WorldWideScience

Sample records for titanium oxide-supported vanadium

  1. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  2. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  3. Vanadium and titanium determination by resorcinalhydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Karpova, O I; Pilipenko, A T; Lukachina, V V [AN Ukrainskoj SSR, Kiev. Inst. Kolloidnoj Khimii i Khimii Vody

    1979-02-01

    The complexing of titanium and vanadium with resorcinalhydrazyl of salicylic acid (RHSA) in water-organic media is studied. Titanium (4) forms a complex at pH 0.8-1.8, vanadium - at pH 2.5-5.6, and at pH 7.6-9.8. The complexes are well extracted by polar and nonpolar solvents from acid solutions. The techniques are developed for the determination of titanium and vanadium by the RHSA agent in nickel alloys.

  4. Interaction of titanium and vanadium with carbon dioxide under heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskij, V.Ya.; Lyapunov, V.P.; Radomysel'skij, I.D.

    1986-01-01

    The methods of gravitmetric and X-ray phase analysis as well as analysis of composition of gases in the heating chamber have been used to investigate the mechanism of titanium and vanadium interaction with carbon dioxide in the 300-1000 deg C temperature range. The analogy of mechanisms of the interaction of titanium and vanadium with carbon dioxide in oxides production on the metal surface with subsequent carbidizing treatment at temperatures above 800 deg C is shown. Temperature limits of material operation on the base of titanium or vanadium in carbon dioxide must not exceed 400 or 600 deg C, respectively

  5. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  6. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2013-01-01

    on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context

  7. Interaction of titanium and vanadium with carbon dioxide in heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskii, V.Y.; Lyapunov, A.P.; Radomysel'skii, I.D.

    1986-01-01

    To obtain prediction data on the change in properties of titaniumand vanadium-base powder metallurgy materials operating in a carbon dioxide atmosphere, and also to clarify the mechanism of their interaction with the gas in this work, gravimetric investigations of specimens heated at temperatures of 300-1000 C and an x-ray diffraction analysis of their surface were made and the composition of the gas in the heating chamber was studied. The results of the investigations indicate a similarity between the mechanisms of interaction of titanium and vanadium with carbon dioxide including the formation of oxides on the surface of the metal with subsequent carbidization at temperatures above 800 C. On the basis of the data obtained, it may be concluded that the operating temperature limits of titanium- or vanadium-base materials in carbon dioxide must not exceed 400 and 600 C, respectively

  8. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

    Science.gov (United States)

    Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao

    2018-02-01

    An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.

  9. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei

    2013-09-11

    Two times higher activity and three times higher stability in methanol oxidation reaction, a 0.12 V negative shift of the CO oxidation peak potential, and a 0.07 V positive shift of the oxygen reaction potential compared to Pt nanoparticles on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context of an electronic structure model, showing an improvement in electrochemical activity when the Fermi level of the support material in Pt/TiOx systems is close to the Pt Fermi level and the redox potential of the reaction. The present approach provides guidance for the selection of the support material of Pt/TiOx systems and may be applied to other metal-oxide support materials, thus having direct implications in the design and optimization of fuel cell catalyst supports. © 2013 American Chemical Society.

  10. Vanadium

    International Nuclear Information System (INIS)

    Duke, V.W.A.

    1983-07-01

    Although a relatively abundant element, vanadium occurs only rarely in sufficient concentration to be worked commercially. In most cases, vanadium is produced as a co-product of some other element, most commonly iron. The principal ore deposits of vanadium occur in titaniferous magnetites that have been formed by magnetic segregation. Important commercial deposits of vanadium also occur associated with uranium, and with phosphate deposits. The principal uses of vanadium are in the production of special purpose, particularly high-strength low-alloy steels, in the manufacture of titanium alloys, and as a catalyst, notably in the manufacture of sulphuric acid. Small quantities of vanadium, often in combination with niobium, are added to steel to bring about toughening through grain refinement, and increased tensile strength through precipitation hardening. Known world reserves of vanadium are very large and fully adequate to meet any foreseeable demand. By far the largest known deposits of vanadium occur in South Africa. Many other similar deposits are known, but are only exploited in the USSR and China. The present total world demand for vanadium amounts to about 40 000 tons of metal annually and this is produced primarily in four countries, South Africa, the USSR, the People's Republic of China and the United States of America, in that order. South Africa is the principal vanadium producing country in the world, supplying vanadium in various forms. Vanadium has a very low and non-accumulative toxicity; recovery plants can be operated in such a manner to ensure no air or steam pollution results

  11. Determination of titanium and vanadium in aqueous solutions by potentiometric titration

    International Nuclear Information System (INIS)

    Sibirkin, A.A.; Elliev, Yu.E.

    1996-01-01

    Possibility of titanium and vanadium determination at their combined presence by bichromatometric chromometric titration with potentiometric indication of end point is shown. The technique is developed which allows to determine titanium and vanadium with relative standard derivation ±2% in amounts not less than 50 and 100 mg respectively

  12. Metal Oxide Supported Vanadium Substituted Keggin Type Polyoxometalates as Catalyst For Oxidation of Dibenzothiophene

    Science.gov (United States)

    Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti

    2018-01-01

    Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.

  13. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid-base properties on the oxidation of isopropanol

    Directory of Open Access Journals (Sweden)

    D. M. Meira

    2006-09-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K2CO3 as precipitant. The decomposition of these hydrotalcite precursors at 450°C yielded homogeneous MgyAlOx mixed oxides that contain the Al+3 cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V+5 decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  14. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid base properties on the oxidation of isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Meira, D.M.; Cortez, G.G. [Faculdade de Engenharia Quimica de Lorena, Lorena, SP (Brazil). Dept. de Engenharia Quimica. Lab. de Catalise II]. E-mail: cortez@dequi.faenquil.br; Monteiro, W.R.; Rodrigues, J.A.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Combustao e Propulsao]. E-mail: jajr@lcp.inpe.br

    2006-07-15

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K{sub 2}CO{sub 3} as precipitant. The decomposition of these hydrotalcite precursors at 450 deg C yielded homogeneous MgyAlOx mixed oxides that contain the Al{sup +3} cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR) and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V{sup +5} decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene. (author)

  15. The trapping of hydrogen ions in vanadium and titanium

    International Nuclear Information System (INIS)

    Arbuzov, V.L.; Vykhodets, V.B.; Raspopova, G.A.

    1996-01-01

    The accumulation of implanted deuterium has been investigated at room temperature in vanadium, titanium and their alloys up to (2-15) x 10 17 ions cm -2 fluences by means of D(d,p)T reaction. The amount of accumulated D was measured using a 700 KeV D + ion beam during implantation. It is found that concentration of implanted deuterium in irradiated samples nonmonotonously increases with increasing fluence and in a complicated manner depends upon V-Ti alloy composition. These data are explained by concentration dependence of D diffusion coefficient in V-Ti alloys, structural ion irradiation induced inhomogeneity of alloys with >5-8 at.% Ti, and irradiation-enhanced diffusion of deuterium. (orig.)

  16. The Balance of Titanium and Vanadium in the Blast Furnace with the Use of Sinter Containing a Titanium-Vanadium-Magnetite Concentrate

    Directory of Open Access Journals (Sweden)

    Budzik, R.

    2007-01-01

    Full Text Available The investigation concerned the use of sinter containing a titanium-vanadium-magnetite concentrate for the production of pig iron. Sinter containing 0,46 to 0,51 % TiO2 and 0,056 to 0,060 % vanadium was used for pig iron production in the blast furnace. Introducing 200 kg of this concentrate to the1 Mg sinter mix did not cause any deterioration of sinter quality.

  17. The extraction of vanadium pentoxide from waste of titanium tetrachloride by various methods

    Directory of Open Access Journals (Sweden)

    Инна Михайловна Гунько

    2015-04-01

    Full Text Available In article the recovery possibility of vanadium pentoxide from wastes, formed as a result of purification from impurities of technical titanium tetrachloride is researched. The purification from impurities is realized by different methods – pulp of lower titanium chlorides, hydrocarbonic reducer and cascade-rectifying purification. Usage of these purification methods leads to formation of anthropogenic wastes. The researches is shown that processing of these wastes is reasonable for the purpose of vanadium pentoxide extraction

  18. The preparation of titanium-vanadium carbide/nickel cermets. Technical report

    International Nuclear Information System (INIS)

    Precht, W.; Sprissler, B.

    1976-01-01

    Titanium/vanadium alloy carbide rods were prepared by a zone melting procedure. Wetting studies were carried out using sections of the fused rods and candidate matrix material. It was established that nickel exhibits excellent wetting of (Ti, V) C, and accordingly cermet blends were prepared and liquid phase sintered. Processing parameters are discussed as well as their effect on the final microstructure. Alternate methods for cermet preparation are offered which use as received titanium carbide and vanadium carbide powders

  19. Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys

    International Nuclear Information System (INIS)

    Leguey, T.

    1996-01-01

    The annealing of defects induced by electron irradiation up to a dose of 6.10 21 m -2 at T<293 K has been investigated in single-crystals of pure vanadium and in vanadium-titanium alloys with compositions 0.3, 1 and 5 at.% Ti using positron annihilation spectroscopy. The recovery of the positron annihilation parameters in V single-crystals indicates that the defect annealing takes place in the temperature range 410-470 K without formation of microvoids for the present irradiation conditions. For the alloys the recovery onset is shifted to 460 K, the width of the annealing stage is gradually broadened with increasing Ti content, and microvoids are formed for annealing temperatures at the end of the recovery stage. The results show that the vacancy release from vacancy-interstitial impurity pairs and subsequent recombination with interstitial loops is the mechanism of the recovery in pure V. For V-Ti alloys, vacancy-Ti-interstitial impurity complexes and vacancy-Ti pairs appear to be the defects responsible for the positron trapping. The broadening of the recovery stage with increasing Ti content indicates that solute Ti is a very effective trap for vacancies in V. (orig.)

  20. Influence of phosphorus and potassium impurities on the properties of vanadium oxide supported on TiO2

    NARCIS (Netherlands)

    van Hengstum, A.J.; Pranger, J.; van Ommen, J.G.; Gellings, P.J.

    1984-01-01

    The catalytic properties of vanadium oxide catalysts supported on TiO2 from Tioxide were strongly affected by phosphorus and potassium, present as impurities in the TiO2 support. The effects observed were stronaly dependent on the type of hydrocarbon oxidised. In the oxidation of toluene to benzoic

  1. Influence of titanium and vanadium on the hydrogen transport through amorphous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, G.K. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Wang, Y.T. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Azofeifa, D. [Centro de Investigacion en Ciencia e Ingenieria de Materiales and Escuela de Fisica, Universidad de Costa Rica, San Jose (Costa Rica); Raanaei, H. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Department of Physics, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Sahlberg, M. [Department of Materials Chemistry, Uppsala University, Box 538, S-751 21 Uppsala (Sweden); Hjoervarsson, B. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden)

    2010-04-02

    The influence of titanium and vanadium on the hydrogen transport rate through thin amorphous alumina films is addressed. Only small changes in the transport rate are observed when the Al{sub 2}O{sub 3} are covered with titanium or vanadium. This is in stark contrast to results with a Pd overlayer, which enhances the transport by an order of magnitude. Similarly, when titanium is embedded into the alumina the transport rate is faster than for the covered case but still slower than the undoped reference. Embedding vanadium in the alumina does not yield an increase in uptake rate compared to the vanadium covered oxide layers. These results add to the understanding of the hydrogen uptake of oxidized metals, especially the alanates, where the addition of titanium has been found to significantly enhance the rate of hydrogen uptake. The current findings eliminate two possible routes for the catalysis of alanates by Ti, namely dissociation and effective diffusion short-cuts formed by Ti. Finally, no photocatalytic enhancement was noticed on the titanium covered samples.

  2. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  3. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  4. Improved activation cross sections for vanadium and titanium

    International Nuclear Information System (INIS)

    Muir, D.W.; Arthur, E.D.

    1983-01-01

    Vanadium alloys such as V-20Ti and V-Cr-Ti are attractive candidates for use as structural materials in fusion-reactor blankets. The virtual absence of long-lived activation products in these alloys suggest the possibility of reprocessing on an intermediate time scale. We have employed the modern Hauser-Feshbach nuclear-model code GNASH to calculate cross sections for neutron-activation reactions in 50 V and 51 V, to allow a more accurate assessment of induced radioactivity in vanadium alloys. In addition, cross sections are calculated for the reactions 46 Ti(n,2n) and 45 Ti(n,2n) in order to estimate the production of 44 Ti, a 1.2-MeV gamma-ray source with a half-life of 47 years

  5. Preparation and characterization of phosphate glasses containing titanium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, S. [Laboratoire de Chimie du Solide, Faculte des Sciences Ain Chock, Casablanca (Morocco); Krimi, S. [Laboratoire de Chimie du Solide, Faculte des Sciences Ain Chock, Casablanca (Morocco)]. E-mail: krimisaida@yahoo.fr; El Jazouli, A. [Laboratoire de Chimie des Materiaux Solides, Faculte des Sciences Ben M' Sik, Casablanca (Morocco); Hlil, E.K. [Laboratoire de Cristallographie du CNRS, Grenoble (France)]. E-mail: hlil@grenoble.cnrs.fr; Waal, D. de [Department of Chemistry, University of Pretoria, 0002 Pretoria (South Africa)

    2007-02-21

    Na{sub 5-x}Ti{sub 1-x}V {sub x}(PO{sub 4}){sub 3} (0 {<=} x {<=} 1) phosphates glasses have been obtained in air by direct fusion of Na{sub 2}CO{sub 3}, TiO{sub 2}, V{sub 2}O{sub 5} and (NH{sub 4}){sub 2}HPO{sub 4}. Vitreous Na{sub 5}Ti(PO{sub 4}){sub 3} is colourless while the glasses containing vanadium are green, due to the reduction of V{sup 5+} to V{sup 4+}. Glass transition and crystallization temperatures (T {sub g}, T {sub c}) decrease when the amount of vanadium increases. EPR, Raman and UV-vis spectra have been investigated. The results are consistent with the presence of V{sup 4+} ions in distorted octahedra with very strong V-O bond.

  6. The effect of transition metals additions on the temperature coefficient of linear expansion of titanium and vanadium

    International Nuclear Information System (INIS)

    Lesnaya, M.I.; Volokitin, G.G.; Kashchuk, V.A.

    1976-01-01

    Results are reported of an experimental research into the influence of small additions of α-transition metals on the temperature coefficient of linear expansion of titanium and vanadium. Using the configuration model of substance as the basis, expeained are the lowering of the critical liquefaction temperature or the melting point of vanadium and the raising of it, as caused by the addition of metals of the 6 group of the periodic chart and by the addition of metals of the 8 group, respectively, and also a shift in the temperature of the polymorphic α-β-transformation of titanium. Suggested as the best alloying metal for vanadium are tungsten and tantalum; for titaniums is vanadium whose admixtures lower the melting point and shift the polymorphic transformation temperature by as much as 100 to 120 degrees

  7. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  8. Magnetic concentration of iron-titanium ore with vanadium concentrate from campo Alegre de Lourdes - Bahia, Brazil

    International Nuclear Information System (INIS)

    Delgado, O.; Silva, F.T. da; Ogasawara, T.; Soares, G.F.

    1988-01-01

    The feasibility studies of magnetic concentration of the Campo Alegre de Lourdes ore were carried out, trying to obtain a maximum recovery of vanadium. As a consequence of the complex nature of the ore, mainly due to the presence of ilmenite as a exolutions in the interior of hematite/martite particles, it was not possible to separate the hematite-ilmenite eficiently, wich would be necessary for obtaining a high grade vanadium concentrate with low titanium content. (author) [pt

  9. Evaluation of exploitation alternatives of iron - titanium - vanadium ore from Campo Alegre de Lourdes (Bahia-Brazil)

    International Nuclear Information System (INIS)

    Cassa, J.C.S.; Ogasawara, T.; Silva, F.T. da; Cuellar, O.D.

    1987-01-01

    An evaluation of experiences carried out in order to develop an economic process for vanadium, is presented. The attempts which are being developed in the Metallurgical Engineering Program at COPPE/UFRJ, are described, and the other technical and economical possibilities of existing technologies, are analysed. The advantages and disadvantages of integrated steel making process to recover iron, titanium and vanadium contained in the ore from Campo Alegre de Lourdes deposit, in Bahia-Brazil are considered. (Author) [pt

  10. Vanadium

    Science.gov (United States)

    Kelley, Karen D.; Scott, Clinton T.; Polyak, Désirée E.; Kimball, Bryn E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Vanadium is used primarily in the production of steel alloys; as a catalyst for the chemical industry; in the making of ceramics, glasses, and pigments; and in vanadium redox-flow batteries (VRBs) for large-scale storage of electricity. World vanadium resources in 2012 were estimated to be 63 million metric tons, which include about 14 million metric tons of reserves. The majority of the vanadium produced in 2012 was from China, Russia, and South Africa.Vanadium is extracted from several different types of mineral deposits and from fossil fuels. These deposits include vanadiferous titanomagnetite (VTM) deposits, sandstone-hosted vanadium (with or without uranium) deposits (SSV deposits), and vanadium-rich black shales. VTM deposits are the principal source of vanadium and consist of magmatic accumulations of ilmenite and magnetite containing 0.2 to 1 weight percent vanadium pentoxide (V2O5). SSV deposits are another important source; these deposits have average ore grades that range from 0.1 to greater than 1 weight percent V2O5. The United States has been and is currently the main producer of vanadium from SSV deposits, particularly those on the Colorado Plateau. Vanadium-rich black shales occur in marine successions that were deposited in epeiric (inland) seas and on continental margins. Concentrations in these shales regularly exceed 0.18 weight percent V2O5 and can be as high as 1.7 weight percent V2O5. Small amounts of vanadium have been produced from the Alum Shale in Sweden and from ferrophosphorus slag generated during the reduction of phosphate to elemental phosphorus in ore from shales of the Phosphoria Formation in Idaho and Wyoming. Because vanadium enrichment occurs in beds that are typically only a few meters thick, most of the vanadiferous black shales are not currently economic, although they may become an important resource in the future. Significant amounts of vanadium are recovered as byproducts of petroleum refining, and processing of coal, tar

  11. Localized and collectivized behaviour of d-electrons in complicated titanium, vanadium and niobium oxides

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Shvejkin, G.P.

