WorldWideScience

Sample records for titanium silicate thin

  1. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  2. Conduction mechanism in bismuth silicate glasses containing titanium

    International Nuclear Information System (INIS)

    Dult, Meenakshi; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-01-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO 2 –(60−x)Bi 2 O 3 –40SiO 2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10 −1 Hz to 10 MHz and in the temperature range 623–703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σ dc ), so called crossover frequency (ω H ), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (H f ) and enthalpy of migration (H m ) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti 3+ and Ti 4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses

  3. Formation of Silicate and Titanium Clouds on Hot Jupiters

    Science.gov (United States)

    Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien

    2018-06-01

    We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.

  4. Synthesis and luminescence properties of erbium silicate thin films

    International Nuclear Information System (INIS)

    Miritello, Maria; Lo Savio, Roberto; Iacona, Fabio; Franzo, Giorgia; Bongiorno, Corrado; Priolo, Francesco

    2008-01-01

    We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 deg. C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O 2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N 2 . Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 10 22 cm -3 ) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material

  5. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...... silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  6. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  7. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    Science.gov (United States)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  8. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  9. Thermal decomposition of titanium deuteride thin films

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1983-01-01

    The thermal desorption spectra of deuterium from essentially clean titanium deuteride thin films were measured by ramp heating the films in vacuum; the film thicknesses ranged from 20 to 220 nm and the ramp rates varied from 0.5 to about 3 0 C s - 1 . Each desorption spectrum consisted of a low nearly constant rate at low temperatures followed by a highly peaked rate at higher temperatures. The cleanliness and thinness of the films permitted a description of desorption rates in terms of a simple phenomenological model based on detailed balancing in which the low temperature pressure-composition characteristics of the two-phase (α-(α+#betta#)-#betta#) region of the Ti-D system were used as input data. At temperatures below 340 0 C the model predictions were in excellent agreement with the experimentally measured desorption spectra. Interpretations of the spectra in terms of 'decomposition trajectories'' are possible using this model, and this approach is also used to explain deviations of the spectra from the model at temperatures of 340 0 C and above. (Auth.)

  10. Radiation response of cubic mesoporous silicate and borosilicate thin films

    Science.gov (United States)

    Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio

    2018-01-01

    The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree

  11. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  12. Oxidation of Catechol using Titanium Silicate (TS-1 Catalyst: Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Sonali Sengupta

    2013-12-01

    Full Text Available The oxidation of catechol was studied in an eco-friendly process with commercial titanium silicate-1 (TS-1 catalyst and hydrogen peroxide as oxidant in absence of all mass transfer effects. The process was opti-mized by Box-Behnken design in terms of three independent process variables such as reaction tempera-ture, moles of hydrogen peroxide per mole of catechol and catalyst amount whose optimum values of the process variables were found to be 60 °C, 13.2 and 1.24 g respectively for maximum conversion of 75.8 %. The effects of different process parameters such as mole ratio of hydrogen peroxide to catechol, catalyst par-ticle size, catalyst amount, temperature and reaction time were studied. A pseudo first order kinetic model was fitted with the experimental rate data. The apparent activation energy for the reaction was found to be 11.37 kJ/mole.  © 2013 BCREC UNDIP. All rights reservedReceived: 22nd April 2013; Revised: 25th October 2013; Accepted: 1st November 2013[How to Cite: Sengupta, S., Ghosal, D., Basu, J.K. (2013. Oxidation of Catechol using Titanium Silicate (TS-1 Catalyst: Modeling and Optimization. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 167-177. (doi:10.9767/bcrec.8.2.4759.167-177][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4759.167-177

  13. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  14. Microstructural control of thin-film diffusion-brazed titanium

    International Nuclear Information System (INIS)

    Wells, R.R.

    1976-01-01

    This study was designed to determine what parameters should be controlled to achieve quality joints of good toughness and high strength in titanium alloys. Emphasis was placed upon studying those parameters which provided tough joints compatible with the titanium base metal being joined. This paper is concerned with thin-film diffusion brazing based upon the eutectic system formed between copper and titanium. In order to control the joint microstructure, the copper diffusion rates and the beta-phase decomposition kinetics were studied. This information was used to produce various types of microstructures in test specimens. These were then evaluated to select the best microstructures for toughness and strength which were compatible with the titanium alloys. Results show that it is possible to accurately control properties of joints produced by thin-film diffusion brazing. This is done by controlling the initial copper content and the time-temperature parameters used in processing. Alloys studied were Ti--8Al--1Mo--1V and Ti--6Al--4V

  15. Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Cummings, F.R. [University of the Western Cape, Electron Microscopy Unit, Physics Department, Bellville 7535, Cape Town (South Africa); Turco, S. Lo; Ntwaeaborwa, O.M. [Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)-CNR, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2016-03-31

    Thin films of titanium were deposited on a glass substrate using electron beam evaporator. Femtosecond laser pulses were focused on the surface of the films, and the samples were scanned while mounted on the motorized computer-controlled motion stage to produce an areal modification of the films. X-ray diffraction of the laser-patterned samples showed evidence of the formation of a γ-Ti{sub 3}O{sub 5} with a monoclinic phase. Rutherford backscattering spectrometry simulation showed that there is an increase in the oxygen concentration as the average laser fluence is increased. Time of flight secondary ions mass spectrometry analysis showed an even distribution of the titanium and oxygen ions on the sample and also ionized molecules of the oxides of titanium were observed. The formation of the oxide of titanium was further supported using the UV–Vis-NIR spectroscopy, which showed that for 0.1 J/cm{sup 2} fluence, the laser-exposed film showed the electron transfer band and the d–d transition peak of titanium was observed at lower wavelengths. - Highlights: • γ-Ti{sub 3}O{sub 5} formed using femtosecond laser. • Fluence and oxygen relation were studied. • Nanoflakes of γ-Ti{sub 3}O{sub 5} were observed under HRSEM.

  16. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  17. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  18. Radiographic testing methods for welds of thin titanium plates and thin wall tubes

    International Nuclear Information System (INIS)

    1984-01-01

    This standard stipulates the testing method by X-ray radiography for the welded parts of titanium plates and titanium tubes with thickness not exceeding 8 mm. The other items than those stipulated here shall be in accordance with JIS Z 3107-1973 ''Testing method by radiography for the welded part of titanium and method of grade classification of radiographs''. As the photographing method of radiographs, the performance of the equipment and materials for testing, the direction of X-ray irradiation, the thickness of parent materials and welds, the use of penetrameters, the arrangement for photographing, the requirement for radiographs and the observation of radiographs are specified. The X-ray apparatuses, photo-sensitive materials and the tools for photographing and observation must be such that the radiographs clearly showing the defects in the welds being tested can be taken or observed. The JIS Z 3107 is insufficient for the test of thin materials like titanium, therefore, this standard was set down. As the thickness of welds, the thickness of parent materials was taken. In this standard, the titanium penetrameters were adopted because they can be made and they conform to practical state. If magnified photographing is carried out with microfocus X-ray apparatuses, precise photographing can be made. (Kako, I.)

  19. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  20. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aliasghari, S.; Skeldon, P., E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E.

    2014-10-15

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti{sub 3}O{sub 5}, and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti{sub 2}O{sub 5} and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short.

  1. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    International Nuclear Information System (INIS)

    Aliasghari, S.; Skeldon, P.; Thompson, G.E.

    2014-01-01

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti 3 O 5 , and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti 2 O 5 and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short

  2. Titanium dioxide thin films for high temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark; Bandyopadhyay, Amit; Bose, Susmita, E-mail: sbose@wsu.ed

    2010-10-29

    Titanium dioxide (TiO{sub 2}) thin film gas sensors were fabricated via the sol-gel method from a starting solution of titanium isopropoxide dissolved in methoxyethanol. Spin coating was used to deposit the sol on electroded aluminum oxide (Al{sub 2}O{sub 3}) substrates forming a film 1 {mu}m thick. The influence of crystallization temperature and operating temperature on crystalline phase, grain size, electronic conduction activation energy, and gas sensing response toward carbon monoxide (CO) and methane (CH{sub 4}) was studied. Pure anatase phase was found with crystallization temperatures up to 800 {sup o}C, however, rutile began to form by 900 {sup o}C. Grain size increased with increasing calcination temperature. Activation energy was dependent on crystallite size and phase. Sensing response toward CO and CH{sub 4} was dependent on both calcination and operating temperatures. Films crystallized at 650 {sup o}C and operated at 450 {sup o}C showed the best selectivity toward CO.

  3. Antibacterial Properties of Titanate Nano fiber Thin Films Formed on a Titanium Plate

    International Nuclear Information System (INIS)

    Yada, M.; Inoue, Y.; Morita, T.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.

    2013-01-01

    A sodium titanate nano fiber thin film and a silver nanoparticle/silver titanate nano fiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nano fiber thin film to ultraviolet rays generated a high antibacterial activity due to photo catalysis and the sodium titanate nano fiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nano fiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nano fiber thin films adhered firmly to titanium. Therefore, these titanate nano fiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.

  4. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Jeyachandran, Y.L.; Venkatachalam, S.; Karunagaran, B.; Narayandass, Sa.K.; Mangalaraj, D.; Bao, C.Y.; Zhang, C.L.

    2007-01-01

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film

  5. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyachandran, Y L [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Venkatachalam, S [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Karunagaran, B [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Narayandass, Sa K [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Mangalaraj, D [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Bao, C Y [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, C L [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2007-01-15

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film.

  6. On the characteristics and application of thin wall welded titanium tubes for heat transfer

    International Nuclear Information System (INIS)

    Nishimura, Takashi; Miyamoto, Yoshiyuki

    1985-01-01

    Because of the excellent corrosion resistance, thin wall welded titanium tubes have become to be used in large number as the heat transfer tubes of condensers and seawater desalting plants using seawater in place of conventional copper alloy tubes. Especially in nuclear power plants, the all titanium condensers using thin wall welded titanium tubes and titanium tube plates were adopted in the almost all plants under construction or expected to be constructed. In this report, the various characteristics of thin wall welded titanium tubes required for using them as heat transfer tubes, such as corrosion resistance, heat transfer characteristics, fatigue strength and expanding characteristics, are outlined, and the state of use is described. At first, relatively thick seamless titanium tubes were used for chemical industry, but thereafter, due to the advance of the mass production techniques, the welded titanium tubes of less than 0.7 mm thickness and high quality have become to be supplied at low cost. In 1969, titanium tubes were used for the first time in Japan for the air cooler in the condenser of Akita Power Station, Tohoku Electric Power Co., Inc. The features of titanium are small specific gravity, small linear expansion coefficient and small Young's modulus. (Kako, I.)

  7. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films.

    Science.gov (United States)

    Shabanov, N S; Asvarov, A Sh; Chiolerio, A; Rabadanov, K Sh; Isaev, A B; Orudzhev, F F; Makhmudov, S Sh

    2017-07-15

    Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Livshits, V.Ya.; Marchuk, E.A.

    1993-01-01

    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO 2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO 2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  9. Effects of thickness on electronic structure of titanium thin films

    Indian Academy of Sciences (India)

    using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium L2,3 edge in total electron yield .... the contribution of titanium L2,3 levels to the absorption co- ... all absorption coefficient of a sample is related to the atomic.

  10. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  11. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  12. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  13. Microstructural variation in titanium oxide thin films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Kamruddin, M.; Tyagi, A.K.

    2013-01-01

    We report on the microstructural evolution of titanium oxide thin films deposited by reactive DC magnetron sputtering using titanium metal target. By varying the ratio of sputter-gas mixture containing argon, oxygen and nitrogen various phases of titanium oxide, almost pure rutile, rutile-rich and anatase-rich nano-crystalline, were deposited on Si substrates at room temperature. Using high-resolution scanning electron microscopy, X-ray diffraction and micro-Raman techniques the microstructure of the films were revealed. The relationship between the microstructure of the films and the oxygen partial pressure during sputtering is discussed

  14. Characterization of poly(Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces

    Science.gov (United States)

    Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.

    2011-01-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821

  15. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  16. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  17. Deuteriding of thin titanium films: the effect of carbon monoxide surface contamination

    International Nuclear Information System (INIS)

    Malinowski, M.W.

    1976-02-01

    The effect of adsorbed CO on the deuteriding of thin titanium films at room temperature was measured at D 2 pressures between 10 to 25 mtorr on films contaminated with CO exposures ranging between approximately 10 -8 torr-seconds (''clean'') to 10 -4 torr-seconds. In all measurements, for deuterium/titanium atom ratios greater than .2, the deuteriding appeared to be initally limited by the sticking of D 2 on the clean or contaminated titanium deuteride surface; the effective sticking coefficient on a clean titanium deuteride surface was approximately 3 x 10 -3 , while on a surface contaminated with 10 -4 torr-seconds of CO, the coefficient was reduced to approximately, 2 x 10 -4 . The pumping speeds of Ti films were dramatically different when the films were evaporated over TiD 2 . These changes were attributed to the presence of deuterium which diffused from the substrate film into the overlayer film

  18. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  19. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  20. Decomposition of thin titanium deuteride films: thermal desorption kinetics studies combined with microstructure analysis

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; Kaszkur, Zbigniew; Smithers, M.A.; Smithers, Mark A.

    2008-01-01

    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy

  1. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: xfpang@aliyun.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Honglei [College of Chemistry Environmental Science, Hebei University, Baoding 071000 (China); Qiao, Haixia; Nian, Xiaofeng [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Zhang, Xuejiao, E-mail: 527238610@qq.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2015-12-01

    Highlights: • We developed a ZnHA/CS-coated Ti implant by using an ED method. • The obtained ZnHA/CS coatings presented a net-like micro-porous. • The ZnHA/CS coating possessed an excellent corrosion protection ability. • The composite coated CP-Ti possesses favourable cytocompatibility. - Abstract: This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO{sub 3}. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si{sup 4+} and Zn{sup 2+} were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn{sup 2+} and Si{sup 4+}). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  2. Non thermal preparation of photoactive titanium (IV) oxide thin layers

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Cajthaml, Tomáš; Šolcová, Olga

    2006-01-01

    Roč. 495, - (2006), s. 18-23 ISSN 0040-6090 R&D Projects: GA ČR GA104/04/0963; GA ČR GD203/03/H140; GA MPO FT-TA/023 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40720504 Keywords : titanium dioxide * nanostructures * photocatalysis Subject RIV: EE - Microbiology, Virology Impact factor: 1.666, year: 2006

  3. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  4. Titanium dioxide–gold nanocomposite materials embedded in silicate sol–gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue

    International Nuclear Information System (INIS)

    Pandikumar, Alagarsamy; Ramaraj, Ramasamy

    2012-01-01

    Graphical abstract: Aminosilicate sol–gel supported TiO 2 –Au nanocomposite material photocatalyst was prepared by deposition–precipitation method and used for the simultaneous oxidation and reduction of methyelene blue dye and Cr(VI) ions. Highlights: ► The EDAS/(TiO 2 –Au) nps is used to design the solid-phase thin film photocatalyst. ► Au promotes the interfacial electron transfer from TiO 2 to Cr(VI) to form Cr(III). ► The holes produced at the TiO 2 oxidize the MB dye. ► The EDAS/(TiO 2 –Au) nps film was used for the simultaneous oxidation and reduction of toxic molecules. ► The photoinduced simultaneous redox process provides dual benefit for the environment remediation. - Abstract: Aminosilicate sol–gel supported titanium dioxide–gold (EDAS/(TiO 2 –Au) nps ) nanocomposite materials were synthesized by simple deposition–precipitation method and characterized. The photocatalytic oxidation and reduction activity of the EDAS/(TiO 2 –Au) nps film was evaluated using hexavalent chromium (Cr(VI)) and methylene blue (MB) dye under irradiation. The photocatalytic reduction of Cr(VI) to Cr(III) was studied in the presence of hole scavengers such as oxalic acid (OA) and methylene blue (MB). The photocatalytic degradation of MB was investigated in the presence and absence of Cr(VI). Presence of Au nps on the (TiO 2 ) nps surface and its dispersion in the silicate sol-gel film (EDAS/(TiO 2 –Au) nps ) improved the photocatalytic reduction of Cr(VI) and oxidation of MB due to the effective interfacial electron transfer from the conduction band of the TiO 2 to Au nps by minimizing the charge recombination process when compared to the TiO 2 and (TiO 2 –Au) nps in the absence of EDAS. The EDAS/(TiO 2 –Au) nps nanocomposite materials provided beneficial role in the environmental remediation and purification process through synergistic photocatalytic activity by an advanced oxidation–reduction processes.

  5. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  6. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  7. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    Science.gov (United States)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  8. Damage evaluation of proton irradiated titanium deuteride thin films to be used as neutron production targets

    Science.gov (United States)

    Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.

    2018-06-01

    Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.

  9. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  10. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsun Su, Yen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, Chia-Yun; Chang, Chung-Chien [Science and Technology of Accelerator Light Source, Hsinchu 300, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Tu, Sheng-Lung; Shen, Yun-Hwei [Department of Resource Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  11. Effects of atomic oxygen on titanium dioxide thin film

    Science.gov (United States)

    Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi

    2018-05-01

    In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

  12. Photocatalytic Activity of Nanostructured Titanium Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Zdenek Michalcik

    2012-01-01

    Full Text Available The aim of this paper is to investigate the properties and photocatalytic activity of nanostructured TiO2 layers. The glancing angle deposition method with DC sputtering at low temperature was applied for deposition of the layers with various columnar structures. The thin-film structure and surface morphology were analyzed by XRD, SEM, and AFM analyses. The photocatalytic activity of the films was determined by the rate constant of the decomposition of the Acid Orange 7. In dependence on the glancing angle deposition parameters, three types of columnar structures were obtained. The films feature anatase/rutile and/or amorphous structures depending on the film architecture and deposition method. All the films give the evidence of the photocatalytic activity, even those without proved anatase or rutile structure presence. The impact of columnar boundary in perspective of the photocatalytic activity of nanostructured TiO2 layers was discussed as the possible factor supporting the photocatalytic activity.

  13. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  14. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  15. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  16. Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A., E-mail: rouahi_ahlem@yahoo.fr [Univ. Grenoble Alpes, G2Elab, F-38000 (France); Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Challali, F. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM)-CNRS-UPR3407, Université Paris13, 99 Avenue Jean-Baptiste Clément, 93430, Villetaneuse (France); Dakhlaoui, I. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Vallée, C. [CNRS, LTM, CEA-LETI, F-38000 Grenoble (France); Salimy, S. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Jomni, F.; Yangui, B. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Besland, M.P.; Goullet, A. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Sylvestre, A. [Univ. Grenoble Alpes, G2Elab, F-38000 (France)

    2016-05-01

    In this study, the dielectric properties of metal-oxide-metal capacitors based on Tantalum Titanium Oxide (TiTaO) thin films deposited by reactive magnetron sputtering on aluminum bottom electrode are investigated. The structure of the films was characterized by Atomic Force Microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric properties of TiTaO thin films were studied by complex impedance spectroscopy over a wide frequency range (10{sup -2} - to 10{sup 5} Hz) and temperatures in -50 °C to 325 °C range. The contributions of different phases, phases’ boundaries and conductivity effect were highlighted by Cole – Cole diagram (ε” versus ε’). Two relaxation processes have been identified in the electric modulus plot. A first relaxation process appears at low temperature with activation energy of 0.37 eV and it is related to the motion of Ti{sup 4+} (Skanavi’s model). A second relaxation process at high temperature is related to Maxwell-Wagner-Sillars relaxation with activation energy of 0.41 eV. - Highlights: • Titanium Tantalum Oxide thin films are grown on Aluminum substrate. • The existence of phases was confirmed by X-ray photoelectron spectroscopy. • Conductivity effect appears in Cole-Cole plot. • At low temperatures, a relaxation phenomenon obeys to Skanavi’s model. • Maxwell-Wagner-Sillars polarization is processed at high temperatures.

  17. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  18. Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering

    Science.gov (United States)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.

    2014-02-01

    Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.

  19. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  20. Optical properties of titanium trisulphide (TiS3) thin films

    International Nuclear Information System (INIS)

    Ferrer, I.J.; Ares, J.R.; Clamagirand, J.M.; Barawi, M.; Sánchez, C.

