabricated by the power metallurgy (PM methods have gained much attention due to their unique characteristics of the wide range of Al2O3 particles addition, easy-operating process and effectiveness. The improved PM techniques, such as the high energy ball milling, powder extruder and high pressure torsion were applied to further strengthening the properties or/and diminishing the agglomeration of strength particles. The formation of liquid phase assisted densification of compacts to promote the sintering of composites. Complex design of Al2O3 particles with other particles was another efficient method to tailor the properties of Al-MMCs.

  12. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations...... and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile....../shear loads. 2D cohesive element is applied to describe the fracture and failure process of interphase, while the damage models based on maximum principal stress criterion and the stress triaxial indicator are developed within Abaqus/Standard Subroutine USDFLD to simulate the failure process of SiC particles...

  13. Bringing Radiotracing to Titanium-Based Antineoplastics: Solid Phase Radiosynthesis, PET and ex Vivo Evaluation of Antitumor Agent [45Ti](salan)Ti(dipic)

    DEFF Research Database (Denmark)

    Severin, Gregory; Nielsen, Carsten H.; Jensen, Andreas Tue Ingemann

    2015-01-01

    We present a novel solid-phase based 45Ti radiolabeling methodology and the implementation of 45Ti-PET in titanium-based antineoplastics using the showcase compound [45Ti](salan)Ti(dipic). This development is intended to allow elucidation of the biodistribution and pharmacokinetics of promising new...

  14. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  15. Equal channel angular pressing of powder processed Al6061/SiC nano metal matrix composites and study of its wear properties

    Science.gov (United States)

    Bongale, Arunkumar M.; Kumar, Satish

    2018-03-01

    Nano Metal Matrix Composites were fabricated by a novel approach by combining powder metallurgy and equal channel angular pressing (ECAP) using aluminium alloy 6061 (Al6061) as matrix phase and 2, 4 and 6 wt% of silicon carbide nanoparticles (SiCnp) as reinforcements. Alloying elements of Al6061 in their elemental form are blended together using high energy planetary ball mill and calculated wt% of SiCnp were mixed with it. Thus formed composite powder mixture is compacted in a uniaxial compaction die and then subjected to ECAP up to three passes. Density and porosity of samples were estimated using Archimedes’ principle. Pin on disc setup is used to evaluate the wear properties of the composites under different speed and loading conditions. Tests revealed that increase in wt% of SiCnp reduces the wear rate of the composites whereas increasing the load and speed increases wear rate of the composite samples. SEM micrographs of worn surfaces indicated different types of wear mechanism responsible for wear of the specimens under different testing conditions. Also, wt% of SiCnp and the number of passes through ECAP were found to increase the hardness value of the composite material.

  16. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  17. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS.

    Science.gov (United States)

    Yang, Yuan; Luo, Li; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang; Qu, Zhi-Peng; Ding, Ru

    2018-05-15

    Developing quantification and characterization methodology for metallic nanoparticles (MNPs) and their ionic component in complex matrix are crucial for the evaluation of their environmental behavior and health risks to humans. In this study, reversed phase high performance liquid chromatography combined ICP-MS was established for the characterization of MNPs in complex matrix. The ionic component could be separated from NPs with the optimized parameters of aqueous mobile phase. Good linear relationship between average diameter and retention time of NPs was obtained using HPLC-ICP-MS and the size smaller than 40 nm could be determined with this method, the detected results were in accordance with TEM results. The low detection limit of AuNPs and Au(Ⅲ) (both in sub-μg/L level) showed that this method was promising for the characterization of AuNPs and Au(Ⅲ) in environmental water. The mass concentration of ionic Au(Ⅲ) in environmental water could be detected using the proposed HPLC-ICP-MS and the concentration of AuNPs was obtained by subtracting the Au(Ⅲ) concentration from the total Au (The concentration of total Au was detected by ICP-MS after microwave digestion). Furthermore this proposed HPLC-ICP-MS method and single particle-ICPMS (SP-ICP-MS) was used for the analysis of the Ag speciation in commercial antibacterial products. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation

    International Nuclear Information System (INIS)

    Dai Hong; Chen Yanling; Lin Yanyu; Xu Guifang; Yang Caiping; Tong Yuejin; Guo Longhua; Chen Guonan

    2012-01-01

    In this paper, we propose a facile approach for palladium nanoparticles load using silicon carbide nanoparticles as the new supported matrix and a familiar NaBH 4 as reducer. Detailed X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) analysis of the resultant products indicated that palladium nanoparticles are successfully immobilized onto the surface of the silicon carbide nanoparticles with uniform size distribution between 5 and 7 nm. The relative electrochemical characterization clearly demonstrated excellent electrocatalytic activity of this material toward alcohol in alkaline electrolytes. Investigation on the characteristics of the electrocatalytic activity of this material further indicated that the palladium nanoparticles supporting on SiC are very promising for direct alcohol fuel cells (DMFCs), biosensor and electronic devices. Moreover, it was proved that silicon carbide nanoparticles with outstanding properties as support for catalysis are of strong practical interest. And the silicon carbide could perform attractive role in adsorbents, electrodes, biomedical applications, etc.

  19. Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)

    2009-09-07

    Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.

  20. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Motoiu, P.; Rosso, M.

    2001-01-01

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  1. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  2. Graphitization of diamond with a metallic coating on ferritic matrix; Grafitizacao do diamante com revestimento metalico em matriz ferritica

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello, E-mail: stenio@uenf.b [Universidade Estadual do Norte Fluminense (PPGECM/CCT/UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Ciencias e Tecnologia. Programa de Pos Graduacao em Engenharia e Ciencia dos Materiais

    2010-07-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  3. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    Directory of Open Access Journals (Sweden)

    M. Niinomi

    2011-01-01

    Full Text Available β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants.

  4. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing

    International Nuclear Information System (INIS)

    Akramifard, H.R.; Shamanian, M.; Sabbaghian, M.; Esmailzadeh, M.