    1980-01-01

    On the basis of investigation of electric and magnetic properties of oxide compounds of transition metals made are the conclusions on the degree of localization and delocalization of d-electrons in them. Generalized are the investigation results of complicated titanium, vanadium, niobium oxide compounds in low degrees of oxidation with rare earth and alkaline earth elements belonging to the two structural types: perovskite and pyrochlore. Presented are the results of investigations of perovskite-like solid solutions and of variable-content phases containing cations of transition metals in two different oxidation degrees: oxide niobium bronzes of two-valent europium and titanium bronzes of rare-earth elements, as well as Lnsub(1-x)Msub(x)Vsub(1-x)sup(3+)Vsub(x)sup(4+)Osub(3), where M is an alkaline earth element

  12. Influence of Coke Ratio on the Sintering Behavior of High-Chromium Vanadium-Titanium Magnetite

    Directory of Open Access Journals (Sweden)

    Songtao Yang

    2017-06-01

    Full Text Available High-chromium vanadium and titanium magnetite (HCVTM sinter has poor properties. The coke ratio has an important effect on the behavior of HCVTM sintering as it affects the mineral phases in the high-chromium vanadium and titanium sinter (HCVTS via changing the sintering temperature and atmosphere. In this work, the sintering behavior of HCVTM mixed with varying coke ratios was investigated through sintering pot tests, X-ray diffraction (XRD, gas chromatographic analysis, and mineral phase analysis. The results show that, with the increase of the coke ratio from 4.0% to 6.0%, leading to the increase of the combustion ratio of the flue gas, the vertical sintering rate and sinter productivity decrease. Meanwhile, with the change of the coke ratio, the content of magnetite, silicate, and perovskite increase, while the hematite and calcium ferrite decrease. In addition, the tumble strength and reduction ability of HCVTS decrease, and its degradation strength increase. It was found that the appropriate coke ratio for the sintering process was 5.0 wt %.

  13. Study of physicochemical processes and parameters of regime of diffusion brazing of niobium with titanium, zirconium and vanadium

    International Nuclear Information System (INIS)

    Grishin, V.L.; Lashko, S.V.

    1986-01-01

    Physicochemical processes at diffusion brazing of niobium with titanium, zirconium and vanadium, producing continious series of solid solutions with niobium are studied. Diffusion coefficients, time of isothermal crystallization of soldered welds, as well as the duration of homogenized thermal treatment of soldered welds necessary to provide the given temperature of weld unsoldering

  14. On the solubility of hydrogen in the systems titanium-aluminium-hydrogen, titanium-vanadium-hydrogen and titanium-aluminium-vanadium-hydrogen in the temperature region of 800 to 1,0000C at hydrogen pressures of 0.1 to 400 mm.Hg

    International Nuclear Information System (INIS)

    Kauder, G.W.

    1973-01-01

    The hydrogen concentrations on Ti-Al, Ti-V and Ti-Al-V alloys were determined in the temperature region from 800 to 1,000 0 C and at hydrogen pressures of 0.1 to 400 mm.Hg using a gravimetric measuring process. The thus obtained results allowed the drawing of hydrogen activity slopes in the titanium rich corner of the systems titanium-hydrogen, titanium-aluminium-hydrogen, titanium-vanadium-hydrogen and such for the technical titanium alloys Ti-6Al-4V and Ti-6Al-6V. In spite of the antagonistic effects of the elements aluminium and vanadium on the stabilization of the α and β phase regions of titanium, a hydrogen-activity-increasing effect was always found in which the aluminium influence was greater than that of vanadium. Breaks occured in the hydrogen activity curves and phase boundaries, and phase regions were determined over their positions. Isothermal phase diagrams for the titanium-rich corner of the system titanium-aluminium-hydrogen at 800, 850 and 900 0 C and for the titanium-rich corner of the titanium-vanadium-hydrogen system at 900, 950 and 1,000 0 C were drawn up from the hydrogen activity curves. (orig./LH) [de

  15. Orientative study in titanium - vanadium prospection from occurrence in a basic - ultrabasic complex in Poco Redondo, Sergipe

    International Nuclear Information System (INIS)

    Nascimento, J.W.B.

    1981-01-01

    This work studies the economic viability of the probable vanadium and titanium ore bodies by geochemical methods in NE of Sergipe state, Brazil. The colorimetric method to determine vanadium concentration, was studied. Through colorimetry 60 samples was selected to analyse the acid digestion and atomic absorption. The V and Ti proportion was considerated under the limits of the atomic spectrometer sensibility 50 and 300 ppm to V and Ti respectively. Compared the efficience between x-ray fluorescence method and atomic absorption method the second is more efficient. The geochemical profile elaborated through these samples suggest that the ore bodies are disposed in strait and descontinuous bands. (C.D.G.) [pt

  16. Extraction of bivalent vanadium as its pyridine thiocyanate complex and separation from uranium, titanium, chromium and aluminium

    International Nuclear Information System (INIS)

    Yatirajam, V.; Arya, S.P.

    1975-01-01

    A simple method is described for the extraction of V(II) as its pyridine thiocyanate complex. Vanadate is reduced to V(II) in 1 to 2 N sulphuric acid by zinc amalgam. Thiocyanate and pyridine are added, the solution is adjusted to pH 5.2 to 5.5 and the complex extracted with chloroform. The vanadium is back-extracted with peroxide solution. Zinc from the reductant accompanies the vanadium but alkali and alkaline earth metal ions, titanium, uranium, chromium and aluminium are separated, besides those ions reduced to the elements by zinc amalgam. The method takes about 20 min and is applicable to microgram as well as milligram amounts of vanadium. (author)

  17. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    Science.gov (United States)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  18. Synthesis and characterization of titanium vanadate and vanadium antimonate and their use in treatment of some toxic waste

    International Nuclear Information System (INIS)

    Husein, W.M.M.

    2013-01-01

    Ion exchangers are insoluble solid materials, which carry exchangeable cations or anions. When the ion exchanger is in contact with an electrolyte solution, these ions are exchanged with an equivalent amount of other ions of the same sign .Synthetic inorganic ion exchangers possess good ion-exchange capacity, high chemical and radiation stabilities, reproducibility and selectivity for heavy metals. These materials were characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. On the basis of distribution studies, titanium vanadate was highly selective for Cs(I) while vanadium antimonate was selective for Cu 2+ ions . Thermodynamic parameters (i.e. ΔG o , ΔS o and ΔH o ) have also been calculated for the adsorption of Cs + , Cd 2+ , Cu 2+ and Co 2+ ions on titanium vanadate and vanadium antimonate showing that the overall adsorption process is spontaneous and endothermic. The mechanism of diffusion of Co 2+ , Cu 2+ , Cd 2+ and Cs + in the H -form of titanium vanadate and vanadium antimonate cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, drying temperature. The exchange rate was controlled by particle diffusion mechanism as a limited batch technique and is confirmed from straight lines of B versus 1/r 2 plots. The values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. The data obtained have been compared with that reported for other organic and inorganic exchangers. Exchange isotherms for H + /Co 2+ , H + /Cu 2+ , H + /Cd 2+ and H + /Cs + were determined at 25, 45 and 60±1 degree C. These isotherms showed that Co 2+ ,Cu 2+ , Cd 2+ and Cs + are chemically adsorbed. Moreover, the values of thermodynamic parameters were determined and the overall adsorption processes were found spontaneous and endothermic. Finally, removal of the above mentioned cations on titanium vanadate and

  19. Determination of Vanadium and Titanium in oil using aqueous calibration curves by X-ray fluorescence

    International Nuclear Information System (INIS)

    Ayala, R.E.; Letona, S.M.

    1989-10-01

    It is shown that the determination of minor elements in oil can be realized with high accuracy and precision using standard aqueous solutions. The relationship Ii/(Ia-Io)=KCi must be used, where Ii concentration Ci, Ia is the intensity of the scattered radiation of 5.894 keV from a Fe-55 radioisotope source and K is a constant. Io is calculated through the equation Ii/K(Ia-Io)=Ji/K(Ja-Io), where Ii and Ia are measured from the spectrum of an aqueous standard; Ji and Ja are measured from the spectrum of an oil sample, which has a concentration of the element i equal to that in the aqueous solution. The relationship Ii/Ia=KCi, used in previous work, does not include the term Io, therefore it must be used only for semi-quantitative analysis. An experiment on the determination of vanadium and titanium in standard oils (CONOSTAN S-12 and CONOSTAN S-21) confirmed this derivation. Reproducibility equal or below 5 and accuracy of 7 were achieved. (author)

  20. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  1. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  2. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  3. Spectra of soft X-ray excitation potentials of titanium and vanadium compounds with carbon and nitrogen of a variable composition

    International Nuclear Information System (INIS)

    Brytov, I.A.; Bleher, B. Eh.; Neshpor, V.S.

    1979-01-01

    Lsub(3,2) spectra of excitation potentials (SEP) of a soft X-ray radiation of titanium and vanadium carbides and titanium nitrides in their homogeneity range, as well as solid solutions of nitrogen in α-titanium, are studied. The binding energies of electrons of the exciting levels relatively to the Fermi level are determined, adequacy of different quantomechanical calculations is experimentally proved. The observed changes in SEP at the variation of the metalloid concentration are explained by a quantitative transformation model of valent state energetic spectra when metalloid vacancies and connected with them local levels form

  4. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  5. Modeling of kinetics of isothermal idiomorphic ferrite formation in a medium carbon vanadium-titanium microalloyed steel

    International Nuclear Information System (INIS)

    Capdevila, C.; Caballer, E. G.; Garcia de Andres, C.

    2002-01-01

    A theoretical model is presented in this work to calculate the evolution of isothermal austenite-to-idiomorphic ferrite transformation in a medium carbon vanadium-titanium microalloyed steel. This model has been developed on the basis of the study of the nucleation and growth kinetics of idiomorphic ferrite, considering the influence of the nature, size and distribution of the inclusions, which are responsible of the intragranular nucleation of idiomorphic ferrite. Moreover, the influence of the austenite grain size on the isothermal decomposition of austenite in idiomorphic ferrite has been thoroughly analysed. An excellent agreement (85% in R''2) has been obtained between experimental and predicted values of volume fraction of idiomorphic ferrite. (Author) 32 refs

  6. Vanadium - 1977

    International Nuclear Information System (INIS)

    Broderick, G.N.

    1977-01-01

    This report, with pertinent references, is a comprehensive description and analysis of the vanadium industry. Included is information on industry structure, size and organization; definitions, grades, and specifications; reserves and resources; geology; production and capacity; uses; technology; byproducts and coproducts; strategic considerations; economic and operating factors and problems; supply-demand relationships; and forecasts of supply and demand. Vanadium is used principally as an alloy in steel. Other important uses are in titanium alloys and in various chemical catalytic processes. The world supply of vanadium is sufficient to last far beyond the year 2000 at the present and projected rates of consumption. Almost all of the resources will economically yield vanadium only in conjunction with a coproduct

  7. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes

    International Nuclear Information System (INIS)

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-01

    Highlights: ► The conversion of titanium is 96.6% in the rich titanium–vanadium slag. ► MgTi 2 O 5 and M 3 O 5 (M = Ti, Mg, Fe) were converted to Na 2 TiO 3 and NaMO 2 , respectively. ► Na 2 TiO 3 is converted to undefined structure of H 2 TiO 3 . ► NaMO 2 is converted to α-NaFeO 2 -type structure of HMO 2 . ► 87.3% of sodium, 42.3% of silicon, 43.2% of aluminum, 22.8% of manganese and 96.6% of vanadium were leached out. -- Abstract: A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium–vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi 2 O 5 is converted to NaCl-type structure of Na 2 TiO 3 , and M 3 O 5 (M = Ti, Mg, Fe) is converted to α-NaFeO 2 -type structure of NaMO 2 , respectively. Roasting temperature and NaOH–slag mass ratio played a considerable role in the conversion of titanium in the rich titanium–vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH–slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na + was exchanged with H + , Na 2 TiO 3 is converted to undefined structure of H 2 TiO 3 , and NaMO 2 is converted to α-NaFeO 2 -type structure of HMO 2 . Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out

  8. Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Chunmei; Wang, Haining; Lu, Shanfu; Wu, Chunxiao; Liu, Yiyang; Tan, Qinglong; Liang, Dawei; Xiang, Yan

    2015-01-01

    Titanium nitride nanoparticles (TiN NPs) are proposed as a novel catalyst towards the V(II)/V(III) redox pair for the negative electrode in vanadium redox flow batteries (VRFB). Electrochemical properties of TiN NPs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that TiN NPs demonstrate better electrochemical activity and reversibility for the processes of V(II)/V(III) redox couples as compared with the graphite NPs. TiN NPs facilitate the charge transfer in the V(II)/V(III) redox reaction. Performance of a VRFB using a TiN NPs coated carbon paper as a negative electrode is much higher than that of a VRFB with a raw carbon paper electrode. The columbic efficiency (CE), the voltage efficiency (VE) and the energy efficiency (EE) of the VRFB single cell at charge-discharge current density of 30 mA/cm 2 are 91.74%, 89.11% and 81.74%, respectively. During a 50 charge-discharge cycles test, the CE values of VRFB with TiN NPs consistently remain higher than 90%.

  9. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries

    Science.gov (United States)

    Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.

    2017-02-01

    In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.

  10. Coal-Based Reduction and Magnetic Separation Behavior of Low-Grade Vanadium-Titanium Magnetite Pellets

    Directory of Open Access Journals (Sweden)

    Gongjin Cheng

    2017-05-01

    Full Text Available Coal-based reduction and magnetic separation behavior of low-grade vanadium-titanium magnetite pellets were studied in this paper. It is found that the metallization degree increased obviously with an increase in the temperature from 1100 °C to 1400 °C. The phase composition transformation was specifically analyzed with X-ray diffraction (XRD. The microscopic examination was carried out with scanning electron microscopy (SEM, and the element composition and distribution were detected with energy dispersive spectroscopy (EDS. It is observed that the amounts of metallic iron particles obviously increased and the accumulation and growing tendency were gradually facilitated with the increase in the temperature from 1100 °C to 1400 °C. It is also found that the titanium oxides were gradually reduced and separated from ferrum-titanium oxides during reduction. In addition, with increasing the temperature from 1200 °C to 1350 °C, silicate phases, especially calcium silicate phases that were transformed from calcium ferrite at 1100 °C, were observed and gradually aggregated. However, at 1400 °C some silicate phases infiltrated into metallic iron, as it appears that the carbides, especially TiC, could probably contribute to the sintering phenomenon becoming serious. The transformation behavior of valuable elements was as follows: Fe2VO4 → VO → V → VC; FeTiO3 (→ FeTi2O5 → TiO2 → TiC; FeCr2O4 → Cr → CrC; FeTiO3 (→ FeTi2O5 → Fe0.5Mg0.5Ti2O5; (Fe3O4/FeTiO3→ FeO → Mg0.77Fe0.23O. Through the magnetic separation of coal-based reduced products, it is demonstrated that the separation of Cr, V, Ti, and non-magnetic phases can be preliminarily realized.

  11. Effect of minor addition of titanium- and molybdenum dioxides on thermodynamic properties of vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' eva, I A; Sulejmenova, G S

    1984-07-01

    The effect of minor additions (0.5 and 1%) of TiO2 and MoO2 on the partial thermodynamic functions of oxygen in vanadium dioxide was studied by the method of electromotive force with solid electrolyte on the base of stabilized ZrO2 possessing the oxygen conductivity. Investigations were conducted at 1050-1360 K for single-phase samples of monoclinic crystal structure. The addition MoO2 to VO2 is shown to reduce the equilibrium oxygen pressure above the Vsub(1-x) Msub(x)Osub(1.998) (M=Mo, Ti) thiosulfate ion in aqueous solution. Three thiosulfates of monovalent indium were isolated in solid state: In2S2O3x2H2O, In2S2O3xInOHx2H2O and In2S2O3x2InNO3x2H2O. Infrared spectra were investigated and thermal decomposition of prepared compounds was studied.

  12. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method; Efeito do vanadio na obtencao de dioxido de titanio pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A., E-mail: sandrogranado02@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The obtaining of transition metal modified titanium dioxide (TiO{sub 2}) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  13. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  14. Experimental and theoretical studies on the vibrational structure on disperse vanadium and titanium oxide; Experimentelle und theoretische Untersuchungen zur Schwingungsstruktur an dispersem Vanadium- und Titanoxid

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, David

    2014-10-20

    910-960 cm{sup -1} were observed which, on the basis of a combined experimental and theoretical approach, could be attributed to the interphase mode of an unhydroxylated and hydroxylated vanadia species, respectively. Regarding the silica-supported titania samples, a Raman signal at 1150 cm{sup -1} could be detected which clearly originates from the titania surface species besides the characteristic Ti-O-Si vibration. The features at 1150 cm{sup -1} is attributed to titanium atoms which are incorporated into the silica matrix within the synthesis process. In the second part of the study, normal modes of the silica supported vanadia and titania species were calculated. To establish a basis for the simulation, several monomeric and dimeric models have been developed and adapted to a POSS molecule. The models were analyzed in detail with regard to the influence of their adaption to the POSS-molecule, hydroxylation of the surface species, and oligomerization, all of which led to a more thorough understanding of the vibrational structure of silica supported surface systems. The most important insight gained from the simulation is that the assumption of a localized vibration within a diatomic oscillator does not sufficiently represent the nature of the molecular vibrations of the silica supported vanadia and titania surface species. Based on the results of the theoretical analysis, normal modes of the surface species may contain force constants of several force constants. Therefore, the force constant, which shares the highest contribution to the displacement of the inner coordinates, determines the character of the vibration. Furthermore, all models showed interphase modes which represent a momentum transfer between the silica support and the surface species. Therefore, the character of these vibrations is not determined by the surface species but rather the silica support. On the basis of a normal mode analysis, the normal modes at 1020 and 1035 cm{sup -1} were clearly

  15. Preconcentration of uranium, thorium, zirconium, titanium, molybdenum and vanadium with oxine supported on microcrystalline naphthalene and their determinations by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Naveen Kumar, P.; Sanjay Kumar; Vijay Kumar; Nandakishore, S.S.; Bangroo, P.N.

    2013-01-01

    A sensitive and rapid method for the determination of uranium, thorium, zirconium, titanium, molybdenum and vanadium by inductively coupled plasma atomic emission spectrometry (ICP-AES) after solid-liquid extraction with microcrystalline naphthalene is developed. Analytes were quantitatively adsorbed as their oxinate complexes on naphthalene and determined by ICP-AES after stripping with 2 M HCl. The effect of various experimental parameters such as pH, reagent amounts, naphthalene amount and stripping conditions on the determination of these elements was investigated in detail. Under the optimized experimental conditions, the detection limits of this method for U (VI), Th (IV), Zr (IV), Ti (IV), Mo (VI) and V (V) were 20.0 ng mL -1 and the relative standard deviations obtained for three replicate determinations at a concentration of 1.0 µg mL -1 were 1.5-3.0%. The proposed method has been applied in the analysis of SY-2, SY-3 and pre-analysed samples for U, Th, Zr, Ti, Mo and V the analytical results are in good agreement with recommended values. (author)

  16. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Zhong, Yuanhong; Zhu, Sanyuan; Ma, Lingya; Yuan, Peng; Zhu, Jianxi; He, Hongping; Jiang, Zheng

    2012-01-01

    Highlights: ► Ti-V co-doped magnetite has strong catalytic activity in UV-Fenton reaction. ► Ti 4+ is more positive to adsorption and catalytic activity of magnetite than V 3+ . ► Mechanism of substitution increasing the adsorption and catalytic activity. ► The obtained results are benefit for application of magnetite in treating wastewater. - Abstract: This study investigated the methylene blue (MB) decolorization through heterogeneous UV-Fenton reaction catalyzed by V-Ti co-doped magnetites, with emphasis on comparing the contribution of V and Ti cations on improving the adsorption and catalytic activity of magnetite. In the well crystallized spinel structure, both Ti 4+ and V 3+ occupied the octahedral sites. Ti 4+ showed a more obvious effect on increasing specific surface area and superficial hydroxyl amount than V 3+ did, resulting in a significant improvement of the adsorption ability of magnetite to MB. The UV introduction greatly accelerated MB degradation. And magnetite with more Ti and less V displayed better catalytic activity in MB degradation through heterogeneous UV-Fenton reaction. The transformation of degradation products and individual contribution from vanadium and titanium on improving adsorption and catalytic activity of magnetite were also investigated. These new insights are of high importance for well understanding the interface interaction between contaminants and metal doped magnetites, and the environmental application of natural and synthetic magnetites.