    2013-01-01

    Titanium trisulphide thin films have been grown on quartz substrates by sulphuration of electron-beam evaporated Ti layers (d ∼ 300 nm) in a vacuum sealed ampoule in the presence of sulphur powder at 550 °C for different periods of time (1 to 20 h). Thin films were characterized by X-ray diffraction, energy dispersive analyses of X-ray and scanning electron microscopy. Results demonstrate that films are composed by monoclinic titanium trisulphide. Films show n-type conductivity with a relatively high resistivity (ρ ∼ 4 ± 2 Ω·cm) and high values of the Seebeck coefficient (− 600 μV/K) at room temperature. Values of the optical absorption coefficient about α ∼ 10 5 cm −1 , determined from reflectance and transmittance measurements, have been obtained at photon energies hυ > 2 eV. The absorption coefficient dependence on the photon energy in the range of 1.6–3.0 eV hints the existence of a direct transition with an energy gap between 1.35 and 1.50 eV. By comparing these results with those obtained from bulk TiS 3 , a direct transition with lower energy is also found which could have been hidden due to the low value of the absorption coefficient in this energy range. - Highlights: ► Thin films of TiS 3 have been obtained by sulphuration of Ti layers. ► Optical properties of TiS 3 thin films have been determined. ► Optical energy gap of TiS 3 has been obtained. ► Optical properties of bulk TiS 3 have been measured and compared with those of films

  1. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces

    Directory of Open Access Journals (Sweden)

    Mura M McCafferty

    2014-05-01

    Full Text Available The development of biomaterial surfaces possessing the topographical cues that can promote mesenchymal stem cell recruitment and, in particular, those capable of subsequently directing osteogenic differentiation is of increasing importance for the advancement of tissue engineering. While it is accepted that it is the interaction with specific nanoscale topography that induces mesenchymal stem cell differentiation, the potential for an attendant bioactive chemistry working in tandem with such nanoscale features to enhance this effect has not been considered to any great extent. This article presents a study of mesenchymal stem cell response to conformal bioactive calcium phosphate thin films sputter deposited onto a polycrystalline titanium nanostructured surface with proven capability to directly induce osteogenic differentiation in human bone marrow–derived mesenchymal stem cells. The sputter deposited surfaces supported high levels of human bone marrow–derived mesenchymal stem cell adherence and proliferation, as determined by DNA quantification. Furthermore, they were also found to be capable of directly promoting significant levels of osteogenic differentiation. Specifically, alkaline phosphatase activity, gene expression and immunocytochemical localisation of key osteogenic markers revealed that the nanostructured titanium surfaces and the bioactive calcium phosphate coatings could direct the differentiation towards an osteogenic lineage. Moreover, the addition of the calcium phosphate chemistry to the topographical profile of the titanium was found to induce increased human bone marrow–derived mesenchymal stem cell differentiation compared to that observed for either the titanium or calcium phosphate coating without an underlying nanostructure. Hence, the results presented here highlight that a clear benefit can be achieved from a surface engineering strategy that combines a defined surface topography with an attendant, conformal

  2. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Thampi VV

    2015-10-01

    Full Text Available VV Anusha Thampi,1 P Dhandapani,2 Geetha Manivasagam, B Subramanian11Electrochemical Materials Science Division, Central Electrochemical Research Institute, Karaikudi, 2Corrosion and Materials Protection Division, Central Electrochemical Reserach Institute, Karaikudi, 3Centre for Bio-Materials Science and Technology, VIT University, Vellore, IndiaAbstract: Thin films of titanium carbonitride (TiCN were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.Keywords: titanium carbonitride thin films, magnetron sputtering, ureolytic bacteria, biocompatibility

  3. Properties of ordered titanium templates covered with Au thin films for SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Sokołowski, Michał; Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk (Poland); Szkoda, Mariusz [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland)

    2016-12-01

    Graphical abstract: - Highlights: • Dimpled Ti substrates prepared via anodization followed by etching. • Highly ordered nano-patterned titanium templates covered with thin Au films. • Enhanced Raman signal indicates on promising sensing material. - Abstract: Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5–20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO{sub 2} nanotubes on a flat Ti surface (2 × 2 cm{sup 2}) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (10{sup 7}–10{sup 8}) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  4. The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films

    Directory of Open Access Journals (Sweden)

    Kristina BOČKUTĖ

    2013-09-01

    Full Text Available Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, scanning electron microscopy (SEM and atomic force microscopy (AFM. Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1805

  5. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  6. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    Science.gov (United States)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-12-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  7. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    Science.gov (United States)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  8. Preparation and antibacterial effect of silver-hydroxyapatite/titania nanocomposite thin film on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Mo Anchun [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Liao Juan [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Xu Wei [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Arrail-Dental, Shanghai 200122 (China); Xian Suqin [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Li Yubao [Research Center for Nano-Biomaterials, Sichuan University, Chengdu 610064 (China); Bai Shi [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    The composite which contains Ag{sup +} and nanosized hydroxyapatite with TiO{sub 2} was deposited onto titanium by dipping method. The morphology, chemical components and structures of the thin film were characterized by XRD, scanning electronic microscope (SEM) and energy dispersive X-ray analysis (EDX). Staphylococcus aureus and Escherichia coli were utilized to test the antibacterial effect. XRD results demonstrated that the films have characteristic diffraction peaks of pure HA. EDX results showed that the deposited films consisted of Ca, P, Ti, O and Ag, all of which distribute uniformly. With regard to the antibacterial effect, 98% of S. aureus and more than 99% of E. coli were killed after 24 h incubation and pictures of SEM showed obviously fewer cells on the surface with coating.

  9. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  10. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite.

    Science.gov (United States)

    Thampi, V V Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B

    2015-01-01

    Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.

  11. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  12. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  13. Deposition of lead-silicate glassy thin coatings by RF magnetron sputtering: Correlation between deposition parameters and electrical and structural properties

    International Nuclear Information System (INIS)

    Rigato, V.; Maggioni, G.; Boscarino, D.; Della Mea, G.; Univ. di Trento, Mesiano

    1996-01-01

    Lead-silicate glassy thin films produced by means of Reactive Radio Frequency Magnetron Sputtering have found recent application in the development of MicroStrip Gas Chambers radiation detectors. Here, thin films (100--400 nm) of lead silicate glass have been deposited by RF magnetron sputtering in Ar plasma at different discharge conditions. The interaction of the sputtered species with the gas atoms during the transport process through the discharge region and the kinetics of growth of the films have been investigated as a function of the target composition and of the substrate temperature. This study demonstrates the possibility of controlling the surface electrical resistance of the films in a wide range of values ranging from 10 12 to 10 17 Ω/□ during the film growth

  14. Titanium dioxide (TIO2) thin film and plasma properties in RF magnetron sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2013-01-01

    Lately, titanium dioxide (TiO 2 ) films with anatase crystalline property received numerous attentions as unique material properties. There are wide applications of TiO 2 thin film such as for photocatalytic application in solar cell. In the present study, radio frequency (RF) magnetron sputtering technique has been used to produce high dense, homogeneously controllable film layer at low deposition temperature using titanium (Ti) target. The diameter of the Ti target is 3 inch with fixed discharge power of 400W. Magnetron sputtering plasma has been produced in high purity 99.99% Argon (Ar) and 99.99% Oxygen (O 2 ) environment pressure ranging from 5 to 20 mTorr. The TiO2 were growth on silicon and glass substrates. Substrate temperature during deposition was kept constant at 400°C. The distance between target and substrate holder was maintain at 14 cm with rotation of 10 rotation-per-minutes. Our X-ray diffraction result, shows anatase crystalline successfully formed with characterization peaks of plane (101) at 2θ = 25.28°, plane (202) at 2θ = 48.05° and plane (211) at 2θ = 55.06°. In addition, it is our interest to study the plasma properties and optical spectrum of Ti, Ti+ , O- , ArM and Ar+ in the chamber during the deposition process. Result of emission line intensities, electron density and temperature from optical spectroscope and Langmuir probe will be discuss further during the workshop. This works were supported by Graduate Incentive Scheme of Universiti Tun Hussein Onn Malaysia (UTHM) and Fundamental Research Grant Scheme of Ministry of Higher Education, Malaysia. (author)

  15. Lanthanum titanium perovskite compound: Thin film deposition and high frequency dielectric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Le Paven, C., E-mail: claire.lepaven@univ-rennes1.fr [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); Lu, Y. [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); Nguyen, H.V. [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); CEA LETI, Minatec Campus, 38054 Grenoble (France); Benzerga, R.; Le Gendre, L. [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); Rioual, S. [Laboratoire de Magnétisme de Brest (EA CNRS 4522), Université de Bretagne Occidentale, 29000 Brest (France); Benzegoutta, D. [Institut des Nanosciences de Paris (INSP, UMR CNRS 7588), Université Pierre et Marie Curie, 75005 Paris (France); Tessier, F.; Cheviré, F. [Institut des Sciences Chimiques de Rennes (ISCR, UMR-CNRS 6226), Equipe Verres et Céramiques, Université de Rennes 1, 35000 Rennes (France); and others

    2014-02-28

    Perovskite lanthanum titanium oxide thin films were deposited on (001) MgO, (001) LaAlO{sub 3} and Pt(111)/TiO{sub 2}/SiO{sub 2}/(001)Si substrates by RF magnetron sputtering, using a La{sub 2}Ti{sub 2}O{sub 7} homemade target sputtered under oxygen reactive plasma. The films deposited at 800 °C display a crystalline growth different than those reported on monoclinic ferroelectric La{sub 2}Ti{sub 2}O{sub 7} films. X-ray photoelectron spectroscopy analysis shows the presence of titanium as Ti{sup 4+} ions, with no trace of Ti{sup 3+}, and provides a La/Ti ratio of 1.02. The depositions being performed from a La{sub 2}Ti{sub 2}O{sub 7} target under oxygen rich plasma, the same composition (La{sub 2}Ti{sub 2}O{sub 7}) is proposed for the deposited films, with an unusual orthorhombic cell and Cmc2{sub 1} space group. The films have a textured growth on MgO and Pt/Si substrates, and are epitaxially grown on LaAlO{sub 3} substrate. The dielectric characterization displays stable values of the dielectric constant and of the losses in the frequency range [0.1–20] GHz. No variation of the dielectric constant has been observed when a DC electric field up to 250 kV/cm was applied, which does not match a classical ferroelectric behavior at high frequencies and room temperature for the proposed La{sub 2}Ti{sub 2}O{sub 7} orthorhombic phase. At 10 GHz and room temperature, the dielectric constant of the obtained La{sub 2}Ti{sub 2}O{sub 7} films is ε ∼ 60 and the losses are low (tanδ < 0.02). - Highlights: • Lanthanum titanium oxide films were deposited by reactive magnetron sputtering. • A La{sub 2}Ti{sub 2}O{sub 7} chemical composition is proposed, with an unusual orthorhombic cell. • At 10 GHz, the dielectric losses are lower than 0.02. • No variation of the dielectric constant is observed under DC electric biasing.

  16. Lanthanum titanium perovskite compound: Thin film deposition and high frequency dielectric characterization

    International Nuclear Information System (INIS)

    Le Paven, C.; Lu, Y.; Nguyen, H.V.; Benzerga, R.; Le Gendre, L.; Rioual, S.; Benzegoutta, D.; Tessier, F.; Cheviré, F.

    2014-01-01

    Perovskite lanthanum titanium oxide thin films were deposited on (001) MgO, (001) LaAlO 3 and Pt(111)/TiO 2 /SiO 2 /(001)Si substrates by RF magnetron sputtering, using a La 2 Ti 2 O 7 homemade target sputtered under oxygen reactive plasma. The films deposited at 800 °C display a crystalline growth different than those reported on monoclinic ferroelectric La 2 Ti 2 O 7 films. X-ray photoelectron spectroscopy analysis shows the presence of titanium as Ti 4+ ions, with no trace of Ti 3+ , and provides a La/Ti ratio of 1.02. The depositions being performed from a La 2 Ti 2 O 7 target under oxygen rich plasma, the same composition (La 2 Ti 2 O 7 ) is proposed for the deposited films, with an unusual orthorhombic cell and Cmc2 1 space group. The films have a textured growth on MgO and Pt/Si substrates, and are epitaxially grown on LaAlO 3 substrate. The dielectric characterization displays stable values of the dielectric constant and of the losses in the frequency range [0.1–20] GHz. No variation of the dielectric constant has been observed when a DC electric field up to 250 kV/cm was applied, which does not match a classical ferroelectric behavior at high frequencies and room temperature for the proposed La 2 Ti 2 O 7 orthorhombic phase. At 10 GHz and room temperature, the dielectric constant of the obtained La 2 Ti 2 O 7 films is ε ∼ 60 and the losses are low (tanδ < 0.02). - Highlights: • Lanthanum titanium oxide films were deposited by reactive magnetron sputtering. • A La 2 Ti 2 O 7 chemical composition is proposed, with an unusual orthorhombic cell. • At 10 GHz, the dielectric losses are lower than 0.02. • No variation of the dielectric constant is observed under DC electric biasing

  17. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  18. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    Science.gov (United States)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  19. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  20. Properties of ordered titanium templates covered with Au thin films for SERS applications

    Science.gov (United States)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard

    2016-12-01

    Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  1. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Wang

    2018-01-01

    Full Text Available This study performs a structural optimization of anatomical thin titanium mesh (ATTM plate and optimal designed ATTM plate fabricated using additive manufacturing (AM to verify its stabilization under fatigue testing. Finite element (FE analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  2. Characterization of titanium silicide thin films by X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Morimoto, N.J.

    1987-01-01

    This thesis deals with characterization techniques of thin films by means of X-ray diffraction. This includes phase identification and residual stress, microstress and crystallite size calculations. The techniques developed were applied on the study of the titanium silicide formation obtained by means of Rapidy Thermal Processing (RTP) pf Ti films deposited on silicon substratum. The different phases were studied in relation with processing temperature and time in one and two anneling steps. The low resistivity TiSi 2 phase was observed for temperature of 700 0 C and higher. The experimental results indicate that the residual stress of TiSi 2 films doesn't vary significantly with the annealing conditions. On the other hand, the microstress is reduced with annealing time at 800 0 C, while the crystallite size is almost not affected. For the microstress and the crystallite size determination technique, two methods were implemented and compared. The Riella's method appeared to be very efficient, while the Gangulle's method seemed to be inadequate, because the results oscillate too much [pt

  3. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  4. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.; Masuzawa, T.

    2011-01-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO 2 ) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO 2 films and DLC/TiO 2 /DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO 2 -coated and the DLC/TiO 2 /DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO 2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO 2 /DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO 2 /DLC film had a photocatalytic effect even though the TiO 2 film was covered with the DLC film.

  5. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  6. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    International Nuclear Information System (INIS)

    Tits, Jan; Laube, Andreas; Wieland, Erich; Gaona, Xavier

    2014-01-01

    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO 2 ) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO 2 was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO 2 R d values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R d values for the three redox states are also identical at pH = 10. While the R d values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R d values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO 2 whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R d values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic repulsion, allows the weaker sorption of the

  7. TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Guerrero, M.; Castillo, N.; Soto, A.B.; Fragoso, R.; Cabanas-Moreno, J.G.

    2005-01-01

    Titanium dioxide thin films were deposited on crystalline silicon (100) and fused quartz substrates by spray pyrolysis (SP) of an aerosol, generated ultrasonically, of titanium diisopropoxide. The evolution of the crystallization, studied by X-ray diffraction (XRD), atomic force (AFM) and scanning electron microscopy (SEM), reflection and transmission spectroscopies, shows that the deposition process is nearly close to the classical chemical vapor deposition (CVD) technique, producing films with smooth surface and good crystalline properties. At deposition temperatures below 400 deg. C, the films grow in amorphous phase with a flat surface (roughness∼0.5 nm); while for equal or higher values to this temperature, the films develop a crystalline phase corresponding to the TiO 2 anatase phase and the surface roughness is increased. After annealing at 750 deg. C, the samples deposited on Si show a transition to the rutile phase oriented in (111) direction, while for those films deposited on fused quartz no phase transition is observed

  8. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films

    International Nuclear Information System (INIS)

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  9. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface

    International Nuclear Information System (INIS)

    Lim, P.Y.; Lin, F.Y.; Shih, H.C.; Ralchenko, V.G.; Varnin, V.P.; Pleskov, Yu.V.; Hsu, S.F.; Chou, S.S.; Hsu, P.L.

    2008-01-01

    The film quality and electrochemical properties of BDD (boron-doped diamond) thin films grown by hot-filament chemical vapor deposition technique on titanium substrates that had been subjected to a range of pre-treatment processes were evaluated. The pre-roughened Ti-substrates are shown to support more adherent BDD films. It is evident that acid-etching the Ti-substrate involves surface hydrogenation that enhances nucleation and formation of diamond thereon. The prepared BDD film exhibits wide potential window and electrochemical reversibility. It also demonstrated a better long-term electrochemical stability based on the low variation in voltametric background current upon the exposing of the electrodes to repeated cycles of electrochemical metal deposition/stripping process

  10. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  11. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  12. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering.

    Science.gov (United States)

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-06-26

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.

  13. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Karpagaraj, A.; Siva shanmugam, N., E-mail: nsiva@nitt.edu; Sankaranarayanasamy, K.

    2015-07-29

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

  14. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    International Nuclear Information System (INIS)

    Karpagaraj, A.; Siva shanmugam, N.; Sankaranarayanasamy, K.

    2015-01-01

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity

  15. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 1/f noise in titanium doped aluminum thin film deposited by electron beam evaporation method and its dependence on structural variation with temperature

    Science.gov (United States)

    Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.

    2018-05-01

    A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.

  17. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  18. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  19. Preparation of titanium oxide and metal titanates as powders, thin films, and microspheres by complex sol-gel process

    International Nuclear Information System (INIS)

    Deptula, A.; Olczak, T.; Lada, W.; Chmielewski, A.G.; Jakubaszek, U.; Sartowska, B.; Goretta, K.C.; Alvani, C.; Casadio, S.; Contini, V.

    2006-01-01

    Titanium oxide, for many years an important pigment, has recently been applied widely as a photocatalyst or as supports for metallic catalysts, gas sensors, photovoltaic solar cells, and water and air purification devices. Titanium oxide (TiO 2 ) and titanates based on Ba, Sr and Ca were prepared from commercial solutions of TiCl 4 and HNO 3 . The main preparation steps for the sols consisted of elimination of Cl - by distillation with HNO 3 and addition of metal hydroxides for the titanates. Resulting sols were gelled and used to: (a) prepare irregularly shaped powders by evaporation; (b) produce by a dipping technique thin films on glass, Ag or Ti supports; (c) produce spherical powders (diameters <100 μm) by solvent extraction. Results of thermal and X-ray-diffraction analyses indicated that the temperatures required to form the various compounds were lower than those necessary to form the compounds by conventional solid-state reactions and comparable to those required with use of organometallic based sol-gel methods. Temperatures of formation could be further reduced by addition of ascorbic acid (ASC) to the sols

  20. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design.

    Science.gov (United States)

    Deepa, P N; Kanungo, Mandakini; Claycomb, Greg; Sherwood, Peter M A; Collinson, Maryanne M

    2003-10-15

    Sol-gel-derived silicate films were electrochemically deposited on conducting surfaces from a sol consisting of tetramethoxysilane (TMOS). In this method, a sufficiently negative potential is applied to the electrode surface to reduce oxygen to hydroxyl ions, which serves as the catalyst for the hydrolysis and condensation of TMOS. The electrodeposition process was followed by the electrochemical quartz crystal microbalance and cyclic voltammetry. The electrodeposited films were characterized for their surface morphology, porosity, and film thickness using atomic force microscopy, electrochemical probe techniques, surface area and pore size analysis, and profilometry. The electrodeposited films were found to have a completely different surface structure and to be significantly rougher relative to spin-coated films. This is likely due in part to the separation of the gelation and evaporation stages of film formation. The electrodeposited films were found to be permeable to simple redox molecules, such as ruthenium(III) hexaammine and ferrocene methanol. Film thickness can be easily varied from 15 microm by varying the electrode potential from -600 mV to more than -1000 mV, respectively. The electrodeposition process was further applied for the electroencapsulation of redox molecules and organic dyes within the silicate network. Cyclic voltammograms for the gel-entrapped ferrocene methanol (FcCH2OH) and ruthenium(II) tris(bipyridine) (Ru(bpy)3(2+)) exhibited the characteristic redox behavior of the molecules. The electroencapsulation of organic dyes in their "native" form proved to be more difficult because these species typically contain reducible functionalities that change the structure of the dye.

  1. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Wulff, H.; Rebl, H.; Zietz, C.; Arndt, K.; Bogdanowicz, R.; Nebe, B.; Bader, R.; Podbielski, A.; Hubička, Zdeněk; Hippler, R.

    2011-01-01

    Roč. 31, č. 7 (2011), s. 1512-1519 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100520 Keywords : implant coating * titanium-copper film * pulsed magnetron sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2011

  2. The Influence of Various Deposition Techniques on the Photoelectrochemical Properties of the Titanium Dioxide Thin Fil

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Klusoň, Petr; Dzik, P.; Veselý, M.; Baudyš, M.; Krýsa, J.; Šolcová, Olga

    2013-01-01

    Roč. 65, č. 3 (2013), s. 452-458 ISSN 0928-0707 R&D Projects: GA TA ČR TA01020804 Grant - others:GA ČR(CZ) GP104/09/P165 Institutional support: RVO:67985858 Keywords : titanium dioxide * photoelectrochemical properties * deposition techniques Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.547, year: 2013

  3. Influence of titanium-substrate roughness on Ca–P–O thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ananda Sagari, A.R., E-mail: arsagari@gmail.com [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Malm, Jari [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Laitinen, Mikko [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Rahkila, Paavo [Department of Biology of Physical Activity, P.O. Box 35, FIN-40014 University of Jyväskylä (Finland); Hongqiang, Ma [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyväskylä (Finland); Putkonen, Matti [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Beneq Oy, P.O. Box 262, FI-01511 Vantaa (Finland); Karppinen, Maarit [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Whitlow, Harry J.; Sajavaara, Timo [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland)

    2013-03-01

    Amorphous Ca–P–O films were deposited on titanium substrates using atomic layer deposition, while maintaining a uniform Ca/P pulsing ratio of 6/1 with varying number of atomic layer deposition cycles starting from 10 up to 208. Prior to film deposition the titanium substrates were mechanically abraded using SiC abrasive paper of 600, 1200, 2000 grit size and polished with 3 μm diamond paste to obtain surface roughness R{sub rms} values of 0.31 μm, 0.26 μm, 0.16 μm, and 0.10 μm, respectively. The composition and film thickness of as-deposited amorphous films were studied using Time-Of-Flight Elastic Recoil Detection Analysis. The results showed that uniform films could be deposited on rough metal surfaces with a clear dependence of substrate roughness on the Ca/P atomic ratio of thin films. The in vitro cell-culture studies using MC3T3 mouse osteoblast showed a greater coverage of cells on the surface polished with diamond paste in comparison to rougher surfaces after 24 h culture. No statistically significant difference was observed between Ca–P–O coated and un-coated Ti surfaces for the measured roughness value. The deposited 50 nm thick films did not dissolve during the cell culture experiment. - Highlights: ► Atomic layer deposition of Ca–P–O films on abraded Ti substrate ► Surface analysis using Time-Of-Flight Elastic Recoil Detection Analysis ► Dependence of substrate roughness on the Ca/P atomic ratio of thin films ► An increase in Ca/P atomic ratio with decreasing roughness ► Mouse osteoblast showed greater coverage of cells in polished surface.