    2014-01-01

    Highlights: • Designing a net hole was effective to achieve uniform distribution SiC particles and prevent agglomeration of them. • SZ has fine and equiaxed grains and distribution of SiC particles in the matrix is almost uniform. • No intermetallic compound was formed after FSP. • In comparison to pure Cu, Cu/SiC composite shows higher hardness and better wear behavior. - Abstract: In the present investigation, pure Cu sheets were reinforced with 25 μm SiC particles to fabricate a composite surface layer by friction stir processing (FSP). In order to improve distribution of reinforcing SiC particles, a net of holes were designed by drill on the surface of pure Cu sheet. For evaluation of microstructure, Optical Microscope (OM) and Scanning Electron Microscope (SEM) were used. Microstructural observation confirmed fine and equiaxed grains in the stir zone (SZ) and showed that SiC particles act as heterogeneous nucleation sites in the dynamic recrystallization of Cu grains. Moreover, agglomeration of particles was not observed and fine particles had a good distribution in SZ. In the SEM micrographs, porosities were detected as microstructure defects. Microhardness measurements showed that surface hardness was two times as high as that of substrate. The rotational wear tests demonstrated that use of SiC particles enhanced wear resistance and increased average friction coefficient of pure Cu. No intermetallic compound was found in Cu/SiC composite as revealed by XRD analysis

  5. An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System

    Science.gov (United States)

    Shokrvash, Hussein; Rad, Rahim Yazdani; Massoudi, Abouzar

    2018-04-01

    Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4-5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.

  6. Sequential injection on-line matrix removal and trace metal preconcentration using a PTFE beads packed column as demonstrated for the determination of cadmium by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    A sequential injection (SI) on-line matrix removal and trace metal preconcentration procedure by using a novel microcolumn packed with PTFE beads is described, and demonstrated for trace cadmium analysis with detection by electrothermal atomic absorption spectrometry (ETAAS). The analyte...

  7. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing.

    Science.gov (United States)

    Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin

    2016-08-31

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3-20,000 μM, to nitrite (NO2(-)) for 1.3 μM-1660 μM and 2262 μM-1,33,000 μM, to glucose for 2.0-1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2(-), 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s(-1) and 2.45 s(-1), respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy; Obtencao, usinagem e desgaste de materiais compositos de matriz metalica processados via metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    1998-07-01

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  9. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  10. Biocompatibility of the titanium-based implant surfaces: Effect of the calcium dihydrogen phosphate on osteoblast cells

    Directory of Open Access Journals (Sweden)

    Kaluđerović Milena R.

    2016-01-01

    Full Text Available The influence of the presence of calcium dihydrogen phosphate in acid media on titanium-based implant surfaces, Ticer, employed in clinics, and its white form (Ticer white, on osteoblast cells was investigated. Novel surfaces M1 and M2 were obtained by immersing Ticer and Ticer white surfaces in calcium dihydrogen phosphate solution at pH 3.5. The surfaces were characterized by SEM, EDS and X-ray diffraction. The results related to interaction of investigated surfaces and human osteoblast cells from indirect biocompatibility (MTT and SRB assays, proliferation (DAPI assay and mode of cell death (acridine orange/ethidium bromide (AO/EB double staining were found to be in good agreement, as well as findings from osteocalcin (OC and bone sialoprotein (BSP expression. Surfaces were obtained by employing anodic plasma-electrochemical oxidation with spark discharges without subsequent surface modifications were found to be more compatible. Soaking of Ticer and Ticer white in phosphate solution gave toxic materials (M1 and M2 which induced apoptosis and secondary necrosis in osteoblast cells.

  11. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)-Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS).

    Science.gov (United States)

    Jeazet, Harold B Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-10-25

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model.

  12. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    Science.gov (United States)

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  13. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Sheying, E-mail: dongsyy@126.com [College of Sciences, Xi' an University of Architecture and Technology, Xi' an, 710055 (China); Zhang, Dandan; Suo, Gaochao; Wei, Wenbo [College of Sciences, Xi' an University of Architecture and Technology, Xi' an, 710055 (China); Huang, Tinglin [School of Environmental and Municipal Engineering, Xi' an University of Architecture and Technology, Xi' an, 710055 (China)

    2016-08-31

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C{sub 7}H{sub 4}O{sub 2}S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H{sub 2}O{sub 2}) in the range of 0.3–20,000 μM, to nitrite (NO{sub 2}{sup −}) for 1.3 μM–1660 μM and 2262 μM–1,33,000 μM, to glucose for 2.0–1022 μM, with a low detection limit of 0.08 μM for H{sub 2}O{sub 2}, 0.5 μM for NO{sub 2}{sup −}, 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (k{sub s}) for Mb and GOx were estimated as 2.05 s{sup −1} and 2.45 s{sup −1}, respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. - Highlights: • Novel Ag@Zn-TSA was used as highly efficient immobilization matrixes of Mb/glucose. • We exploited multi-function MOFs for a wide range of electrocatalytic sensing interface. • The proposed biosensors had an excellent catalytic effect on the small molecule (NO{sub 2}{sup −}, H{sub 2}O{sub 2}, glucose).

  14. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing

    International Nuclear Information System (INIS)

    Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin

    2016-01-01

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C_7H_4O_2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H_2O_2) in the range of 0.3–20,000 μM, to nitrite (NO_2"−) for 1.3 μM–1660 μM and 2262 μM–1,33,000 μM, to glucose for 2.0–1022 μM, with a low detection limit of 0.08 μM for H_2O_2, 0.5 μM for NO_2"−, 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (k_s) for Mb and GOx were estimated as 2.05 s"−"1 and 2.45 s"−"1, respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. - Highlights: • Novel Ag@Zn-TSA was used as highly efficient immobilization matrixes of Mb/glucose. • We exploited multi-function MOFs for a wide range of electrocatalytic sensing interface. • The proposed biosensors had an excellent catalytic effect on the small molecule (NO_2"−, H_2O_2, glucose).

  15. Mixed-Matrix Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas

    International Nuclear Information System (INIS)

    Musselman, Inga; Balkus, Kenneth Jr.; Ferraris, John

    2009-01-01

    In this work, we have investigated the separation performance of polymer-based mixed-matrix membranes containing metal-organic frameworks and mesoporous hybrid silicas. The MOF/Matrimid(reg s ign) and MOP-18/Matrimid(reg s ign) membranes exhibited improved dispersion and mechanical strength that allowed high additive loadings with reduced aggregation, as is the case of the 80 wt% MOP-18/Matrimid(reg s ign) and the 80% (w/w) Cu-MOF/Matrimid(reg s ign) membranes. Membranes with up to 60% (w/w) ZIF-8 content exhibited similar mechanical strength and improved dispersion. The H 2 /CO 2 separation properties of MOF/Matrimid(reg s ign) mixed-matrix membranes was improved by either keeping the selectivity constant and increasing the permeability (MOF-5, Cu-MOF) or by improving both selectivity and permeability (ZIF-8). In the case of MOF-5/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.6 and the H 2 permeability increased from 24.4 to 53.8 Barrers. For the Cu-MOF/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.05 and the H 2 permeability increased from 17.1 to 158 Barrers. These two materials introduced porosity and uniform paths that enhanced the gas transport in the membranes. When ZIF-8/Matrimid(reg s ign) mixed-matrix membranes were studied, the H 2 /CO 2 selectivity increased from 2.9 to 4.4 and the permeability of H 2 increased from 26.5 to 35.8 Barrers. The increased H 2 /CO 2 selectivity in ZIF-8/Matrimid(reg s ign) membranes was explained by the sieving effect introduced by the ZIF-8 crystals (pore window 0.34 nm) that restricted the transport of molecules larger than H 2 . Materials with microporous and/or mesoporous cavities like carbon aerogel composites with zeolite A and zeolite Y, and membranes containing mesoporous ZSM-5 showed sieving effects for small molecules (e.g. H 2 and CO 2 ), however, the membranes were most selective for CO 2 due to the strong interaction of the zeolites with