  17. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  18. Enhanced electrochemical properties of vanadium-doped titanium niobate as a new anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Xiaoyan; Ma, Chenxiang; Du, Chenqiang; Liu, Jie; Zhang, Xinhe; Qu, Deyang; Tang, Zhiyuan

    2015-01-01

    The Vanadium-doped TiNb 2 O 7 (TNO) samples have been investigated as novel anode active materials for application in lithium-ion batteries. The samples are characterized by X-ray diffraction patterns (XRD), raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge tests, and cyclic voltammetry (CV) tests. The XRD results indicate that V-doping expands the lattice parameters of TiNb 2 O 7 samples and facilitates the enhanced lithium ion diffusion. SEM and TEM results show that lattice expansion caused by V-doping doesn’t significantly change the particle size distribution of TiNb 2 O 7 samples. The electrochemical measurements indicate that the TiNb 1.98 V 0.02 O 7 anode material displays a highly reversible capacity and excellent cycling stability. The initial discharge capacities of TiNb 1.98 V 0.02 O 7 are 298.48 mAh g −1 and 171.99 mAh g −1 at 0.3C and 10C, respectively, indicating that the TiNb 1.98 V 0.02 O 7 material can be utilized as a promising anode material for lithium-ion batteries.

  19. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Directory of Open Access Journals (Sweden)

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  20. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    Montero Villalobos, Mavis

    2001-01-01

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type M a O b a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation [es

  1. High-energy X-ray study of short range order and phase transformations in titanium-vanadium

    International Nuclear Information System (INIS)

    Ramsteiner, I.B.

    2005-01-01

    This work presents a study of configurational correlations and phase transformations in the binary alloy Ti-V, using high-energy X-ray diffraction. The experiments have been performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-energy (60-100 keV) technique developed recently allows in-situ measurements on bulk material in transmission geometry. The first part of the thesis discusses multiple scattering effects which might occur with this method. These effects are experimentally verified and discussed. Special emphasis is put on the questions, whether they affect the results obtained with this method, and how they can be avoided. Understanding alloys on the most fundamental level requires knowledge about the atomic interaction potentials. Competing with entropy, these potentials determine the configurational short range order in a disordered alloy, which generates together with static and dynamic distortions the diffuse scattering. The thesis presents measurements and calculations of the diffuse scattering patterns of Ti-V. The calculations, taking into account configurational correlations, static distortions induced by atomic size mismatch and thermal diffuse scattering, agree with the experimental data. Structural transformations in Ti-V are carefully characterized using high-energy x-ray diffraction in combination with the complementary transmission electron microscopy (TEM). While the first technique allows to study the phenomena in-situ and time-resolved, TEM yields real space images and chemical information about the phases. Ti-V near the equiatomic composition is a beta-Ti-alloy. The body centered cubic beta phase is retained at room temperature by fast quenching. Aging the material below the phase transformation temperature, however, leads to the precipitation of hexagonal alpha titanium. Another transformation process confusing earlier works is identified as TiC formation from carbon impurities in the material. In addition

  2. Non-Isothermal Gas-Based Direct Reduction Behavior of High Chromium Vanadium-Titanium Magnetite Pellets and the Melting Separation of Metallized Pellets

    Directory of Open Access Journals (Sweden)

    Jue Tang

    2017-04-01

    Full Text Available The non-isothermal reduction behavior of high chromium vanadium-titanium magnetite (HCVTM pellets by gas mixtures was investigated using different heating rates (4, 8, and 12 K/min and varied gas compositions (H2/CO = 2/5, H2/CO = 1/1, and H2/CO = 5/2 volume ratios; the pellets were then used for melting separation. It was observed that the temperature corresponding to the maximum reduction ratio increased with the increasing heating rate. The HCVTM pellets reached the same final reduction ratio under a given reducing gas composition, although the heating rates were different. Under the same heating rate, the gas mixture with more H2 was conducive for obtaining a higher reduction ratio. The phase transformations during the non-isothermal reduction were ordered as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; V1.7Cr0.3O3 → V2O3 → Fe2VO4; Fe1.2Cr0.8O3 → Cr2O3 → FeCr2O4. The non-isothermal reduction kinetic model was established based on the unreacted core model with multiple reaction interfaces. The correlation coefficients were greater than 0.99, revealing that this kinetic model could properly describe the non-isothermal reduction of the HCVTM pellets by gas mixtures. Iron containing V and Cr along with the Ti-rich slag was obtained through the melting separation of the metallized HCVTM pellets. The mass fractions and recovery rates of Fe, V, and Cr in the iron were 93.87% and 99.45%, 0.91% and 98.83%, and 0.72% and 95.02%, respectively. The mass fraction and recovery rate of TiO2 in the slag were 38.12% and 95.08%, respectively.

  3. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  4. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  5. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...... the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6...

  6. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages.

    Science.gov (United States)

    Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K

    2007-09-11

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  7. Synthesis and characterization of titanium-vanadium ternary nitride (Ti{sub x}V{sub 1}-xN).; Sintesis y caracterizacion del nitruro ternario de titanio y vanadio (Ti{sub x}V{sub 1}-xN)

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, M. A.; Alcala, M. D.; Ortega, A.; Real, C.

    2011-07-01

    Titanium-Vanadium nitride (TiVN) has been prepared from carbothermal reduction of corresponding oxides and also by direct nitridation of a mix of two metals employing the ATVC method. The characterization of the final product by X-ray diffraction, scanning electron microscopy, electron energy loss (EELS), and X-ray absorption spectroscopy (XAS) is presented. The synthesis of the ternary nitride has been possible in all range of composition and the final product is obtained with nano metric particle size and a high microhardness after sintering. (Author) 58 refs.

  8. Prediction of the wear and evolution of cutting tools in a carbide / titanium-aluminum-vanadium machining tribosystem by volumetric tool wear characterization and modeling

    Science.gov (United States)

    Kuttolamadom, Mathew Abraham

    being carried away by the rubbing action of the chips -- this left behind a smooth crater surface predominantly of tungsten and cobalt as observed from EDS analysis. Also, at high surface speeds, carbon from the tool was found diffused into the adhered titanium layer to form a titanium carbide (TiC) boundary layer -- this was observed as instances of TiC build-up on the tool edge from EDS analysis. A complex wear mechanism interaction was thus observed, i.e., titanium adhered on top of an earlier worn out crater trough, additional carbon diffused into this adhered titanium layer to create a more stable boundary layer (which could limit diffusion-rates on saturation), and then all were further worn away by dissolution wear as temperatures increased. At low and medium feeds, notch discoloration was observed -- this was detected to be carbon from EDS analysis, suggesting that it was deposited from the edges of the passing chips. Mapping the dominant wear mechanisms showed the increasing dominance of dissolution wear relative to adhesion, with increasing grain size -- this is because a 13% larger sub-micron grain results in a larger surface area of cobalt exposed to chemical action. On the macro-scale, wear quantification through topology characterization elevated wear from a 1D to 3D concept. From investigation, a second order dependence of volumetric tool wear (VTW) and VTW rate with the material removal rate (MRR) emerged, suggesting that MRR is a more consistent wear-controlling factor instead of the traditionally used cutting speed. A predictive model for VTW was developed which showed its exponential dependence with workpiece stock volume removed. Also, both VTW and VTW rate were found to be dependent on the accumulated cumulative wear on the tool. Further, a ratio metric of stock material removed to tool volume lost is now possible as a tool efficiency quantifier and energy-based productivity parameter, which was found to inversely depend on MRR - this led to a more

  9. Titanium, vanadium and chromium valences in silicates of ungrouped achondrite NWA 7325 and ureilite Y-791538 record highly-reduced origins

    Science.gov (United States)

    Sutton, S. R.; Goodrich, C. A.; Wirick, S.

    2017-05-01

    Titanium, Cr, and V valences were determined by applying micro-X-ray Absorption Near Edge Structure (micro-XANES) spectroscopy methods to individual grains of olivine and pyroxene in the ungrouped achondrite NWA 7325 and ureilite Y-791538, as well as to plagioclase in NWA 7325. The advantages of applying multiple, multivalent-element-based oxybarometers to individual grains are (1) the ability to cover the entire oxygen fugacity (fO2) range encountered in nature, and (2) the increased reliability from consistent results for semi-independent fO2 proxies. fO2 values were inferred from each mineral valence determination after correcting with available laboratory-experiment-derived, valence-specific partition coefficients to obtain melt valences and then calibrating with the fO2 values of the relevant equal species proportions points suggested for igneous (primarily basaltic) systems. The resulting olivine and pyroxene valences are highly reduced and similar in the two meteorites with substantial fractions of Cr2+, Ti3+ and V2+. The exception is Cr in NWA 7325 pyroxene which is much more oxidized than the Cr in its olivine. Chromium and Ti in plagioclase in NWA 7325 is relatively oxidized (V valence not determined). The anomalously oxidized Cr in NWA 7325 pyroxene may be due to a secondary reheating event that oxidized Cr in the pyroxene without similarly oxidizing Ti and V. Such a separation of the redox couples may be an effect of re-equilibration kinetics, where the valence of Cr would be more rapidly modified. These valences yielded similar mean fO2s for the two meteorites; IW-3.1 ± 0.2 for NWA 7325 and IW-2.8 ± 0.2 for Y-791538, consistent with an origin of NWA 7325 in either Mercury or an asteroid that experienced redox conditions similar to those on the ureilite parent body.

  10. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.

    Science.gov (United States)

    Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J

    2010-11-01

    Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk

  11. Vanadium recovery process

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, R.S.

    1978-01-01

    A process for recovering vanadium values from carbonaceous type vanadium ores, and vanadium scrap, such as vanadium contaminated spent catalyst, is disclosed which comprises roasting the vanadium containing material in air at a temperature less than about 600 0 C to produce a material substantially devoid of organic matter, subjecting said roasted material to a further oxidizing roast in an oxygen atmosphere at a temperature of at least about 800 0 C for a period sufficient to convert substantially all of the vanadium to the soluble form, leaching the calcine with a suitable dilute mineral acid or water at a pH of neutral to about 2 to recover vanadium values, precipitating vanadium values as iron vanadate from the leach solution with a soluble iron compound at a pH from neutral to about 1, and recovering ferrovanadium from the iron vanadate by a reduction vacuum smelting operation. The conversion of vanadium in the ore to the soluble form by the oxidizing roast is accomplished without the addition of an alkaline salt during calcining

  12. Vanadium in South Africa

    International Nuclear Information System (INIS)

    Rohrman, B.

    1985-01-01

    This paper deals briefly with the history of vanadium and its uses, price movement, and world resources. It then describes the titanomagnetite ore of the Bushveld Complex, and the production of vanadium from this ore at Highveld Steel and Vanadium Corporation Limited, giving details of the various processes used, including the roast-leach, rotary-kiln, electric-smelting, shaking-ladle, and basic-oxygen-furnace operations. The paper concludes with a very brief account of the treatment of Highveld slags in Europe for the production of vanadium pentoxide and ferrovanadium

  13. Vanadium supply and demand outlook. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    A review has been made of the reserves and resources for vanadium minerals in the United States and foreign countries. Foreign sources are presently used to provide a substantial part of national demand because of price advantages. There are so many functioning foreign sources for vanadium that it is difficult to conceive of circumstances that would shut all of them off. The basis for the national stockpile is described. A recommendation is made to add the 65V-35Al alloy as a component of the stockpile for titanium alloy production in a national emergency. Estimated consumption growth rates to 1990 vary from one to five percent per year depending on the end product involved. Fission reactor use of vanadium-base alloys has not developed because of technical problems. In the chemical field, a slow steady growth of five to six percent per year is projected. Technical preferences for vanadium in various steel applications will continue although other alloying alternatives are generally available. Overall environmental effects do not appear to be a serious industrial problem

  14. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  15. Recovery of vanadium oxide

    International Nuclear Information System (INIS)

    Bates, C.P.; Clark, N.E.

    1985-01-01

    This invention relates to the recovery of vanadium oxide from molten metal. The invention provides a method for recovering vanadium oxide from molten metal, which includes passing oxygen and at least one coolant gas or shroud into the molten metal by way of at least one elongate lance. The invention also provides an arrangement for the recovery of vanadium oxide from molten metal, which includes at least one elongate lance extending into the molten metal. The lance is provided with at least one elongate bore extending therethrough. Means are provided to allow at least oxygen and at least one coolant gas to pass through the lance and into the molten metal

  16. Vanadium research recharged

    International Nuclear Information System (INIS)

    Luntz, Stephen

    2011-01-01

    US President Barack Obama has described Maria Skyllas-Kazacos’ research as “one of the coolest things I’ve ever said out loud”. Vanadium redox batteries could be electricity’s ultimate storage mechanism.

  17. Determination of vanadium

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    Titrimetric and potentiometric methods of vanadium determination in ferrovanadium are developed. The essence of the titrimetric method using phenylanthranilic acid as indicator is in the following. Ferrovanadium weighed amount is dissolved in H 2 SO 4 , vanadium is oxidated by potassium permanganate to V(5) and is titrated by a solution of double salt of sulfuric Fe(2) and ammonium in the presence of indicator. Potentiometric titration is carried out using the same indicator [ru

  18. X-ray absorption edges and E.X.A.F.S.: application to the study of electronic and atomic structures of titanium and vanadium carbides TiC(1-x) and VC(1-x)

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1980-09-01

    This text presents a systematic study of the X-ray absorption fine structures evolution, at the K edge of titanium, with vacancy concentration in TiC(1-x). The absorption edges are situated in the 50 eV following the coefficient discontinuity: from the evaluation of their general aspect, it is deduced that the positive charge of titanium atoms decreases when vacancy concentration increases in TiC(1-x). This allowed us to determine the best band structure calculation model. The interpretation of EXAFS spectra (modulation of the absorption coefficient until 1500 eV above the edge) gives indications about the local atomic structure. Here, the contraction of the average titanium-carbon interatomic distances compared to the distances between crystallographic sites is of the order of the experimental resolution 0.02 A for Ti C(0.8). The study of the damping of the spectra in terms of Debye-Waller factors gave an evaluation of the relative static atomic mean square displacements between first neighbours. Last, it has been established that the disordering of vacancies in the order-disorder transition of V 8 C 7 is an atomic scale phenomenon [fr

  19. Vanadium and affective disorders

    International Nuclear Information System (INIS)

    Naylor, G.J.

    1985-01-01

    The oxidation reduction state of vanadium will influence its inhibitory effect, and it has been suggested that the control of this oxidation reduction could be a physiological means of controlling Na-K ATPase and hence membrane transport. However, there is no general agreement on this. For such a hypothesis to be true, tissue concentrations of vanadium would need to be sufficient to cause inhibition of Na-K ATPase. There has been considerable variation in the concentration of vanadium reported to be present in human blood and plasma - e.g., 8.4 μmoleliter, 0.11 μmoleliter, 0.04 μmoleliter and 0.0006-0.018 μmliter. Methods of assay have varied, even including enzymic methods, but the two major methods now used are neutron activation analysis and atomic absorption spectrophotometry using an electrical flameless atomizer. Using neutron activation analysis, difficulties arise from the short half-ife of V 52 (3.76 min) and for the need to separate Na 24 and Cl 36 from the sample since their radiation interfere with those from V 52 . Results from preirradiation separation agree well with those from atomic absorption spectrophotometry, but those from postirradiation separation are usually much lower. Though there is no agreement on the physiological role of vanadium there is evidence that it plays a part in the etiology of manic-depressive psychosis

  20. Ultrahighly Dispersed Titanium Oxide on Silica : Effect of Precursors on the Structure and Photocatalysis

    OpenAIRE

    Yoshida , S.; Takenaka , S.; Tanaka , T.; Funabiki , T.

    1997-01-01

    The effect of precursor on the dispersion and catalytic performance of titanium oxide supported on silica has ben investigated. The catalysts were prepared by a simple impregnation method with three kinds of titanium complexes of different ligands (bis(isopropyato)-bis(pivaroylmethanato) : DPM, acetylacetonato : ACAC, tetrakis(isopropylato) : IPRO) with the aim of preparing ultrahighly dispersed titanium oxide on silica. The XAFS study revealed that titanium species in the catalyst prepared f...

  1. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    Science.gov (United States)

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  2. Slag recycling of irradiated vanadium

    International Nuclear Information System (INIS)

    Gorman, P.K.

    1995-01-01

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium

  3. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

  4. Titanium ; dream new material

    International Nuclear Information System (INIS)

    Lee, Yong Tae; Kim Seung Eon; Heoon, Yong Taek; Jung, Hui Won

    2001-11-01

    The contents of this book are history of Titanium, present situation of Titanium industry, property of Titanium alloy, types of it, development of new alloy of Titanium smelting of Titanium, cast of Titanium and heat treatment of Titanium, Titanium alloy for plane, car parts, biological health care, and sport leisure and daily life, prospect, and Titanium industrial development of Titanium in China.

  5. Phonon dispersion in vanadium

    International Nuclear Information System (INIS)

    Ivanov, A.S.; Rumiantsev, A.Yu.

    1999-01-01

    Complete text of publication follows. Phonon dispersion curves in Vanadium metal are investigated by neutron inelastic scattering using three-axis spectrometers. Due to extremely low coherent scattering amplitude of neutrons in natural isotope mixture of vanadium the phonon frequencies could be determined in the energy range below about 15 meV. Several phonon groups were measured with the polarised neutron scattering set-up. It is demonstrated that the intensity of coherent inelastic scattering observed in the non-spin-flip channel vanishes in the spin-flip channel. The phonon density of states is measured on a single crystal keeping the momentum transfer equal to a vector of reciprocal lattice where the coherent inelastic scattering is suppressed. Phonon dispersion curves in vanadium, as measured by neutron and earlier by X-ray scattering, are described in frames of a charge-fluctuation model involving monopolar and dipolar degrees of freedom. The model parameters are compared for different transition metals with body-centred cubic-structure. (author)

  6. Low activation vanadium alloys

    International Nuclear Information System (INIS)

    Witzenburg, W. van.

    1991-01-01

    The properties and general characteristics of vanadium-base alloys are reviewed in terms of the materials requirements for fusion reactor first wall and blanket structures. In this review attention is focussed on radiation response including induced radioactivity, mechanical properties, compatibility with potential coolants, physical and thermal properties, fabricability and resources. Where possible, properties are compared to those of other leading candidate structural materials, e.g. austenitic and ferritic/martensitic steels. Vanadium alloys appear to offer advantages in the areas of long-term activation, mechanical properties at temperatures above 600 deg C, radiation resistance and thermo-hydraulic design, due to superior physical and thermal properties. They also have a potential for higher temperature operation in liquid lithium systems. Disadvantages are associated with their ability to retain high concentrations of hydrogen isotopes, higher cost, more difficult fabrication and welding. A particular concern regarding use of vanadium alloys relates their reactivity with non-metallic elements, such as oxygen and nitrogen. (author). 33 refs.; 2 figs.; 2 tabs

  7. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  8. Optical and electrochromic properties of sol-gel deposited Ti- doped vanadium oxide films

    International Nuclear Information System (INIS)

    Oezer, N.; Sabuncu, S.