  4. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    Science.gov (United States)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  6. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  7. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    Montero Villalobos, Mavis

    2001-01-01

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type M a O b a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation [es

  8. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  9. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    International Nuclear Information System (INIS)

    Zanoni, R.; Ioannidu, C.A.; Mazzola, L.; Politi, L.; Misiano, C.; Longo, G.; Falconieri, M.; Scandurra, R.

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides

  10. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  11. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  12. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  13. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, R., E-mail: robertino.zanoni@uniroma1.it [Dipartimento di Chimica, Università di Roma ‘La Sapienza’ p.le Aldo Moro 5, 00185 Rome (Italy); Ioannidu, C.A.; Mazzola, L.; Politi, L. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy); Misiano, C. [Romana Film Sottili, Anzio, Rome (Italy); Longo, G. [Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Ecole Polytechnique Fédérale de Lausanne, SB IPSB LPMV, BSP 409 (Cubotron UNIL), R.te de la Sorge, CH-1015 Lausanne (Switzerland); Falconieri, M. [ENEA, Unità Tecnica Applicazioni delle Radiazioni, via Anguillarese 301, 00123 Rome (Italy); Scandurra, R. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy)

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides.

  14. Hydrogen insertion in titanium carbide based thin films (nc-TiC{sub x}/a-C:H) - comparison with bulk TiC{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Julien; Jaoul, Cédric, E-mail: jaoul@ensil.unilim.fr; Glandut, Nicolas; Lefort, Pierre

    2016-08-01

    Nanocomposites composed of titanium carbide nanosized grains embedded in an amorphous hydrogenated carbon matrix (nc-TiC{sub x}/a-C:H) are prepared by hybrid Magnetron Sputtering - PECVD process using a titanium metal target and gaseous C{sub 6}H{sub 6}. By controlling the benzene flow rate, thin films with different carbon content are obtained. The structures of nc-TiC{sub x}/a-C:H materials are analyzed by X-ray diffraction, X-ray photoelectron and Raman spectroscopic methods. The electrochemical hydrogen insertion, as studied by cyclic voltammetry, strongly depends on the carbon content in the thin films. The correlation between the hydrogen insertion ability and the structure of materials are discussed. Furthermore, we show that the hydrogen insertion in these thin films reaches values much more significant than in bulk substoichiometric titanium carbide obtained by reactive sintering. - Highlights: • nc-TiC{sub x}/a-C:H thin films are prepared hybrid Magnetron Sputtering - PECVD process. • Different carbon contents are obtained by changing the hydrocarbon flowrate. • Expanded lattice parameter of the TiC{sub x} phase and a-C:H phase are observed. • Electrochemical hydrogen insertion strongly depends on the carbon content. • The maximum insertion is 22 times more important than bulk TiC{sub x}.

  15. Deposition of thin film of titanium on ceramic substrate using the discharge for hollow cathode for Al2O3/Al2O3 indirect brazing

    Directory of Open Access Journals (Sweden)

    Mary Roberta Meira Marinho

    2009-01-01

    Full Text Available Thin films of titanium were deposited onto Al2O3 substrate by hollow cathode discharge method for the formation of a ceramic-ceramic joint using indirect brazing method. An advantage of using this technique is that a relatively small amount of titanium is required for the metallization of the ceramic surface when compared with other conventional methods. Rapidly solidified brazing filler of Cu49Ag45Ce6 in the form of ribbons was used. The thickness of deposited titanium layer and the brazing temperature/time were varied. The quality of the brazed joint was evaluated through the three point bending flexural tests. The brazed joints presented high flexural resistance values up to 176 MPa showing the efficiency of the technique.

  16. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian [Veeco Instruments, 1 Terminal Drive, Plainview, New York 11803 (United States)

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  17. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO_2) thin films

    International Nuclear Information System (INIS)

    Nordin, N.; Azizah, N.; Hashim, U.

    2016-01-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO_2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  18. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO2) thin films

    Science.gov (United States)

    Nordin, N.; Hashim, U.; Azizah, N.

    2016-07-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  19. Application of photo-excitation reaction on titanium oxide thin film for control of wettability; Sanka chitann hakumakujo no hikari reiki hanno no nuresei seigyo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Nakajima, A.; Hashimoto, K. [The Univ. of Tokyo, Tokyo (Japan); Takada, Y. [Kyushu Univ., Fukuoka (Japan)

    2000-03-31

    It is clarified that the photo-excitation hydrophilic reaction increasing wettability remarkably is induced by changing surface structure of titanium oxide radiated light. There are already many examples being in practical use of coating products applied hydrophilic reaction of titanium oxide surface such as drip-proof side millers for automobiles, self-cleaning building materials, and the like. When surface of titanium oxide having high activities for oxidisation and decomposition is coated organic materials and radiated light, wettability of surface changes as organic materials are decomposed. If it is possible to change wettability shaping pattern drastically by radiating light, the possibility of application for printing materials will be developed. After increasing contact angle by coating water and oil repellent on the titanium oxide thin film, images can be shaped by radiating light into pattern for changing surface of titanium oxide to be ultra hydrophilicity as decomposition of repellent. At that time, contact angle is 150 degree in water, 80 degree in oil, for not radiated aria, and is 0 degree in water and oil for radiated aria. Application for control technology of wettability keeps possibility of broader development to itself, not staying ability of self-cleaning and drip-proof. (NEDO)

  20. Synthesis and characterization of titanium dioxide thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps C, E.; Falcon B, T.; Carapia M, L.; Haro P, E.; Camacho L, M.A.

    2000-01-01

    In this work are presented the results obtained when TiO 2 thin films were deposited using the laser ablation technique. Thin films were deposited at different substrate temperatures, and different oxygen pressures, with the purpose of studying the influence of this deposit parameters in the structural characteristics of the films obtained. The structural characterization was realized through Raman Spectroscopy and X-ray Diffraction (XRD), the surface morphology of the layers deposited was verified by Scanning Electron Microscopy (Sem). The results show that the films obtained are of TiO 2 in rutile phase, getting this at low substrate temperatures, its morphology shows a soft surface with some spattered particles and good adherence. (Author)

  1. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  2. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    Science.gov (United States)

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  3. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes

    International Nuclear Information System (INIS)

    Kamohara, Toshihiro; Akiyama, Morito; Ueno, Naohiro; Nonaka, Kazuhiro; Kuwano, Noriyuki

    2007-01-01

    Highly c-axis-oriented aluminum nitride (AlN) thin films have been prepared on titanium (Ti) bottom electrodes by using AlN interlayers. The AlN interlayers were deposited between Ti electrodes and silicon (Si) substrates, such as AlN/Ti/AlN/Si. The crystallinity and crystal orientation of the AlN films and Ti electrodes strongly depended on the thickness of the AlN interlayers. Although the sputtering conditions were the same, the X-ray diffraction intensity of AlN (0002) and Ti (0002) planes drastically increased, and the full-width at half-maximum (FWHM) of the X-ray rocking curves decreased from 5.1 o to 2.6 o and from 3.3 o to 2.0 o , respectively. Furthermore, the piezoelectric constant d 33 of the AlN films was significantly improved from - 0.2 to - 4.5 pC/N

  4. Photo-catalytic studies of transition metal doped titanium dioxide thin films processed by metalorganic decomposition (MOD) method

    Science.gov (United States)

    Talagala, P.; Marko, X.; Padmanabhan, K. R.; Naik, R.; Rodak, D.; Cheng, Y. T.

    2006-03-01

    We have synthesized pure and transition element (Fe, Co and V) doped Titanium oxide thin films of thickness ˜ 350 nm on sapphire, Si, and stainless steel substrates by Metalorganic Decomposition (MOD) method. The films were subsequently annealed at appropriate temperatures ( 500-750C) to obtain either anatase or the rutile phase of TiO2. Analysis of the composition of the films were performed by energy dispersive X-ray(EDAX) and Rutherford backscattering spectrometry(RBS). Ion channeling was used to identify possible epitaxial growth of the films on sapphire. Both XRD and Raman spectra of the films exhibit that the films annealed at 550C are of anatase phase, while those annealed at 700C seem to prefer a rutile structure. The water contact angle measurements of the films before and after photoactivation, demonstrate a significant reduction in the contact angle for the anatase phase. However, the variation in contact angle was observed for films exposed to UV (<10^o-30^o) and dark (25^o-50^o). Films doped with Fe show a trend towards lower contact angle than those doped with Co. Results with films doped with V will also be included.

  5. Notes on the photoinduced characteristics of transition metal doped and undoped titanium dioxide thin films

    Czech Academy of Sciences Publication Activity Database

    Kment, Štěpán; Kmentová, Hana; Hubička, Zdeněk; Klusoň, Jan; Krýsa, J.; Církva, Vladimír; Gregora, Ivan; Šolcová, Olga; Jastrabík, Lubomír

    2010-01-01

    Roč. 348, č. 1 (2010), s. 198-205 ISSN 0021-9797 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z40720504 Keywords : sol-gel * thin layers * metal doped TiO 2 * IPCE * photocurrent * photocatalysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.068, year: 2010

  6. {11-bar 01} twin dislocation structures in evaporated titanium thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, Julin; Fan, Xudong; Kasukabe, Y.; Yamada, Y.

    1995-01-01

    High-resolution transmission electron micrographs of { 11-bar 01} interfacial twin dislocations in Ti thin films are reexamined. Computer simulations of the experimental images were obtained using atomic models deduced by Pond, Bacon and Serra (Phil Mag Letts, 1995). Two twin dislocations were analysed, with step heights of 4 x d(K 1 ) and 2 x d (K 1 ), where d(K 1 ) is the spacing of the { 11-bar 01 } planes. Reasonable agreement with the predicted structures was obtained at about 0.17nm resolution. 10 refs., 2 figs

  7. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  8. Modified hyperbolic sine model for titanium dioxide-based memristive thin films

    Science.gov (United States)

    Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana

    2018-03-01

    Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.

  9. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Thu Hong Anh Ngo

    2016-12-01

    Full Text Available In this paper, the coating of TiO2 nanoparticles onto the surface of a polyamide thin film composite nanofiltration membrane has been studied. Changes in the properties and separation performance of the modified membranes were systematically characterized. The experimental results indicated that the membrane surface hydrophilicity was significantly improved by the presence of the coated TiO2 nanoparticles with subsequent UV irradiation. The separation performance of the UV-irradiated TiO2-coated membranes was improved with a great enhancement of flux and a very high retention for removal of residual dye in an aqueous feed solution. The antifouling property of the UV-irradiated TiO2-coated membranes was enhanced with higher maintained flux ratios and lower irreversible fouling factors compared with an uncoated membrane.

  10. Titanium, vanadium and chromium valences in silicates of ungrouped achondrite NWA 7325 and ureilite Y-791538 record highly-reduced origins

    Science.gov (United States)

    Sutton, S. R.; Goodrich, C. A.; Wirick, S.

    2017-05-01

    Titanium, Cr, and V valences were determined by applying micro-X-ray Absorption Near Edge Structure (micro-XANES) spectroscopy methods to individual grains of olivine and pyroxene in the ungrouped achondrite NWA 7325 and ureilite Y-791538, as well as to plagioclase in NWA 7325. The advantages of applying multiple, multivalent-element-based oxybarometers to individual grains are (1) the ability to cover the entire oxygen fugacity (fO2) range encountered in nature, and (2) the increased reliability from consistent results for semi-independent fO2 proxies. fO2 values were inferred from each mineral valence determination after correcting with available laboratory-experiment-derived, valence-specific partition coefficients to obtain melt valences and then calibrating with the fO2 values of the relevant equal species proportions points suggested for igneous (primarily basaltic) systems. The resulting olivine and pyroxene valences are highly reduced and similar in the two meteorites with substantial fractions of Cr2+, Ti3+ and V2+. The exception is Cr in NWA 7325 pyroxene which is much more oxidized than the Cr in its olivine. Chromium and Ti in plagioclase in NWA 7325 is relatively oxidized (V valence not determined). The anomalously oxidized Cr in NWA 7325 pyroxene may be due to a secondary reheating event that oxidized Cr in the pyroxene without similarly oxidizing Ti and V. Such a separation of the redox couples may be an effect of re-equilibration kinetics, where the valence of Cr would be more rapidly modified. These valences yielded similar mean fO2s for the two meteorites; IW-3.1 ± 0.2 for NWA 7325 and IW-2.8 ± 0.2 for Y-791538, consistent with an origin of NWA 7325 in either Mercury or an asteroid that experienced redox conditions similar to those on the ureilite parent body.

  11. Structural characterization of thin films of titanium nitride deposited by laser ablation; Caracterizacion estructural de peliculas delgadas de nitruro de titanio depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10{sup -2} Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10{sup -3} Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  12. Pulsed Photoinitiated Fabrication of Inkjet Printed Titanium Dioxide/Reduced Graphene Oxide Nanocomposite Thin Films.

    Science.gov (United States)

    Bourgeois, Briley; Luo, Sijun; Riggs, Brian; Ji, Yaping; Adireddy, Shiva; Schroder, Kurt; Farnsworth, Stan; Chrisey, Douglas B; Escarra, Matthew

    2018-05-08

    This work reports a new technique for scalable and low temperature processing of nanostructured-TiO2 thin films, allowing for practical manufacturing of TiO2 based devices such as perovskite solar cells at low temperature or on flexible substrates. Dual layers of dense and mesoporous TiO2/graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J/cm2) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E¬g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 nm to 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 +/- 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 eV to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 +/- 1.11 Ω/□ and 28.90 +/- 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO2 while offering the distinct advantages of scalable manufacturing, low-temperature processing

  13. Electrodeposition of Uranium and Plutonium on Thin Carbon and Titanium Substrates

    International Nuclear Information System (INIS)

    Henderson, R.A.; Gostic, J.M.; Burke, J.T.; Fisher, S.E.; Wu, C.Y.

    2011-01-01

    Preparation of Pu and U targets on thin natural C (100 (micro)g/cm 2 ) and ti (2 and 3 (micro)m) substrates is described. The Actinide material of interest was first purified using ion exchange chromatography to remove any matrix contaminants or decay products present in the parent stock solution. The actinide solution was prepared in 0.05 M HNO 3 with a final aliquot volume not exceeding 100 (micro)L for the deposition procedure. The electroplating cells were developed in-house and were primarily made of Teflon. The source material deposited ranged from 125 to 400 (micro)g/cm 2 . It was determined that multiple layers of U and Pu were required to produce thicker targets on Ti. Plating efficiency was greatly affected by the cell volume, solution aliquot size, pre-treatment of the foils, solution mixing during palting, and the fit of the electrode contact with the target substrate. The final procedure used for deposition is described in detail.

  14. Electrical instability of InGaZnO thin-film transistors with and without titanium sub-oxide layer under light illumination

    Science.gov (United States)

    Chiu, Y. C.; Zheng, Z. W.; Cheng, C. H.; Chen, P. C.; Yen, S. S.; Fan, C. C.; Hsu, H. H.; Kao, H. L.; Chang, C. Y.

    2017-03-01

    The electrical instability behaviors of amorphous indium-gallium-zinc oxide thin-film transistors with and without titanium sub-oxide passivation layer were investigated under light illumination in this study. For the unpassivated IGZO TFT device, in contrast with the dark case, a noticeable increase of the sub-threshold swing was observed when under the illumination environment, which can be attributed to the generation of ionized oxygen vacancies within the α-IGZO active layer by high energy photons. For the passivated TFT device, the much smaller SS of 70 mV/dec and high device mobility of >100 cm2/Vs at a drive voltage of 3 V with negligible degradation under light illumination are achieved due to the passivation effect of n-type titanium sub-oxide semiconductor, which may create potential application for high-performance display.

  15. Effect of titanium oxide-polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Della Pelle, Andrea M. [LGS Innovations, 15 Vreeland Rd., Florham Park, NJ 07932 (United States); Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St. Amherst, MA 01003 (United States); Maliakal, Ashok, E-mail: maliakal@lgsinnovations.com [LGS Innovations, 15 Vreeland Rd., Florham Park, NJ 07932 (United States); Sidorenko, Alexander [Department of Chemistry and Biochemistry, University of the Sciences, 600 South 43rd St., Philadelphia, PA 191034 (United States); Thayumanavan, S. [Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St. Amherst, MA 01003 (United States)

    2012-07-31

    Previous studies have shown that organic thin film transistors with pentacene deposited on gate dielectrics composed of a blend of high K titanium oxide-polystyrene core-shell nanocomposite (TiO{sub 2}-PS) with polystyrene (PS) perform with an order of magnitude increase in saturation mobility for TiO{sub 2}-PS (K = 8) as compared to PS devices (K = 2.5). The current study finds that this performance enhancement can be translated to alternative small single crystal organics such as {alpha}-sexithiophene ({alpha}-6T) (enhancement factor for field effect mobility ranging from 30-100 Multiplication-Sign higher on TiO{sub 2}-PS/PS blended dielectrics as compared to homogenous PS dielectrics). Interestingly however, in the case of semicrystalline polymers such as (poly-3-hexylthiophene) P3HT, this dramatic enhancement is not observed, possibly due to the difference in processing conditions used to fabricate these devices (film transfer as opposed to thermal evaporation). The morphology for {alpha}-sexithiophene ({alpha}-6T) grown by thermal evaporation on TiO{sub 2}-PS/PS blended dielectrics parallels that observed in pentacene devices. Smaller grain size is observed for films grown on dielectrics with higher TiO{sub 2}-PS content. In the case of poly(3-hexylthiophene) (P3HT) devices, constructed via film transfer, morphological differences exist for the P3HT on different substrates, as discerned by atomic force microscopy studies. However, these devices only exhibit a modest (2 Multiplication-Sign ) increase in mobility with increasing TiO{sub 2}-PS content in the films. After annealing of the transferred P3HT thin film transistor (TFT) devices, no appreciable enhancement in mobility is observed across the different blended dielectrics. Overall the results support the hypothesis that nucleation rate is responsible for changes in film morphology and device performance in thermally evaporated small molecule crystalline organic semiconductor TFTs. The increased nucleation

  16. Effect of titanium oxide–polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors

    International Nuclear Information System (INIS)

    Della Pelle, Andrea M.; Maliakal, Ashok; Sidorenko, Alexander; Thayumanavan, S.

    2012-01-01

    Previous studies have shown that organic thin film transistors with pentacene deposited on gate dielectrics composed of a blend of high K titanium oxide–polystyrene core–shell nanocomposite (TiO 2 –PS) with polystyrene (PS) perform with an order of magnitude increase in saturation mobility for TiO 2 –PS (K = 8) as compared to PS devices (K = 2.5). The current study finds that this performance enhancement can be translated to alternative small single crystal organics such as α-sexithiophene (α-6T) (enhancement factor for field effect mobility ranging from 30-100× higher on TiO 2 –PS/PS blended dielectrics as compared to homogenous PS dielectrics). Interestingly however, in the case of semicrystalline polymers such as (poly-3-hexylthiophene) P3HT, this dramatic enhancement is not observed, possibly due to the difference in processing conditions used to fabricate these devices (film transfer as opposed to thermal evaporation). The morphology for α-sexithiophene (α-6T) grown by thermal evaporation on TiO 2 –PS/PS blended dielectrics parallels that observed in pentacene devices. Smaller grain size is observed for films grown on dielectrics with higher TiO 2 –PS content. In the case of poly(3-hexylthiophene) (P3HT) devices, constructed via film transfer, morphological differences exist for the P3HT on different substrates, as discerned by atomic force microscopy studies. However, these devices only exhibit a modest (2×) increase in mobility with increasing TiO 2 –PS content in the films. After annealing of the transferred P3HT thin film transistor (TFT) devices, no appreciable enhancement in mobility is observed across the different blended dielectrics. Overall the results support the hypothesis that nucleation rate is responsible for changes in film morphology and device performance in thermally evaporated small molecule crystalline organic semiconductor TFTs. The increased nucleation rate produces organic polycrystalline films with small grain

  17. Characteristics and optical properties of iron ion (Fe{sup 3+})-doped titanium oxide thin films prepared by a sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Lin, H.J. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)], E-mail: hjlin@nuu.edu.tw; Yang, T.S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2009-04-03

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations have been prepared on a glass substrate by the sol-gel spin coating process. Characteristics and optical properties of TiO{sub 2} thin films doping of various Fe content were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis) and spectroscopic ellipsometry. The crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0 to 25.0 wt%. During the Fe{sup 3+} addition to 25.0 wt%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The absorption edge of TiO{sub 2} thin films shifted towards longer wavelengths (i.e. red shifted) from 355 to 415 nm when the Fe{sup 3+}-doped concentration increased from 0 to 25.0 wt%. The values of the refractive index (n), and extinction coefficient (k), decreased with an increasing Fe{sup 3+} content. Moreover, the band-gap energy of TiO{sub 2} thin films also decreased from 3.29 to 2.83 eV with an increase in the Fe{sup 3+} content from 0 to 25.0 wt%.

  18. Spectro-ellipsometric studies of sputtered amorphous Titanium dioxide thin films: simultaneous determination of refractive index, extinction coefficient, and void distribution

    CERN Document Server

    Lee, S I; Oh, S G

    1999-01-01

    Amorphous titanium dioxide thin films were deposited onto silicon substrates by using RF magnetron sputtering, and the index of refraction, the extinction coefficient, and the void distribution of these films were simultaneously determined from the analyses of there ellipsometric spectra. In particular, our novel strategy, which combines the merits of multi-sample fitting, the dual dispersion function, and grid search, was proven successful in determining optical constants over a wide energy range, including the energy region where the extinction coefficient was large. Moreover, we found that the void distribution was dependent on the deposition conditions, such as the sputtering power, the substrate temperature, and the substrate surface.