  16. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    Science.gov (United States)

    Casalena, Lee

    The development of viable high-temperature shape memory alloys (HTSMAs) demands a coordinated multimodal characterization effort linking nanoscale crystal structure to macroscale thermomechanical properties. In this work, several high performance NiTi-based shape memory alloys are comprehensively explored with the goal of gaining insight into the complex transformation and deformation mechanisms responsible for their remarkable behavior. Through precise control of alloying and aging parameters, microstructures are optimized to enhance properties such as high-temperature strength and stability. These are crucial requirements for the development of advanced applications such as actuators and adaptive components that operate in demanding automotive and aerospace environments. An array of NiTiHf and NiTiAu alloys are at the core of this effort, offering the possibility of increased capability over traditional pneumatic and hydraulic systems, while simultaneously reducing weight and energy requirements. NiTi-20Hf alloys exhibit a favorable balance of properties, including high strength, stability, and work output at temperatures in excess of 150 °C. The raw material cost of Hf is also much lower compared with Pt, Pd, and Au containing counterparts. Advanced scanning transmission electron microscopy (STEM) and synchrotron X-ray characterization techniques are used to explore unusual nanoscale effects of precipitate-matrix interactions, coherency strain, and dislocation activity in these alloys. Novel use of the 4D STEM strain mapping technique is used to quantify strain fields associated with precipitates, which are being coupled with new phase field modeling approaches to particle/defect interactions. Volume fractions of nanoscale precipitates are measured using STEM-based tomography techniques, atom probe tomography, and synchrotron diffraction of bulk samples. Plastic deformation of the HTSMA austenite phase is shown to occur through B2 type slip for the first time

  17. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  18. Vacuum brazing of aluminium metal matrix composite (55 vol.% SiC{sub p}/A356) using aluminium-based filler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Jitai, E-mail: niujitai@163.com [Harbin Institute of Technology (China); Zhengzhou University (China); Luo, Xiangwei; Tian, Hao [Zhengzhou University (China); Brnic, Josip [University of Rijka (Croatia)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer The proper filler metal has been developed, especially for contents of Mg and Si. Black-Right-Pointing-Pointer The pressure device has been designed for specimen in vacuum brazing process. Black-Right-Pointing-Pointer The accurate measurement method for shear strength of lap joint has been found. Black-Right-Pointing-Pointer The brazing temperature of 560 Degree-Sign C has been optimised. Black-Right-Pointing-Pointer The micro-mechanism has been discussed for SiC{sub p}/Al composites' brazing joint. - Abstract: Aluminium matrix composites with high volume fractions of SiC particles, as the reinforcements, are potentially suitable materials for electronic packaging. These composites, due to their poor weldability, however, have very limited applications. The microstructure and shear strengths of the bonds made in 55 vol.% SiC{sub p}/A356 composite, using an aluminium based filler alloy containing Cu, Si, Mg and Ni, were investigated in this paper. The brazing temperature had a clear effect on the bond integrity, and the samples brazed at 560 Degree-Sign C demonstrated good bonding between the filler alloy and the SiC particles. The maximum shear strength achieved in this work was 102 MPa.

  19. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    Science.gov (United States)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  20. Development and implementation of computational geometric model for simulation of plate type fuel fabrication process with microspheres dispersed in metallic matrix

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Reis, Sergio C.; Braga, Daniel M.; Santos, Armindo; Ferraz, Wilmar B.

    2005-01-01

    In this report it is presented the development of a geometric model to simulate the plate type fuel fabrication process with fuels microspheres dispersed in metallic matrix, as well as its software implementation. The developed geometric model encloses the steps of pellets pressing and sintering, as well as the plate rolling passes. The model permits the simulation of structures, where the values of the various variables of the fabrication processes can be studied and modified. The following variables were analyzed: microspheres diameters, density of the powder/microspheres mixing, microspheres density, fuel volume fraction, sintering densification, and rolling passes number. In the model implementation, which was codified in DELPHI programming language, systems of structured analysis techniques were utilized. The structures simulated were visualized utilizing the AutoCAD applicative, what permitted to obtain planes sections in diverse directions. The objective of this model is to enable the analysis of the simulated structures and supply information that can help in the improvement of the dispersion microspheres fuel plates fabrication process, now in development at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) in cooperation with the CTMSP (Centro Tecnologico da Marinha em Sao Paulo). (author)

  1. Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composit

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Bhuyan

    2016-06-01

    Full Text Available The objective of this paper is to optimize the process parameters by combined approach of VIKOR and Entropy weight measurement method during Electrical discharge machining (EDM process of Al-18wt.%SiCp metal matrix composite (MMC. The central composite design (CCD method is considered to evaluate the effect of three process parameters; namely pulse on time (Ton, peak current (Ip and flushing pressure (Fp on the responses like material removal rate (MRR, tool wear rate (TWR, Radial over cut (ROC and surface roughness (Ra. The Entropy weight measurement method evaluates the individual weights of each response and, using VIKOR method, the multi-objective responses are optimized to get a single numerical index known as VIKOR Index. Then the Analysis of Variance (ANOVA technique is used to determine the significance of the process parameters on the VIKOR Index. Finally, the result of the VIKOR Indexed is validated by conformation test using the liner mathematical model equation develop by responses surface methodology to identify the effectiveness of the proposed method.

  2. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  3. Effect of Bi modification treatment on microstructure, tensile properties, and fracture behavior of cast Al-Mg2Si metal matrix composite

    Directory of Open Access Journals (Sweden)

    Wu Xiaofeng

    2013-01-01

    Full Text Available Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to 1wt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile.

  4. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles

    International Nuclear Information System (INIS)

    Yu Peng; Mei Zhi; Tjong, S.C.