    1997-01-01

    Because of the yellowish color, vanadium oxide films in the as deposited state is not as favorable as transparent coatings for most elector chromic devices. an interesting possibility to alter the yellowish colours is the doping with other non-absorbing metal oxides. Ti doped vanadium oxide films with various amounts of titanium were synthesized and investigated as transparent counter electrodes for electrochromic transmissive device application. Electrochromic titanium doped vanadium pentoxide (V sub 2 O 5) coatings were prepared by the sol-gel dip coating technique. The coating solutions were synthesized from vanadium tri(isopropoxide) precursors. X-ray diffraction (XRD) studies showed that the sol-gel deposited doped films heat treated at temperatures below 350 degree centigrade, were amorphous, whereas hose heat treated at higher temperatures were slight y crystalline. The optical and electrochemical properties of the Ti doped vanadium oxide films has been investigated in 0.1 m LiClO sub 4 propylene carbonate solution color changes by dropping were noted for all investigated films exhibits good electrochemical cycling (CV) measurements also showed that Ti doped V sub 2 O sub 5 films exhibits good electrochemical cycling reversibility, 'in situ' optical measurement revealed that those films exhibits good electrochemical cycling the spectra range 300 < lambda < 800 nm and change color between yellow and light green. The change in visible transmittance was 25 % for 5% Ti doped film. (author)

  9. Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching

    Science.gov (United States)

    Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing

    2018-05-01

    Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.

  10. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  11. Vanadium recycling for fusion reactors

    International Nuclear Information System (INIS)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ''hands-on'' refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided

  12. Simulation of vanadium-48 production using MCNPX code

    Directory of Open Access Journals (Sweden)

    Sadeghi Mahdi

    2012-01-01

    Full Text Available Vanadium-48 was produced through the irradiation of the natural titanium target via the natTi(p, xn48V reaction. The titanium target was irradiated at 1 mA current and by a 21 MeV proton beam for 4 hours. In this paper, the activity of 48V, 43Sc, and 46Sc radionuclides and the efficacy of the 47Ti(p, g, 48Ti(p, n, and 49Ti(p, 2n channel reactions to form 48V radionuclide were determined using MCNPX code. Furthermore, the experimental activity of 48V was compared with the estimated value for the thick target yield produced in the irradiation time according to MCNPX code. Good agreement between production yield of the 48V and the simulation yield was observed. In conclusion, MCNPX code can be used for the estimation of the production yield.

  13. Thermodynamic properties of vanadium

    International Nuclear Information System (INIS)

    Desai, P.D.

    1986-01-01

    This work reviews and discusses the data and information on the various thermodynamic properties of vanadium available through March 1985. These include the heat capacity and enthalpy, enthalpy of melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed, and the recommended values for heat capacity, enthalpy, entropy, and Gibbs energy function covering the temperature range from 1 to 3800 K have been generated. These values are referred to tempertures based on IPTS-1968. The units used for various properties are joules per mole (J. mol - 1 ). The estimated uncertainties in the heat capacity are +/-3% below 15 K, +/-10% from 15 to 150 K, +/-3% from 150 to 298.15 K, +/-2% from 298.15 to 1000 K, +/-3% from 1000 to the melting point (2202 K), and +/-5% in the liquid region

  14. Synthesis of vanadium trioxide

    International Nuclear Information System (INIS)

    Yankelevich, R.G.; Vinarov, I.V.; Sheka, I.A.; Pushek, N.G.

    1976-01-01

    There have been studied the conditions for production of vanadium trioxide in a single-stage process of V 2 O 5 reduction by gaseous ammonia. To determine the optimum conditions for V 2 O 5 reduction, there have been studied the temperature range of the reaction and the effect offered by the volumetric rate and time of ammonia injection. The following conditions have proved to be the optimum ones: temperature - 450 deg C, volumetric rate of NH 3 injection at a batch of 10 g - 4 l/h, time of recovery - 3 hours. In accordance with the adopted procedure there have been synthetized the samples containing 98 - 99% V 2 O 3 [ru

  15. Effects of dietary vanadium in mallard ducks

    Science.gov (United States)

    White, D.H.; Dieter, M.P.

    1978-01-01

    Adult mallard ducks fed 0, 1, 10, or 100 ppm vanadyl sulfate in the diet were sacrificed after 12 wk on treatment; tissues were analyzed for vanadium. No birds died during the study and body weights did not change. Vanadium accumulated to higher concentrations in the bone and liver than in other tissues. Concentrations in bones of hens were five times those in bones of drakes, suggesting an interaction between vanadium and calcium mobilization in laying hens. Vanadium concentrations in most tissues were significantly correlated and increased with treatment level. Lipid metabolism was altered in laying hens fed 100 ppm vanadium. Very little vanadium accumulated in the eggs of laying hens.

  16. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  17. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  18. Corrosion of vanadium and V 3Ti 1Si in flowing lithium

    International Nuclear Information System (INIS)

    Konys, J.

    1986-01-01

    A pumped Li loop fabricated from a titanium stabilized Type 316 steel was designed and constructed. At temperatures of about 823 K, experiments over a duration of more than 7500 h were performed. A magnetic trap had to be incorporated just before the flowmeter to avoid the precipitation of magnetic particles. Therefore it was possible to investigate the influence of the magnetic trap on the corrosion behaviour of V in flowing Li. The results are as follows: - The corrosion rate of V is about 14 μm/year and independent of the nitrogen content of Li. The corrosion rate of V 3Ti 1Si depends on the N concentration of Li. At about 30 wppm N in Li a vanadium-titanium-nitride is formed at the surface of the specimens. Hence, a low rate of 4 μm/year can be stated. - Both materials pick-up more N than C from Li, pure vanadium double as much nitrogen as the alloy V 3Ti 1Si. - N diffuses into the bulk of both materials, whilst C is bound near the surface. The hardening at the surface is due to the up-take of N. - The vanadium-carbonitride-, respectively the vanadium-titanium-nitride-layers have a strong influence on the weight loss and the up-take of non-metals. - The magnetic trap reduces the weight loss of vanadium in a significant way. The positive influence of the magnetic trap is supposed to be due to the reduction of the nitrogen content of Li. - The corrosion rates of the alloy V 3Ti 1Si show, that the dissolution due to V loss does not affect the lifetime of the alloy. The comparison with steels and nickle-base-alloys demonstrates the advantages of this material. Nevertheless, the purification of the Li and the control of its nonmetal-levels is indispensable. (orig./HP) [de

  19. Analysis of vanadium slags, roasted and leached products. Determination of contents of total vanadium, chromium, sodium, and soluble vanadium

    International Nuclear Information System (INIS)

    Hasek, Z.

    1975-01-01

    Accurate, rapid and simple methods were elaborated of determining total vanadium, chromium, and sodium in vanadium slags, and in roasted and leached products in one sample batch. The analysis was conducted in a teflon vial using inorganic acids. A method od determining soluble vanadium in similar materials was also elaborated and verified. (B.S.)

  20. Determination of Leachable Vanadium (V) in Sediment

    African Journals Online (AJOL)

    NICO

    A method for speciation of vanadium in solid samples was developed for quantification of ... Experimental ... Sediments for Trace Metals), obtained from the National Research ... Determination of vanadium is not a simple task using ET-AAS.

  1. Possible Cardiotoxic Effects of Vanadium

    Directory of Open Access Journals (Sweden)

    Parveen Parkash

    1990-12-01

    Full Text Available Vanadium, a ubiquitous element, is physiologically and pharmacologically an active substance and is present in most of mammalian tissues Jandhala and Horn, 1983. Large corpus of information exists on the mode of action of vanadium on cardiac muscles (Jandhala and Horn, 1983., Solaro et al, 1980, but the basis of pharma­cological lesion underlying its cardiac toxi­city is still poorly understood. Except for the solitary report of Lewis (1958 to best of our knowledge no information exists on the effect of vanadium on the functioning of heart as shown by electrocardiography.Large amounts of vanadium are relea­sed into atmosphere by combustion of fossil fuel (Vouk, 1979 and due to rapid indus­trialisation its environmental concentra­tion is reported to be increasing (Goldberg et al, 1974., Jaffe and Walters, 1977., Vouk, 1979. This necessitates the monitoring of its environmental and occupational hazards. In the present study cardiac side effects of vanadium, as revealed through ECG has been investigated in rabbits, since the electrocardiogram of rabbit resembles with of man in essential details (Weisborth et al, 1974.

  2. Thermophysical data of liquid vanadium

    International Nuclear Information System (INIS)

    Pottlacher, G.; Huepf, T.; Wilthan, B.; Cagran, C.

    2007-01-01

    Although vanadium is commonly used as an additive in the steel production, literature data for thermophysical properties of vanadium around the melting point are sparse and show, where available a variation over a wide range. This manifests especially in the melting temperature (variation of ±30 K), heat of fusion, or specific enthalpy. This recent work presents the results of thermophysical measurements on vanadium including normal spectral emissivity at 684.5 nm. The aim was to obtain another full dataset of properties (enthalpy, heat of fusion, electrical resistivity, thermal conductivity, emissivity) of liquid vanadium to either confirm existing recommendations for certain properties or presenting newer measurements for comparison leading towards such recommendations. Summarizing, the following results for thermophysical properties at the melting point have been obtained: radiance temperature at melting (650 nm) T r,m = 1993 K, melting temperature T m = 2199 K, normal spectral emissivity at melting (684.5 nm) ε = 0.353. An observed feature of all measured data and results is, that a much better agreement with literature references exists for the liquid phase than in the solid state, thus we have restricted the presentation to liquid vanadium

  3. Determination of vanadium

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    Techniques of vanadium determination in steels and alloys are developed. Extraction-photometric method with N-phenyl-benzohydroxamic acid when V content is 0.005-0.5% is suggested. Molar coefficient of the complex quenching at lambdasub(max)=530 nm constitutes 5750. Optimum concentration is 15-150 μg per 25 ml of the solution, determination limit is 0.05 μg/ml. Chloroform is an extracting agent. A photometric method with acetohydrazide of anthranilic acid is suggested for the analysis of alloyed steels at V content 0.03-1%. The lower limit of V determination constitutes 0.64 μg/ml. Effect of Fe is removed using phosphoric acid. Amperometric method for steels and alloys at V content from 0.05 to 5% and for steels and alloys containing more than 3% W and Cr is also developed. The method is based on amperometric titration with solution of double sulfuric salt of Fe(2) and ammonium [ru

  4. Determination of Leachable Vanadium (V) in Sediment

    African Journals Online (AJOL)

    NICO

    A method for speciation of vanadium in solid samples was developed for quantification of vanadium(+5) in solid samples of sediment Certified Reference Materials ... element in such environmental samples as soil, sediments and plants.3,4–5 Validation of the ... Sample Preparation for the Determination of. Vanadium(+5).

  5. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  6. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  7. Modeling of microstructure property relationships in titanium-aluminum-vanadium

    Science.gov (United States)

    Tiley, Jaimie Scott

    Fuzzy logic neural network models were developed to predict the room temperature tensile behavior of Ti-6Al-4V. This involved the development of a database relating microstructure to properties. This necessitated establishing heat treatment processes to develop microstructural features, mechanical testing of samples, creating rigorous stereology procedures, developing numerical models to predict mechanical behavior, and determining trends and inter-relationships relating microstructural features to mechanical properties. Microstructural features were developed using a Gleeble(TM) 1500 Thermal-mechanical simulator. Samples were obtained from mill annealed plate material and both alpha + beta forged and beta forged materials. A total of 72 samples were beta solutionized and heat treated using different heating and cooling conditions. Rigorous stereology procedures were developed to characterize the important microstructural features. The features included Widmanstatten alpha lath thickness, volume fraction of total alpha, volume fraction of Widmanstatten alpha, grain boundary alpha thickness, mean edge length, colony scale factor, and prior beta grain size factor. Chemical composition was also determined using standard chemical analysis and microscopy techniques. The samples were tested for yield strength, ultimate tensile strength, and elongation at room temperature. Results from the tests and the characterization were used to develop fuzzy logic neural network models to predict the mechanical behaviors and develop relationships between the microstructural features (using CubiCalc RTC(TM)). Results were compared to standard multi-variable regression models. The fuzzy logic neural network models were able to predict the yield, and ultimate tensile strength, within acceptable error ranges with a limited number of input data samples. The models also predicted the elongation values but with larger errors. Of particular importance, the models identified the importance of the Widmanstatten alpha lath widths, the mean edge length of the Widmanstatten alpha laths, the colony scale factor, and the prior beta grain size to the tensile behavior. The trends also identified the inter-relationship between the microstructural features. Chemical composition data for the primary alloying elements and interstitials was also determined to help explain the results in terms of traditional metallurgy.

  8. Nanocrystalline Porous Hydrogen Storage Based on Vanadium and Titanium Nitrides

    Directory of Open Access Journals (Sweden)

    A. Goncharov

    2017-01-01

    Full Text Available This review summarizes results of our study of the application of ion-beam assisted deposition (IBAD technology for creation of nanoporous thin-film structures that can absorb more than 6 wt.% of hydrogen. Data of mathematical modeling are presented highlighting the structure formation and component creation of the films during their deposition at the time of simultaneous bombardment by mixed beam of nitrogen and helium ions with energy of 30 keV. Results of high-resolution transmission electron microscopy revealed that VNx films consist of 150–200 nm particles, boundaries of which contain nanopores of 10–15 nm diameters. Particles themselves consist of randomly oriented 10–20 nm nanograins. Grain boundaries also contain nanopores (3–8 nm. Examination of the absorption characteristics of VNx, TiNx, and (V,TiNx films showed that the amount of absorbed hydrogen depends very little on the chemical composition of films, but it is determined by the structure pore. The amount of absorbed hydrogen at 0.3 MPa and 20°C is 6-7 wt.%, whereas the bulk of hydrogen is accumulated in the grain boundaries and pores. Films begin to release hydrogen even at 50°C, and it is desorbed completely at the temperature range of 50–250°C. It was found that the electrical resistance of films during the hydrogen desorption increases 104 times.

  9. Researches on vanadium and its compounds; Recherches sur le Vanadium et ses composes

    Energy Technology Data Exchange (ETDEWEB)

    Morette, Andre

    1937-06-03

    In this research thesis, the author proposes a new study of the action of some reduction agents on two groups of vanadium compounds, oxides and chlorides. Thus, he reports the study of the circumstances of reduction of vanadium oxides by carbon and of vanadium carburization from these compounds. He also reports the determination of the composition of vanadium melts obtained at high temperatures (either in a vacuum furnace or with an electric arc furnace). In order to determine in which conditions the processing of vanadium oxides could produce the pure metal, the author studied the action of calcium and magnesium on the vanadium pentoxide and trioxide. The second part of the thesis addresses the preparation of pure vanadium from vanadium anhydride chlorides. Then, the author reports the development of processes which could easily produce powdered vanadium [French] Nous nous sommes propose de reprendre l'etude de l'action de quelques reducteurs sur les deux groupes de composes du vanadium, oxydes et chlorures. Nous avons ete ainsi amene a preciser les circonstances de la reduction des oxydes de vanadium par le carbone et de la carburation du vanadium a partir de ceux-ci, puis a determiner la constitution des fontes de vanadium obtenues a haute temperature, soit au four a vide, soit au four a arc. D'autre part, en vue de determiner dans quelles conditions le traitement des oxydes de vanadium pourrait conduire au metal pur, nous avons repris et complete des travaux anterieurs concernant l'action du calcium et du magnesium sur le pentoxyde ou eventuellement le trioxyde de vanadium. Une seconde partie de notre these a ete consacree a la preparation du vanadium pur a partir des chlorures anhydres de vanadium. Nous nous sommes attache a trouver le mode operatoire le plus favorable pour l'obtention de chacun d'eux. Il nous a ete donne ainsi l'occasion de preciser certaines de leurs proprietes physiques et chimiques. Puis, a la suite d'essais systematiques, nous avons

  10. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  11. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  12. The electron distribution in vanadium

    International Nuclear Information System (INIS)

    Weiss, R.J.

    1978-01-01

    It is shown that the apparent discrepancy for b.c.c. vanadium metal between the charge density and small momentum density anisotropies can be resolved by contracting the 3d triply-degenerate radial wavefunctions which point towards the nearest neighbours and expanding the 3d doubly-degenerate radial wave-functions which point towards the second-nearest neighbours. (author)

  13. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinyan; Tang, Ya; Yang, Kai [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Rouff, Ashaki A. [School of Earth and Environmental Sciences, Queens College City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367 (United States); Elzinga, Evert J. [Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ (United States); Huang, Jen-How, E-mail: jen-how.huang@unibas.ch [Institute of Environmental Geosciences, University of Basel, CH-4056 Basel (Switzerland)

    2014-01-15

    Highlights: • Vanadium in the soil and mine tailings has low solubility. • The leachability of vanadium in the mine tailings is lower than in the soil. • Low risk of vanadium migrating from the soil and mine tailings into the surrounding environment. • Drought and rewetting increase vanadium release from the soil and mine tailings. • Soil leaching processes control vanadium transport in soils overlain with mine tailings. -- Abstract: A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20 μg L{sup −1} to 50–90 μg L{sup −1}, indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils.

  14. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

    Science.gov (United States)

    Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang

    2012-08-01

    Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen (1O2) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

  15. U.S. Contribution 1994 Summary Report Task T12: Compatibility and irradiation testing of vanadium alloys

    International Nuclear Information System (INIS)

    Smith, D.L.

    1995-03-01

    Vanadium alloys exhibit important advantages as a candidate structural material for fusion first wall/blanket applications. These advantages include fabricability, favorable safety and environmental features, high temperature and high wall load capability, and long lifetime under irradiation. Vanadium alloys with (3-5)% chromium and (3-5)% titanium appear to offer the best combination of properties for first wall/blanket applications. A V-4Cr-4Ti alloy is recommended as the reference composition for the ITER application. This report provides a summary of the R ampersand D conducted during 1994 in support of the ITER Engineering Design Activity. Progress is reported for Vanadium Alloy Production, Welding, Physical Properties, Baseline Mechanical Properties, Corrosion/Compatibility, Neutron Irradiation Effects, Helium Transmutation Effects on Irradiated Alloys, and the Status of Irradiation Experiments. Separate abstracts have been prepared for individual reports from this publication

  16. U.S. Contribution 1994 Summary Report Task T12: Compatibility and irradiation testing of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L. [comp.

    1995-03-01

    Vanadium alloys exhibit important advantages as a candidate structural material for fusion first wall/blanket applications. These advantages include fabricability, favorable safety and environmental features, high temperature and high wall load capability, and long lifetime under irradiation. Vanadium alloys with (3-5)% chromium and (3-5)% titanium appear to offer the best combination of properties for first wall/blanket applications. A V-4Cr-4Ti alloy is recommended as the reference composition for the ITER application. This report provides a summary of the R&D conducted during 1994 in support of the ITER Engineering Design Activity. Progress is reported for Vanadium Alloy Production, Welding, Physical Properties, Baseline Mechanical Properties, Corrosion/Compatibility, Neutron Irradiation Effects, Helium Transmutation Effects on Irradiated Alloys, and the Status of Irradiation Experiments. Separate abstracts have been prepared for individual reports from this publication.