  19. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    Science.gov (United States)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  20. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  1. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  2. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  3. Physical Properties of ZnO Thin Films Codoped with Titanium and Hydrogen Prepared by RF Magnetron Sputtering with Different Substrate Temperatures

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2015-01-01

    Full Text Available Transparent conducting titanium-doped zinc oxide (TZO thin films were prepared on glass substrates by RF magnetron sputtering using 1.5 wt% TiO2-doped ZnO as the target. Electrical, structural, and optical properties of films were investigated as a function of H2/(Ar + H2 flow ratios (RH and substrate temperatures (TS. The optimal RH value for achieving high conducting TZO:H thin film decreased from 10% to 1% when TS increased from RT to 300°C. The lowest resistivity of 9.2×10-4 Ω-cm was obtained as TS=100°C and RH=7.5%. X-ray diffraction patterns showed that all of TZO:H films had a hexagonal wurtzite structure with a preferred orientation in the (002 direction. Atomic force microscopy analysis revealed that the film surface roughness increased with increasing RH. The average visible transmittance decreased with increasing RH for the RT-deposited film, while it had not considerably changed with different RH for the 300°C-deposited films. The optical bandgap increased as RH increased, which is consistent with the Burstein-Moss effect. The figure of merits indicated that TS=100°C and RH=7.5% were optimal conditions for TZO thin films as transparent conducting electrode applications.

  4. Semi-transparent ordered TiO{sub 2} nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Szkoda, Mariusz, E-mail: mariusz-szkoda@wp.pl [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Lisowska-Oleksiak, Anna [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Grochowska, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland); Skowroński, Łukasz [Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland)

    2016-09-15

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO{sub 2} were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO{sub 2} layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO{sub 2} nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO{sub 2} formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO{sub 2} films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm{sup −2}) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  5. Semi-transparent ordered TiO_2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    International Nuclear Information System (INIS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-01-01

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO_2 were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO_2 layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO_2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO_2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO_2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm"−"2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  6. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.

    Science.gov (United States)

    Lipinski, P; Barbas, A; Bonnet, A-S

    2013-12-01

    Because of its biocompatibility and high mechanical properties, the commercially pure grade 2 titanium (CPG2Ti) is largely used for fabrication of patient specific implants or hard tissue substitutes with complex shape. To avoid the stress-shielding and help their colonization by bone, prostheses with a controlled porosity are designed. The selective laser melting (SLM) is well adapted to manufacture such geometrically complicated structures constituted by struts with rough surfaces and relatively small diameters. Few studies were dedicated to characterize the fatigue properties of SLM processed samples and bulk parts. They followed conventional or standard protocols. The fatigue behavior of standard samples is very different from the one of porous raw structures. In this study, the SLM made "as built" (AB) and "heat treated" (HT) tubular samples were tested in fatigue. Wöhler curves were determined in both cases. The obtained endurance limits were equal to σD(AB)=74.5MPa and σD(HT)=65.7MPa, respectively. The heat treatment worsened the endurance limit by relaxation of negative residual stresses measured on the external surface of the samples. Modified Goodman diagram was established for raw specimens. Porous samples, based on the pattern developed by Barbas et al. (2012), were manufactured by SLM. Fatigue tests and finite element simulations performed on these samples enabled the determination of a simple rule of fatigue assessment. The method based on the stress gradient appeared as the best approach to take into account the notch influence on the fatigue life of CPG2Ti structures with a controlled porosity. The direction dependent apparent fatigue strength was found. A criterion based on the effective, or global, nominal stress was proposed taking into account the anisotropy of the porous structures. Thanks to this criterion, the usual calculation methods can be used to design bone substitutes, without a precise modelling of their internal fine porosity.

  7. Effects of bias voltage on the corrosion resistance of titanium nitride thin films fabricated by dynamic plasma immersion ion implantation-deposition

    International Nuclear Information System (INIS)

    Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2002-01-01

    Dynamic plasma-based thin-film deposition incorporating ion mixing and plasma immersion is an effective technique to synthesize nitride-based hard films. We have fabricated TiN films using a filtered titanium vacuum arc in a nitrogen plasma environment. A pulsed high voltage is applied to the target for a short time when the metallic arc is fired to attain simultaneous plasma deposition and ion mixing. We investigate the dependence of the corrosion resistance and interfacial structure of the treated samples on the applied voltage. Our Auger results reveal an oxygen-rich surface film due to the non-ultra-high-vacuum conditions and high affinity of oxygen to titanium. The corrosion current is reduced by two orders of magnitude comparing the sample processed at 8 kV to the untreated sample, but the 23 kV sample unexpectedly shows worse results. The pitting potential diminishes substantially although the corrosion current is similar to that observed in the 8 kV sample. The polarization test data are consistent with our scanning electron microscopy observation, corroborating the difference in the pitting distribution and appearance. This anomalous behavior is believed to be due to the change in the chemical composition as a result of high-energy ion bombardment

  8. TiO2 thin and thick films grown on Si/glass by sputtering of titanium targets in an RF inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2015-01-01

    TiO 2 thin and thick films were deposited on silicon/glass substrates using RF inductive plasma in continuous wave. The films thickness, as well as phases control, is achieved with a gradual increase in temperature substrates varying supplied RF power or working gas pressure besides deposition time as well. The deposition conditions were: argon 80%/oxygen 20% carefully calibrated mixture of 2 to 7×10 −2 mbar as working gas pressure range. Deposition time 0.5 to 5 hours, 500 or 600 W RF power at 13.56 MHz frequency and 242-345 °C substrates temperature range. The titanium dioxide deposited on the substrates is grown by sputtering of a titanium target negatively polarized at 3-5 kV DC situated 14 mm in front of such substrates. The plasma reactor is a simple Pyrex-like glass cylindrical vessel of 50 cm long and 20 cm in diameter. Using the before describe plasma parameters we obtained films only anatase and both anatase/rutile phases with stoichiometric different. The films were characterized by X-ray photoelectron spectroscopy (XPS), stylus profilometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. (paper)

  9. New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent

    DEFF Research Database (Denmark)

    Bennett, William W.; Teasdale, Peter R.; Panther, Jared G.

    2010-01-01

    A new diffusive gradients in a thin film (DGT) technique, using a titanium dioxide based adsorbent (Metsorb), has been developed and evaluated for the determination of dissolved inorganic arsenic and selenium. AsIII, AsV, and SeIV were found to be quantitatively accumulated by the adsorbent (uptake...... measurement of inorganic arsenic. Reproducibility of the technique in field deployments was good (relative standard deviation arsenic and 0.05 μg L-1 for SeIV. The results of this study confirmed that DGT with Metsorb was a reliable...... and robust method for the measurement of inorganic arsenic and the selective measurement of SeIV within useful limits of accuracy....

  10. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  11. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  12. Improvement of the Surface Hardness of Stainless Steel with the TitaniumCarbonitride Ti(CN) Thin Films

    International Nuclear Information System (INIS)

    Agus-Purwadi; Tri-Mardji Atmono; Widdi-Usada; Lely-Susita; Yunanto

    2000-01-01

    Fabrication of the T i (CN) thin films with methods of implantation and RFsputtering for improving the surfaces hardness of stainless steel (SS) hasbeen done. Some kinds of T i C thin films which made individually by varyingof RF sputtering power from 0 up to 160 watt are implanted by the nitrogenion beams on the doses and energy ion optimum of 6.107 x 10 17 ion/cm 2 and100 keV, also fabrication of T i (CN) thin films use RF sputtering method withT i target and reaction gases as argon, silene and nitrogen on the optimum ofsputtering parameter condition. The thin films yields are characterized byusing Microhardness Tester MX 170, obtained SS hardness which layered T i (CN)as 402.5 KHN from its initial of 215.54 KHN and 371.74 KHN (layered T i C), itmeans that the SS surface hardness improve 1.867 times cumulatively. From theX-Ray Diffraction (XRD) analysis yield showed that the microstructure ofT i (CN) films on the SS substrates are dominated by characteristic cubiccrystal structure with Miller plane orientation (111) on the scattering angleof 2 θ = 44 o . Morphology visualization of T i (CN) thin films crosssection on the SS substrate is realized by Spectroscopy Electron Microscope(SEM). (author)

  13. Efficient 1.54-μm emission through Eu2+ sensitization of Er3+ in thin films of Eu2+/Er3+ codoped barium strontium silicate under broad ultraviolet light excitation

    International Nuclear Information System (INIS)

    Li, Leliang; Zheng, Jun; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2015-01-01

    Thin films of Eu 2+ /Er 3+ codoped barium strontium silicate were deposited on a thermal oxide Si substrate by magnetron sputtering. Optical properties suggest that after a rapid annealing process, these films can lead to efficient Er 3+ emission at 1.54 μm with a lifetime of about 7.9 ms. Intense 1.54-μm light emission was achieved under broad ultraviolet light excitation through efficient energy transfer from Eu 2+ to Er 3+ . These results indicate that the Eu 2+ /Er 3+ thin films have potential applications as low cost and compact erbium doped waveguide amplifiers pumped by LEDs. - Highlights: • The Er 0.07 Eu 0.14 Sr 1.14 Ba 0.79 SiO 4 films are fabricated by magnetron sputtering. • Efficient energy transfer from Eu 2+ to Er 3+ ions by the dipole–dipole interaction. • Intense 1.54 μm emission is achieved under broad excitation spectrum. • The films have potential applications as low cost and compact EDWAs

  14. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO{sub 2}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, N.; Azizah, N. [Institute of Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my [Institute of Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia); School of Microelctronic Engineering, Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia)

    2016-07-06

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO{sub 2}) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  15. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide

    Science.gov (United States)

    Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin

    2018-04-01

    Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.

  16. Low-Temperature, Chemically Grown Titanium Oxide Thin Films with a High Hole Tunneling Rate for Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Tsu Lee

    2016-05-01

    Full Text Available In this paper, we propose a chemically grown titanium oxide (TiO2 on Si to form a heterojunction for photovoltaic devices. The chemically grown TiO2 does not block hole transport. Ultraviolet photoemission spectroscopy was used to study the band alignment. A substantial band offset at the TiO2/Si interface was observed. X-ray photoemission spectroscopy (XPS revealed that the chemically grown TiO2 is oxygen-deficient and contains numerous gap states. A multiple-trap-assisted tunneling (TAT model was used to explain the high hole injection rate. According to this model, the tunneling rate can be 105 orders of magnitude higher for holes passing through TiO2 than for flow through SiO2. With 24-nm-thick TiO2, a Si solar cell achieves a 33.2 mA/cm2 photocurrent on a planar substrate, with a 9.4% power conversion efficiency. Plan-view scanning electron microscopy images indicate that a moth-eye-like structure formed during TiO2 deposition. This structure enables light harvesting for a high photocurrent. The high photocurrent and ease of production of chemically grown TiO2 imply that it is a suitable candidate for future low-cost, high-efficiency solar cell applications.

  17. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-08-25

    Highlights: {yields} Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. {yields} Distribution of precipitates was analyzed with microscopy and diffraction pattern. {yields} During austenite-ferrite transformation, interface precipitation of NbC was observed. {yields} Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo{sub 2}C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1]{sub NbC}//[0 0 1]{sub {alpha}-Fe}, implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  18. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    International Nuclear Information System (INIS)

    Jia, Z.; Misra, R.D.K.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. → Distribution of precipitates was analyzed with microscopy and diffraction pattern. → During austenite-ferrite transformation, interface precipitation of NbC was observed. → Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo 2 C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1] NbC //[0 0 1] α-Fe , implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  19. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    Science.gov (United States)

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of deflocculation on photo induced thin layer titanium dioxide disintegration of dairy waste activated sludge for cost and energy efficient methane production.

    Science.gov (United States)

    Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M

    2017-11-01

    In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structure and phase composition of the titanium dioxide thin films deposited on the surface of the metallized track membranes from polyethyleneterephthalate by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Artoshina, O.V.; Semina, V.K.; Kochnev, Yu.K.; Nechaev, A.N.; Apel', P.Yu.; Milovich, F.O.; Iskhakova, L.D.; Ermakov, R.P.; Rossouw, A.; Gorberg, B.L.

    2016-01-01

    Thin films of TiO 2 , Ag, Ag-TiO 2 , Cu-TiO 2 deposited on the surface of polyethyleneterephthalate track membranes (TM) were investigated. Metals and oxide deposition was carried out by the method of vacuum reactive sputtering with application of a planar magnetron. The microstructure of samples was studied by the scanning and transmission electron microscopy (TEM) techniques. The elemental composition of coatings was investigated using energy-dispersive spectroscopy. For the identification of phase structure, X-ray diffraction phase analysis was used at various temperatures, and the XRD crystal structure patterns of the samples were obtained by the selected area electron diffraction (SAED) in TEM analysis. It was found that titanium dioxide on the TM surface can be present in three forms: nanocrystals of tetragonal anatase with impurity of rhombic brookite and the so-called X-ray amorphous TiO 2 . Cubical Cu 2 O was identified in TM metallized by copper. Optical properties of composite membranes and films were investigated by the method of absorption spectroscopy. Calculation of energies of the direct and indirect allowed optical transitions was carried out based on the analysis of absorption spectra of the studied composite membranes. [ru

  2. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  3. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Bharathy, P. Vijai [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Nataraj, D., E-mail: de.natraj@gmail.com [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Chu, Paul K.; Wang, Huaiyu [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Kiran, M.S.R.N. [School of Physics, University of Hyderabad, Hyderabad, Andra Pradesh (India); Silvestre-Albero, J. [Laboratorio de Materiales Avanzados, Departmento de Quimica Inorganica, Universidad de Alicante, Ap 99, E-03080 Alicante (Spain); Mangalaraj, D. [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India)

    2010-10-15

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp{sup 3}/sp{sup 2} hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  4. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    International Nuclear Information System (INIS)

    Bharathy, P. Vijai; Nataraj, D.; Chu, Paul K.; Wang, Huaiyu; Yang, Q.; Kiran, M.S.R.N.; Silvestre-Albero, J.; Mangalaraj, D.

    2010-01-01

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp 3 /sp 2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  5. Poly(4-vinylphenol-co-methyl methacrylate) / titanium dioxide nanocomposite gate insulators for 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue; Park, Jiho; Baang, Sungkeun; Park, Jaehoon [Hallym University, Chuncheon (Korea, Republic of); Piao, Shanghao; Kim, Sohee; Choi, Hyoungjin [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Poly(4-vinylphenol-co-methyl methacrylate) / titanium dioxide (TiO{sub 2}) nanocomposite insulators were fabricated for application in 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) thin-film transistors (TFTs). The capacitance of the fabricated capacitors with this nanocomposite insulator increased with increasing content of the high-dielectric-constant TiO{sub 2} nanoparticles. Nonetheless, particle aggregates, which were invariably produced in the insulator at higher TiO{sub 2} contents, augmented gate-leakage currents during device operation while the rough surface of the insulator obstructed charge transport in the conducting channel of the TIPS-Pn TFTs. These results suggest a significant effect of the morphological characteristics of nanocomposite insulators on TFT performance, as well as on their dielectric properties. Herein, the optimal particle composition was determined to be approximately 1.5 wt%, which contributed to characteristic improvements in the drain current, field-effect mobility, and threshold voltage of TIPS-Pn TFTs.

  6. Structural, microstructural and transport properties study of lanthanum lithium titanium perovskite thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Maqueda, O.; Sauvage, F.; Laffont, L.; Martinez-Sarrion, M.L.; Mestres, L.; Baudrin, E.

    2008-01-01

    Lanthanum lithium titanate thin films were grown by Pulsed Laser Deposition. La 0.57 Li 0.29 TiO 3 dense films with smooth surfaces were obtained after optimization of the growth parameters. Such films deposited at 700 deg. C under 15 Pa are nano-crystalline with domains corresponding to the cubic and tetragonal modifications of this phase. In relation to the measured conductivities/activation energy and to previous works, we clearly underlined that the films of practical interest, prepared at relatively low temperature, are predominantly formed from the tetragonal ordered phase

  7. Titanium ; dream new material

    International Nuclear Information System (INIS)

    Lee, Yong Tae; Kim Seung Eon; Heoon, Yong Taek; Jung, Hui Won

    2001-11-01

    The contents of this book are history of Titanium, present situation of Titanium industry, property of Titanium alloy, types of it, development of new alloy of Titanium smelting of Titanium, cast of Titanium and heat treatment of Titanium, Titanium alloy for plane, car parts, biological health care, and sport leisure and daily life, prospect, and Titanium industrial development of Titanium in China.

  8. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method

    International Nuclear Information System (INIS)

    Liao Yihung; Chou, J.-C.

    2009-01-01

    We used titanium dioxide (TiO 2 ) as the sensing layer of an ion selective pH sensor electrode, and as the substrate for a procaine drug sensitive membrane sensor. The TiO 2 thin films were prepared using sol-gel spin coating technology. We adopted the Ti(OC 4 H 9 ) 4 as the precursor, and added an ethanol solute to obtain the TiO 2 sol. The sol-gel was spun coated onto the indium tin oxide (ITO) substrate. The drug sensitive membrane was coated on the TiO 2 film. We then measured the I DS -V G curves of the TiO 2 ion selective electrode (ISE) pH sensor in pH buffer solutions that had different pH concentrations using a Keithley 236 Semiconductor Parameter Analyzer instrument. The procaine concentration was measured from 10 -2 M to 10 -6 M with the drug sensitive membrane using a HP 34401A Digital Multimeter. We prepared the TiO 2 ISE pH sensor and obtained a high pH sensitivity of 58.73 mV/pH. Uniform TiO 2 films surface structures, with an average roughness (Ra) of 10.211 nm and root mean square roughness (Rms) of 13.01 nm were obtained. The drift effect of the titanium dioxide ion selective pH sensor electrode is 1.97 mV h -1 . The sensitivity of the procaine drug sensor is 55.03 mV pC -1 between 1.0 x 10 -2 mol L -1 and 1.0 x 10 -6 mol L -1 procaine concentrations. The detection limit is 5.0 x 10 -6 mol L -1 . The response time to reach 90% output voltage is 16 s. Forty seconds are required to reach 95% output voltage. The procaine drug sensor 1 x 10 -3 mol L -1 drift test is 3.64 mV h -1 and the variation in output voltage of the repeated measurement is less than 7.4 mV

  9. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  10. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  11. Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    José E. Alfonso

    2014-04-01

    Full Text Available The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220–250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm. However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films.

  12. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  13. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  14. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films; Potencial de degradacao fotocatalitica do diclofenaco potassico utilizando filmes finos de dioxido de titanio modificado com escandio e prata

    Energy Technology Data Exchange (ETDEWEB)

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A., E-mail: rafaelciola@hotmail.com [Universidade Estadual de Mato Grosso do Sul (UFMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  15. Influence of the incorporation of titanium dioxide (TiO{sub 2}) on the morphological, structural and electrical properties of Graphene oxide (GO) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Viana Junior, Emilson Ribeiro; Wegher, Gustavo; Deus, Jeferson Ferreira de, E-mail: emilsonjunior@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba (Brazil)

    2016-07-01

    Full text: Carbon based nanostructures, as Carbon Nanotubes (CNT), Graphene (G) and Graphene Oxide (GO) have been extensively studied in the last years due to their unique electrical and optical properties. Recent research show that graphene can be used to improve the dispersion and stabilization of metal and metal-oxide nanostructures. Titanium dioxide (TiO{sub 2}) has been studied due to its non-toxicity, chemical stability and optoelectronic properties. However, the recombination of photoinduced electrons and holes limits its use on optoelectronic devices. To improve the charge separation efficiency of TiO{sub 2}, much effort has been focused on TiO{sub 2} nanocomposites. In this work, thin films devices of GO and Graphene Oxide with TiO{sub 2} (GO-TiO{sub 2}) were prepared using an alternative chemical route based on the Hummer’s method. The morphology and crystalline structure of the GO and GO with TiO{sub 2} thin films was investigated by X-ray power diffraction (XRD) and scanning electron microscopy (SEM). Was found that the anatase TiO{sub 2} TF were incorporated on the GO structure. Ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR) were also performed in order to corroborate with the results of XRD and SEM obtained. The electrical characterization of the GO and GO-TiO{sub 2} TF were performed using the four-probe van der Pauw method. The resistivity, density and the mobility of the carriers in the TFs were determined as a function of temperature. It was found that the electrical resistivity, the concentration of the free-carriers, the activation energy, and the capacitance of the device decrease due to the incorporation of TiO{sub 2} on GO, but the mobility increases. Due to low values of the activation energy the density of carriers thermally induced was high enough that lead to a metal-to insulator transition near room temperature. The ratio TiO{sub 2}:GO will be studied, in order to provide the best

  16. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  17. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  18. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  19. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  20. Investigation into CdS nanocrystal growth regularities in silicate glass and in the thin films SiO{sub 2} at the initial stages of solid solution phase decomposi8tion; Issledovanie zakonomernostej rosta nanokristalov CdS v silikatnom stekle i v tonkikh plenkakh SiO{sub 2} na nachal`nykh stadiyakh fazovogo raspada tverdogo rastvora

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, S A; Ekimov, A I; Kudryavtsev, I A [AN SSSR, Leningrad (Russian Federation). Fiziko-Tekhnicheskij Inst.

    1994-05-01

    Regularities of CdS semiconductor hanocrystal growth in amorphous media (silicate glasses and SiO{sub 2} thin films) are investigated. Dependences of crystal mean dimension on the annealing time show that in accordance with the theory of phase decomposition the crystal growth has the successive stages of nuclei formation and diffusion growth. By means of the nuclei mean radius dependences on the annealing temperature are determined the temperatures of CdS solubility in the matrix material. Effect of the annealing atmosphere composition on the growth and optical properties of CdS nanocrystals is shown.

  1. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  2. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  3. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  4. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  5. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  6. Optical absorption and fluorescent behaviour of titanium ions in ...

    Indian Academy of Sciences (India)

    Unknown

    Titanium in normal melting conditions in air atmosphere present as Ti4+ ion in basic silicate ... exchange of electrons in between M → L → M coopera- ... glass even for higher concentration of titania than 0⋅1% ... glass composition originates from different points of .... The development of photosensitive copper ruby, silver.

  7. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  8. Lubrication for hot working of titanium alloys

    International Nuclear Information System (INIS)

    Gotlib, B.M.