    2005-01-01

    We report herein the structure and characterization of in situ Al-based metal matrix composites (MMCs) prepared from the Al-10 wt.% TiO 2 and Al-10 wt.% TiO 2 -1.5 wt.% C systems via hot isostatic pressing (HIP) at 1000 deg C and 100 MPa. The structure, morphology and thermal behavior of HIPed samples were studied by means of the X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicated that fined Al 2 O 3 particles and large intermetallic Al 3 Ti plates were in situ formed in the Al-10 wt.% TiO 2 sample during HIPing. However, the introduction of C to the Al-TiO 2 system was beneficial to eliminate large intermetallic Al 3 Ti plates. In this case, Al 2 O 3 and TiC submicron particles were in situ formed in the Al-10 wt.% TiO 2 -1.5 wt.% C sample. Three-point-bending test showed that the strength and the strain-at-break of the HIPed Al-10 wt.% TiO 2 -1.5 wt.% C sample were significantly higher than those of its Al-10 wt.% TiO 2 counterpart. The improvement was derived from the elimination of bulk Al 3 Ti intermetallic plates and from the formation of TiC submicron particles. DSC measurements and thermodynamic analyses were carried out to reveal the reaction formation mechanisms of in situ reinforcing phases. The DSC results generally correlated well with the theoretical predictions. Finally, the correlation between the structure-property relationships of in situ composites is discussed

  5. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  6. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  7. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    International Nuclear Information System (INIS)

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-01-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO 2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO 2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO 2 , at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression .. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO 2 . Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells

  8. Prediction of U3SI2-Al burn-up and SiC/p-AI composition effects on its thermal conductivity using metal matrix composite (MMC) model containing progressive sub-dispersion

    International Nuclear Information System (INIS)

    Suwardi

    2000-01-01

    The model takes into account the evolution of constituent volume fraction. Sub-dispersion of disperse contains fission gas bubbles that increase with bum-up. The metal matrix could contain pore and void, a different type of disperse that vary wth time. The model is previously aimed to dispersion-nuclear fuel element. The model consists of a combination of different conductance constituent of both matrix and sub-matrix. Application is carried out to predict the fuel swelling effect on thermal conductivity of U 3 SI 2 -Al dispersion, and to volume fraction effect on conductivity of SiC-particulate reinforced AI matrix. The model shows that both fuel fraction and fission gas swelling decrease the thermal conductivity. During the start-up period of swelling the conductivity increases as aluminum pore close. then decreases most linearly. SiC/p-AI conductivity decreases most linearly with particulate volume fraction, attains 57.6% of pure AI at 50 % v/v. The author conclude that the model developed is applicable for more general MMC. (author)

  9. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite; Evolucion de la friccion interna del material compuesto de matriz Al-Li 8090 reforzado con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-07-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs.

  10. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  11. Comment on "Hydrothermal preparation of analogous matrix minerals of CM carbonaceous chondrites from metal alloy particles" by Y. Peng and Y. Jing [Earth Planet. Sci. Lett. 408 (2014) 252-262

    Science.gov (United States)

    Pignatelli, Isabella; Vacher, Lionel G.; Marrocchi, Yves

    2015-10-01

    Peng and Jing (2014) recently reported the results of hydrothermal experiments designed to produce synthetic tochilinite/cronstedtite assemblages analogous to those found in the matrix of CM chondrites (Tomeoka and Buseck, 1982, 1983a, 1983b, 1985; Mackinnon and Zolensky, 1984; Zolensky and Mackinnon, 1986; Rubin et al., 2007; Bourot-Denise et al., 2010; Hewins et al., 2014; Marrocchi et al., 2014). The assemblage was obtained from an alloyed metal particle mixture of Fe, Mg, Al, Si, Cr and Ni under basic, reducing and S2--rich conditions. The hydrothermal syntheses were conducted in Teflon-lined stainless-steel autoclaves at temperature of 106-160 °C for short-duration runs and at 153 °C for long-duration runs. The phases in the assemblage were characterized by XRD and TEM, but only the analytical results of long-duration runs were reported in the article and in the Appendix as supplementary material. The phases identified were: cronstedtite and tochilinite (both present in all run products), tochilinite-cronstedtite intergrowths, polyhedral serpentine, a chrysotile-like phase, nanotube-like structures, and lizardite-like and brucite-like phases. Based on their experimental results, the authors put forward a hypothesis to explain the formation of matrix minerals in CM chondrites proposing that the precursors may be nanometer- to micrometer-sized particles of metal alloys that were altered at low temperatures by interaction with S-rich water under reducing and dynamic pressurized conditions.

  12. Development of an in-situ synthesized multi-component reinforced Al–4.5%Cu–TiC metal matrix composite by FAS technique – Optimization of process parameters

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2016-03-01

    Full Text Available In the present investigation, an in-situ multi-component reinforced aluminium copper alloy based metal matrix composite was fabricated by the flux assisted synthesis (FAS technique. It was found from the optical microscopy analysis that TiC particles are formed in the composite. Further the present research investigates the feasibility and dry machining characteristics of Al–4.5%Cu/5TiC metal matrix composite in CNC milling machine using uncoated solid carbide end mill cutter. The effect of the machining parameters such as feed, cutting speed, depth of cut on the response parameters such as cutting force and COM is determined by using analysis of variance (ANOVA. From the analysis it was found that cutting speed and depth of cut played a major role in affecting cutting force. Multi output optimization of the process was carried out by the application of the Taguchi method with fuzzy logic, and the confirmatory test has revealed the accuracy of the developed model. For predicting the response parameters, regression equations were developed and verified with a number of test cases and it was observed that the percentage error for both responses is less than ±3%, which indicates there is a close agreement between the predicted and the measured results.

  13. The transverse creep deformation and failure characteristics of SCS-6/Ti-6Al-4V metal matrix composites at 482 C

    International Nuclear Information System (INIS)

    Eggleston, M.R.; Ritter, A.M.

    1995-01-01

    While continuous fiber, unidirectional composites are primarily evaluated for their longitudinal properties, the behavior transverse to the fibers often limits their application. In this study, the tensile and creep behaviors of SCS-6/Ti-6Al-4V composites in the transverse direction at 482 C were evaluated. Creep tests were performed in air and argon environments over the stress range of 103 to 276 MPa. The composite was less creep resistant than the matrix when tested at stress values larger than 150 MPa. Below 150 MPa, the composite was ore creep resistant than the unreinforced matrix. Failure of the composite occurred by the ductile propagation of racks emanating from separated fiber interfaces. The environment in which the test was performed affected the creep behavior. At 103 MPa, the creep rate in argon was 4 times slower than the creep rate in air. The SCS-6 silicon-carbide fiber's graphite coating oxidized in the air environment and encouraged the separation of the fiber-matrix interface. However, at high stress levels, the difference in behavior between air- and argon-tested specimens was small. At these stresses, separation of the interface occurred during the initial loading of the composite and the subsequent degradation of the interface did not affect the creep behavior. Finally, the enrichment of the composite's surface by molybdenum during fabrication resulted in an alloyed surface layer that failed in a brittle fashion during specimen elongation. Although this embrittled layer did not appear to degrade the properties of the composite, the existence of a similar layer on a composite with a more brittle matrix might be very detrimental

  14. Elimination of matrix effects in the determination of oxygen in some non-ferrous metals by activation with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Szopa, Z.; Sterlinski, S.; Tetteh, G.