  17. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  18. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    Science.gov (United States)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  19. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour

    International Nuclear Information System (INIS)

    Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C.

    2003-01-01

    Cell attachment and spreading to titanium-based alloy surfaces is a major parameter in implant technology. In this paper, substratum surface hydrophobicity, surface free energy, interfacial free energy and surface roughness were investigated to ascertain which of these parameters is predominant in human fibroblast spreading. Two methods for contact angle measurement were compared: the sessile drop method and the captive bubble two-probe method. The relationship between surface roughness and the sessile drop contact angles of various engineered titanium surfaces such as commercial pure titanium (cp-Ti), titanium-aluminium-vanadium alloy (Ti-6Al-4V), and titanium-nickel (NiTi), was shown. Surface free energy (SFE) calculations were performed from contact angles obtained on smooth samples based on the same alloys in order to eliminate the roughness effect. SFE of the surfaces have been calculated using the Owens-Wendt (OW) and Van Oss (VO) approaches with the sessile drop method. The OW calculations are used to obtain the dispersive (γ d ) and polar (γ p ) component of SFE, and the VO approach allows to reach the apolar (γ LW ) and the polar acid-base component (γ ab ) of the surface. From captive bubble contact angle experiments (air or octane bubble under water), the interfacial free energy of the different surfaces in water was obtained. A relationship between cell spreading and the polar component of SFE was found. Interfacial free energy values were low for all the investigated surfaces indicating good biocompatibility for such alloys

  20. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  1. Thermal desorption of toluene from Vanadium-containing catalysts coated onto various carriers

    Directory of Open Access Journals (Sweden)

    Z. Zheksenbaeva

    2012-12-01

    Full Text Available The method temperature-programmed desorption has been studied the state of toluene on the surface-modified vanadium catalysts on different carriers. Among the investigated carriers the most active in the reaction of partial oxidation of toluene is anatase structural titanium dioxide. For the partial oxidation of toluene on modified vanadium-containing catalysts deposited on TiO2 was tested. It was found that on the catalyst 20%V2O5-5%MoO3-2%Sb2O3/TiO2 at a temperature of 673K, volume rate of 15 thousand hours-1 oxidation of toluene is 80% c yield of benzoic acid with a selectivity of  70% of 87.5%.

  2. Peculiarities of powder metallurgy of vanadium and its alloys

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-01-01

    Literature data on preparation of vanadium powder and powder materials on the vanadium base are generalized. Application of powder metallurgy engineering, allowing simulaneously to introduce practically any strengthening and solid-lubricating components as well as to alloy vanadium, permits undoubtedly to develop composite materials on the vanadium base

  3. Determination of hafnium, molybdenum, and vanadium in niobium and niobium-based alloys by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ide, Kunikazu; Kobayashi, Takeshi; Sudo, Emiko.

    1985-01-01

    The analytical procedure is as follows: Weigh 1 g of a sample and put it into a 100 cm 3 PTFE beaker. Add 5 ml of distilled water and 5 ml of hydrofluoric acid, and then heat the solution on a hot plate, adding 3 ml of nitric acid dropwise. Dilute the solution to 100 cm 3 with distilled water. When hafnium is determined, add 2 g of diammonium titanium hexafluoride ((NH 4 ) 2 TiF 6 )) before dilution. Working standard solutions are prepared by adding the stock standard solutions of hafnium, molybdenum, and vanadium into niobium solutions. When hafnium is determined, add 2 g of (NH 4 ) 2 TiF 6 and the alloying elements in amounts corresponding to those in sample solutions into the working standard solutions. The tolerable amounts of hydrofluoric acid were 2.9 M, 2.1 M, and 3.1 M and those of nitric acid were 1.0 M, 1.6 M, and 1.6 M for hafnium, molybdenum, and vanadium, respectively. It was found that (NH 4 ) 2 TiF 6 greatly increased the sensitivity for hafnium determination. Niobium showed minus effect for hafnium and plus effect for molybdenum and vanadium. The atomic absorption of molybdenum and vanadium were not influenced by the presence of 20 % of each alloying element, while the atomic absorption of hafnium was given plus effect by 20 % of zirconium, iron, cobalt, nickel, manganese, chromium or vanadium and minus effect by 20 % tungsten. The analytical values of hafnium, molybdenum, and vanadium in niobium-based alloys by this method showed a good agreement with those by X-ray fluorescence analysis. The lower limits of determination (S/N=2) were 0.05, 0.001, and 0.002 % and the relative standard deviation were 3, 1, and 1.5 % for hafnium, molybdenum, and vanadium, respectively. (author)

  4. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  5. Methods for making lithium vanadium oxide electrode materials

    Science.gov (United States)

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  6. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Naya, Shin-ichi [Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Tada, Hiroaki, E-mail: h-tada@apch.kindai.ac.jp [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan)

    2015-10-01

    Ultrathin Cu layers (∼2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO{sub 2} (Au@Cu/TiO{sub 2}) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO{sub 2} for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO{sub 2}.

  7. A new bimetallic plasmonic photocatalyst consisting of gold(core-copper(shell nanoparticle and titanium(IV oxide support

    Directory of Open Access Journals (Sweden)

    Yuichi Sato

    2015-10-01

    Full Text Available Ultrathin Cu layers (∼2 atomic layers have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2 by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm. Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.

  8. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  9. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  10. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  11. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  12. Vanadium Bioleaching Behavior by Acidithiobacillus ferrooxidans from a Vanadium-Bearing Shale

    Directory of Open Access Journals (Sweden)

    Dunpei Wei

    2018-01-01

    Full Text Available This study investigated bioleaching behavior of vanadium from a vanadium-bearing shale using Acidithiobacillus ferrooxidans (A. ferrooxidans. Results showed a maximum recovery of 62% vanadium in 1.2-day bioleaching, which was 22.45% higher than the controls. Then, the vanadium leaching efficiency decreased significantly, only 24% of that was obtained on the tenth day. The vanadium extraction in 1.2 days was mainly attributed to the dissolution of vanadium in free oxides of shale. Fe3+ produced by A. ferrooxidans promoted the dissolution process. X-ray diffraction (XRD patterns of the leached residues confirmed the generation of jarosite. SEM-EDS analysis of the residues indicated that jarosite adsorbed on the shale and inhibited the further dissolution of vanadium. The relevance of V, Fe, S, O was quite good in the energy disperse X-ray spectrometry (EDS element mapping of jarosite, and acid-washing of the jarosite resulted in 31.6% of the vanadium in the precipitates desorption, indicating that the decrease of vanadium leaching efficiency in bioleaching process was caused by both adsorption and co-precipitation with jarosite.

  13. Titanium diffusion in shinbone of rats with osseointegrated implants.

    Science.gov (United States)

    Grenón, Miriam S; Robledo, José; Ibáñez, Juan Carlos; Sánchez, Héctor J

    2016-11-01

    Dental implants are composed of commercially pure Ti (which is actually an alloy of titanium, and minor or trace components such as aluminium and vanadium). When the implant is inserted, its surface undergoes a number of chemical and mechanical processes, releasing particles of titanium to the medium. The metabolism of free ions of titanium is uncertain; the uptaking processes in the body are not well known, nor their toxic dose. In addition, physical properties of newly formed bone, such as diffusivity and activation energy, are scarce and rarely studied. In this study, we analysed the diffusion of titanium in the titanium-implanted shinbones of six adult male Wistar rats by spatially resolved micro x-ray fluorescence. The measurements were carried out at the microfluorescence station of the x-ray fluorescence (XRF) beamline of the Brazilian synchrotron facility LNLS (from Portuguese 'Laboratorio Nacional de Luz Sincrotron'). For each sample, XRF spectra were taken by linear scanning in area near the new bone formed around the Ti implant. The scanning line shows a clear effect of titanium diffusion whereas calcium intensity presents a different behaviour. Moreover, a clear correlation among the different structures of bones is observed in the Ti and Ca intensities. The results obtained in these measurements may allow determining quantitatively the parameters of diffusion rates and other physical properties of new bone like diffusion coefficients. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  15. Deformation behavior of two continuously cooled vanadium microalloyed steels at liquid nitrogen temperature

    Directory of Open Access Journals (Sweden)

    Glišić Dragomir M.

    2013-01-01

    Full Text Available The aim of this work was to establish deformation behaviour of two vanadium microalloyed medium carbon steels with different contents of carbon and titanium by tensile testing at 77 K. Samples were reheated at 1250°C/30 min and continuously cooled at still air. Beside acicular ferrite as dominant morphology in both microstructures, the steel with lower content of carbon and negligible amount of titanium contains considerable fraction of grain boundary ferrite and pearlite. It was found that Ti-free steel exhibits higher strain hardening rate and significantly lower elongation at 77 K than the fully acicular ferrite steel. The difference in tensile behavior at 77 K of the two steels has been associated with the influence of the pearlite, together with higher dislocation density of acicular ferrite. [Projekat Ministarstva nauke Republike Srbije, br. OI174004

  16. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  17. Volume dependence of vanadium magnetism

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1993-07-01

    The first principle discrete variational method in the spin polarized local density approximation is used to calculate the local properties of 15 atom clusters representing variable crystal size bcc vanadium. Four distinct magnetic configurations are recognized as the lattice constant varies from 5.4 to 8.4 (a.u.). At the lowest end the clusters are paramagnetic (PM) whereas at the upper end clusters are ferromagnetic (FM). In between antiferromagnetic couplings prevail. The local magnetic moment increases, in a fashion not unlike second order transitions, from zero in the PM range to non-zero values in the AFM region. Transitions between other phases are first order. The systematics of these transitions are ascribed to the general shape of the density of states. The contact magnetic hyperfine field, charge density and 3d partial occupations at the central sites are also calculated. (author). 14 refs, 3 figs, 1 tab

  18. Fatigue of vanadium--hydrogen alloys

    International Nuclear Information System (INIS)

    Lee, K.S.; Stoloff, N.S.

    1975-01-01

    Hydrogen contents near and above the room temperature solubility limit increase the high cycle fatigue life but decrease low cycle life of polycrystalline vanadium. Changes in endurance limit with hydrides may be a consequence of decreased cyclic strain hardening coefficient, n'. 132 ppM hydrogen in solution has only a slightly beneficial effect on stress controlled fatigue life and essentially no effect on low cycle fatigue life. Unalloyed vanadium exhibits profuse striations, while hydrides produce cleavage cracks in fatigued samples. 10 fig

  19. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  20. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr; Grevey, D.; Sallamand, P.

    2015-01-12

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution.

  1. Fabrication of vanadium cans for neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chin man; Baik, Sung Hoon; Park, Sun Kyu

    1999-12-01

    The laser weld technique of vanadium developed to experiment for neutron diffraction of HANARO. The demands for this laser welding technique were applied to process control in vanadium film welding and to fabricate various sizing vanadium cans. The vanadium can had a advantage to have less coherent in neutron. KAERI developed the fabrication jig of 6-12 mm diameter cans using 0.125 mm vanadium thin film, and investigated the laser welding procedure for making the various diameter and length of vanadium cans using the fabricated jigs and Nd:YAG laser. (author)

  2. Thermodynamical study of the vanadium-hydrogen system. The hydrogen effect on the mechanical properties of V-4Cr-4Ti and V-5Cr-5Ti alloys; Etude thermodynamique du systeme vanadium-hydrogene. Effets de l'hydrogene sur les proprietes mecaniques des alliages V-4Cr-4Ti et V-5Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Coulombeaux, O

    1998-07-01

    In the framework of the international research programs on fusion reactors, the vanadium alloys are among the most appropriate candidate to constitute the first wall. The author deals with the specific alloys V-4Cr-4Ti and V-5Cr-5Ti and study the hydrogen diffusion. Experimental results show that the induced hydrogen concentration in the sample by diffusion is higher, for the same partial pressure of exposure, in the case of the alloy than for the pure vanadium. He shows that this result can be explainedby the trapping for which the hydrogen is trapped by the titanium. (A.L.B.)

  3. Vacancy distribution in nonstoichiometric vanadium monoxide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Davydov, D.A.; Valeeva, A.A.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A certain fraction of vanadium atoms in disordered cubic vanadium monoxide VO y and ordered tetragonal phase V 52 O 64 is located in tetrahedral positions of a basic cubic lattice. → These positions are never occupied by any atoms in other strongly nonstoichiometric carbides, nitrides and oxides. → Both disordered and ordered structures of vanadium monoxide are characterized by the presence of short-range order of displacements in the oxygen sublattice and short-range order of substitution in the metal sublattice. → The short-range order of displacement is caused by the local displacements of O atoms from V (t) atoms occupying tetrahedral positions. The short-range order of substitution appears because V (t) atoms in the tetrahedral positions are always in the environment of four vacancies □ of the vanadium sublattice. - Abstract: Structural vacancy distribution in the crystal lattice of the tetragonal V 52 O 64 superstructure which is formed on the basis of disordered superstoichiometric cubic vanadium monoxide VO y ≡V x O z is experimentally determined and the presence of significant local atomic displacements and large local microstrains in a crystal lattice of real ordered phase is established. It is shown that the relaxation of local microstrains takes place owing to the basic disordered cubic phase grain refinement and a formation of ordered phase domains. The ordered phase domains grow in the direction from the boundaries to the centre of grains of the disordered basic cubic phase. Isothermal evolution at 970 K of the average domain size in ordered VO 1.29 vanadium monoxide is established. It is shown that the short-range order presents in a metal sublattice of disordered cubic VO y vanadium monoxide. The character of the short-range order is such that vanadium atoms occupying tetrahedral positions are in the environment of four vacant sites of the vanadium sublattice. This means that the

  4. APS- and XPS-investigations of vanadium, vanadium carbide and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, A M; Krause, U [Technische Univ. Muenchen (F.R. Germany). Inst. fuer Physikalische Chemie und Theoretische Chemie

    1975-11-01

    Soft X-ray appearance potential spectroscopy (APS) and X-ray photoelectron spectroscopy (XPS) have been used to study vanadium, vanadium carbide, and graphite. The chemical shifts for vanadium carbide with respect to metallic vanadium and graphite are compared for the two methods. The Csub(K) structure in APS and the valence band in XPS for vanadium carbide show good agreement with the band structure calculations of Neckel and co-workers. Using the band structure calculations of Painter et al. it is also shown how the multi-peak structure in the APS spectrum of graphite is possibly due to density of states effects. It would therefore appear that plasmon coupling plays only a minor role.

  5. Metal Oxide-Supported Platinum Overlayers as Proton-Exchange Membrane Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Abild-Pedersen, Frank; Studt, Felix

    2012-01-01

    We investigated the activity and stability of n=(1, 2, 3) platinum layers supported on a number of rutile metal oxides (MO2; M=Ti, Sn, Ta, Nb, Hf and Zr). A suitable oxide support can alleviate the problem of carbon corrosion and platinum dissolution in Pt/C catalysts. Moreover, it can increase t...

  6. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  7. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine; Baker, L. Robert; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2011-01-01

    formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results

  8. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  9. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  10. One-step preparation and photocatalytic performance of vanadium doped TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vasilić, R., E-mail: rastko.vasilic@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, N. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Dohčević-Mitrović, Z. [University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Grbić, B. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2015-02-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO{sub 2} coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO{sub 2} coatings are partly crystallized and mainly composed of anatase phase TiO{sub 2}, with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO{sub 2} coatings exhibit notable red shift with respect to the pure TiO{sub 2} coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO{sub 2} coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO{sub 2} coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO{sub 2} coatings in 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO{sub 2} coatings is shifted towards red side of the spectrum. • V-doped TiO{sub 2} coatings have better photocatalytic activity than pure TiO{sub 2}. • After 12 h of simulated sunlight irradiation, 67% of

  11. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings

    International Nuclear Information System (INIS)

    Vasilić, R.; Stojadinović, S.; Radić, N.; Stefanov, P.; Dohčević-Mitrović, Z.; Grbić, B.

    2015-01-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO 2 coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO 2 coatings are partly crystallized and mainly composed of anatase phase TiO 2 , with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO 2 coatings exhibit notable red shift with respect to the pure TiO 2 coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO 2 coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO 2 coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO 2 coatings in 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO 2 coatings is shifted towards red side of the spectrum. • V-doped TiO 2 coatings have better photocatalytic activity than pure TiO 2 . • After 12 h of simulated sunlight irradiation, 67% of methyl orange was decomposed

  12. Titanium and titanium alloys: fundamentals and applications

    National Research Council Canada - National Science Library

    Leyens, C; Peters, M

    2003-01-01

    ... number of titanium alloys have paved the way for light metals to vastly expand into many industrial applications. Titanium and its alloys stand out primarily due to their high specific strength and excellent corrosion resistance, at just half the weight of steels and Ni-based superalloys. This explains their early success in the aerospace and the...

  13. Optical spectra of vanadium (5, 4) compounds during extraction by di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Kurbatova, L.D.; Medvedeva, N.I.

    2000-01-01

    Optical spectra of vanadium (5, 4) complexes with HDEHP are studied using literature data on quantum-chemical calculations of vanadium (5) and vanadium (4) oxides. Extraction of vanadium is conducted by undiluted HDEHP from sulfuric acid solutions. Absorption electron spectra (AES) of vanadium (5), vanadium (4) and vanadium (5, 4) compounds are presented. In AES of vanadium (5, 4) four absorption bands at 24000, 17000, 14500 and 13500 cm -1 appear. Comparison with spectra of vanadium (5) and vanadium (4) shows that band 17000 cm -1 which appears only during mutual extraction of vanadium (5) and vanadium (4) is caused by transitions appearing between filled and empty levels of d-zone broadened by vanadium (5) and vanadium (4) interaction [ru

  14. Thermal conductivity of high purity vanadium

    International Nuclear Information System (INIS)

    Jung, W.D.

    1975-01-01

    The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity

  15. Transformation and precipitation in vanadium treated steels

    Science.gov (United States)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature

  16. Surface modification of Ti-_6Al-_4V titanium alloy by combined ion-plasma treatment

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Shimanskij, V.I.; Laskovnev, A.P.; Basalaj, A.V.; Astashinskij, V.M.; Kuz'mitskij, A.M.

    2015-01-01

    Investigation results of phase and elemental composition, microhardness and friction coefficient of Ti-_6Al-_4V alloy samples precoated by titanium subjected to compression plasma flows treatment have been presented in this work. It has been established that the combined effect of ion-plasma flows diminishes aluminum and vanadium concentration in the surface layer, leads to the growth of its microhardness and decrease of the friction coefficient. (authors)

  17. Positron lifetime in vanadium oxide bronzes

    International Nuclear Information System (INIS)

    Dryzek, J.; Dryzek, E.

    2003-01-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes M x V 2 O 5 . The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Vanadium alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Mattas, R.F.; Loomis, B.A.; Smith, D.L.