    1980-01-01

    The isothermal lubrication of the following composition is suggested, wt. %: aluminium powder 4-6, iron scale 15-25, vitreous enamel up to 100. The lubricant improves forming and decreases the danger of the metal fracture when titanium alloys working. It is advisable to use the suggested lubrication when stamping thin-walled products of titanium alloys at the blank temperature from 700 to 1000 deg C [ru

  9. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  10. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  11. Radioanalysis of siliceous materials

    International Nuclear Information System (INIS)

    Das, H.A.

    2003-01-01

    Both natural and induced radioactivity as well as man-made radiotracers may be applied to assess quality and its maintenance a widely varying range of siliceous materials. One example of industrial application is given for each of these three branches. Natural Radioactivity: The measurement of 222-Rn emanation from building material components serves the determination of the internal diffusion and thus of the effective porosity as well as the usual environmental control. Radiotracers: The specific surface area of silica components can be obtained from measurements of the chemisorptions of fluoride and its kinetics, using acid fluoride solutions and carrier-free 18-F, Tl/2 = 110 min, as the radiotracer. This also enables the determination of fluoride in drinking water at the (sub-) ppm level by spiking isotope dilution and substoichiometric adsorption to small glass beads. Neutron activation analysis (NAA): Concentration profiles down to the micro m-range of trace elements in small electronic components of irregular shape are derived from combination of NAA with controlled sequential etching flux in dilute HF-solutions. The cases of Na, Mn, Co and Se by instrumental NAA and that of W by chemical isolation from the reagent solution are considered. (author)

  12. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  13. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  14. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  15. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  16. In situ hydride formation in titanium during focused ion milling.

    Science.gov (United States)

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  17. The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting

    International Nuclear Information System (INIS)

    Challa, V.S.A.; Zhou, W.H.; Misra, R.D.K.; O'Malley, R.; Jansto, S.G.

    2014-01-01

    We describe here the influence of coiling temperature on the microstructure and mechanical properties, especially toughness, in a low carbon niobium microalloyed steel processed via thin slab casting. The objective is to elucidate the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocations) that contribute to variation in the strength–toughness relationship of these steels. In general, the microstructure primarily consisted of fine lath-type bainite and polygonal ferrite, and NbC, TiC and (Nb, Ti)C precipitates of size ∼2–10 nm in the matrix and at dislocations. However, the dominance of bainite and distribution of precipitates was a function of coiling temperature. The lower coiling temperature provided superior strength–toughness combination and is attributed to predominantly bainitic microstructure and uniform precipitation of NbC, TiC, and (Nb, Ti)C during the coiling process, consistent with continuous cooling transformation diagrams

  18. The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting

    Energy Technology Data Exchange (ETDEWEB)

    Challa, V.S.A.; Zhou, W.H. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Decatur Sheet Mill, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.G. [CBMM North America, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2014-02-10

    We describe here the influence of coiling temperature on the microstructure and mechanical properties, especially toughness, in a low carbon niobium microalloyed steel processed via thin slab casting. The objective is to elucidate the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocations) that contribute to variation in the strength–toughness relationship of these steels. In general, the microstructure primarily consisted of fine lath-type bainite and polygonal ferrite, and NbC, TiC and (Nb, Ti)C precipitates of size ∼2–10 nm in the matrix and at dislocations. However, the dominance of bainite and distribution of precipitates was a function of coiling temperature. The lower coiling temperature provided superior strength–toughness combination and is attributed to predominantly bainitic microstructure and uniform precipitation of NbC, TiC, and (Nb, Ti)C during the coiling process, consistent with continuous cooling transformation diagrams.

  19. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  20. On crystallochemistry of uranil silicates

    International Nuclear Information System (INIS)

    Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.

    1975-01-01

    A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit

  1. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  2. X-ray absorption study of Ti-bearing silicate glasses

    OpenAIRE

    Dingwell, Donald B.; Paris, Eleonora; Seifert, Friedrich; Mottana, Annibale; Romano, Claudia

    1994-01-01

    Ti K-edge XANES spectra have been collected on a series of Ti-bearing silicate glasses with metasilicate and tetrasilicate compositions. The intensity of the preedge feature in these spectra has been found to change with glass composition and varies from 29 to 58% (normalized intensity) suggesting a variation in structural environent around the absorbing atom. The pre-edge peak intensity increases for the alkali titanium tetrasilicate glasses from 35% to 58% in the order Li < Na < K < Rb, Cs ...

  3. Production of titanium silicate compositions from technogenic titanium containing waste of Khibiny ores' enrichment

    Directory of Open Access Journals (Sweden)

    Shchukina E. S.

    2017-03-01

    Full Text Available The low level of complexity in the processing of raw materials at mining and processing enterprises adversely affect the environment causing considerable damage to it. Meanwhile technological waste is a cheap source of raw materials for liquid products of functional purpose, particularly inorganic filler which are widely used in the manufacture of paints and building materials, paper, plastics, insulating and protective materials. Improved performance and physical and chemical properties of materials are achieved by optimizing the composition and dispersion of the particles. By the example of the research subjects received from the flotation waste nepheline ore-dressing, it has been shown that a high degree of homogenization to obtain fine mixtures (75 % of 3–4 micron fraction composite filler powders the ultrafine grinding method achieved by using a planetary ball mill for a short period of time (at least 1 hours. The use of other grinding methods, for example by means of ball mill or a vibration such effect is not obtained. At the conditions of ultrafine grinding the ionization and amorphization of the surface layer of powder material particles (mechanical activated processing are occurred. This increases its activity by reacting with organic and inorganic binding, and provides high performance. The obtained filler has been tested in the composition of temperature-controlled sealants and glues used in the aerospace industry, shipbuilding and electronics. To obtain such materials sphene and nepheline received from industrial tailings of Khibiny apatite-nepheline ore deposits are used

  4. FY 1998 report on the results of R and D projects by local consortiums for immediate effects. Development of titanium dioxide thin film photocatalysts sensitive to visible light and their applications to cleaning systems; 1998 nendo kashiko kasseina sanka chintan hikari shokubai usumaku no kaihatsu to sono system oyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D project has been implemented for developing the thin film-making process techniques which can increase areas of titanium oxide (TiO{sub 2}) photocatalysts sensitive to visible light and their mass production. The fundamental investigations are directed to elucidation of the mechanisms involved in manifestation of activity in visible light of the visible light-sensitive thin film doped with the Cr, V or other ions. The sputtering involving no ion implantation is devised for producing the thin films, to realize the highest visible light sensitivity recorded for the thin TiO{sub 2} film. The sputtering process is investigated in detail for the film-making conditions, e.g., Ar pressure, effects of coexisting O{sub 2} gas, and power gap. The conditions under which the thin film serviceable under commercial conditions can be produced are not established yet, but it is confirmed that the coating film shows superhydrophilicity and photocatalytic activity for, e.g., sterilization, when irradiated with ultraviolet ray. The method has been established for evaluating deodorizing and contamination-preventive functions of the thin films in ultraviolet and visible rays. The project has also confirmed applicability of the techniques to the commercial products, and established the self-cleanable catalyst by combining the oxide catalytic function with the photocatalytic function. (NEDO)

  5. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  6. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  7. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R.; Morales, J.

    2007-01-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  8. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  9. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  10. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  11. Titanium and titanium alloys: fundamentals and applications

    National Research Council Canada - National Science Library

    Leyens, C; Peters, M

    2003-01-01

    ... number of titanium alloys have paved the way for light metals to vastly expand into many industrial applications. Titanium and its alloys stand out primarily due to their high specific strength and excellent corrosion resistance, at just half the weight of steels and Ni-based superalloys. This explains their early success in the aerospace and the...

  12. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Custo, Graciela

    1987-01-01

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author) [es

  13. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  14. Properties of Tricalcium Silicate Sealers.

    Science.gov (United States)

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  16. Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts

    NARCIS (Netherlands)

    Kan Parker, M. van; Mason, P.R.D.; Westrenen, W. van

    2011-01-01

    We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon.

  17. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  18. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  19. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  20. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  1. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  2. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  3. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    DEFF Research Database (Denmark)

    Gadea, Christophe; Marani, Debora; Esposito, Vincenzo

    2017-01-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolami...

  4. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  5. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  6. Ceramic modifications of porous titanium: effects on macrophage activation.

    Science.gov (United States)

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology 3 Rationale – Titanium Cost Build-up Material Cost Ilmenite $0.27/kg Ti sponge Titanium slag $0.75/kg Ti Sponge TiCl4 and TiO2 $3....10/kg Ti Sponge Ti Sponge raw materials costs $5.50/kg Ti Sponge Total Ti Sponge cost $9-$11/kg Ti Sponge Ti ingot $15-17/kg Ti Aluminium $1.7/kg Al Supporting the Manufacturing and Materials Industry in its quest for global competitivenessorting...

  8. Analysis of siliceous geologic materials by energy-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1987-01-01

    The determination of the elements Al, Si, K, Ca, Ti, Cr, Mn and Fe in siliceous geologic samples by energy-dispersive X-ray fluorescence is investigated using the most adequate excitation conditions: direct excitation mode (rhodium anode X-ray tube) for the former two elements, and the secondary targets titanium for K and Ca, and germanium for Ti, Cr, Mn and Fe. For the correction of matrix effects the use of ratio methods has been tested. Procedure files have been defined allowing the automatic simultaneous acquisition and processing of spectra. (author)

  9. Determination of silica in silicates by differential spectrophotometry as α-molybdosilicic acid

    International Nuclear Information System (INIS)

    Ohlweiler, O.A.; Meditsch, J.O.; Silva, S.

    1980-01-01

    A method for determining silica in silicates by differential spectrophotometry, using β-molybdosilic acid, is described. The sample is attacked by a mixture of boron trioxide and lithium carbonate (10:1). α-molydbosilicic acid is developed in a buffered solution (pH approximatelly 3.9) containing acetic acid and sodium acetate. The analytical procedure involves a series of preliminary steps which were previously elaborated for the gravimetric determination of silica as oxine molybdosilicate and which account for the removal of phosphorus, titanium and zirconium through ion exchange resins. (C.L.B.) [pt

  10. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    increase CO2 consumption rates due to silicate weathering in soils. Thick loess deposits cover 5-10% of the global land surface, and loess deposits too thin to be included in global inventories cover a much greater area. Loess deposition and weathering over timescales greater than the duration of glaciation must be considered in models of atmospheric CO2 variation.

  11. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films; Efeito do teor de quitosana e do silicato em camadas na morfologia e propriedades dos filmes quitosana/silicatos em camadas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F., E-mail: itamaraf@gmail.com [Universidade Federal da Paraiba (UFPB), PB (Brazil). Centro de Tecnologia. Departamento de Engenharia de Materiais

    2014-07-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  12. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  13. Chitosan patterning on titanium alloys

    OpenAIRE

    Gilabert Chirivella, Eduardo; Pérez Feito, Ricardo; Ribeiro, Clarisse; Ribeiro, Sylvie; Correia, Daniela; González Martin, María Luisa; Manero Planella, José María; Lanceros Méndez, Senentxu; Gallego Ferrer, Gloria; Gómez Ribelles, José Luis

    2017-01-01

    Titanium and its alloys are widely used in medical implants because of their excellent properties. However, bacterial infection is a frequent cause of titanium-based implant failure and also compromises its osseointegration. In this study, we report a new simple method of providing titanium surfaces with antibacterial properties by alternating antibacterial chitosan domains with titanium domains in the micrometric scale. Surface microgrooves were etched on pure titanium disks at i...

  14. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  15. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  16. Production of titanium tetrachloride

    International Nuclear Information System (INIS)

    Perillo, P.M.; Botbol, O.

    1990-01-01

    This report presents a summary of results from theoperation of a laboratory scale for the production in batches of approximately 100 gs of titanium tetrachloride by chlorination with chloroform and carbon tetrachloride between 340 deg C and 540 deg C. Chlorination agent vapors were passed through a quartz column reacting with titanium oxide powder agglomerated in little spheres. Obtained titanium tetrachloride was condensed in a condenser, taken in a ballon and then purified by fractional distillation. Optimun temperature for chloroform was 400 deg C with 74 % yield and for carbon tetrachloride was 500 deg C with 69 % yield. (Author) [es

  17. Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palesch, E. [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic); Marek, A. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Solar, P.; Kylian, O. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Vyskocil, J. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Biederman, H. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Cech, V., E-mail: cech@fch.vutbr.cz [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic)

    2013-10-01

    The mechanical stability of nanoclusters embedded in nanocomposite coatings was investigated by scratch and wear tests supported by atomic force microscopy using surface topography mode. Titanium and plasma polymer nanoclusters were deposited on planar substrates (glass, titanium) using a magnetron-based gas aggregation cluster source. The deposited clusters were overcoated with a thin titanium film of different thicknesses to stabilize the position of the clusters in the nanocomposite coating. Nanotribological measurements were carried out to optimize the thickness of the overcoating film for sufficient interfacial adhesion of the cluster/film system. - Highlights: ► Titanium and plasma polymer nanoclusters were overcoated with thin titanium film. ► The mechanical stability of nanoclusters was characterized by nanotribological tests. ► The film thickness was optimized to stabilize the position of the clusters in coating.

  18. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  19. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  20. EXPERIMENTAL INVESTIGATION OF IRRADIATION-DRIVEN HYDROGEN ISOTOPE FRACTIONATION IN ANALOGS OF PROTOPLANETARY HYDROUS SILICATE DUST

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Remusat, Laurent [IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Laurent, Boris; Leroux, Hugues, E-mail: mathieu.roskosz@mnhn.fr [Unité Matériaux et Transformations, Université Lille 1, CNRS UMR 8207, Bâtiment C6, F-59655 Villeneuve d’Ascq (France)

    2016-11-20

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  1. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  2. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  3. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  4. Physical ageing of silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nemilov, S.V. [S. I. Vavilov State Optical Inst., St. Petersburg (Russian Federation)

    2003-02-01

    The presented review has been devoted to the problem of volume-determined properties relaxation of silicate glasses at room temperature. It is shown that the experimental data are described by the simple Debye exponential law or by a superposition of two exponents. Their parameters are calculated and systematized. A molecular-kinetic model is proposed for these ageing processes. It proceeds from the possibility of volume relaxation due to the cooperative β-relaxation mechanism with no change in the system's topology. The characteristic ageing times can be calculated according to equations obtained based on the viscosity data in the glass transition range. The precision of the calculations is about {+-} 15% at the time variations from a few weeks up to about 15 years. The system of calculated parameters is proposed which characterizes the completeness of ageing and its rate at any glass age. Optical and thermometric glasses have been ranked by their tendency to ageing. The scheme of future investigations predetermined by practice is defined. (orig.)

  5. Magnetic properties of sheet silicates

    International Nuclear Information System (INIS)

    Ballet, O.; Coey, J.M.D.

    1982-01-01

    Susceptibility, magnetisation and Moessbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe 2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe 2+ -Fe 2+ exchange interactions are ferromagnetic with Gapprox. equal to2 K, whereas Fe 3+ -Fe 3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe 2+ → Fe 3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1-7 K. One biotite sample showed an antiferromagnetic transition at Tsub(N) = 7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite. (orig.)

  6. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  7. Development of a Novel Solid-State Sensor Electrode Based on Titanium Thin Film as an Indicator Electrode in Potentiometric and Conductometric Acid-Base Titration in Aqueous Solution

    OpenAIRE

    Abu Ghalwa, Nasser

    2012-01-01

    A modified Ti/(SnO2 + Sb2O3) electrode was prepared by thermal deposition on titanium substrate and its use as indicator electrode to potentiometric and conductometric acid-base titration in aqueous solution at 298 K was developed. The E-pH curve is linear with slope of 0.0512 V/dec at 298 K. The standard potential of this electrode, E0, was determined with respect to the SCE as reference electrode. The recovery percentages for potentiometric and conductometric acid-base titration for acetic ...

  8. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  9. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  10. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  11. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  12. Industrial experience with titanium

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Shoesmith, D.W.

    1997-09-01

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author)

  13. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  14. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  15. Development of a Novel Solid-State Sensor Electrode Based on Titanium Thin Film as an Indicator Electrode in Potentiometric and Conductometric Acid-Base Titration in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Nasser Abu Ghalwa

    2012-01-01

    Full Text Available A modified Ti/(SnO2 + Sb2O3 electrode was prepared by thermal deposition on titanium substrate and its use as indicator electrode to potentiometric and conductometric acid-base titration in aqueous solution at 298 K was developed. The E-pH curve is linear with slope of 0.0512 V/dec at 298 K. The standard potential of this electrode, E0, was determined with respect to the SCE as reference electrode. The recovery percentages for potentiometric and conductometric acid-base titration for acetic acid against NaOH were calculated. The cell constant, specific conductance, and the molar conductance with dilution for some common electrolytes were measured.

  16. Thermogravimetric experiments with titanium

    International Nuclear Information System (INIS)

    Porter, L.J.; Longhurst, G.R.

    1991-02-01

    In the process of preparing for pyrophoricity experiments involving uranium, we conducted hydriding and air-exposure experiments on titanium. In these experiments the hydriding reactions and response to air-exposure was generally within the range expected based on work reported by others. One aberrant behavior was a sudden weight gain followed by a significant weight loss. We speculate that loss may be due to hydrogen evolution from the TiH 2 resulting from local heating by oxidation reactions. We verified that titanium is not pyrophoric at temperatures less than 750 degree C. 18 refs. 1 fig

  17. Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.

    Science.gov (United States)

    Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin

    2009-12-11

    Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.

  18. Corrosion-resistant titanium nitride coatings formed on stainless steel by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    1994-01-01

    Titanium films 70nm thick were deposited on austenitic type 316L stainless steel substrates, and these specimens were irradiated with titanium ions of energy 70kV at a fluence of 1x10 17 ioncm -2 , using a metal vapor vacuum arc (MEVVA) IV metallic ion source at room temperature. After irradiation, titanium nitride (TiN) films were deposited by titanium evaporation and simultaneous irradiation by a nitrogen ion beam, with transport ratios of Ti to N atoms from 0.5 to 10.0 and an ion acceleration voltage of 2kV. The preferred orientation of the TiN films varied from left angle 200 right angle to left angle 111 right angle normal to the surface when the transport ratio was increased. With the help of Auger electron spectroscopy, interfacial mixing was verified. Nitrogen atoms were present in the state of titanium nitride for all transport ratios from 0.5 up to 10.0. However, the chemical bonding state of titanium changed from titanium nitride to the metallic state with increasing transport ratio Ti/N. The corrosion behavior was evaluated in an aqueous solution of sulfuric acid saturated with oxygen, using multisweep cyclic voltammetry measurements. Thin film deposition of pure titanium and titanium implantation prior to TiN deposition have beneficial effects on the suppression of transpassive chromium dissolution. ((orig.))

  19. Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process

    International Nuclear Information System (INIS)

    Dixon, B.G.; Walsh, M.A. III; Phillips, P.G.; Morris, R.S.

    1995-01-01

    Thin amorphous films of ceramic capacitor materials were successfully deposited using sol-gel chemistry onto titanium wire using a continuous, computer controlled process. By repeatedly depositing and calcining very thin layers of material, smooth and even coats can be produced. Surface analyses revealed the layered nature of these thin coats, as well as the amorphous nature of the ceramic. The electrical properties of the better coatings, all composed of niobium, bismuth, zinc oxides, were then evaluated. copyright 1995 Materials Research Society

  20. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  1. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  2. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  3. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  4. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress ... Other studies showed that these silicate ceramics also possess good in vivo bioactivity (Hench 1998; ... ceramic powders without the intermediate decomposition and/or calcining steps has attracted a good deal of ...

  5. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  6. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  7. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  8. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    Science.gov (United States)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  9. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  10. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  11. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  12. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  13. Turbulent Mixing of Metal and Silicate during Planet Accretion – and interpretation of the Hf-W chronometer

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Stevenson, David

    2010-01-01

    is enhanced if most of the accreting metal cores deform into thin structures during descent through the Earth's mantle. Yet, only 1–20% of Earth's corewould equilibrate with silicate during Earth's accretion. The initial speed of the impactor is of little importance. We proceed to evaluate the mixing......In the current view of planet formation, the final assembly of the Earth involved giant collisions between protoplanets (N1000 kmradius), with theMoon formed as a result of one such impact.At this stage the colliding bodies had likely differentiated into a metallic core surrounded by a silicate...... mantle. During the Moon-forming impact, nearly all metal sank into the Earth's core. Weinvestigate towhat extent large self-gravitating iron cores can mix with surrounding silicate and howthis influences the short-lived chronometer, Hf–W, used to infer the age of the Moon. We present fluid dynamical...

  14. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  15. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  16. Mechanochemistry of titanium oxides

    Directory of Open Access Journals (Sweden)

    Veljković Ivana

    2009-01-01

    Full Text Available Mechanochemistry represents an alternative route in synthesis of nanomaterials. Mechanochemical routes are attractive because of their simplicity, flexibility, and ability to prepare materials by solid state reactions at room temperature. The aim of this work is the mechanochemical synthesis of nanostructured titanium oxides of different composition starting from mixtures of Ti and TiO2, TiO and TiO2 or Ti2O3 and TiO2. Emphasis is on the Magneli phases Ti4O7 and Ti5O9 because their mixture is commercially known as EBONEX material. The materials prepared were characterized by XRPD, TG/DTA analysis, SEM and optical microscopy. Titanium monoxide and several Magneli oxides, Ti4O7, Ti5O9 and Ti6O11, are successfully prepared. The results are very interesting because the EBONEX materials were prepared at lower than usual temperature, which would decrease the effective cost of production.

  17. Industrial experience with titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B M; Shoesmith, D W

    1997-09-01

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author) 83 refs., 17 tabs., 3 figs.

  18. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  19. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells.