    1981-01-01

    It is shown that the lower limit of detection and specificity of oxygen determination in strongly activated non-ferrous metals can be improved by means of the optimization of Pb-absorber thickness, cooling time and cyclic activation analysis. Some mathematical predictions are verified by oxygen determination in copper and yttrium. (author)

  15. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  16. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  17. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  18. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    Science.gov (United States)

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  19. Wear behavior of A356/M{sub 7}C{sub 3} and A356/SiC particulate metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Turhan, H. [Univ. of Firat, Dept. of Metallurgy, Elazig (Turkey); Yilmaz, O. [Univ. of Firat, Dept. of Metallurgical Engineering, Elazig (Turkey)

    2002-06-01

    The stability of M{sub 7}C{sub 3} carbides as reinforcement for A356 materials for tribological applications has been investigated. For this purpose, A356/M{sub 7}C{sub 3}, A356/SiC and A356/M{sub 7}C{sub 3}/SiC composites were prepared by powder metallurgy and tested at room temperature against SAE 4620 steel ring and AISI 304 stainless steel counterfaces under loads of 10 - 150 N. For comparison, also unreinforced A356 specimens were processed and tested under the same conditions. The tribological behavior was evaluated by microstructural examination of the wear-effected zones and by weight loss measurements of the specimens and counterfaces. The wear behavior of A356/M{sub 7}C{sub 3} composite gave an excellent result as function of the applied load because the M{sub 7}C{sub 3} particles act as load-bearing elements due to their excellent bonding to the Al matrix, and their interfaces withtood the wear stresses even at the highest applied load. Moreover, the M{sub 7}C{sub 3} particles limited the incorporation of wear debris into the Al matrix and reduced the wear damage occasioned to the steel counterfaces compared to that of A356 Al alloy. (orig.)

  20. Effect of the percentage of reinforcement on the wear in the metal matrix composites sintered with abnormal glow discharge; Efecto del porcentaje de refuerzo frente al desgaste en compuestos de matriz metalica sinterizados con descarga luminiscente anormal

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Velasquez, S.; Pineda-Triana, Y.; Aguilar-Castro, Y.; Vera-Lopez, E.

    2016-05-01

    In this study an analysis of the behavior of dry wear coefficient of a Metal Matrix Composite (MMC) in 316 stainless steel reinforced with particles of titanium carbide (TiC) according to ASTM G 99 standards, in a pin-on-disk test. In this research it is tested the effect of the percentage of reinforcement in the MMC manufactured with 3, 6 y 9% (vol.) of TiC, in samples compacted at 800 MPa, generating different values of grain size, hardness and density, they are sintered with abnormal glow discharge, at a temperature of 1200 degree centigrade ±5 degree centigrade, with a protection atmosphere H{sub 2} - N{sub 2} and a permanence time of 30 minutes. According to the results obtained it is concluded that the best condition for the MMC manufacturing, in relation to the reinforcement percentage, is the one obtained when the mixture contains 6% of TiC compacted at 800 MPa. In these conditions, it was obtained: achieving smaller grain size, the greater hardness and the lowest coefficient of friction. In this respect, it was observed that the incorporation of the ceramic particles (TiC) in a matrix of austenitic steel (316) shows significant improvements in the resistance to the wear. (Author)

  1. Isothermal heat treatment influence on the interface of a powder metallurgy aluminium metal matrix composite reinforced with Ni3Al intermetallics

    International Nuclear Information System (INIS)

    Ferrer, C.; Amigo, V.; Salvador, M.D.; Busquets, D.; Torralba, J.M.

    1998-01-01

    The improvement of the mechanical properties of aluminium MMCs reinforced with Ni 3 Al particles is based on the continuity of the matrix-particle interface as well as on the strength of these particles. This work deals with the influence of different heat treatments on the evolution of new phases in that interface. Samples were prepared following a powder metallurgy route with a final stage of extrusion. Several heat treatments encompassing a broad group of temperatures and times were applied producing different phases around the primary particles. Samples were analysed via optical and scanning electron microscopy with energy dispersive X ray analysis. Microhardness tests were also conducted on the different phases generated. (Author) 15 refs

  2. Automatic generation of 2D micromechanical finite element model of silicon–carbide/aluminum metal matrix composites: Effects of the boundary conditions

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed...... for the automatic generation of 2D micromechanical FE-models with randomly distributed SiC particles. In order to simulate the damage process in aluminum alloy matrix and SiC particles, a damage parameter based on the stress triaxial indicator and the maximum principal stress criterion based elastic brittle damage...... model are developed within Abaqus/Standard Subroutine USDFLD, respectively. An Abaqus/Standard Subroutine MPC, which allows defining multi-point constraints, is developed to realize the symmetric boundary condition (SBC) and periodic boundary condition (PBC). A series of computational experiments...

  3. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  4. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  5. Progress in atomizing high melting intermetallic titanium based alloys by means of a novel plasma melting induction guiding gas atomization facility (PIGA)

    Energy Technology Data Exchange (ETDEWEB)

    Gerling, R.; Schimansky, F.P.; Wagner, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1994-12-31

    For the production of intermetallic titanium based alloy powders a novel gas atomization facility has been put into operation: By means of a plasma torch the alloy is melted in a water cooled copper crucible in skull melting technique. To the tap hole of the crucible, a novel transfer system is mounted which forms a thin melt stream and guides it into the gas nozzle. This transfer system consists of a ceramic free induction heated water cooled copper funnel. Gas atomization of {gamma}-TiAl (melting temperature 1400 C) and Ti{sub 5}Si{sub 3} (2130 C) proved the possibility to produce ceramic free pre-alloyed powders with this novel facility. The TiAl powder particles are spherical; about 20 wt.% are smaller than 45 {mu}m. The oxygen and copper pick up during atomization do not exceed 250 and 35 {mu}g/g respectively. The Ti{sub 5}Si{sub 3} powder particles are almost spherical. Only about 10 wt.% are <45 {mu}m whereas the O{sub 2} and Cu contamination is also kept at a very low level (250 and 20 {mu}g/g respectively). (orig.)