    1992-01-01

    This paper reports that fusion reactors will produce a severe operating environment for structural materials. The material should have good mechanical strength and ductility to high temperature, be corrosion resistant to the local environment, have attractive thermophysical properties to accommodate high heat loads, and be resistant to neutron damage. Vanadium alloys are being developed for such applications, and they exhibit desirable properties in many areas Recent progress in vanadium alloy development indicates good strength and ductility to 700 degrees C, minimal degradation by neutron irradiation, and reduced radioactivity compared with other candidate alloy systems

  19. Global biogeochemical cycle of vanadium.

    Science.gov (United States)

    Schlesinger, William H; Klein, Emily M; Vengosh, Avner

    2017-12-26

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10 9 g V/y) and extraction and combustion of fossil fuels (600 × 10 9 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 10 9 g V/y to 50 × 10 9 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  20. Vanadium recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  1. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  2. Extraction-complexonometric determination of vanadium(4) in the presence of vanadium(3)

    International Nuclear Information System (INIS)

    Gordeeva, M.N.; Ryndina, A.M.; Stanevich, T.V.

    1976-01-01

    The extraction-complexonometric method has been investigated for determining vanadium(4) in the presence of vanadium (3) with high contents of these forms in the solution analyzed. The method of separation of V(4) and V(3) is based on extraction of the ion acetate of vanadium(4) with eriochrome red B(ERCB) and diphenyl quanidinium (DPG) by a mixture of chloroform and isoamyl alcohol (3:1). To control the content of V(4) and V(3) the method of reciprocal complexonometric titration is used (the titrating solution was a solution of thorium nitride, and xylenol orange was a solution of thorium nitride, and xylenol orange was used as metal indicator). Titration has been carried out in an acid solution at pH=2.8. The developed method has been applied to analysis of lithium-zinc spinels containing both forms of vanadium

  3. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.

    Science.gov (United States)

    Kustin, Kenneth

    2015-06-01

    Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    International Nuclear Information System (INIS)

    Steckel, G.L.

    1977-01-01

    A thermodynamic study was made of the vanadium-oxygen and niobium-vanadium-oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO 2 /Y 2 O 3 electrolyte over the temperature ranges 700 to 1200 0 C (973 to 1473 K) for the binary system and 650 to 1150 0 C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at. percent oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The terminal solubility of oxygen in vanadium was determined. The activity of oxygen in Nb--V alloys obeys Henry's law for the temperatures of this study for oxygen concentrations less than approximately 2 at. percent. For certain Nb/V ratios Henry's law is obeyed for concentrations as high as 6.5 at. percent oxygen. First order entropy and enthalpy interaction coefficients have been determined to describe the effect on the oxygen activity of niobium additions to vanadium-rich alloys with dilute oxygen concentrations. Niobium causes relatively small decreases in the oxygen activity of V-rich alloys and increases the oxygen solubility limit. Vanadium additions to Nb-rich alloys also increases the oxygen solubility and causes substantial decreases in the dilute solution oxygen activities. The change in the thermodynamic properties when molecular oxygen dissolves in vanadium and niobium--vanadium alloys and the equilibrium oxygen pressure over the binary and ternary systems were also determined

  5. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    Science.gov (United States)

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-07

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and characterization of new vanadium salcylaldoxime ...

    African Journals Online (AJOL)

    ilyasblk

    The elemental microanalysis and mass spectra (electrospray method) were carried out ... The 51V NMR spectra were measured in D2O or in DMSO-d6, using VOCl as the .... These signals are in the range reported for the vanadium atoms in a ...

  7. Determination of Leachable Vanadium (V) in Sediment

    African Journals Online (AJOL)

    NICO

    KEYWORDS. Certified reference materials, vanadium(+5) speciation, electrothermal atomic absorption spectrometry. 1. Introduction. The measurement of the chemical species of elements, instead of the total element concentration, has become an irreversible trend in analytical chemistry.1–2 The motivation lies in the fact.

  8. Structure and function of vanadium haloperoxidases

    NARCIS (Netherlands)

    Wever, R.; Michibata, H.

    2012-01-01

    Vanadium haloperoxidases contain the bare metal oxide vanadate as a prosthetic group and differ strongly from the heme peroxidases in substrate specificity and molecular properties. The substrates of these enzymes are limited to halides and sulfides, which in the presence of hydrogen peroxide are

  9. Fundamental irradiation studies on vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Garner, F.A.; Ermi, A.M.

    1985-05-01

    A joint experiment on the irradiation response of simple vanadium alloys has been initiated under the auspices of the DAFS and BES progams. Specimen fabrication is nearly complete and the alloys are expected to be irradiated in lithium in FFTF-MOTA Cycles 7 and 8

  10. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  11. Additive Manufacturing of Metastable Beta Titanium Alloys

    Science.gov (United States)

    Yannetta, Christopher J.

    Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.

  12. Impurities block the alpha to omega martensitic transformation in titanium.

    Science.gov (United States)

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  13. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  14. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching

    Science.gov (United States)

    Li, Meng; Du, Hao; Zheng, Shili; Wang, Shaona; Zhang, Yang; Liu, Biao; Dreisinger, David Bruce; Zhang, Yi

    2017-10-01

    A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

  15. Vaporization study on vanadium monoxide and two-phase mixture of vanadium and vanadium monoxide by mass-spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over single phase vanadium monoxide VO 1.022 (s) and the two-phase mixture of vanadium metal (β phase) and vanadium monoxide were measured by mass-spectrometric method in the temperature range of 1,803 ∼ 1,990 and 1,703 ∼ 1,884 K, respectively. The main gas species over both systems were found to be VO(g) and V(g). The vapor pressure of VO(g) over the two-phase mixture of V(s) and VO(s) was a little lower than that over single phase VO(s). The vapor pressure of V(g) over the two-phase mixture was nearly equal to that over single phase. From the vapor pressure data, the enthalpies of vaporization, the enthalpies of formation for VO(g) and V(g) and the dissociation energy of VO(g) were determined. The oxygen partial pressure was calculated as a function of temperature from the vapor pressures of VO(g) and V(g), from which the partial molar enthalpies and entropies of oxygen in both systems were obtained. (author)

  16. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  17. Vanadium dioxide formed by the sol-gel process

    International Nuclear Information System (INIS)

    Potember, R.S.; Speck, K.R.; Hu, H.S.

    1990-01-01

    This patent describes a process for the deposition of a crystalline vanadium dioxide thin film. It comprises: providing a solution comprising a vanadium tetraalkoxide and solvent; allowing hydrolysis and condensation reactions to progressively form a homogeneous sol from the solution, applying a coating of the sol to the substrate; allowing a gel to form from the sol on the substrate by evaporating the solvent; dehydrating the gel by heat treatment under an inert atmosphere to form the crystalline vanadium dioxide film

  18. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  19. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  20. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    Al-Zand, T.K.

    1986-01-01

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  1. Vanadium Transitions in the Spectrum of Arcturus

    Science.gov (United States)

    Wood, M. P.; Sneden, C.; Lawler, J. E.; Den Hartog, E. A.; Cowan, J. J.; Nave, G.

    2018-02-01

    We derive a new abundance for vanadium in the bright, mildly metal-poor red giant Arcturus. This star has an excellent high-resolution spectral atlas and well-understood atmospheric parameters, and it displays a rich set of neutral vanadium lines that are available for abundance extraction. We employ a newly recorded set of laboratory FTS spectra to investigate any potential discrepancies in previously reported V I log(gf) values near 900 nm. These new spectra support our earlier laboratory transition data and the calibration method utilized in that study. We then perform a synthetic spectrum analysis of weak V I features in Arcturus, deriving log ε(V) = 3.54 ± 0.01 (σ = 0.04) from 55 lines. There are no significant abundance trends with wavelength, line strength, or lower excitation energy.

  2. Vanadium in fuel oil - a new solution

    Energy Technology Data Exchange (ETDEWEB)

    Czech, N. [Siemens, Muelheim (Germany); Finckh, H. [Siemens, Erlangen (Germany)

    1998-11-01

    Hot corrosion of the hot-gas-path components due to vanadium contamination is one of the hazards associated with heavy residual oil combustion in heavy-duty gas turbines. This economically attractive oil combustion process has benefited from the recently developed vanadium inhibition technique, which is currently being tested at the Valladolid 220 MWe combined cycle plant in Mexico. The method uses atomization of a dilute aqueous solution of Epsom salt (MgSO{sub 7},7H{sub 2}O) into very small droplets which are then injected onto the flame where intensive mixing takes place. The successful use of this new technique promises extended operating periods between cleanup operations, and cost reductions from the use of inexpensive materials, as well as the ability to operate advanced gas turbines on difficult fuels, not previously feasible. (UK)

  3. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J. Van der

    1984-01-01

    The electron density of states of solid solutions of vanadium based transition metal alloys V 90 X 10 is computed with the aim of calculating the superconducting transition temperature using the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table, one obtains an increase of Tc while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. Another important conclusion is that for alloys which are in the split-band limit like VAu, VPd and VPt, the agreement with experimental data can be obtained only by assuming that these alloys have a short-range order favouring clusters of pure vanadium. (Author) [pt

  4. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  5. Mineralogy and geochemistry of vanadium in the Colorado Plateau

    Science.gov (United States)

    Weeks, A.D.

    1961-01-01

    The chief domestic source of vanadium is uraniferous sandstone in the Colorado Plateau. Vanadium is 3-, 4-, or 5-valent in nature and, as oxides or combined with other elements, it forms more than 40 minerals in the Plateau ores. These ores have been studied with regard to the relative amounts of vanadium silicates and oxide-vanadates, uranium-vanadium ratios, the progressive oxidation of black low-valent ores to high-valent carnotite-type ores, and theories of origin. ?? 1961.

  6. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  7. Pepspectives of chlorine application in metallurgy of vanadium

    International Nuclear Information System (INIS)

    Korshunov, B.G.; Kutsenko, S.A.

    1983-01-01

    The most expedient variants of reprocessing of vanadium technical oxide (5), ferrovanadium and converter slags by chlorine technology with production of pure metal are considered. It is shown that production of vanadium by the way of electro- or metallothermal reduction of chlorides provides more plastic metal in comparison with reduction from oxides. The methods of production of VOCl 3 , VCl 4 and vanadium lowest chlorides are considered. Necessity of expansion of production of vanadium chlorine derivatives is dictated as well by their increasing application in different areas of national economy, in particular, as catalysts in organic synthesis

  8. Experimental method for investigating helium effects in irradiated vanadium

    International Nuclear Information System (INIS)

    Smith, D.L.; Matsui, H.; Greenwood, L.; Loomis, B.

    1987-10-01

    Analyses have been performed which indicate that an effective method for experimentally investigating helium effects in neutron irradiated vanadium base alloys can be developed. The experimental procedure involves only modest modifications to existing procedures currently used for irradiation testing of vanadium-base alloys in the FFTF reactor. Helium is generated in the vanadium alloy by decay of tritium which is either preinjected or generated within the test capsule. Calculations indicate that nearly constant He/dpa ratios of desired magnitude can be attained by proper selection of experimental parameters. The proposed method could have a major impact on the development of vanadium base alloys for fusion reactor applications. 8 refs., 4 figs

  9. Vanadium bioavailability and toxicity to soil microorganisms and plants.

    Science.gov (United States)

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-10-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.

  10. Controlled synthesis and electrochemical properties of vanadium ...

    Indian Academy of Sciences (India)

    Vanadium oxides (V3O7·H2O and VO2) with different morphologies have been selectively synthesized ... appeared at around 68 ◦C. Furthermore, the electrochemical properties of V3O7·H2O nanobelts, VO2(B) .... morphologies of shape-controlled orthorhombic V3O7·H2O ..... condition, as shown in figures S14i and j.

  11. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  12. Isotope mixtures of hydrogen in vanadium

    International Nuclear Information System (INIS)

    Mecking-Schloetensack, P.

    1982-03-01

    The properties of isotope-mixtures of Protium and Deuterium stored in Vanadium have been studied. Protium and Deuterium are existing as interstitial-atoms on tetrahedral sites as well as on octahedral sites in this system. This feature leads to large isotopic-effects between the two isotopes. The dependence of the thermodynamic functions like heat of solution, nonconfigurational entropy, specific heat and ordering temperatures from the composition of the isotope-mixture has been determined. (orig.)

  13. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology 3 Rationale – Titanium Cost Build-up Material Cost Ilmenite $0.27/kg Ti sponge Titanium slag $0.75/kg Ti Sponge TiCl4 and TiO2 $3....10/kg Ti Sponge Ti Sponge raw materials costs $5.50/kg Ti Sponge Total Ti Sponge cost $9-$11/kg Ti Sponge Ti ingot $15-17/kg Ti Aluminium $1.7/kg Al Supporting the Manufacturing and Materials Industry in its quest for global competitivenessorting...

  14. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Desheng; Zhao, Hongxin; Hu, Guoping [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qi, Tao, E-mail: tqgreen@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yu, Hongdong; Zhang, Guozhi [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Lina, E-mail: linawang@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Weijing [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-30

    Highlights: • The leaching solution contains high concentration of acid, iron, impurities and lower vanadium. • 99.4% of vanadium and 4.2% of iron were extracted by three-stage extraction process. • 99.6% of vanadium and 5.4% of iron were stripped by three-stage stripping process. • The stripping solution contains 40.16 g/L V{sub 2}O{sub 5}, 0.691 g/L Fe, 0.007 g/L TiO{sub 2} and 0.247 g/L CaO. • The vanadium product of V{sub 2}O{sub 5} with purity of 99.12%, 0.026% Fe and well crystallized. - Abstract: An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite was developed. In this study, a mixed solvent system of di(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) diluted with kerosene was used for the selective extraction of vanadium from a hydrochloric acid leaching solution that contained low vanadium concentration with high concentrations of iron and impurities of Ca, Mg, and Al. In the extraction process, the initial solution pH and the phase ratio had considerable functions in the extraction of vanadium from the hydrochloric acid leaching solution. Under optimal extraction conditions (i.e., 30–40 °C for 10 min, 1:3 phase ratio (O/A), 20% D2EHPA concentration (v/v), and 0–0.8 initial solution pH), 99.4% vanadium and only 4.2% iron were extracted by the three-stage counter-current extraction process. In the stripping process with H{sub 2}SO{sub 4} as the stripping agent and under optimal stripping conditions (i.e., 20% H{sub 2}SO{sub 4} concentration, 5:1 phase ratio (O/A), 20 min stripping time, and 40 °C stripping temperature), 99.6% vanadium and only 5.4% iron were stripped by the three-stage counter-current stripping process. The stripping solution contained 40.16 g/L V{sub 2}O{sub 5}, 0.691g/L Fe, 0.007 g/L TiO{sub 2}, 0.006 g/L SiO{sub 2} and 0.247 g/L CaO. A V{sub 2}O{sub 5} product with a purity of 99.12% V{sub 2}O{sub 5} and only 0.026% Fe was obtained after the oxidation, precipitation

  15. Biodiesel production over copper vanadium phosphate

    International Nuclear Information System (INIS)

    Chen, Lei; Yin, Ping; Liu, Xiguang; Yang, Lixia; Yu, Zhongxi; Guo, Xin; Xin, Xinquan

    2011-01-01

    In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 2 4 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 o C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production. -- Research highlights: → Copper vanadium phosphate CuVOP with three-dimensional network structure was prepared successfully. Moreover, for the transesterification reaction of soybean oil with methanol under atmospheric pressure, CuVOP had higher catalytic activity and the effects of production conditions such as amount of catalysts etc. were analyzed by response surface methodology.

  16. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  17. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  18. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Smith, D.L.

    1991-12-16

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors.

  19. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1991-01-01

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors

  20. High temperature salt corrosion cracking of intermediate products of titanium alloys

    International Nuclear Information System (INIS)

    Sinyavskij, V.S.; Usova, V.V.; Lunina, S.I.; Kushakevich, S.A.; Makhmutova, E.A.; Khanina, Z.K.

    1982-01-01

    The high temperature salt corrosion cracking (HTSCC) of intermediate products from titanium base alloys in the form of hot rolled plates and rods has been studied. The investigated materials are as follows: VT20 pseudo-α-alloy, VT6 and VT14 α+β alloys; the comparison has been carried out with commercial titanium and low-alloyed OT4-1 α-alloy. The experiments have been held at 400 and 500 deg C, defining different stress levels: 0.4; 0.5; 0.75 and 0.9 tausub(0.2). The test basis - not less than 100 h. Standard tensile samples of circular cross section with NaCl (approximately 0.2-0.3 mg/cm 2 ) salt coatings, cut off from hot-rolled rods along the direction of rolling and hot-rolled plates along and across the direction of rolling have been tested. It has been extablished before hand that the notch doesn't affect the resistance of titanium alloys to HTSCC. The sensitivity of titanium alloy subproducts to HTSCC is estimated as to the time until the failure of the sample with salt coatings and without them. It is shown that salt coating practically doesn't affect the behaviour of titanium, that allows to consider it to be resistant to HTSCC. Titanium alloys alloying with β-isomorphous stabilizing additions increases it's HTSCC resistance. Vanadium alloying of the alloy (VT6 alloy of Ti-Al-V system) produces a favourable effect; intermediate products of VT14 (α+β) alloy (Ti-Al-V-Mo system), containing two β-stabilizing additions-vanadium and molybdenum, have satisfactory HTSCC resistance. It is shown that by changes is mechanical properties of alloys during HTSCC one can indirectly judge about their HTSCC sensitivity

  1. Heterogeneous catalysis in the liquid-phase oxidation of olefins--3. The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene

    Energy Technology Data Exchange (ETDEWEB)

    Takehira, K; Hayakawa, T; Ishikawa, T

    1979-03-01

    The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene to 1-cyclohexenyl hydroperoxide, 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was due to the interaction between the metal oxides and the carriers. The oxidation reaction was carried out in benzene at 60/sup 0/C for four hours with the binary oxide supported on (GAMMA)-alumina or silica; three series of catalysts were prepared by combining the vanadium and chromium oxide components with alumina hydrate or silica sol by a kneading method. The silica-supported catalysts had the greatest activity, the highest being the V/sub 2/O/sub 5//SiO/sub 2/ system, which lost its activity quickly during the reaction. This was followed in activity by the Cr/sub 2/O/sub 3//SiO/sub 2/ system, containing the chromium(V) species. The Cr/sub 2/O/sub 3//Al/sub 2/O/sub 3/ system also had high activity and the chromium(V) species. The vanadium and chromium metal ions are probably coordinated tetrahedrally on the support, and these complexes catalyze cyclohexene autoxidation by decomposing 1-cyclohexenyl hydroperoxide.