    Science.gov (United States)

    Cai, Kaiyong; Lai, Min; Yang, Weihu; Hu, Ran; Xin, Renlong; Liu, Qing; Sung, K L Paul

    2010-06-01

    To improve the corrosion resistance and biological performance of commercially pure titanium (cp-Ti) substrates, potassium hydroxide was employed to modify the surfaces of titanium substrates, followed by biomimetic deposition of apatite on the substrates in a simulated body fluid. The morphologies of native and treated titanium substrates were characterized by field emission scanning electron microscopy (FE-SEM). Treatment with potassium hydroxide led to the formation of intermediate layers of potassium titanate on the surfaces of titanium substrates, while apatite was subsequently deposited onto the intermediate layer. The formation of potassium titanate and apatite was confirmed by thin-film X-ray diffraction and FE-SEM equipped with energy dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy showed that the formed potassium titanate layer improved the corrosion-resistance properties of titanium substrates. The influence of modified titanium substrates on the biological behavior of mesenchymal stem cells (MSCs), including osteogenic differentiation, was investigated in vitro. Compared with cp-Ti substrates, MSCs cultured onto alkali- and heat-treated titanium substrates and apatite-deposited titanium substrates displayed significantly higher (P<0.05 or P<0.01) proliferation and differentiation levels of alkaline phosphatase and osteocalcin in 7 and 14day cultures, respectively. More importantly, our results suggest that the modified titanium substrates have great potential for inducing MSCs to differentiate into osteoblasts. The approach presented here may be exploited to fabricate titanium-based implants. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  1. Joining of Gamma Titanium Aluminides

    National Research Council Canada - National Science Library

    Baeslack, William

    2002-01-01

    .... Although organized and presented by joining process, many of the observations made and relationships developed, particularly those regarding the weldability and welding metallurgy of gamma titanium...

  2. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  3. Insight into silicate-glass corrosion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)

  4. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  5. Effects of ionization on silicate glasses

    International Nuclear Information System (INIS)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures

  6. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...

  7. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  8. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  9. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  10. Titanium and aluminium ions implanted by plasma on polyethylene; lones de titanio y aluminio implantados por plasma sobre polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Morales, J. [UAM-I, Apdo. Postal 5534, Iztapalapa, D.F. (Mexico)]. e-mail: gcc@nuclear.inin.mx

    2007-07-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  11. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  12. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  13. Inkjet-printed transparent nanowire thin film features for UV photodetectors

    KAUST Repository

    Chen, Shih Pin; Duran Retamal, Jose Ramon; Lien, Der Hsien; He, Jr-Hau; Liao, Ying Chih

    2015-01-01

    In this study, a simple and effective direct printing method was developed to print patterned nanowire thin films for UV detection. Inks containing silver or titanium dioxide (TiO2) nanowires were first formulated adequately to form stable

  14. Physical metallurgy of titanium alloys

    International Nuclear Information System (INIS)

    Collings, E.W.

    1988-01-01

    Researches in electric, magnetic, thermophysical properties of titanium alloys in the wide range of temperatures (from helium upto elevated one), as well as stability of phases in alloys of different types are generalized. Fundamental description of physical properties of binary model alloys is given. Acoustic emission, shape memory and Bauschinger effects, pseudoelasticity, aging and other aspects of physical metallurgy of titanium alloys are considered

  15. The oxidation of limonene at raised pressure and over the various titanium-silicate catalysts

    Directory of Open Access Journals (Sweden)

    Wróblewska Agnieszka

    2015-12-01

    Full Text Available This work presents the studies on the oxidation of limonene with hydrogen peroxide and tert-butyl hydroperoxide (TBHP in the presence of : TS-2, Ti-Beta, Ti-MCM-41 and Ti-MWW catalysts, at the autogenic pressure and atmospheric pressure. The examination were performed at the following conditions: the temperature of 140°C (studies in the autoclave and 80°C (studies in glass reactor, the molar ratio of limonene/oxidant (H2O2 or WNTB = 1:1, the methanol concentration 80 wt%, the catalyst content 3 wt%, the reaction time 3 h and the intensity of stirring 500 rpm. The analysis of the results showed that in process not only 1,2-epoxylimonene was formed but also: 1,2-epoxylimonene diol, carveol, carvone and perillyl alcohol but for 1,2-epoxylimonene obtaining the better method was the method at the autogenic pressure and in the presence of TBHP.

  16. A Molecular Simulation Study of Adsorption of Nitrogen and Methane in Titanium Silicate (ETS-4)

    Czech Academy of Sciences Publication Activity Database

    Siperstein, F.R.; Lísal, Martin; Brennan, J.K.

    2010-01-01

    Roč. 75, č. 2 (2010), s. 145-164 ISSN 0010-0765 R&D Projects: GA ČR GA203/08/0094; GA AV ČR KAN400720701; GA AV ČR 1ET400720507 Grant - others:NMP3(XE) CT/2006/033304; GC(ES) BE00334 Institutional research plan: CEZ:AV0Z40720504 Keywords : adsorption isotherms * grand canonical monte carlo * self diffusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  17. Titanium for salt water service

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Shibad, P.R.

    1980-01-01

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  18. Cleaning graphene with a titanium sacrificial layer

    International Nuclear Information System (INIS)

    Joiner, C. A.; Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-01-01

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  19. Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers

    International Nuclear Information System (INIS)

    Charnovych, S.; Nemec, P.; Nazabal, V.; Csik, A.; Allix, M.; Matzen, G.; Kokenyesi, S.

    2011-01-01

    Highlights: → Amorphous chalcogenides were investigated in this work. → Photo-induced effects were investigated in the created thin films. → Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers have been studied. - Abstract: Photo induced changes in amorphous As 20 Se 80 /alumino-silicate nanomultilayers (NML) produced by pulsed laser deposition (PLD) method have been studied in this work. The aim was to investigate the photo induced optical and surface relief changes due to the band gap illumination under the size- and hard cover limited conditions. It was observed that the hard cover layer on the surface of the uniform film or alumino-silicate sub-layers in the NML structure influences the photo darkening and restricts surface relief formations in As 20 Se 80 film or in the related NML compared with this effect in a pure chalcogenide layer. The influence of hard layers is supposed to be connected with limiting the free volume formation at the initial stage of the transformation process, which in turn limits the atomic movement and so the surface relief formation.

  20. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  1. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  2. Dimensional accuracy and surface property of titanium casting using gypsum-bonded alumina investment.

    Science.gov (United States)

    Yan, Min; Takahashi, Hidekazu; Nishimura, Fumio

    2004-12-01

    The aim of the present study was to evaluate the dimensional accuracy and surface property of titanium casting obtained using a gypsum-bonded alumina investment. The experimental gypsum-bonded alumina investment with 20 mass% gypsum content mixed with 2 mass% potassium sulfate was used for five cp titanium castings and three Cu-Zn alloy castings. The accuracy, surface roughness (Ra), and reaction layer thickness of these castings were investigated. The accuracy of the castings obtained from the experimental investment ranged from -0.04 to 0.23%, while surface roughness (Ra) ranged from 7.6 to 10.3microm. A reaction layer of about 150 microm thickness under the titanium casting surface was observed. These results suggested that the titanium casting obtained using the experimental investment was acceptable. Although the reaction layer was thin, surface roughness should be improved.

  3. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  4. New silicates of rare earths and calcium

    International Nuclear Information System (INIS)

    Andreev, I.F.; Shevyakov, A.M.; Smorodina, T.P.; Semenov, N.E.

    1975-01-01

    The complex silicates of the third subgroup elements of lanthanides and calcium were synthesized: Ca 3 Er 2 Si 6 O 18 , Ca 3 Lu 2 Si 6 O 18 and Ca 3 Yb 2 Si 6 O 18 . To specify these compounds their physical and chemical properties were studied by means of roentgenographic, IR spectroscopic and crystaloptical methods. The values of Ng, Np,Δn,m,p were determined, the elementary cell parameters: a,b,c,α,β,γ were computed. Existence of such compounds and their analogy in ternary systems MeO-Ln 2 O 3 -SiO 2 were forcasted

  5. Tribo-exoemission from some silicate materials

    International Nuclear Information System (INIS)

    Holzapfel, G.; Lesz, J.; Otto, W.

    1983-01-01

    The tribo-exoemission from some minerals has been investigated in view of applications in the porcelain industries. Milling and sample preparation were performed under defined (liquid and solvent free) conditions. Quartz and the members of the alumo-silicate family feldspar, kaolin, and pegmatite are characterised by a strongly overlapped TSEE-peak between 100 0 C and 200 0 C, growing strongly with the mechanical dispersion of the powders. Thermal (TSEE) as well as optical (OSEE) stimulation reveal pegmatite as the strongest emitter with a very low fading of the tribo-signal at room temperature. (author)

  6. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  7. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Hui; Yang Lu

    2012-01-01

    A thin layer of nanoparticle titanium dioxide was immobilized on polyamide 6 (PA6) fiber using titanium sulfate and urea at low temperature hydrothermal condition. The titanium dioxide loaded fabric was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermal gravimetry techniques. The optical and mechanical properties, water absorption and degradation of methylene blue dye under ultraviolet (UV) irradiation of the PA6 fabric before and after treatments were also examined. It was found that when PA6 fabric was treated in titanium sulfate and urea aqueous solution, anatase nanocrystalline titanium dioxide was synthesized and simultaneously adhered onto the fiber surface. The average crystal size of titanium dioxide nanoparticles was about 13.2 nm. The thermal behavior of PA6 fiber distinctly changed and the onset decomposition temperature decreased. As compared with the untreated fabric, the protection against UV radiation was improved. The water absorbency increased slightly. As the fabric dimensions were reduced in warp and weft directions, the breaking load and tensile strain increased to some extent. The titanium dioxide coated fabric could degradate methylene blue dye under UV irradiation. - Highlights: ► We employed a method to immobilize TiO 2 nanoparticle on polyamide fiber. ► We fabricated the TiO 2 -coated polyamide fabric with the photocatalytic activity. ► The modification method may be suitable for the potential applications.

  8. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  9. Location of silicic caldera formation in arc settings

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)

    2008-10-01

    Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.

  10. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    Science.gov (United States)

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  11. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  12. Preparation of titanium diboride powders from titanium alkoxide and ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Materials and Manufacturing Process, Malek Ashtar University of Technology, Tehran. 15875-1744, Iran ... Titanium diboride is a hard refractory material with a high melting point ... (λ = 1⋅540598 Å) radiation. Morphology of the ...

  13. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  14. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Science.gov (United States)

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  15. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    Wille, G.W.; Davis, J.W.

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500 0 C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150 0 C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  16. Tip-induced nanoreactor for silicate

    Science.gov (United States)

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-09-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales.

  17. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  18. Evidence for seismogenic fracture of silicic magma.

    Science.gov (United States)

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  19. Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications

    International Nuclear Information System (INIS)

    Fonseca, C.; Vaz, F.; Barbosa, M.A.

    2004-01-01

    The r.f. sputtering technique was used to deposit titanium thin films on stainless steel substrates, aiming at the application of the coated samples as skin contact materials for 'dry' active electrodes. In this work the electrochemical behaviour of the coated samples was investigated in synthetic sweat solutions and their performance was compared with that of uncoated stainless steel and bulk titanium. The characterisation of the samples was carried out by electrochemical techniques and scanning electron microscopy. The coated samples displayed corrosion resistance values in synthetic sweat solutions much higher than stainless steel samples and of the same order of the values measured for bulk titanium in the same conditions

  20. Investigation of corrosion and ion release from titanium dental implant

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Mouhyi, J.; Louvette, P.; Sennerby, L.

    1997-01-01

    A thin passive titanium dioxide, in its stoichiometric form, has a very high corrosion resistance, but the same conclusion can not be made on corrosion resistance of a surface which is not stoichiometrically titanium dioxide, or even a surface which is a composition of various elements and oxides. In practice, the implants available on the market have an oxide surface contaminated with other elements. The aim of this paper is to correlate clinical observations that show the deterioration of Ti made implants after certain period of insertion in the patients, and in vitro corrosion resistance of Ti implants with surface passive oxide layer. For this purpose, surface analysis of the retrieved failed implants were performed and in vivo animal experiments with relation to ion release from implants were done. Finally, on the basis of the clinical observation, in vivo animal test, and in vitro electrochemical corrosion test, a model is proposed to explain the corrosion and ion release from the Ti implant. (author)

  1. Thermomechanical treatment of titanium alloys

    International Nuclear Information System (INIS)

    Khorev, A.K.

    1979-01-01

    The problems of the theory and practical application of thermomechanical treatment of titanium alloys are presented. On the basis of the systematic investigations developed are the methods of thermomechanical treatment of titanium alloys, established are the optimum procedures and produced are the bases of their industrial application with an account of alloy technological peculiarities and the procedure efficiency. It is found that those strengthening methods are more efficient at which the contribution of dispersion hardening prevails over the strengthening by phase hardening

  2. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  3. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  4. Stress-corrosion mechanisms in silicate glasses

    International Nuclear Information System (INIS)

    Ciccotti, Matteo

    2009-01-01

    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.

  5. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  6. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  7. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  8. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  9. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  10. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  11. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  12. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    Science.gov (United States)

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  13. CVD diamond coatings on titanium : Characterisation by XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cappuccio, G [CNR, Frascati, Rome (Italy). Istituto di Strutturistica Chimica; [INFN-LNF, Frascati, Rome (Italy). Laboratorio Dafne Luce

    1996-09-01

    Here, the authors report an analysis carried out on diamond coatings on titanium substrates to show the potentially of x-ray diffraction techniques in the structural characterisation both of diamond thin films and of the other phases (TiC and TiH{sub 2}) present in the interfacial layer. It should be noted that the composition and microstructure of the interface layers strongly affect the characteristics of the diamond films, particularly adhesion, which is one of the most important elements determining the final quality of the coating.

  14. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  15. Titanium pigmentation. An electron probe microanalysis study

    International Nuclear Information System (INIS)

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-01-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis

  16. Performance test of twised-wired titanium evaporators for in-situ Tic deposition

    International Nuclear Information System (INIS)

    Inagawa, Konosuke; Abe, Tetsuya; Hiroki, Seiji; Obara, Kenjiro; Murakami, Yoshio

    1984-06-01

    In order to establish the titanium evaporation source for in-situ TiC deposition, performance test has been made for several types of twisted-wired, ohmic-heating titanium evaporators. The evaporator which exhibited the best performance consists of three tungsten wires twisted as the core of the composite, three titanium wires and a molybdenum wire densely wound around the core, and a thin tungsten wire coarsely wound at the outermost side of the composite. The molybdenum wire around the core plays an important role in wetting the core surface uniformly with the melt of titanium. The tungsten wire at the outermost side prevents the molten titanium from dropping to the inside wall of the vacuum vessel. A typical size of the evaporator is 4 mm in diameter and 140 mm in length. In this case 2--2.5g of titanium, which corresponds to 70 - 80 % of charged amount (3.2g), can be evaporated at a rate of about 0.14 g/min. On the basis of the experimental results, the applicability of the evaporator to JT-60 is discussed. (author)

  17. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  18. [Effect of sintering gold paste coating on the bonding strength of pure titanium and three low-fusing porcelains].

    Science.gov (United States)

    Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li

    2012-05-01

    To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.

  19. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  20. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  1. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  2. Transient Nonlinear Optical Properties of Thin Film Titanium Nitride

    Science.gov (United States)

    2017-03-23

    13] • Chemical composition • Crystal structure and lattice parameters • Defect structure This tuneability will be useful in future engineering ...Nitride SarahKatie Thomas Follow this and additional works at: https://scholar.afit.edu/etd Part of the Materials Science and Engineering Commons This... Thesis is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized

  3. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  4. Chemistry of the subalkalic silicic obsidians

    Science.gov (United States)

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various

  5. Improving the antimicrobial properties of titanium condenser material by surface modification using nanotechnology

    International Nuclear Information System (INIS)

    George, Rani P.; Dash, S.; Krishnan, R.; Kamruddin, M.; Kalavathi, S.; Tyagi, A.K.; Manoharan, N.; Dayal, R.K.; Vishwakarma, Vinita; Theresa, Josephine

    2008-01-01

    Biofouling is one of the major problems faced by condenser materials of power plants using seawater for cooling. Fouling control strategies in condensers include a combination of mechanical and chemical treatments like sponge ball cleaning, back washing and chlorination. In general, numerous studies have shown that no routine treatment regime can successfully keep the condenser tube clean over a period extending to years. Surface properties of the substratum influence initial adhesion and growth of bacterial cells on materials, modification of the surface for mitigating microbial attachment is the need of the hour. Metal nanoparticles are known to exhibit enhanced physical and chemical properties when compared to their bulk counter parts because of their high surface to volume ratios. Metals like copper are very toxic to microorganisms and effectively kill most of the microbes by blocking the respiratory enzyme. Copper alloys with their excellent resistance to biofouling are used extensively for marine applications. However, they are prone to localized corrosion initiation and consequently are getting replaced by extremely corrosion resistant titanium. Still, the inertness and biocompatibility of titanium makes it very susceptible to biofouling. Hence, this study attempts to use nano technology methods of surface modification of titanium using thin film of copper and also multilayers and bilayers of copper and nickel. This is aimed at improving the antimicrobial properties of this condenser pipe material. These nano structured thin films have been grown on titanium substrate using pulsed DC magnetron-sputtering and pulsed laser deposition. The thin films were characterized using Atomic Force Microscopy (AFM), Glancing Incidence X-ray Diffraction (GIXRD) and scanning electron microscopy (SEM with EDAX analysis). Antimicrobial properties were evaluated by exposure studies in seawater and bacterial cultures and by post exposure analysis using culture and

  6. Uranium fluorides analysis. Titanium spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Titanium determination in uranium hexafluoride in the range 0.7 to 100 microgrammes after transformation of uranium fluoride in sulfate. Titanium is separated by extraction with N-benzoylphenylhydroxylamine, reextracted by hydrochloric-hydrofluoric acid. The complex titanium-N-benzoylphenylhydroxylamine is extracted by chloroform. Spectrophotometric determination at 400 nm [fr

  7. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  8. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  9. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  10. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  11. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  12. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  13. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  14. Comparative Studies on Community Ecology of Two Types of Subtropical Forests Grown in Silicate and Limestone Habitats in the Northern Part of Okinawa Island, Japan

    Directory of Open Access Journals (Sweden)

    S. M. Feroz

    2008-06-01

    Full Text Available In order to compare woody species diversity, spatial distribution of trees and stand structure on the basis of the architectural stratification between two types of subtropical forests in the northern part of Okinawa Island, Japan, tree censuses in a 750 m2 plot in silicate habitat and a 1000 m2 plot in limestone habitat were performed. It was found that both subtropical forests growing in silicate and limestone habitats consisted of four architectural layers. A total of 26 families, 43 genera, 60 species and 4684 individuals larger than 0.1 m high in the silicate habitat, and 31 families, 51 genera, 62 species and 4798 individuals larger than 0.0 m high in the limestone habitat, were recorded. As a result, the floristic composition in the silicate habitat was quite different from that in the limestone habitat in terms of similarity index ( Π C = 0.07; approximately only one-sixth of the species were in common. The floristic composition among layers was more similar in the silicate habitat than in the limestone habitat. Castanopsis sieboldii (Mak. Hatusima was the most dominant species in the silicate habitat, but was completely absent in the limestone habitat where Cinnamomum japonicum Sieb. ex Nees was the most dominant species. The potential number of species in the silicate forest (62 was lower than that in the limestone forest (71. However, the woody species diversity was higher in the silicate forest than in the limestone forest. The values of H′ and J′ tended to increase from the top layer downward except for the bottom layer in the silicate forest, while this increasing trend was reversed in the limestone forest. It follows that high woody species diversity in the silicate forest depended on small-sized trees, whereas in the limestone forest it depended on big-sized trees. The spatial distribution of trees in the forests was random in each layer, except the top layer, where there existed a double-clump structure. High degree of

  15. The titanium oxide phi system

    Science.gov (United States)

    Galehouse, D. C.; Davis, S. P.

    1980-01-01

    The phy system of titanium oxide has been studied in emission in the near-infrared, with the Fourier transform spectrometer at a resolution of 8000,000. Approximately 3000 lines from 25 bands of this system have been identified, including all five 0-0 and 0-1 bands corresponding to the five natural titanium isotopes. Eleven vibrational levels have been observed, and all bands have been rotationally analyzed. Band intensities are agreement with known isotopic abundances and calculated Franck-Condon factors.

  16. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  17. Nano-engineered titanium for enhanced bone therapy

    Science.gov (United States)

    Gulati, Karan; Atkins, Gerald J.; Findlay, David M.; Losic, Dusan

    2013-09-01

    Current treatment of a number of orthopaedic conditions, for example fractures, bone infection, joint replacement and bone cancers, could be improved if mechanical support could be combined with drug delivery. A very challenging example is that of infection following joint replacement, which is very difficult to treat, can require multiple surgeries and compromises both the implant and the patient's wellbeing. An implant capable of providing appropriate biomechanics and releasing drugs/proteins locally might ensure improved healing of the traumatized bone. We propose fabrication of nanoengineered titanium bone implants using bioinert titanium wires in order to achieve this goal. Titanium in the form of flat foils and wires were modified by fabrication of titania nanotubes (TNTs), which are hollow self-ordered cylindrical tubes capable of accommodating substantial drug amounts and releasing them locally. To further control the release of drug to over a period of months, a thin layer of biodegradable polymer PLGA poly(lactic-coglycolic acid) was coated onto the drug loaded TNTs. This delayed release of drug and additionally the polymer enhanced bone cell adhesion and proliferation.

  18. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  19. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  20. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  1. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    James, M.R.; Bourke, M.A.; Goldstone, J.A.; Lawson, A.C.

    1993-01-01

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  2. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Mohsen

    2015-10-21

    Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.