  6. A "ship in a bottle" strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery.

    Science.gov (United States)

    di Nunzio, Maria Rosaria; Agostoni, Valentina; Cohen, Boiko; Gref, Ruxandra; Douhal, Abderrazzak

    2014-01-23

    An essential challenge in the development of nanosized metal organic framework (nanoMOF) materials in biomedicine is to develop a strategy to stabilize their supramolecular structure in biological media while being able to control drug encapsulation and release. We have developed a method to efficiently encapsulate topotecan (TPT, 1), an important cytotoxic drug, in biodegradable nanoMOFs. Once inside the pores, 1 monomers aggregate in a "ship in a bottle" fashion, thus filling practically all of the nanoMOFs' available free volume and stabilizing their crystalline supramolecular structures. Highly efficient results have been found with the human pancreatic cell line PANC1, in contrast with free 1. We also demonstrate that one- and two-photon light irradiation emerges as a highly promising strategy to promote stimuli-dependent 1 release from the nanoMOFs, hence opening new standpoints for further developments in triggered drug delivery.

  7. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    Science.gov (United States)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  8. The role of tetragonal-metal-organic framework-5 loadings with extra ZnO molecule on the gas separation performance of mixed matrix membrane

    International Nuclear Information System (INIS)

    Arjmandi, Mehrzad; Pakizeh, Majid; Pirouzram, Omid

    2015-01-01

    The effect of more ZnO molecule in tetragonal structure of MOF-5 than cubic structure on the gas permeation properties of T-MOF-5/polyetherimide mixed matrix membranes was investigated. T-MOF-5 was first successfully synthesized and carefully characterized by XRD, FTIR, SEM and N 2 adsorption technique at 77 K. Novel T-MOF-5/PEI MMMs were prepared using solution casting method and characterized by FTIR and SEM. The SEM pictures of the MMMs showed that T-MOF-5 nanocrystals changed the morphology of PEI and exhibited acceptable contacts between the filler particles and the polymer chains. Gas permeation properties of these membranes with different T-MOF-5 contents were studied for pure H 2 , CO 2 , CH 4 and N 2 gases. Permeation measurement showed that the all gases' permeability, diffusivity and solubility were increased with T-MOF-5 loading. H 2 permeability and the ideal selectivity of H 2 /CO 2 and H 2 /CH 4 in MMM with 25 wt% loading of T-MOF-5 nanocrystals were increased. This behavior was attributed to more ZnO molecule in T-MOF-5 structure. The experimental gas permeations through T-MOF-5/PEI nanocomposite with different filler loadings were fitted on Higuchi model. Good agreement between the experimental data and the predicted gas permeability was obtained

  9. The role of tetragonal-metal-organic framework-5 loadings with extra ZnO molecule on the gas separation performance of mixed matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Arjmandi, Mehrzad; Pakizeh, Majid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Pirouzram, Omid [Kurdistan University, Kurdistan (Iran, Islamic Republic of)

    2015-06-15

    The effect of more ZnO molecule in tetragonal structure of MOF-5 than cubic structure on the gas permeation properties of T-MOF-5/polyetherimide mixed matrix membranes was investigated. T-MOF-5 was first successfully synthesized and carefully characterized by XRD, FTIR, SEM and N{sub 2} adsorption technique at 77 K. Novel T-MOF-5/PEI MMMs were prepared using solution casting method and characterized by FTIR and SEM. The SEM pictures of the MMMs showed that T-MOF-5 nanocrystals changed the morphology of PEI and exhibited acceptable contacts between the filler particles and the polymer chains. Gas permeation properties of these membranes with different T-MOF-5 contents were studied for pure H{sub 2}, CO{sub 2}, CH{sub 4} and N{sub 2} gases. Permeation measurement showed that the all gases' permeability, diffusivity and solubility were increased with T-MOF-5 loading. H{sub 2} permeability and the ideal selectivity of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} in MMM with 25 wt% loading of T-MOF-5 nanocrystals were increased. This behavior was attributed to more ZnO molecule in T-MOF-5 structure. The experimental gas permeations through T-MOF-5/PEI nanocomposite with different filler loadings were fitted on Higuchi model. Good agreement between the experimental data and the predicted gas permeability was obtained.

  10. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  11. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    Science.gov (United States)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  12. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  13. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO2 metal matrix composite coating on mild steel

    International Nuclear Information System (INIS)

    Fayomi, O.S.I.; Popoola, A.P.I.; Aigbodion, V.S.

    2015-01-01

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO 2 embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO 2 (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO 2 in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO 2 composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO 2 embedded into the Zn–Al metal deposit and effective deposition parameters

  14. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  15. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  16. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO{sub 2} metal matrix composite coating on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Fayomi, O.S.I., E-mail: ojosundayfayomi3@gmail.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria (South Africa); Department of Mechanical Engineering, Covenant University, P.M.B 1023, Ota, Ogun State (Nigeria); Popoola, A.P.I. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria (South Africa); Aigbodion, V.S. [Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2015-02-25

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO{sub 2} nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO{sub 2} embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO{sub 2} nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO{sub 2} (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO{sub 2} in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO{sub 2} composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO{sub 2} embedded into the Zn–Al metal deposit and effective deposition parameters.

  17. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  18. Cryochemistry of Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  19. Cryochemistry of Metal Nanoparticles

    Science.gov (United States)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  20. Polymer matrix electroluminescent materials and devices

    Science.gov (United States)

    Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq

    2012-06-26

    Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.

  1. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  2. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  3. Material parameter identification on metal matrix composites

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-07-01

    Full Text Available conditions that best replicate the experimental data. The quality of the fits is subject to the limits of the material model and boundary parameterisation. An alternative procedure that uses the time and strain history to evolve the yield stress is also...

  4. Microstructure and mechanical properties of metallic high-temperature materials. Research report

    International Nuclear Information System (INIS)

    Mughrabi, H.; Gottstein, G.; Mecking, H.; Riedel, H.; Toboloski, J.