  2. Catalytic oxidation of dichloromethane over sol-gel oxides supported Pd or Ni

    International Nuclear Information System (INIS)

    Martinez; Leidy Marcela; Montes, Consuelo

    2004-01-01

    Several supported Pd or Ni catalysts were synthesized by the sol-gel method using y-alumina, silica, sulfated zirconium and sulfated titanium as carriers. The resulting catalysts were characterized by XRD and nitrogen adsorption, and evaluated in the catalytic oxidation of dichloromethane. The effect of different parameters were determined, i.e. method of synthesis, temperature and the type of support. The durability of the best catalyst (0,5% Pd impregnated over sulfated titanium) was tested between 300 degrades Celsius and 350 degrades Celsius during 48 h. Under the conditions of this study, impregnated catalysts exhibited higher activity than those prepared by cogelation. Pd loaded catalysts showed higher conversion into CO 2 and HCl. Catalyst activity also increased with increasing temperature. Y-Alumina and sulfated titanium showed good activity but the formation of CO is favored instead of CO 2 . Therefore, bifunctional catalysts, i.e. containing metallic and acid sites appear to be required for the decomposition of methylene chloride into CO 2 and HCI

  3. Chitosan patterning on titanium alloys

    OpenAIRE

    Gilabert Chirivella, Eduardo; Pérez Feito, Ricardo; Ribeiro, Clarisse; Ribeiro, Sylvie; Correia, Daniela; González Martin, María Luisa; Manero Planella, José María; Lanceros Méndez, Senentxu; Gallego Ferrer, Gloria; Gómez Ribelles, José Luis

    2017-01-01

    Titanium and its alloys are widely used in medical implants because of their excellent properties. However, bacterial infection is a frequent cause of titanium-based implant failure and also compromises its osseointegration. In this study, we report a new simple method of providing titanium surfaces with antibacterial properties by alternating antibacterial chitosan domains with titanium domains in the micrometric scale. Surface microgrooves were etched on pure titanium disks at i...

  4. Production of titanium tetrachloride

    International Nuclear Information System (INIS)

    Perillo, P.M.; Botbol, O.

    1990-01-01

    This report presents a summary of results from theoperation of a laboratory scale for the production in batches of approximately 100 gs of titanium tetrachloride by chlorination with chloroform and carbon tetrachloride between 340 deg C and 540 deg C. Chlorination agent vapors were passed through a quartz column reacting with titanium oxide powder agglomerated in little spheres. Obtained titanium tetrachloride was condensed in a condenser, taken in a ballon and then purified by fractional distillation. Optimun temperature for chloroform was 400 deg C with 74 % yield and for carbon tetrachloride was 500 deg C with 69 % yield. (Author) [es

  5. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  6. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  7. Neurotoxic profiles of vanadium when administered at the onset of ...

    African Journals Online (AJOL)

    Pups exposed to vanadium showed reduced upper body strength which was protected by administration of vit E. Routine histology with Haematoxylin and Eosin revealed increased necrotic neurons of the medulla in vanadium exposed rats. Cresyl Violet stain showed depletion of the external granular layer of the ...

  8. Fundamental aspects of alluminothermic reduction of vanadium pentoxide

    International Nuclear Information System (INIS)

    Mourao, M.B.; Capocchi, J.D.T.

    1982-01-01

    The aluminothermic process for the reduction of vanadium pentoxide is considered. Its thermochemistry features are presented, as well as the heat transfer and the rate phenomena concerning such a reaction system. It is pointed out also the effect of the process parameters on the recovery of metallic vanadium. (Author) [pt

  9. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  10. Effect of substrate temperature on thermochromic vanadium dioxide thin films sputtered from vanadium target

    Science.gov (United States)

    Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.

    2018-05-01

    Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.

  11. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  12. Chemistry related to the procurement of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.M.; Chung H.M.; Tsai, H.C. [Argonne National Lab., IL (United States)

    1997-08-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats.

  13. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  14. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  15. Chemistry related to the procurement of vanadium alloys

    International Nuclear Information System (INIS)

    Smith, H.M.; Chung H.M.; Tsai, H.C.

    1997-01-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats

  16. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  17. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  18. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  19. Test of vanadium pentoxide as anode for the electrooxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, L.F. [Petroleos de Venezuela - Intevep, Caracas (Venezuela). Departamento de Tecnologias Emergentes; Rincon, L.; Ortiz, R. [Universidad de los Andes, Merida (Venezuela). Departamento de Quimica

    2004-11-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V{sub 2}O{sub 5} electrodes were chemically and electrochemically stable in aqueous (1 M H{sub 2}SO{sub 4} + 1 M NaOH, pH 3) and organic (0.1 M But{sub 4}NPF{sub 6} + CH{sub 3}CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V{sub 2} O{sub 5} surface. (author)

  20. Test of vanadium pentoxide as anode for the electrooxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, Luis F. [Petroleos de Venezuela (PDVSA)-Intevep, Departamento de Tecnologias Emergentes, Apartado 76343, Caracas 1070-A (Venezuela)]. E-mail: delialf@pdvsa.com; Rincon, L. [Universidad de los Andes, Facultad de Ciencias, Departamento de Quimica, Grupo de Quimica Teorica, Merida 5101 (Venezuela); Ortiz, R. [Universidad de los Andes, Facultad de Ciencias, Departamento de Quimica, Laboratorio de Electroquimica, Merida 5101 (Venezuela)

    2004-11-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V{sub 2}O{sub 5} electrodes were chemically and electrochemically stable in aqueous (1 M H{sub 2}SO{sub 4} + 1 M NaOH, pH 3) and organic (0.1 M But{sub 4}NPF{sub 6} + CH{sub 3}CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V{sub 2}O{sub 5} surface.

  1. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  2. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  3. Color and vanadium valency in V-doped ZrO2

    International Nuclear Information System (INIS)

    Ren, Feng; Ishida, Shingo; Takeuchi, Nobuyuki

    1993-01-01

    The distribution and chemical states of vanadium in V-doped ZrO 2 were studied to clarify the origin of the color of vanadium-zirconium yellow pigment in comparison with vanadium-tin yellow pigment. ESCA data and measurements of lattice constants of V-doped ZrO 2 revealed that vanadium was dissolved mainly as V 4+ substituting for Zr in ZrO 2 lattice, and its solubility limit was 0.5 wt% as V 2 O 5 . It was found that the yellow color of vanadium-zirconium yellow was produced predominantly by the dissolved vanadium and that the contribution of vanadium oxide on ZrO 2 grains to the yellow color was about 1.30 of that of the dissolved vanadium when compared on the basis of equimolar quantity of vanadium. Most of the undissolved vanadium oxide was in an amorphous or a poorly crystallized state

  4. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    Science.gov (United States)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  5. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    Science.gov (United States)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  6. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    Science.gov (United States)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  7. Acute toxicity of vanadium to the threespine stickleback, Gasterosteus aculeatus

    Energy Technology Data Exchange (ETDEWEB)

    Gravenmier, J.J.; Johnston, D.W.; Arnold, W.R. [Blasland Bouck & Lee Inc, Petaluma, CA (US)

    2005-02-15

    Vanadium is widely distributed, occurring in many types of minerals, coal, and petroleum. Anthropogenic sources of vanadium originate from the production, processing, and wastes of these materials. The aquatic toxicity of vanadium to fish species is not well characterized. This study focused on the three-spined stickleback, Gasterosteus aculeatus, a small and widely distributed euryhaline species of fish. The three-spined stickleback is used as an effluent-monitoring species in both Canada and the United States. Five 96-h static renewal acute toxicity tests were performed in moderately hard water with adult fish. The geometric mean and range of the five 96-h LC{sup 50}s based on measured concentrations of total vanadium in the test solution were 3.17 and 2.35-4.07 mg V/L, respectively. A conservative estimation of a safe concentration of vanadium that would not affect survival of adult three-spined sticklebacks over a 96-h exposure period in moderately hard water is approximately 0.30 mg V/L. A comparison with other fish species previously tested suggests that the three-spined stickleback is intermediate in sensitivity to vanadium. Information reported from this study may be useful in effluent toxicity identification evaluations and ecological risk assessments related to vanadium.

  8. Vanadium extraction from slimes by the lime-bicarbonate method

    International Nuclear Information System (INIS)

    Lishchenko, T.V.; Vdovina, L.V.; Slobodchikova, R.I.

    1978-01-01

    Some main parameters of the lime-bicarbonate method of extracting vanadium from residues obtained in washing waters of mazut boilers on thermal stations have been determined. To study the process of vanadium extraction during caking of the residues with lime and subsequent leaching of water-soluble vanadium, a ''Minsk-22'' computer has been used for computation. Analysis of the equation derived has shown that a change in temperature of vanadium leaching, density of pulp, and a kind of heating of the charge affect the process only slightly. It has also been shown that the calcination temperature is expedient to be kept above 850 deg C and consumption temperature is expedient to be kept above 85O deg C and consumption of lime must not exceed 20% of the residues weight. Bicarbonate consumption exerts a decisive influence on completeness of vanadium extraction and must be increased up to >35%; duration of leaching should be raised up to 30-45 minutes. With increasing calcination temperature the duration of leaching decreases. When temperature and duration of calcination increase, the formation of water-soluble vanadium intensifies. With the aid of optimization program seven variants have been chosen, which ensure vanadium extraction into solution by 95-100%

  9. Hydrometallurgic treatment of a mineral containing uranium, vanadium and phosphorus

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1987-01-01

    A preliminary study of a mineral has been made towards the hydrometallurgy separation of uranium, vanadium and phosphorus. After the ore dressing, work on sulfuric acid with oxidation leaching has been made, to get the uranium, vanadium and phosphorus in solution. For the separation and purification of these elements, two alternative solvent extraction methods have been tested. One of them has been the extraction of uranium and vanadium and a selective stripping of both elements. The second one has been the selective extraction of uranium and vanadium at different aqueous solutions pH. In both methods, the same reagent has been used: di(2-ethylhexyl) phosphoric acid, kerosene as diluent with two different synergistic agents: TOPO (tri-n-octyl phosphine oxide) and TBP (tri-n-butyl phosphate). Batch studies have been made to determine the equilibrium isotherms for uranium and vanadium. A continuous countercurrent simulation method has been used to get the best phase ratio and to test different stripping agents. For the first method, an important loss of uranium and vanadium at the feed solution conditioning for the extraction step has been observed. For the second method, a good recovery of uranium has been reached, but there has been losses of vanadium in pH adjustment. Nevertheless, among these processes, the last seems to work better in this mineral hydrometallurgy. (Author) [es

  10. A new oxidimetric reagent: potassium dichromate in a strong phosphoric acid medium-VI Potentiometric titration of vanadium(III) alone and in mixture with vanadium(IV).

    Science.gov (United States)

    Rao, G G; Rao, P K

    1966-09-01

    Vanadium(III) can be titrated at room temperature with potassium dichromate in an 8-12M phosphoric acid medium. Two potential breaks are observed in 12M phosphoric add with 0.2N potassium dichromate, the first corresponding to the oxidation of vanadium(III) to vanadium(IV) and the second to the oxidation of vanadium(IV) to vanadium(V). In titrations with 0.05N dichromate only the first break in potential is clearly observed. The method has been extended to the titration of mixtures of vanadium(III) and vanadium(IV). Conditions have also been found for the visual titration of vanadium(III) using ferroln or barium diphenylamine sulphonate as indicator.

  11. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  12. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  13. TiAl doping by vanadium: ab initio study

    International Nuclear Information System (INIS)

    Smirnova, E.A.; Isaev, Eh.I.; Vekilov, Yu.Kh.

    2004-01-01

    Tetragonality degree in TiAl and vanadium doping effect on it were studied using the methods of calculation based on approximation of coherent potential and ab initio pseudopotentials. It is shown that vanadium substitution for Ti sublattice atoms entails increase in tetragonality degree but with substitution of the atoms in aluminium sublattice the tetragonality of the TiAl:V alloy decreases and at the content of vanadium about 8 at. % the lattice becomes actually cubical. In its turn, it may result in increase in TiAl ductility, the alloy being brittle at low temperatures [ru

  14. Hydrogen release from vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh; Kulsartov, T.V.; Chikhray, E.V.; Romanenko, O.G.; Tazhibaeva, I.L.; Shestakov, V.P.

    1999-01-01

    The experiments on hydrogen loading of vanadium alloy with the following thermodesorption spectroscopy (TDS) measurements were carried out with the sample of the V-4Cr-4Ti vanadium alloy (Russia production). Hydrogen solubility was calculated from experimental TDS curves, obtained after equilibrium loading of the sample at the temperatures 673, 773, 873, 973, and 1073 K. The range of loading pressures was 10-100 Pa. The experiments carried out had an objective to determine the regimes (loading time, temperatures and pressures) for the experiment on in-pile loading of the vanadium alloy. (author)

  15. Spectrophotometric determination of vanadium in environmental and biological samples

    International Nuclear Information System (INIS)

    Rekha, D.; Krishnapriya, B.; Subrahmanyam, P.; Reddyprasad, P.; Dilip Kumar, J.; Chiranjeevi, P.

    2007-01-01

    The method is based on oxidation of p-nitro aniline by vanadium (V) followed by coupling reaction with N-(1-naphthalene-1-y1)ethane-1, 2-diaminedihydrochloride (NEDA) in basic medium of pH 8 to give purple colored derivative. The derivative having an λ max 525nm is stable for 10 days. Beer's law is obeyed for vanadium (V) in the concentration range of 0.03-4.5 μg ml -1 . The proposed method was successfully applied to the analysis of vanadium in environmental and biological samples. (author)

  16. Vanadium bioavailability and toxicity to soil microorganisms and plants

    OpenAIRE

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-01-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200mgVkg(-1)) of dissolved vanadate, and toxicity ...

  17. Q4 Titanium 6-4 Material Properties Development

    Science.gov (United States)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  18. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase

    Science.gov (United States)

    Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu

    2018-03-01

    This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.

  19. Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Suna, E-mail: sunabalci@gazi.edu.tr; Tecimer, Aylin

    2015-03-01

    Graphical abstract: - Highlights: • Vanadium was incorporated into Al-PILC using NaVO{sub 3} or VOSO{sub 4}·3H{sub 2}O precursors by wet impregnation, washing after wet impregnation and impregnation from solution methods. • The layered structure of the supports was retained after the vanadium incorporation. • Incorporation took place both by settling and ion exchange mechanism with the treatment VOSO{sub 4}·3H{sub 2}O precursor while settling was dominant in the use of NaVO{sub 3} precursor. • Treatment with VOSO{sub 4}·3H{sub 2}O which was acidic in solution resulted in more structural deformation. • V{sub 2}O{sub 5} and VO{sub 2} were found as the major oxide forms on the impregnated samples. Loading of vanadyl sulfate hydrate (VOSO{sub 4}·H{sub 2}O) resulted in higher V/Si ratio. Most of the vanadium was bonded in +5 oxide form. • Changes in the FTIR signals after vanadium incorporation caused by Brønsted and Lewis sites, silanol, water and vanadium vibrations were occured. • Dehydroxylation of the structure took place around 300 °C. Samples obtained by impregnation and washing after wet impregnation methods resulted in similar mass losses and the wet impregnated sample showed the highest mass loss among the impregnated samples. - Summary: Clay from the Middle Anatolian previously pillared by Al{sub 13}-Keggin ions and then calcined at 300 °C (Al-PILC) was impregnated with aqueous solutions of vanadium precursors by impregnation from solution (I), wet impregnation (WI) and washing after wet impregnation (WWI) methods. The crystal and textural properties were evaluated by X-ray powder diffraction (XRD), nitrogen sorption and transmission electron microscopy (TEM) images. Vanadium incorporation into the Al-PILC resulted decreases in the basal spacing from 1.75 nm to 1.35 nm with the preserved typical layered structure. The use of sodium metavanadate (NaVO{sub 3}) as the source and the impregnation from solution as the incorporation method

  20. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  1. Industrial experience with titanium

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Shoesmith, D.W.

    1997-09-01

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author)

  2. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  3. Thermogravimetric experiments with titanium

    International Nuclear Information System (INIS)

    Porter, L.J.; Longhurst, G.R.

    1991-02-01

    In the process of preparing for pyrophoricity experiments involving uranium, we conducted hydriding and air-exposure experiments on titanium. In these experiments the hydriding reactions and response to air-exposure was generally within the range expected based on work reported by others. One aberrant behavior was a sudden weight gain followed by a significant weight loss. We speculate that loss may be due to hydrogen evolution from the TiH 2 resulting from local heating by oxidation reactions. We verified that titanium is not pyrophoric at temperatures less than 750 degree C. 18 refs. 1 fig

  4. Oral mucosa tissue response to titanium cover screws.

    Science.gov (United States)

    Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L

    2012-08-01

    Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.

  5. Reduction electric smelting of ferriferrous-titanium concentrates from Gremyakha-Vyrmes deposit

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Substantial composition of ilmenite and titanium-magnetite concentrates from Gremyaha-Vyrmes deposit is studied and their reducibility is examined as compared with other similar kids of raw materials. Thermal-physical properties of slag melts (such as toughness and melting ability), formed in reduction smelting of the above-mentioned concentrates for different reduction degree, are determined. These properties characterize the electric thermal transformation process of concentrates as hi-tech one. Features of chemical composition of metal, which is naturally alloyed with vanadium and is produced at the same time are noted. This metal expands the possibilities of complex used of the concentrates of this deposit [ru

  6. Evaluation of the nanomechanical properties of vanadium and native oxide vanadium thin films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Mamun, M.A.; Zhang, K.; Baumgart, H.; Elmustafa, A.A.

    2015-01-01

    Graphical abstract: - Highlights: • V films of 50, 75, 100 nm thickness were deposited on Si by RF magnetron sputtering. • We studied structural/mechanical properties by XRD, FE-SEM, AFM, and nanoindentation. • The hardness increased from 9.0 to 14.0 GPa for 100 to 50 nm. • The modulus showed no correlation with thickness or native oxide formation. • Native oxide formation resulted in grain enlargement and roughness reduction. - Abstract: Polycrystalline vanadium thin films of 50, 75, and 100 nm thickness were deposited by magnetron sputtering of a vanadium metal target of 2 inch diameter with 99.9% purity on native oxide covered Si substrates. One set of the fabricated samples were kept in moisture free environment and the other set was exposed to ambient air at room temperature for a long period of time that resulted in formation of native oxide prior to testing. The crystal structure and phase purity of the vanadium and the oxidized vanadium thin films were characterized by X-ray diffraction (XRD). The XRD results yield a preferential (1 1 0), and (2 0 0) orientation of the polycrystalline V films and (0 0 4) vanadium oxide (V 3 O 7 ). The vanadium films thickness were verified using field emission scanning electron microscopy and the films surface morphologies were inspected using atomic force microscopy (AFM). AFM images reveal surface roughness was observed to increase with increasing film thickness and also subsequent to oxidation at room temperature. The nanomechanical properties were measured by nanoindentation to evaluate the modulus and hardness of the vanadium and the oxidized vanadium thin films. The elastic modulus of the vanadium and the oxidized vanadium films was estimated as 150 GPa at 30% film thickness and the elastic modulus of the bulk vanadium target is estimated as 135 GPa. The measured hardness of the vanadium films at 30% film thickness varies between 9 and 14 GPa for the 100 and 50 nm films, respectively, exhibiting size effects

  7. Determination of vanadium (4) and (5) in the presence of both

    International Nuclear Information System (INIS)

    Malyuta, V.F.; Solomatin, V.T.; Berezhnoj, A.I.

    1983-01-01

    A study was made on the possibility of vanadium (4) and (5) determination in the presence of both by titration with ferrocene in aqueous solutions. 5-6 M H 2 SO 4 is the optimal medium for vanadium (5) titration. Vanadium (4) is titrated in the mixture of 2-2.5 M H 2 SO 4 and 8-10 M H 3 PO 4 . The method for vanadium (4) and (5) determination in vanadium catalysts was developed. Vanadium (5) is titrated amperometrically or potentiometrically by propanol solution of ferrocence in H 2 SO 4 . Concentrated H 3 PO 4 is added and the summary vanadium (4) is titrated. The relative standard deviations for 0.04-2% vanadium (4) content and 0.3-4% vanadium (5) content equal 0.06-0.03 and 0.05-0.02, respectively

  8. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  9. TEM investigation of ductile iron alloyed with vanadium.