  3. Conversion of rice hull ash into soluble sodium silicate

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2006-09-01

    Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

  4. Synthesis of the Tube Silicate Litidionite and Structural Relationships between It and Some Other Silicates.

    Science.gov (United States)

    1982-02-17

    CuSi4015 Others are agrellite, NaCa2Si4O0oF, 1 6 narsarsukite, Na2TiSi4O 1 7 miserite, KCa5 i2 07 Si601 5 (OH)F,18 and probably canasite , Na4K2Ca 5...and canasite are rare. Litidionite is apparently very rare, the only reported occurrence of it being in the crater of Mt. Vesuvius. Both litidionite1...narsarsukite, miserite, and probably canasite contain, like 13-19 lititionite, tube silicate ions. The first three contain ions that are the same as that in

  5. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  6. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  7. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...

    African Journals Online (AJOL)

    DR OKONKOWO

    2012-02-29

    silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...

  9. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  10. The application of silicon and silicates in dentistry: a review.

    Science.gov (United States)

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  11. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  12. Advances in cost effective processing of titanium

    International Nuclear Information System (INIS)

    Nelson, O.E.

    1993-01-01

    Recently an industry expert pointed out that one of the greatest hindrances to the growth of titanium usage has been the low percentage of material usable in the final product. Due to the extensive processing, forming, and machining operations typically performed on titanium, yield losses are high. This is especially true in aerospace applications where most titanium is used. In engine components, the start to finish ratio, known as the buy to fly ratio, is often as high as 7 to 1. This can be illustrated by looking at the use of titanium in Pratt and Whitney engines. In the JT-8D-217 used on Boeing's 737-200, the titanium buyweight is 5,385 pounds, whereas the finished titanium, flyweight is just 758 pounds. This start to finish ratio is 7.1:1, giving titanium 17.0% of total engine weight. (orig.)

  13. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  14. On structural recrystallization in titanium

    International Nuclear Information System (INIS)

    Mirzaev, D.A.; Schastlivtsev, V.M.; Shtejnberg, M.M.; Ul'yanov, V.G.; AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-01-01

    The effect of preliminary superfast quenching on structural changes at inverse α→β transformation in titanium is studied. Cooling at rates more than 10 4 deg/s results in grain refining at succeeding annealing in β- and α- regions. The obtained effect is explained by additional phase transformation-induced hardening conditioned by decrease of the transformation point at superfast cooling

  15. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    Kostyuk, K.O.; Kostyuk, V.O.

    2015-01-01

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T 2 B, TiB, TiB 2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  16. Swelling, Functionalization, and Structural Changes of the Nanoporous Layered Silicates AMH-3 and MCM-22

    KAUST Repository

    Kim, Wun-gwi

    2011-06-21

    Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area and decreased diffusion limitations because the layers can potentially be exfoliated or intercalated into polymers to form nanocomposite materials. These properties are particularly interesting for applications as materials for enhancing molecular selectivity and throughput in composite membranes. In this report, the swelling and surface modification chemistry of two attractive nanoporous layered silicate materials, AMH-3 and MCM-22, were studied. We first describe a method, using long-chain diamines instead of monoamines, for swelling of AMH-3 while preserving its pore structure to a greater extent during the swelling process. Then, we describe a stepwise functionalization method for functionalizing the layer surfaces of AMH-3 and MCM-22 via silane condensation reactions. The covalently attached hydrocarbon chain molecules increased the hydrophobicity of AMH-3 and MCM-22 layer surfaces and therefore allow the possibility of effectively dispersing these materials in polymer matrices for thin film/membrane applications. © 2011 American Chemical Society.

  17. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  18. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz

    2013-01-01

    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  19. Fine-grained sheet silicate rocks

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-09-01

    Considerable interest has been shown in the possibility of using shales as repositories for radioactive waste and a variety of other waste products, and it appears that over the next few years much money and effort will be expended to investigate and test a wide variety of shales. If shales are to be studied in detail by a large number of investigators, it is important that all concerned have the same concept of what constitutes a shale. The term shale and other terms for fine-grained rocks have been used for many years and have been continually redefined. Most definitions predate the development of modern instrumentation and are based on field observations and intuition; however, the main problem is the diversity of definitions. An attempt is made here to develop a simple, rational classification of fine-grained sediments, and it is hoped that this classification will eliminate some of the present ambiguity. In order that the classification be pertinent, mineral composition and textural data were compiled and evaluated. The data on unconsolidated and consolidated sediments were contrasted and the effects of burial diagenesis assessed. It was found necessary to introduce a new term, physil, to describe all sheet silicate minerals. In contrast to the term clay mineral, the term physil has no size connotation. A simple classification is proposed that is based on the percentage of physils and grain size. In Part II the fine-grained physil rocks are classified on the basis of physil type, non-physil minerals, and texture. Formations are listed which have the mineral and textural characteristics of the most important rock types volumetrically. Selected rock types, and the formations in which they can be found, are recommended for laboratory study to determine their suitability for the storage of high-level radioactive waste

  20. Titanium photocatalyst against human pathogenic microorganisms

    International Nuclear Information System (INIS)

    Kussovski, V.; Stefchev, P.; Kirilov, R.

    2011-01-01

    The conventional methods of disinfection are not effective in the longer term. They are time and staff intensive and use aggressive chemicals. Photocatalytic oxidation on surfaces coated with titanium dioxide (TiO 2 ) might offer a possible alternative. The antimicrobial activity of TiO 2 powder P25 and thin films of TiO 2 on glass slides against representative strains of microorganisms associated with hospital-acquired infections (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) was investigated in vitro. High efficiency has been found in the case of the studied bacterial strains, particularly for the P. aeruginosa. It was shown that it is possible to disinfect surfaces coated with TiO 2 and stimulated by UV-A light. The reduction efficiencies for P. aeruginosa, S. aureus and C. albicans were 3.19, 2.32 and 1.22. In all cases sublethal UV-A doses provoked an important lethality in the presence of TiO 2 . (authors)

  1. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters

    DEFF Research Database (Denmark)

    Panther, Jared G.; Teasdale, Peter R.; Bennett, William W.

    2010-01-01

    A new diffusive gradients in a thin film (DGT) technique for measuring dissolved reactive phosphorus (DRP) in fresh and marine waters is reported. The new method, which uses a commercially available titanium dioxide based adsorbent (Metsorb), was evaluated and compared to the well-established fer...

  2. Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters

    DEFF Research Database (Denmark)

    Hutchins, Colin M.; Panther, Jared G.; Teasdale, Peter R.

    2012-01-01

    A new diffusive gradients in a thin film (DGT) technique for measuring dissolved uranium (U) in freshwater is reported. The new method utilises a previously described binding phase, Metsorb (a titanium dioxide based adsorbent). This binding phase was evaluated and compared to the well-established...

  3. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  4. Analysis of titanium content in titanium tetrachloride solution

    Science.gov (United States)

    Bi, Xiaoguo; Dong, Yingnan; Li, Shanshan; Guan, Duojiao; Wang, Jianyu; Tang, Meiling

    2018-03-01

    Strontium titanate, barium titan and lead titanate are new type of functional ceramic materials with good prospect, and titanium tetrachloride is a commonly in the production such products. Which excellent electrochemical performance of ferroelectric tempreature coefficient effect.In this article, three methods are used to calibrate the samples of titanium tetrachloride solution by back titration method, replacement titration method and gravimetric analysis method. The results show that the back titration method has many good points, for example, relatively simple operation, easy to judgment the titration end point, better accuracy and precision of analytical results, the relative standard deviation not less than 0.2%. So, it is the ideal of conventional analysis methods in the mass production.

  5. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  6. Titanium-silicon films prepared by spin and dip-coating

    International Nuclear Information System (INIS)

    Nassar, Eduardo J.; Ciuffi, Katia J.; Goncalves, Rogeria R.; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2003-01-01

    The conditions for the preparation of luminescent materials, consisting of Eu 3+ ions entrapped in a titanium matrix, in the form of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hydrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu 3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique. (author)

  7. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    International Nuclear Information System (INIS)

    Camacho-Lopez, Santiago; Evans, Rodger; Escobar-Alarcon, Luis; Camacho-Lopez, Miguel A.; Camacho-Lopez, Marco A.

    2008-01-01

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO 2 in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance

  8. Influence of titanium and vanadium on the hydrogen transport through amorphous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, G.K. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Wang, Y.T. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Azofeifa, D. [Centro de Investigacion en Ciencia e Ingenieria de Materiales and Escuela de Fisica, Universidad de Costa Rica, San Jose (Costa Rica); Raanaei, H. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Department of Physics, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Sahlberg, M. [Department of Materials Chemistry, Uppsala University, Box 538, S-751 21 Uppsala (Sweden); Hjoervarsson, B. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden)

    2010-04-02

    The influence of titanium and vanadium on the hydrogen transport rate through thin amorphous alumina films is addressed. Only small changes in the transport rate are observed when the Al{sub 2}O{sub 3} are covered with titanium or vanadium. This is in stark contrast to results with a Pd overlayer, which enhances the transport by an order of magnitude. Similarly, when titanium is embedded into the alumina the transport rate is faster than for the covered case but still slower than the undoped reference. Embedding vanadium in the alumina does not yield an increase in uptake rate compared to the vanadium covered oxide layers. These results add to the understanding of the hydrogen uptake of oxidized metals, especially the alanates, where the addition of titanium has been found to significantly enhance the rate of hydrogen uptake. The current findings eliminate two possible routes for the catalysis of alanates by Ti, namely dissociation and effective diffusion short-cuts formed by Ti. Finally, no photocatalytic enhancement was noticed on the titanium covered samples.

  9. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2008-12-30

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.

  10. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  11. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO_2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti_2O_3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  12. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  13. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  14. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  15. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  16. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  17. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  18. Titanium gettering in Doublet III

    International Nuclear Information System (INIS)

    de Grassie, J.S.; Callis, R.; Campbell, G.

    1980-08-01

    The application of mild titanium gettering in the Doublet III tokamak has led to a significant improvement in the obtainable operating regimes and discharge parameters for all of the many plasma cross-sectional shapes studied. With gettering, low-Z impurities and radiated power are greatly reduced. The maximum line averaged electron density has increased 50% (anti n/sub e max/ approx. 1 x 10 20 /m 3 ), corresponding to a Murakami coefficient of nearly 6

  19. Analogy and differences between aluminium and titanium electrowinning

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2006-09-01

    Full Text Available larger market. The authors have tested this route experimentally, but could not produce pure titanium. The failure of electrowinning pure, molten titanium has been interpreted in terms of the analogy and differences between aluminium and titanium...

  20. Research and Development on Titanium Alloys

    Science.gov (United States)

    1949-10-31

    information concerning the runs made * * In order to check the general operation of the train and furnace, a number of qualitative runs were made. These runs... General Technique. * . . * * . 109 The Analysis of Titanium . . . . ... ... 112 Notes and Comments, . . . .. . .. . . . 113 The Results from Vacuum...described in this report are as follows: 1. Arc ielting Titanium-Base Alloys. 2. Evaluation of Experimental Titanium-Base Alloys. 3. Investigation of

  1. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  2. Production of titanium from ilmenite: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  3. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  4. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  5. Machinability evaluation of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Okuno, Osamu

    2004-03-01

    In the present study, the machinability of titanium, Ti-6Al-4V, Ti-6A1-7Nb, and free-cutting brass was evaluated using a milling machine. The metals were slotted with square end mills under four cutting conditions. The cutting force and the rotational speed of the spindle were measured. The cutting forces for Ti-6Al-4V and Ti-6Al-7Nb were higher and that for brass was lower than that for titanium. The rotational speed of the spindle was barely affected by cutting. The cross sections of the Ti-6Al-4V and Ti-6Al-7Nb chips were more clearly serrated than those of titanium, which is an indication of difficult-to-cut metals. There was no marked difference in the surface roughness of the cut surfaces among the metals. Cutting force and the appearance of the metal chips were found to be useful as indices of machinability and will aid in the development of new alloys for dental CAD/CAM and the selection of suitable machining conditions.

  6. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  7. Thermoluminescence of thin films deposited by laser ablation; Termoluminiscencia de peliculas delgadas depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Escobar A, L.; Camps, E.; Arrieta, A.; Romero, S.; Gonzalez, P.R.; Olea M, O.; Diaz E, R. [Depto. de Fisica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2003-07-01

    Materials in thin film form have received great attention in the last few years mainly because of their singular properties, which may differ significantly from their bulk attributes making them attractive for a wide variety of applications. In particular, thermoluminescence (Tl) properties of thin films have been studied recently owing to their potential applications in detection for both ionizing and non ionizing radiation. The aim of the present work is to report the synthesis and characterization of C Nx, aluminum oxide and titanium oxide thin films. Thermoluminescence response of the obtained thin films was studied after subject thin films to UV radiation (254 nm) as well as to gamma radiation (Co-60). Thermoluminescence glow curves exhibited a peak centered at 150 C for CN{sub x} whereas for titanium oxide the glow curve shows a maximum peaking at 171 C. Characterization of the physical properties of the deposited materials is presented. (Author)

  8. Anodic oxidation of commercially pure titanium for purification of polluted water

    Science.gov (United States)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  9. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    Science.gov (United States)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-11-01

    Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.

  10. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  11. Appcelerator Titanium patterns and best practices

    CERN Document Server

    Pollentine, Boydlee

    2013-01-01

    The book takes a step-by-step approach to help you understand CommonJS and Titanium architecture patterns, with easy to follow samples and plenty of in-depth explanations If you're an existing Titanium developer or perhaps a new developer looking to start off your Titanium applications "the right way", then this book is for you. With easy to follow examples and a full step-by-step account of architecting a sample application using CommonJS and MVC, along with chapters on new features such as ACS, you'll be implementing enterprise grade Titanium solutions in no time. You should have some JavaSc

  12. Criterion of titanium aviation alloy application

    International Nuclear Information System (INIS)

    Stasyunas, O.P.

    1976-01-01

    The most significant statistic mechanical characteristics are presented of titanium as compared with those of aluminium and steel. Based on these data one can draw conclusions as to the advantages and disadvantages of titanium. High chemical activity and diffusivity of titanium place limitations on the use of its alloys. Despite the promising features of a needle-like structure, specifications still keep relying on a globular structure, which is explained by the easeiness of the production. Titanium is expensive, sometimes its cost may by a factor of 20 exceed that of other aviation materials

  13. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  14. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  15. Crystallochemical characteristics of alkali calcium silicates from charoitites

    International Nuclear Information System (INIS)

    Rozhdestvenskaya, I.V.; Nikishova, L.V.

    2002-01-01

    The characteristic features of the crystal structures of alkali calcium silicates from various deposits are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction methods, are described as the combinations of large construction modules, including the alternating layers of alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the different ways of ordering them have different effects on the structures of these minerals and give rise to the formation of superstructures accompanied by a change of the space group (frankamenite-canasite), leading, in turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agrellites), structure deformation, and changes in the unit-cell parameters (tinaksite-tokkoite)

  16. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    , but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...... present in the solid. Some minerals of siliceous ooze, such as opal, have hydrogen in their structures which influences the measured hydrogen index (HI). The neutron tool obtains the combined signal of the HI of the solid phase and of the water that occupies the true porosity. The HI is equal to true...... to interpret lithology and the unusual physical properties of the studied intervals. The integration of all these data revealed that the studied siliceous ooze is a mixture of opal and non-opal (shale). Our results proved to be reasonably consistent. The studied intervals apparently do not contain hydrocarbons....

  17. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  18. Titanium. Properties, raw datum surface, physicochemical basis and fabrication technique

    International Nuclear Information System (INIS)

    Garmata, V.A.; Petrun'ko, A.N.; Galitskij, N.V.; Olesov, Yu.G.; Sandler, R.A.

    1983-01-01

    On the nowadays science and technology achievements the complex of titanium metallurgy problems comprising raw material base, physico-chemical basis and fabrication technique, properties and titanium usage fields is considered for the first time. A particular attention is given to raw material base, manufacturing titanium concentrates and titanium tetrachloride, metallothermal reduction, improvement of metal quality. Data on titanium properties are given, processes of titanium powder metallurgy, scrap and waste processing, problems of economics and complex raw material use are considered

  19. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  20. Synthesis and characterization of MoO3–WO3 composite thin films ...

    Indian Academy of Sciences (India)

    Abstract. In order to achieve high colouration efficiency, MoO3–WO3 composite thin films have been successfully deposited on sodium silicate glass and silicon wafer (111) at 30 ◦C by a very simple novel wet process known as liquid phase deposition. The deposited films were annealed at different temperatures and ...

  1. Leaf application of silicic acid to upland rice and corn

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2013-12-01

    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  2. The vapour phase deposition of boron on titanium by the reaction between gaseous boron trichloride and titanium metal. Final report

    International Nuclear Information System (INIS)

    Cameron, D.J.; Shelton, R.A.J.

    1965-03-01

    The reaction, between boron trichloride vapour and titanium has been investigated in the temperature range 200 - 1350 deg. C. It has been found that an initial reaction leads to the formation of titanium tetrachloride and the deposition of boron on titanium, but that except for reactions between 900 and 1000 deg. C, the system is complicated by the formation of lower titanium chlorides due to secondary reactions between the titanium and titanium tetrachloride

  3. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  4. Obtainment and characterization of pure and doped gadolinium oxy ortho silicates with terbium III, precursor of luminescent silicates with sulphur

    International Nuclear Information System (INIS)

    Simoneti, J.A.

    1992-01-01

    Silicate and sulfide lattices are uniquely efficient luminescent materials to excitation by cathodic rays and furthermore the cathodoluminescence study of these compounds have been few investigated. In this work it has been prepared, characterized and investigated some spectroscopic properties of pure and Tb a+ - activated Gd 2 Si O 3 system and it has been tried to substitute oxygen by sulphur in order to obtain this or sulfide-silicate lattices. Products were characterized by vibrational infrared spectroscopy, powder X-ray diffraction patterns and electronic emission in UV-VIS region. (author)

  5. Non-conservative controls on distribution of dissolved silicate in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Sankaranarayanan, V.N.; Joseph, T.; Nair, M.

    Cochin backwater system was studied with regard to dissolved silicate (DSi) to understand its seasonal distribution and behaviour during estuarine mixing. Silicate had a linear relationship with salinity during the high river discharge period...

  6. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    Science.gov (United States)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  7. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  8. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  9. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  10. Casting of Titanium and its Alloys

    OpenAIRE

    R. L. Saha; K. T. Jacob

    1986-01-01

    Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  11. Appcelerator Titanium business application development cookbook

    CERN Document Server

    Bahrenberg, Benjamin

    2013-01-01

    Presented in easy to follow, step by step recipes, this guide is designed to lead you through the most important aspects of application design.Titanium developers who already have a basic knowledge of working with Appcelerator Titanium but want to further develop their knowledge for use with business applications

  12. Mineral resource of the month: titanium

    Science.gov (United States)

    Gambogi, Joseph

    2011-01-01

    Titanium is hip - at least when it comes to airplanes and jewelry. Known for its high strength-to weight ratio and its resistance to corrosion, titanium and its alloys can also be found in everything from knee replacements to eyeglass frames to baseball bats to fighter planes.

  13. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  14. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  15. Dielectric properties of plasma sprayed silicates subjected to additional annealing

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 10, č. 2 (2017), s. 105-114 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Annealing * Dielectric properties * Plasma spraying * Silicates * Electrical properties * Insulators Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films http://pccc.icrc.ac.ir/Articles/1/18/990/

  16. Vesuvianite–wollastonite–grossular-bearing calc-silicate rock near ...

    Indian Academy of Sciences (India)

    Felsic layers are white in colour, whereas mafic layers range from green, brown to grey colour depending on the modal abundance of different mafic minerals. Layers rich in diopside are green coloured and those rich in garnet are brown. Keywords. Vesuvianite; wollastonite; grossular; diopside; calc-silicate rock. J. Earth ...

  17. Decreased water flowing from a forest amended with calcium silicate

    Science.gov (United States)

    Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...

  18. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  19. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  20. Preparation and characterization of magnesium–aluminium–silicate ...

    Indian Academy of Sciences (India)

    A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...

  1. Effect of antioxidants and silicates on peroxides in povidone.

    Science.gov (United States)

    Narang, Ajit S; Rao, Venkatramana M; Desai, Divyakant S

    2012-01-01

    Reactive peroxides in povidone often lead to degradation of oxidation-labile drugs. To reduce peroxide concentration in povidone, the roles of storage conditions, antioxidants, and silicates were investigated. Povidone alone and its physical mixtures with ascorbic acid, propyl gallate, sodium sulfite, butylated hydroxyanisole (BHA), or butylated hydroxytoluene (BHT) were stored at 25 °C and 40 °C, at 11%, 32%, and 50% relative humidity. In addition, povidone solution in methanol was equilibrated with silicates (silica gel and molecular sieves), followed by solvent evaporation to recover povidone powder. Peroxide concentrations in povidone were measured. The concentration of peroxides in povidone increased under very-low-humidity storage conditions. Among the antioxidants, ascorbic acid, propyl gallate, and sodium sulfite reduced the peroxide concentration in povidone, whereas BHA and BHT did not. Water solubility appeared to determine the effectiveness of antioxidants. Also, some silicates significantly reduced peroxide concentration in povidone without affecting its functionality as a tablet binder. Porosity of silicates was critical to their ability to reduce the peroxide concentration in povidone. A combination of these approaches can reduce the initial peroxide concentration in povidone and minimize peroxide growth under routine storage conditions. Copyright © 2011 Wiley-Liss, Inc.

  2. Mineralogy and trace element chemistry of the Siliceous Earth of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We report the presence of a 3–5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka. Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing ...

  3. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  4. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    tricalcium silicate powder showed that it could induce bone- like apatite formation after ... ated by soaking them in SBF, cell adhesion and MTT assay, respectively. 2. .... tibility, which might be used as one of the bioactive coating materials and ...

  5. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  6. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  7. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  8. Oxidation behaviour of titanium in high temperature steam

    Energy Technology Data Exchange (ETDEWEB)

    Moroishi, T; Shida, Y [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Central Research Labs.

    1978-03-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550/sup 0/C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500/sup 0/C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550/sup 0/C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450/sup 0/C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO/sub 2/. Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO/sub 2/ scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal.