    1999-01-01

    This volume contains 38 lectures of research studies performed in the course of the Priority Programme 'Microstructure and Mechanical Properties of Metallic High-Temperature Materials' supported by the Deutsche Forschungsgemeinschaft (DFG) over a period of six years from 1991 to 1997. The four materials selected were: 1. light metal PM-aluminium and titanium base alloys; 2. ferritic chromium and austenitic alloy 800 steels; 3. (monocrystalline) nickel-base superalloys; and 4. nickel- and iron-base oxide-dispersion-strengthened superalloys. All papers have been abstracted separately for the ENERGY database

  5. Study of matrix effect in determination of metals in re-refined basic oils by energy dispersive X-ray fluorescence - EDX; Estudo do efeito de matriz na determinação de metais em óleos básicos rerrefinados por fluorescência de raios-X por energia dispersiva

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Maristela L. S., E-mail: mlsilva@anp.gov.br [Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), Brasília, DF (Brazil); Souza, Jurandir R. de [Universidade de Brasília (UnB), Brasília, DF (Brazil). Instituto de Química

    2015-06-15

    In this article, the results of the study of the matrix effect in the determination of metals calcium, chromium, iron, nickel, copper, zinc, molybdenum, cadmium, barium and lead in base oil using Energy Dispersive X-Ray Fluorescence (EDX) are presented. Sensitivities obtained for each calibration curve were evaluated where calcium, chromium, copper, cadmium, barium and lead had the lowest sensitivities. In the case of cadmium, this parameter was lagging and the studies were not carried forward. The curves of the other metals in different base oils were evaluated for linearity. The elements chromium, copper, molybdenum and lead showed linearity problems in some cases. Therefore, curves in different base oils showed distinct mathematical behavior where the matrix effect was confirmed. The other curves were evaluated and existence of the matrix effect attributed to interference of C / H ratio was confirmed in the quantification of all elements. Metals iron, nickel and zinc exhibited the highest sensitivity and determination coefficients, showing that the method has application potential. (author)

  6. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  7. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  8. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  10. Carbonate fuel cell matrix

    Science.gov (United States)

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  11. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  12. Triangularization of a Matrix

    Indian Academy of Sciences (India)

    Much of linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another that has lots of zeros. The simplest such theorem is the Schur triangularization theorem. This says that every matrix is unitarily similar to an upper triangular matrix. Our aim here is to show that though it is very easy to prove it ...

  13. BOTANICAL DIVERSITY AND HEAVY METAL CONTENT IN THE RESIDUE MATRIX AND PLANTS AT THE MORAVIA DUMP IN MEDELLÍN, COLOMBIA DIVERSIDAD BOTÁNICA Y CONTENIDO DE METALES PESADOS EN LA MATRIZ DE RESIDUOS Y LAS PLANTAS EN EL BASURERO DE MORAVIA EN MEDELLÍN, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Maria Solange Sanchez Pinzón

    2010-06-01

    Full Text Available . Floristic characterization, plant tissue and residue matrix (RM analysis were conducted to establish the extent of heavy metal (HM pollution of the Moravia dump at Medellín, Colombia, a site that was inhabited by more than 17000 people since 1984. More than 65 plant species (28 families were identified, most of which were herbaceous. Content of HM in the (RM was determined in 14 different RM samples varied greatly among them, reaching 121 and 9600 mg/kg of Hg and Pb respectively. Mean content of HM (mg/kg in the RM had the following pattern: Pb > Ni > Cr > Hg > Cd. Uptake of HM from the RM to plants was evident in most sampled species, with concentrations of Pb, Cr, and Hg reaching maximum values of 1.0, 123.7, 263.7 mg/kg of Hg, Pb and Cr respectively. However, Lepidium virginicum excluded, estimated bioconcentration factors were not greater than 1.0. Given their adaptation, Bidens pilosa, Urochloa maxima and L. virginicum, appear to be suitable for the revegetation of Moravia. Twenty-four years after its closure, HM content in Moravia continue to be high and the local flora actively takes up HM. Since other studies have shown that in Moravia there is still production of lixiviates and that there is an active heavy metal transference to the local Moravia fauna, it is imperative to implement adequate control measures in order to control HM contamination at this site.Con el fin de establecer el nivel de contaminación por metales pesados (MP, se llevó a cabo una caracterización florística y análisis de la matriz de residuos (MR y muestras de tejidos vegetales en el morro de basuras de Moravia en Medellín, un antiguo botadero de basuras habitado desde 1984 por más de 17.000 personas. Se identificaron más de 65 especies vegetales, la mayoría de ellas herbáceas, agrupadas en 28 familias. El contenido de MP en 14 diferentes muestras de MR varió considerablemente, yendo de 121 y 9.600 mg/kg de Hg y Pb, respectivamente. El contenido

  14. Heavy metals: teeth as environmental biomarkers

    OpenAIRE

    Lumbau, Aurea Maria Immacolata; Lugliè, Pietrina Francesca; Carboni, Donatella; Ginesu, Sergio; Falchi, Simonetta; Schinocca, Laura

    2012-01-01

    Aim of this study was to measure the concentration of heavy metals in tooth matrix and to determine the factors that affect their presence. During tooth development and mineralization several metals can be absorbed in the tooth matrix, thus allowing us to use them as biological markers.

  15. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  16. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  17. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  18. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface

    International Nuclear Information System (INIS)

    Lim, P.Y.; Lin, F.Y.; Shih, H.C.; Ralchenko, V.G.; Varnin, V.P.; Pleskov, Yu.V.; Hsu, S.F.; Chou, S.S.; Hsu, P.L.

    2008-01-01

    The film quality and electrochemical properties of BDD (boron-doped diamond) thin films grown by hot-filament chemical vapor deposition technique on titanium substrates that had been subjected to a range of pre-treatment processes were evaluated. The pre-roughened Ti-substrates are shown to support more adherent BDD films. It is evident that acid-etching the Ti-substrate involves surface hydrogenation that enhances nucleation and formation of diamond thereon. The prepared BDD film exhibits wide potential window and electrochemical reversibility. It also demonstrated a better long-term electrochemical stability based on the low variation in voltametric background current upon the exposing of the electrodes to repeated cycles of electrochemical metal deposition/stripping process

  19. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  20. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...

  1. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  2. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  3. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  4. The Effects of Cooling Rate on the Microstructure and Mechanical Properties of Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 Metallic Glass Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seon Yong; Lim, Ka Ram; Na, Young Sang; Kim, Seong Eon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Choi, Youn Suk [Pusan National University, Busan (Korea, Republic of)

    2016-11-15

    In this paper, we demonstrate that the microstructure and mechanical properties in the Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 alloy can be tailored by controlling the cooling rate during solidification. A lower cooling rate increases the volume fraction of crystalline phase such as B2 but decreases the free volume of the glassy matrix. The increase of the B2 volume fraction can dramatically enhance the toughness of the composites, since the B2 phase is relatively ductile compared to the glassy matrix and seems to have good interface stability with the matrix. From the experimental results, it was found that there is a transition point in the plasticity of the composites depending on the cooling rate. Here, we explain how the toughness of the composites varies in accordance with the cooling rate in the Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 alloy system.

  5. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  6. Solidification processing of monotectic alloy matrix composites

    Science.gov (United States)

    Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.

    1989-01-01

    Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.

  7. Corrosion and surface modification on biocompatible metals: A review.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  9. Measurement of fracture toughness of metallic materials produced by additive manufacturing

    Science.gov (United States)

    Quénard, O.; Dorival, O.; Guy, Ph.; Votié, A.; Brethome, K.