  9. Oxidation behaviour of titanium in high temperature steam

    International Nuclear Information System (INIS)

    Moroishi, Taishi; Shida, Yoshiaki

    1978-01-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550 0 C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500 0 C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550 0 C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450 0 C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO 2 . Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO 2 scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal. (auth.)

  10. Decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminium silicate ores were studied by means of X-ray phase, differential thermal and silicate analysis. The chemical composition of aluminium containing ores was determined. The optimal conditions of interaction of initial and pre calcined siallites with hydrochloric acid were defined. The kinetics of acid decomposition of aluminium silicate ores was studied as well.

  11. Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites

    KAUST Repository

    Schmidt, Daniel F.

    2010-01-12

    We report the first in-depth comparison of the mechanical properties and equilibrium solvent uptake of a range of polysiloxane nanocomposites based on treated and untreated montmorillonite and fumed silica nanofillers. We demonstrate the ability of equilibrium solvent uptake data (and, thus, overall physical and chemical cross-link density) to serve as a proxy for modulus (combining rubber elasticity and Flory-Rehner theory), hardness (via the theory of Boussinesq), and elongation at break, despite the nonideal nature of these networks. In contrast, we find that tensile and tear strength are not well-correlated with solvent uptake. Interfacial strength seems to dominate equilibrium solvent uptake and the mechanical properties it predicts. In the montmorillonite systems in particular, this results in the surprising consequence that equilibrium solvent uptake and mechanical properties are independent of dispersion state. We conclude that edge interactions play a more significant role than degree of exfoliation, a result unique in the field of polymer nanocomposites. This demonstrates that even a combination of polymer/nanofiller compatibility and thermodynamically stable nanofiller dispersion levels may not give rise to reinforcement. These findings provide an important caveat when attempting to connect structure and properties in polymer nanocomposites, and useful guidance in the design of optimized polymer/layered silicate nanocomposites in particular. © 2009 American Chemical Society.

  12. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  13. Titanium dioxide nanomaterials for photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Zhe; Green, Michael; Just, Michael; Chen, Xiaobo; Li, Yang Yang

    2017-01-01

    Titanium dioxide (TiO 2 ) has been long regarded as one of the more promising photocatalysts to remove environmental pollution and to generate hydrogen from water under sunlight irradiation via photocatalysis. TiO 2 is environmentally benign and thus is considered a ‘green’ catalyst. In this review we present a short introduction to the physical and electronic properties of TiO 2 , its photocatalytic mechanisms, and some recent examples of various TiO 2 materials used for photocatalysis; these examples include 0, 1, 2, 3D, faceted, defected, composited, and hydrogenated TiO 2 materials. (topical review)

  14. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  15. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  16. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric

    International Nuclear Information System (INIS)

    Karimi, Loghman; Yazdanshenas, Mohammad Esmail; Khajavi, Ramin; Rashidi, Abosaeed; Mirjalili, Mohammad

    2015-01-01

    Graphical abstract: - Highlights: • Producing superior photo-active cotton fabric using graphene/titanium dioxide nanocomposite. • Optimizing processing conditions using response surface methodology. • Obtaining significant photo-activity properties on cotton fabric by this method under sun irradiation. • Possessing excellent antimicrobial activity with low cytotoxicity on human fibroblasts. - Abstract: A new facile route based on cotton fabric coated with graphene/titanium dioxide nanocomposite is reported to produce photo-active cellulose textiles. A thin layer of graphene oxide has been produced on cotton fabrics by a dip-dry process. The graphene oxide-coated cotton fabrics were then immersed in titanium trichloride aqueous solution to yield a fabric coated with graphene/titanium dioxide nanocomposite. The photo-activity efficiency of the coated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. To obtain the optimum condition, the response surface methodology (RSM) through the central composite design was applied and the role of both graphene oxide and titanium trichloride concentrations on photo-activity efficiency was investigated. The physicochemical properties of the prepared samples has been characterized by a series of techniques, including Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of the application of graphene/titanium dioxide nanocomposite on the physical properties of the cotton fabric, such as tensile strength, bending rigidity and crease recovery angle has been analyzed. Other characteristics of treated fabrics such as antibacterial, antifungal and cytotoxicity were also investigated. Cotton fabric coated with optimum concentrations of graphene oxide and titanium trichloride obtained significant photo-activity efficiency under UV and sunlight irradiations. Moreover, the graphene/titanium

  17. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  18. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  19. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  20. Silicate Phases on the Surfaces of Trojan Asteroids

    Science.gov (United States)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  1. Functional nanostructured titanium nitride films obtained by sputtering magnetron

    International Nuclear Information System (INIS)

    Sanchez, O.; Hernandez-Velez, M.; Navas, D.; Auger, M.A.; Baldonedo, J.L.; Sanz, R.; Pirota, K.R.; Vazquez, M.

    2006-01-01

    Development of new methods in the formation of hollow structures, in particular, nanotubes and nanocages are currently generating a great interest as a consequence of the growing relevance of these nanostructures on many technological fields, ranging from optoelectronics to biotechnology. In this work, we report the formation of titanium nitride (TiN) nanotubes and nanohills via reactive sputtering magnetron processes. Anodic Alumina Membranes (AAM) were used as template substrates to grow the TiN nanostructures. The AAM were obtained through electrochemical anodization processes by using oxalic acid solutions as electrolytes. The nanotubes were produced at temperatures below 100 deg. C, and using a pure titanium (99.995%) sputtering target and nitrogen as reactive gas. The obtained TiN thin films showed surface morphologies adjusted to pore diameter and interpore distance of the substrates, as well as ordered arrays of nanotubes or nanohills depending on the sputtering and template conditions. High Resolution Scanning Electron Microscopy (HRSEM) was used to elucidate both the surface order and morphology of the different grown nanostructures. The crystalline structure of the samples was examined using X-ray Diffraction (XRD) patterns and their qualitative chemical composition by using X-ray Energy Dispersive Spectroscopy (XEDS) in a scanning electron microscopy

  2. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  3. Q4 Titanium 6-4 Material Properties Development

    Science.gov (United States)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  4. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  5. Suspension hydration of tricalcium silicate at constant pH. I. Variation of particle size and tricalcium silicate content

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within

  6. Titanium oxide fever; De titaniumoxidekoorts

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, D.; Visser, J. [Afdeling Luchtkwaliteit, GGD Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [Dutch] Een van de maatregelen om de luchtkwaliteit te verbeteren is het aanbrengen van fotokatalytische stoffen waarmee NOx kan worden afgevangen op bijvoorbeeld wegdek of op geluidsschermen langs wegen. Over het effect van titaniumoxidehoudende straatklinkers en hierop aangebrachte coatings verscheen in mei 2011 het rapport 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands'. Dit artikel gaat over de manier waarop de effectiviteit in het hiervoor genoemde onderzoek is bepaald. Kunnen titaniumoxidehoudende klinkers en coatings inderdaad NOx afvangen?.

  7. Adsorption of hydrogen in titanium

    International Nuclear Information System (INIS)

    Martinez R, T.

    1995-01-01

    In this work the absorption of hydrogen in titanium plates using a constant volume system has been realized. The changes of temperature and pressure were used to monitor the progress of the absorption. A stainless steel vacuum chamber with volume of 4,333 cm 3 was used. A titanium sample of 45 x 5.4 x 0.3 cm was located in the center of the chamber. The sample was heated by an electrical source connected to the system. The sample was preconditioned with a vacuum-thermal treatment at 10 -6 mbar and 800 Centigrade degrees for several days. Absorption was observed at room temperature and also at higher temperatures. The room temperature absorption was in the pressure range of 1.0 x 10 3 to 2.5 x 10 3 mbar, and other absorptions were from 180 to 630 Centigrade degrees at 3.5 x 10 -1 to 1.3 x 10 3 mbar. It was found that the gas absorbed was function of the vacuum-thermal pre-conditioned treatment, pressure and temperature. When the first absorption was developed, additional absorptions were realized in short time. We measured the electrical resistivity of the sample in the experiments but we could not see important changes due to the absorption. (Author)

  8. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    Science.gov (United States)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  9. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  10. Superhard PVD carbon films deposited with different gradients with and without additions of titanium and silicon

    International Nuclear Information System (INIS)

    Bauer, C.

    2003-10-01

    This work focusses on thin carbon-based films, deposited by magnetron sputtering with additional argon ion bombardment (0 eV to 800 eV) without extra adhesive layer on hard metal inserts. As one possibility of increasing the reduced adherence of hard carbon films the deposition of films with additions of titanium and silicon is studied. The aim of this work is to examine the influence of a modification of the transition between substrate and film by realizing three different types of deposition gradients. The pure carbon films are amorphous, the dominant network of atoms is formed by sp 2 bonded atoms. The amount of sp 3 bonded atoms is up to 30% and is influenced by the bombarding argon ion energy. Carbon films with additions of silicon are amorphous, only in films with a high amount of titanium (approx. 20 at%) nanocomposites of titanium carbide crystals with diameters of less than 5 nm in an amorphous carbon matrix were found. The mechanical properties and the behavior of single layer carbon films strongly depend on the argon ion energy. An increase of this energy leads to higher film hardness and higher residual stress and results in the delamination of superhard carbon films on hard metal substrates. The adhesion of single layer films for ion energies of more than 200 eV is significantly improved by additions of titanium and silicon, respectively. The addition of 23 at% silicon and titanium, respectively leads to a high reduction of the residual stress. In a non-reactive PVD process thin films were deposited with a continuously gradient in chemical composition. The results of the investigations of the films with two different concentrations of titanium and silicon, respectively show that carbon-based films with a good adhesion could be deposited. The combination of the two gradients in structure and properties and in chemical composition leads in the system with carbon and silicon carbide to hard and very adhesive films. Especially for carbon films with a high

  11. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  12. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  13. Ultrasonic effects on titanium tanning of leather.

    Science.gov (United States)

    Peng, Biyu; Shi, Bi; Sun, Danhong; Chen, Yaowen; Shelly, Dennis C

    2007-03-01

    The effects of ultrasound on titanium tanning of leather were investigated. Either 20 or 40 kHz ultrasound was applied to the titanium tanning of pigskins. Five different treatment conditions were carried out and the effects were examined, such as leather shrinkage temperature (T(s)), titanium content and titanium distribution in the leather. Overall heat loading was carefully controlled. Results showed that 20 kHz ultrasound effectively improves titanium agent penetration into the hide and increases the leather's shrinkage temperature. Doubling the frequency to 40 kHz produced negligible enhancements. An impressive 105.6 degrees C T(s) was achieved using 20 kHz ultrasound pretreatment of the tanning liquor followed by 20 kHz ultrasound in the tanning mixture (liquor plus pigskins) in a special salt-free medium. Finally, using a unique ultrasonic tanning drum with 26.5 kHz ultrasound, the T(s) reached a record level of 106.5 degrees C, a value not achieved in conventional (no ultrasound) titanium tanning. The ultrasonic effects on titanium tanning of leather are judged to make a superior mineral tanned leather.

  14. Wind-eroded silicate as a source of hydrogen peroxide on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Merrison, Jonathan P.; Jensen, Svend Knak

    -sists of silicates [4] that due to wind erosion has a very fine grained texture. Based on the composition of the surface material and investigations showing that crushing of silicates can give rise to reactive oxygen species [5], we hypothesized that wind erosion of silicates can explain the reactivity of Martian...... soil. Wind-erosion of silicate could thus be one of several causes of the soil’s reactivity. As our experiments show, the globally distributed wind eroded silicate dust can lead to the production of hydrogen peroxide which might explain the reactivity of the Martian soil. The reactivity of eroded...

  15. Pulsed 1064 nm Nd-YAG Laser Deposition of Titanium on Silicon in a Nitrogen Environment

    Directory of Open Access Journals (Sweden)

    Wilson Garcia

    1999-12-01

    Full Text Available Pulsed laser deposition (PLD technique was demonstrated for the deposition of titanium nitride (TiN thin films on Si (100 substrates. A 1064 nm pulsed Nd-YAG laser is focused on a titanium (99.5% target in a nitrogen environment to generate the atomic flux needed for the film deposition. Spectroscopic analysis of the plasma emission indicates the presence of atomic titanium and nitrogen, which are the precursors of TiN. Images of the films grown at different laser pulse energies show an increase in the number and size of deposited droplets and clusters with increasing laser pulse energy. A decrease in cluster and droplet size is also observed, with an increase in substrate temperature. EDS data show an increase in the titanium peak relative to the silicon as the ambient nitrogen pressure is decreased. An increase in deposition time was found to result in large clusters and irregularly shaped structures on the substrate. Post-deposition annealing of the samples enhanced the crystallinity of the film.

  16. [The surface roughness analysis of the titanium casting founding by a new titanium casting investment material].

    Science.gov (United States)

    Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng

    2012-04-01

    To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.

  17. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions

    International Nuclear Information System (INIS)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D.

    2007-01-01

    Corrosion resistance and galvanic coupling of Grade 2 commercially pure titanium in its welded and non-welded condition were systematically analyzed in LiBr solutions. Galvanic corrosion was evaluated through two different methods: anodic polarization (according to the Mixed Potential Theory) and electrochemical noise (using a zero-resistance ammeter). Samples have been etched to study the microstructure. The action of lithium chromate as corrosion inhibitor has been evaluated. Titanium and welded titanium showed extremely low corrosion current densities and elevated pitting potential values (higher than 1 V). The results of both methods, anodic polarization and electrochemical noise, showed that the welded titanium was always the anodic element of the pair titanium-welded titanium, so that its corrosion resistance decreases due to the galvanic effect

  18. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  19. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  20. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  1. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  2. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  3. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  4. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  5. Effect of Diethanolamine on Property of Thin Film TiO2 in Treating Hexavalent Chromium from Aqueous Solution

    International Nuclear Information System (INIS)

    Kajitvichyanukul, Puangrat; Jirapattarasakul, Sudarat

    2006-01-01

    In this research titanium dioxide thin film was synthesized from hydrolysis and condensation process by sol-gel method. Titanium alkoxide was used as initial substrate. The solvent was ethanal and the additive substance was diethanolamine. All substances are mixed altogether in different ratios. To study the effect of diethanolamine on properties of titanium dioxide thin film, various film analysis were performed which included mass weighing, adhesive test, corrosion test using acid and alkali, surface morphology analysis with scanning electron microscope (SEM), thin film structure analysis using X-ray diffraction (XRD), and photo activity by chromium removal test. It was found that diethanolmine enhanced the film strength and improved the adhesive property. The smooth surface was obtained. This thin film showed the effectiveness in chromium removal with high photo activity. Even tough the developed thin film can remove chromium (VI) efficiently, the reaction rate constant (k) was slightly reduced from that using the normal thin film titanium dioxide (without adding diethanolamine). In addition, the reaction time is required little longer to accomplish the chromium (VI) removal with the same performance

  6. ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2015-01-01

    Full Text Available A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times fall of magnitude of electrostatic potential of thin (200–300 nm titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks contact of samples with simulated body fluid (SBF promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3 > Ti–O–N (1/1, TiO2 > Steel. It may be explained by: 1 the corrosion-preventive properties of thin titanium oxide and oxynitride films;2 a store of surface negative charge for Ti–O–N (1/3 film; 3 minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.

  7. Calc-silicate mineralization in active geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  8. Charge trapping and dielectric breakdown in lead silicate glasses

    International Nuclear Information System (INIS)

    Weeks, R.A.; Kinser, D.L.; Lee, J.M.

    1976-01-01

    When irradiated with beams of energetic electrons or gamma rays, many insulating glasses and plastics exhibit a spontaneous electrical discharge producing permanent patterns in the materials (Lichtenberg figures). In the case of inorganic glasses, this effect is not observed in pure silicate, germanate, or phosphate glasses nor in their crystalline forms and has only been reported in mixed-oxide glasses with low alkali content. In a series of lead silicate glasses of composition [PbO]/sub (x)/[SiO 2 ]/sub [1-(x)]/, the effect is observed only for 0 less than x less than or equal to 0.40. Changes in electrical properties are related to structural changes in these glasses. Electron microscopy of these glasses confirms the existence of microphase separation in the range 0.2 less than or equal to x less than or equal to 0.5

  9. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.

    1997-01-01

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  10. Silica from triethylammonium tris (oxalato) silicate (IV) thermal decomposition

    International Nuclear Information System (INIS)

    Ferracin, L.C.; Ionashiro, M.; Davolos, M.R.

    1990-01-01

    Silica can be obtained from differents precursors by differents methods. In this paper it has been investigated the thermal decomposition of triethylammonium tris (oxalato) silicate (IV) to render silica. Among the trisoxalato-complexes of silicon preparation methods reviewed it has been used the Bessler's one with the reflux adaptaded in microwave oven. Thermal decomposition analysis of the compound has been made by TG-DTG and DTA curves. Silica powders obtained and heated between 300 to 900 0 C in a oven were characterized by infrared vibrational spectroscopy, X-ray powder difraction and nitrogen adsorption isotherm (BET). The triethylammonium tris (oxalato) silicate (IV) thermal decomposition takes place at 300 0 C and the silica powder obtained is non cristalline with impurities that are eliminated with heating at 400 0 C. (author) [pt

  11. Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching

    Science.gov (United States)

    Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing

    2018-05-01

    Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.

  12. Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas

    Science.gov (United States)

    Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih

    2018-02-01

    In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.

  13. Titanium disilicide formation by sputtering of titanium on heated silicon substrate

    Science.gov (United States)

    Tanielian, M.; Blackstone, S.

    1984-09-01

    We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated

  14. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  15. Erbium diffusion in titanium dioxide

    Directory of Open Access Journals (Sweden)

    Louise Basse

    2017-04-01

    Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.

  16. An optical fibre-type silicate glass thermoluminescent detector

    International Nuclear Information System (INIS)

    Zheng Zheng; Dai Honggui; Hu Shangze; Liu Jian; Fang Jie

    1991-01-01

    A description of dosimetric properties and the preparation method of an optical fibre-type silicate glass thermoluminescent detector (TLD) is presented. Results showed that this new phosphor is a good one which could be used as a routine dosimeter in the range 10 -1 -10 3 Gy. The preparation method is a new one which differs greatly from all previous ones. Furthermore this kind of detector is small and of low weight. (orig.)

  17. Cracking phenomena in lithium-di-silicate glass ceramics

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.

  18. Strength and impermeability recovery of siliceous mudstone from complete failure

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Sanada, Masanori; Fujita, Tomoo; Hashiba, Kimihiro; Fukui, Katsunori; Okubo, Seisuke

    2013-01-01

    Radionuclide migration can be undesirably increased by weakening the mechanical properties of a rock mass in the excavated disturbed zone (EDZ) around the tunnels of a geological disposal facility for high level radioactive waste. Laboratory testing of loading stress and loading time on failed siliceous mudstone specimens has identified the potential for the long-term recovery of the strength and impermeability of the rock mass in the EDZ. (author)

  19. First physical volcanological description of a Miocene, silicic, phreatomagmatic fall complex in the Carpatho-Pannonian Region (CPR)

    Science.gov (United States)

    Biró, Tamás; Hencz, Mátyás; Karátson, Dávid; Márton, Emő; Bradák-Hayashi, Balázs; Szalai, Zoltán

    2017-04-01

    The study reports the basic physical volcanological and stratigraphical features of a hitherto unrecognized silicic phreatomagmatic fall succession from the Bükk Foreland Volcanic Area (Hungary), known as part of the extensive Miocene ignimbrite volcanism of the northern CPR. The complex have been identified at two sites, in the vicinity of Bogács and Tibolddaróc villages. Tens of mm to several dm thick layers make up the 20 m thick entire succession. The complex could be subdivided into three eruption cycles by two, intercalated well-developed paleosoil horizons, which indicate longer repose periods. The eruption cycles consist of several individual eruptive events. The volcano-sedimentological field approach was completed by granulometrical and low field anisotropy of magnetic susceptibility (AMS) studies. Combined dry sieving and laser diffraction particle size analysis were performed to get information on median grain size (MdΦ) and sorting (σΦ) of friable layers. AMS was used to infer the emplacement processes. Based on the following features the succession is proposed to record a large-scale, silicic, phreatomagmatic fall activity: i) Presence of very fine ash and abundant ash aggregates, ii) General poor sorting, and often bimodal grain-size distributions; ii) Extremely weak magnetic fabric compared to dilute, thin pyroclastic density current deposits. On the basis of comparison of the recorded grain size characteristics with data from other silicic phretomagmatic fall deposits worldwide, several units in the succession can be considered as phreatoplinian fall deposit (sensu lato), described for the first time in the CPR.

  20. Structure change of soda-silicate glass by mechanical milling

    International Nuclear Information System (INIS)

    Iwao, M; Okuno, M

    2010-01-01

    Structure change of ground soda-silicate glass (SiO 2 -Na 2 O binary systems) was investigated using X-ray diffraction (XRD) and infrared spectroscopy. The measurement results were discussed comparison to that of SiO 2 glass. With increasing Na 2 O concentrations, the XRD intensity around 2θ = 22 0 decreased and the intensity around 32 0 increased. The intensity around 22 0 and 32 0 maybe attributed to SiO 2 glass structure unit and soda-silicate glass unit, respectively. The peaks of Na 2 CO 3 crystal for 2SiO 2 -Na 2 O glass were observed with increasing milling time. This crystallization was suggested that Na + ion on 2SiO 2 -Na 2 O glass surface connected CO 2 in air. The intensity around 22 0 and 32 0 decreased and the intensity around 30 0 increased with increasing milling time. These may indicate that SiO 2 glass structure unit and soda-silicate glass structure unit were mixed by milling. In addition, IR absorption band near v = 1100 cm -1 was separated to two bands near 940 cm -1 and 1070 cm -1 with increasing Na 2 O concentrations. The band near 940 cm -1 decreased and the band near 1070 cm -1 increased with increasing milling time. These spectra changes were suggested due to decrease of Na 2 O concentrations in 2SiO 2 -Na 2 O glass with Na 2 CO 3 crystallization.