    2018-04-01

    This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

  10. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  11. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  12. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  13. Method of activating an article of passive ferrous or non-ferrous metal prior to carburising, nitriding and /or nitrocarburising

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012111456A A method of activating an article of passive ferrous or non-ferrous metal by heating at least one compound containing nitrogen and carbon, wherein the article is treated with gaseous species derived from the compound. The activated article can be subsequently carburised......, nitrided or nitrocarburised in shorter time at lower temperature and resulting superior mechanical properties compared with non-activated articles and even articles of stainless steel, nickel alloy, cobalt alloy or titanium based material can be carburised, nitrided or nitrocarburised....

  14. Hacking the Matrix.

    Science.gov (United States)

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  16. Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9 Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    1999-10-01

    Full Text Available Tumor cell invasion of basement membranes is one of the hallmarks of malignant transformation. Tumor cells secrete proteolytic enzymes known as matrix metalloproteinases (MMPs which degrade extracellular matrix molecules. Increased expression of MMP-9 has been associated with acquisition of invasive phenotype in many tumors. However, multiple mechanisms for regulation of MMP-9 gene expression by tumor cell lines have been proposed. A number of transcription factor binding sites have been characterized in the upstream regulatory region of the MMP-9 gene, including those for AP-1. To determine how a specific AP-1 family member, c-fos, regulates MMP-9 promoter activity through these sites, we used an expression vector containing the c-fos coding region fused to the estrogen receptor (ER ligand binding domain. This construct is activated upon binding estradiol. Stable expression of this construct in ER negative squamous cell carcinoma (SCC lines produced an estradiol dependent decrease in the number of cells that migrated through a reconstituted basement membrane. This decreased invasiveness was accompanied by estradiol dependent downregulation of MMP-9 activity as determined by gelatin zymography. Estradiol also produced transcriptional downregulation of an MMP-9 promoter construct in cells transiently transfected with the c-fosER expression vector. This downregulation was mediated by the AP-1 site at —79 by in the MMP-9 promoter. We concluded that the proximal AP-1 site mediated the transcriptional downregulation of the MMP-9 promoter by a conditionally activated c-fos fusion protein.

  17. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  18. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  19. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  20. Gradient-based stochastic estimation of the density matrix

    Science.gov (United States)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  1. Proteoliposomes as matrix vesicles' biomimetics to study the initiation of skeletal mineralization

    Directory of Open Access Journals (Sweden)

    A.M.S. Simão

    2010-03-01

    Full Text Available During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs. Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.

  2. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  3. Comparison of electron transmittances and tunneling currents in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal-oxide-semiconductor (MOS) capacitor calculated using exponential- and Airy-wavefunction approaches and a transfer matrix method

    International Nuclear Information System (INIS)

    Noor, Fatimah A.; Abdullah, Mikrajuddin; Sukirno; Khairurrijal

    2010-01-01

    Analytical expressions of electron transmittance and tunneling current in an anisotropic TiN x /HfO 2 /SiO 2 /p-Si(100) metal-oxide-semiconductor (MOS) capacitor were derived by considering the coupling of transverse and longitudinal energies of an electron. Exponential and Airy wavefunctions were utilized to obtain the electron transmittance and the electron tunneling current. A transfer matrix method, as a numerical approach, was used as a benchmark to assess the analytical approaches. It was found that there is a similarity in the transmittances calculated among exponential- and Airy-wavefunction approaches and the TMM at low electron energies. However, for high energies, only the transmittance calculated by using the Airy-wavefunction approach is the same as that evaluated by the TMM. It was also found that only the tunneling currents calculated by using the Airy-wavefunction approach are the same as those obtained under the TMM for all range of oxide voltages. Therefore, a better analytical description for the tunneling phenomenon in the MOS capacitor is given by the Airy-wavefunction approach. Moreover, the tunneling current density decreases as the titanium concentration of the TiN x metal gate increases because the electron effective mass of TiN x decreases with increasing nitrogen concentration. In addition, the mass anisotropy cannot be neglected because the tunneling currents obtained under the isotropic and anisotropic masses are very different. (semiconductor devices)

  4. 2016 MATRIX annals

    CERN Document Server

    Praeger, Cheryl; Tao, Terence

    2018-01-01

    MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The artic...

  5. Matrix interdiction problem

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  6. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  7. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  8. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  9. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  10. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  11. Wear rate optimization of Al/SiCnp/e-glass fibre hybrid metal matrix composites using Taguchi method and genetic algorithm and development of wear model using artificial neural networks

    Science.gov (United States)

    Bongale, Arunkumar M.; Kumar, Satish; Sachit, T. S.; Jadhav, Priya

    2018-03-01

    Studies on wear properties of Aluminium based hybrid nano composite materials, processed through powder metallurgy technique, are reported in the present study. Silicon Carbide nano particles and E-glass fibre are reinforced in pure aluminium matrix to fabricate hybrid nano composite material samples. Pin-on-Disc wear testing equipment is used to evaluate dry sliding wear properties of the composite samples. The tests were conducted following the Taguchi’s Design of Experiments method. Signal-to-Noise ratio analysis and Analysis of Variance are carried out on the test data to find out the influence of test parameters on the wear rate. Scanning Electron Microscopic analysis and Energy Dispersive x-ray analysis are conducted on the worn surfaces to find out the wear mechanisms responsible for wear of the composites. Multiple linear regression analysis and Genetic Algorithm techniques are employed for optimization of wear test parameters to yield minimum wear of the composite samples. Finally, a wear model is built by the application of Artificial Neural Networks to predict the wear rate of the composite material, under different testing conditions. The predicted values of wear rate are found to be very close to the experimental values with a deviation in the range of 0.15% to 8.09%.

  12. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  13. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  14. Refractive index inversion based on Mueller matrix method

    Science.gov (United States)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  15. Ethical Matrix Manual

    NARCIS (Netherlands)

    Mepham, B.; Kaiser, M.; Thorstensen, E.; Tomkins, S.; Millar, K.

    2006-01-01

    The ethical matrix is a conceptual tool designed to help decision-makers (as individuals or working in groups) reach sound judgements or decisions about the ethical acceptability and/or optimal regulatory controls for existing or prospective technologies in the field of food and agriculture.

  16. Combinatorial matrix theory

    CERN Document Server

    Mitjana, Margarida

    2018-01-01

    This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

  17. Visualizing Matrix Multiplication

    Science.gov (United States)

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  18. Challenging the CSCW matrix

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Gynther, Karsten; Christensen, Ove

    2014-01-01

    useful information, we question whether the axis of time and space comprising the matrix pertains to relevant defining properties of the tools, technology or learning environments to which they are applied. Subsequently we offer an example of an Adobe Connect e-learning session as an illustration...

  19. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  20. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.