    Science.gov (United States)

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  10. Synthesis and infrared spectra of Vanadium (III) prussian blue complexes

    International Nuclear Information System (INIS)

    Toma, H.E.; Lellis, F.T.P.

    1987-01-01

    The synthesis and characterization of a series of polymeric pigments containing vanadium (III) and hexacryano or substituted pentacyanoferrate (II) complexes are studied. The role of the intervalence transfer interactions in the complexes is discussed. (M.J.C.) [pt

  11. Particle fracture and plastic deformation in vanadium pentoxide

    Indian Academy of Sciences (India)

    Particle fracture and plastic deformation in vanadium pentoxide powders induced by high energy vibrational ball-mill ... Keywords. X-ray diffraction; ball-milling; plastic deformation; microstrain. ... Bulletin of Materials Science | News.

  12. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Application of vanadium alloys to a fusion reactor blanket

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  14. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  15. Assessment of vanadium alloys for ITER application

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Clemens, H.; Ehrlich, K.; Fromm, E.; Kelzenberg, S.; Moeslang, A.; Pick, M.; Ruehle, M.; Schaaf, B. van der; Schaefer, L.; Schiller, P.; Schirra, M.; Witwer, M.; Witzenburg, W. van; Zolti, E.; Zucchetti, M.

    1993-09-01

    The assessment effort concerned required evaluation of various relevant properties of vanadium alloys. The outcome predictably shows that these properties, as well as timing, funding, manufacturing and licensing aspects, each set their own specific boundary conditions for application of these alloys in ITER. Some of these are not really felt as constraints. Their capacity to accommodate high heat loads, for example, is better than other candidate materials and appears to be the main reason for the present interest in these alloys. Other favourable properties include neutronic properties (low nuclear heating rates, good tritium breeding performance and low helium generation rates), intrinsically low activation, excellent tensile and creep properties up to high temperatures and high strength-to-density ratio. Not all of these properties necessarily are relevant for ITER, but they would be important for longer term application. (orig.)

  16. Lithium diffusion in silver vanadium oxide

    International Nuclear Information System (INIS)

    Takeuchi, E.S.; Thiebolt, W.C. III

    1989-01-01

    Lithium/silver vanadium oxide (SVO) batteries have been developed to power implantable devices. The voltage of Li/SVO cells decreases with discharge allowing state of charge assessment by accurate determination of the cells' open circuit voltage. The open circuit voltage recovery of Li/SVO cells was monitored during intermittent high rate discharge. It was found that the voltage does not recover at the same rate or magnitude at all depths of discharge. The authors describe lithium diffusion in SVO studied by low scan rate voltammetry where utilization of SVO at various scan rates was used to determine the diffusion rate of lithium. A pulse technique was also used where the rate of lithium diffusion was measured at various depths of discharge

  17. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J.V. der

    1985-01-01

    We have computed the electron density of States of solid solutions of vanadium based transition metal alloys V 90 X 10 by using the tight-binding recursion method for degenerate d-bands in order to calculte the alloy superconducting transition temperature with the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table one obtains an increase of T c while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. (author) [pt

  18. Fourier transform of momentum distribution in vanadium

    International Nuclear Information System (INIS)

    Singh, A.K.; Manuel, A.A.; Peter, M.; Singru, R.M.

    1985-01-01

    Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e + -e - many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)

  19. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  20. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  1. The bioinorganic electrochemistry of vanadium-penicillamine complexes

    International Nuclear Information System (INIS)

    Bagal, U.A.; Riechel, T.L.

    1989-01-01

    Vanadium (V) has been found to inhibit (Na + , K + )-ATPase in the sodium pump reaction in erythrocytes. Glutathione has been suggested as the reducing agent that reverses the effect by reducing vanadium to the (IV) oxidation state. Penicillamine is being studied as a model for glutathione since both have sulfhydryl groups which are involved in redox and coordination chemistry. The electrochemistry in DMSO of penicillamine, its carboxylic ester, and their VO 2 + complexes are discussed in this paper

  2. Impurity states of vanadium in cadmium and zinc tellurides

    International Nuclear Information System (INIS)

    Gnatenko, Yu.P.; Farina, I.A.

    1996-01-01

    Low-temperature optical (4.5 K) and photoelectrical properties of CdTe and ZnTe crystals doped by vanadium are invetigated. The energies of carrier transition to valence and conduction bands, Mott-Habbard energy for 3d 3 -ion vanadium in both crystals are determined. The resonance of the excited 4 T l ( 4 P)-state of V 2+ -ion with the conduction band of CdTe crystal is found. 8 bibl.; 4 figs

  3. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  4. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  5. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  6. Nickel and vanadium extraction from the Syrian petroleum coke

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Syrian petroleum coke samples were characterized and submitted for salt-roasting treatment in electric furnace to evaluate the convenience of this procedure for the extraction of the vanadium, nickel and sulfur from coke. Both solution and solid residue remaining after salt roasting were separated by filtration and were analyzed for vanadium, nickel and sulfur. The solution was analyzed by UV-Visible spectroscopy for vanadium and nickel and gravimetrically for sulfur. The solid residue and the untreated samples of petroleum coke were analyzed by XRF spectrometry. Results showed that more than 90% of sulfur and 60% of vanadium could be extracted by salt roasting treatment. An alternative procedure has been suggested, in which, more than 80% of sulfur and small percentage of vanadium can be leached by 0.75 M of Na 2 CO 3 solution at 70-80 Co. Vanadium was selectively extracted by DEHPA/TBP from the loaded leached solution. The extraction procedure flowsheet was also suggested. (authors)

  7. Recycling of Ammonia Wastewater During Vanadium Extraction from Shale

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-03-01

    In the vanadium metallurgical industry, massive amounts of ammonia hydroxide or ammonia salt are added during the precipitation process to obtain V2O5; therefore, wastewater containing a high level of NH4 + is generated, which poses a serious threat to environmental and hydrologic safety. In this article, a novel process was developed to recycle ammonia wastewater based on a combination of ammonia wastewater leaching and crystallization during vanadium extraction from shale. The effects of the NH4 + concentration, temperature, time and liquid-to-solid ratio on the leaching efficiencies of vanadium, aluminum and potassium were investigated, and the results showed that 93.2% of vanadium, 86.3% of aluminum and 96.8% of potassium can be leached from sulfation-roasted shale. Subsequently, 80.6% of NH4 + was separated from the leaching solution via cooling crystallization. Vanadium was recovered via a combined method of solvent extraction, precipitation and calcination. Therefore, ammonia wastewater was successfully recycled during vanadium extraction from shale.

  8. Sensitivity Calculation of Vanadium Self-Powered Neutron Detector

    International Nuclear Information System (INIS)

    Cha, Kyoon Ho

    2011-01-01

    Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the rhodium SPND has been used in many nuclear power plants. The lifetime of rhodium is too short (about 3∼5 years) to operate the nuclear power plant economically. The vanadium (V) SPND is also primarily sensitive to neutrons like rhodium, but is a somewhat slower reaction time as that of a rhodium SPND. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. For this reason, a vanadium SPND has been being developed to replace the rhodium SPND which is used in OPR1000. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina (Al 2 O 3 ) insulator with a cylindrical geometry. An MCNP-X code was used to simulate some factors (neutron self shielding factor and electron escape probability from the emitter) necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND

  9. Tackling capacity fading in vanadium flow batteries with amphoteric membranes

    Science.gov (United States)

    Oldenburg, Fabio J.; Schmidt, Thomas J.; Gubler, Lorenz

    2017-11-01

    Capacity fading and poor electrolyte utilization caused by electrolyte imbalance effects are major drawbacks for the commercialization of vanadium flow batteries (VFB). The influence of membrane type (cationic, anionic, amphoteric) on these effects is studied by determining the excess and net flux of each vanadium ion in an operating VFB assembled with a cation exchange membrane (CEM), Nafion® NR212, an anion exchange membrane (AEM), Fumatech FAP-450, and an amphoteric ion exchange membrane (AIEM) synthesized in-house. It is shown that the net vanadium flux, accompanied by water transport, is directed towards the positive side for the CEM and towards the negative side for the AEM. The content of cation and anion exchange groups in the AIEM is adjusted via radiation grafting to balance the vanadium flux between the two electrolyte sides. With the AIEM the net vanadium flux is significantly reduced and capacity fading due to electrolyte imbalances can be largely eliminated. The membrane's influence on electrolyte imbalance effects is characterized and quantified in one single charge-discharge cycle by analyzing the content of the four different vanadium species in the two electrolytes. The experimental data recorded herewith conclusively explains the electrolyte composition after 80 cycles.

  10. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    Science.gov (United States)

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  11. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  12. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin

    2018-02-01

    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  13. Microstructure and mechanical properties of diamond films on titanium-aluminum-vanadium alloy

    Science.gov (United States)

    Catledge, Shane Aaron

    The primary focus of this dissertation is the investigation of the processing-structure-property relationships of diamond films deposited on Ti-6Al-4V alloy by microwave plasma chemical vapor deposition (MPCVD). By depositing a well-adhered protective layer of diamond on an alloy component, its hardness, wear-resistance, performance, and overall lifetime could be significantly increased. However, due to the large thermal expansion mismatch between the diamond film and metal (and the corresponding residual stress induced in the film), film adhesion is typically unsatisfactory and often results in immediate delamination after processing. Therefore, it is a major goal of this research to improve adhesion of the diamond film to the alloy substrate. Through the use of innovative processing techniques involving MPCVD deposition conditions and methane (CH4), nitrogen (N2), and hydrogen (H2) chemistry, we have achieved diamond films which consistently adhere to the alloy substrate. In addition, we have discovered that, with the appropriate choice of deposition conditions, the film structure can be tailored to range from highly crystalline, well-faceted diamond to nanocrystalline diamond with extremely low surface roughness (as low as 27 nm). The relationship between processing and structure was studied using in-situ optical emission spectroscopy, micro-Raman spectroscopy, surface profilometry, glancing-angle x-ray diffraction, and scanning electron microscopy. We observe that when nitrogen is added to the H2/CH4 feedgas mixture, a carbon-nitrogen (CN) emission band arises and its relative abundance to the carbon dimer (C2) gas species is shown to have a pronounced influence on the diamond film structure. By appropriate choice of deposition chemistry and conditions, we can tailor the diamond film structure and its corresponding properties. The mechanical properties of interest in this thesis are those relating to the integrity of the film/substrate interface, as well as the hardness, wear resistance, residual stress, and elastic modulus of the film. The mechanical properties of the diamond coatings were characterized by indentation and wear testing instruments. Finally, we developed a model based on fundamental thermodynamic and optical principles for extracting the time dependence of film thickness and surface roughness using optical pyrometry for the case of an absorbing substrate. This model provides a convenient way to determine film thickness during growth in CVD systems as well as a reliable estimate of surface roughness.

  14. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  15. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell ingrowth, pore coverage, cell adhesion and proliferation was observed to increase with decreasing pore size. It was found that fiber geometries provided guidance for cell spreading along the fiber directions. However, the larger gaps in fiber geometries made pore bridging difficult. Finally, this dissertation presents an in vivo study of the combined effects of laser microgrooving and RGD-coating on the osseointegration of implanted Ti-6Al-4V pins. Both histological and biomechanical results show that the combination of laser microgrooving and RGD-coating results in improved osseointegration over the control surfaces. All the above findings have important implications for future orthopedic and dental implant design.

  16. Chromium and titanium isotopes produced in photonuclear reactions of vanadium, revisited

    International Nuclear Information System (INIS)

    Sakamoto, K.; Yoshida, M.; Kubota, Y.; Fukasawa, T.; Kunugise, A.; Hamajima, Y.; Shibata, S.; Fujiwara, I.

    1988-10-01

    Photonuclear production yields of 51 Ti and 51,49,48 Cr from 51 V were redetermined for bremsstrahlung end-point energies (E 0 ) of 30 to 1000 or 1050 MeV with an aid of radiochemical separation of Cr. The yield curves for 51 Ti, 51 Cr, 49 Cr and 48 Cr show a clear evidence for two components ; one for secondary-proton reaction at E 0 π ± and the other for photopion reaction, at E 0 > Q π ±, Q π ± being Q values for (γ,π + ) and (γ,π - xn)-reactions. The contributions of the secondary reactions for production of the Ti and Cr isotopes at E 0 > Q π ± were then estimated by fitting a calculated secondary yields to the observed ones at E 0 π ±, and found to be about 40, 20, 4 and 4 % for 51 Ti, 51 Cr, 49 Cr and 48 Cr, respectively, at E 0 = 400 to 1000 MeV. The calculation of the secondary yields was based on the excitation functions for 51 V(n,p) and (p,x'n) calculated with ALICE code and the reported photoneutron and photoproton spectra from 12 C and some other complex nuclei. The present results for 49 Cr are very close to the reported ones, while the present 48 Cr yields differ by a factor of about 50. For the 51 Ti and 51 Cr yields, there are some discrepancies between the present and reported ones. The yields corrected for the secondaries, in unit of μb/equivalent quantum, were unfolded into cross sections per photon, in unit of μb, as a function of monochromatic photon energy with the LOUHI-82 code. The results for the 51 Ti and 49 Cr are in disagreement in both the magnitude and shape with the theoretical predictions based on DWIA and PWIA. A Monte Carlo calculation does not reproduce the present result for the 49 Cr yield. (author)

  17. Chromium and titanium isotopes produced in photonuclear reactions of vanadium, revisited

    Science.gov (United States)

    Sakamoto, K.; Yoshida, M.; Kubota, Y.; Fukasawa, T.; Kunugise, A.; Hamajima, Y.; Shibata, S.; Fujiwara, I.

    1989-10-01

    Photonuclear production yields of 51Ti und 51,49,48Cr from 51V were redetermined for bremsstrahlung end-point energies ( E0) of 30 to 1000 or 1050 MeV with the aid of radiochemical separation of Cr. The yield curves for 51Ti, 51Cr, 49Cr and 48Cr show a clear evidence for two components in the production process; one tor secondary-proton reactions at E0 Q, Qπ being Q-values for (γ, π +) and ( γ, π+xn) reactions. The contributions of the secondary reactions for production of the Ti and Cr isotopes at E0 > Qπ were then estimated by fitting calculated secondary yields to the observed ones at E0 code and the reported photoneutron and photoproton spectra from 12C and some other complex nuclei. The present results for 49Cr are close to the reported ones, while the present 48Cr yields differ by a factor of about 50. For the 51Ti and 51Cr yields, there are some discrepancies between the present and reported ones. The yield corrected for the secondaries, in units of μb/equivalent quantum, were unfolded into cross sections per photon, in units of μb, as a function ol monochromatic photon energy with the LOUHI-82 code. The results for the 51Ti and 49Cr are in disagreement in both the magnitude and shape with the theoretical predictions based on DWIA and PWIA. A Monte Carlo calculation based on the PICA code by Gabriel and Alsmiller does reproduce the gross feature of the present results.

  18. INTERMEDIATE STAGES OF REACTIONS FORMING CARBIDES OF TITANIUM, ZIRCONIUM, VANADIUM, NIOBIUM, AND TANTALIUM

    Science.gov (United States)

    intermediate and final products, and also during the calculation of approximate heat values of their formation, the passage of the reaction is confirmed...for obtaining TiC, and ZrC through the stage of intermediate oxides Ti2O3, Ti3O5, TiO and Zr2O3, ZrO, respectively and also for the reaction of...forming carbides of V (from V2O3 + 5C), of Nb and Ta (from Nb2O5 + 7C and Ta205 + 7C) through the stage of intermediate oxides VO, V4O and TaO2, Ta4O. The

  19. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  20. Complexation of vanadium with amidoxime and carboxyl groups. Uncovering the competitive role of vanadium in uranium extraction from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Wu, Guo-Zhong [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2017-09-01

    At present, amidoxime-based adsorbents are considered to be the most promising materials for extraction of uranium from seawater. However, the high concentrations of transition metals especially vanadium strongly compete with uranium in the sequestration process, which is extremely limited the commercial use of amidoxime-based adsorbents. In this work, the coordination modes, bonding nature, and stabilities of possible vanadium(IV) (VO{sup 2+}) and (V) (VO{sub 2}{sup +}, VO{sup 3+}, V{sup 5+}) complexes with amidoximate (AO{sup -}), carboxyl (Ac{sup -}), glutarimidedioximate (HA{sup -}) and deprotonated glutarimidedioximate (A{sup 2-}) on single and double alkyl chains (R=C{sub 13}H{sub 26}) are systematically explored by quantum chemical calculations. Different from the uranyl (UO{sub 2}{sup 2+}) complexes, the AO{sup -} groups of the vanadium(IV) and (V) complexes prefer to coordinate as monodentate and chelate ligands, while few species with AO{sup -} groups in η{sup 2}-binding mode have been observed in the vanadium complexes. Besides, the vanadium complexes are predicted to have obvious covalent metal-ligand bonds. According to thermodynamic stability analysis, all the vanadium complexes with AO{sup -}, Ac{sup -}, HA{sup -} and A{sup 2-} ligands on double alkyl chains are found to be more stable than corresponding complexes with ligands on a single chain. The synergistic effect of the amidoxime and carboxyl groups can be observed in most of VO{sub 2}{sup +} and VO{sup 3+} complexes with mixed ligands (AO{sup -}/Ac{sup -}). The vanadium(IV) and (V) complexes are more stable than the corresponding uranyl complexes, and the adsorption capability of the amidoxime-based adsorbents toward vanadium(V) ions decrease in the order of VO{sub 2}{sup +}>VO{sup 3+}> V{sup 5+}. The dioxovanadium cation VO{sub 2}{sup +} is predicted to form multinuclear vanadium complex in the sequestration process, possibly resulting in higher stable VO{sub 2}{sup +} complexes. Therefore

  1. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  2. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  3. Mechanochemistry of titanium oxides

    Directory of Open Access Journals (Sweden)

    Veljković Ivana

    2009-01-01

    Full Text Available Mechanochemistry represents an alternative route in synthesis of nanomaterials. Mechanochemical routes are attractive because of their simplicity, flexibility, and ability to prepare materials by solid state reactions at room temperature. The aim of this work is the mechanochemical synthesis of nanostructured titanium oxides of different composition starting from mixtures of Ti and TiO2, TiO and TiO2 or Ti2O3 and TiO2. Emphasis is on the Magneli phases Ti4O7 and Ti5O9 because their mixture is commercially known as EBONEX material. The materials prepared were characterized by XRPD, TG/DTA analysis, SEM and optical microscopy. Titanium monoxide and several Magneli oxides, Ti4O7, Ti5O9 and Ti6O11, are successfully prepared. The results are very interesting because the EBONEX materials were prepared at lower than usual temperature, which would decrease the effective cost of production.

  4. Industrial experience with titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B M; Shoesmith, D W

    1997-09-01

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author) 83 refs., 17 tabs., 3 figs.

  5. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  6. The vanadium/oxygen system in the analysis of sodium for oxygen

    International Nuclear Information System (INIS)

    Walker, J.A.J.; Price, W.B.

    1981-05-01

    An investigation of the V-O-Na system at 1023 K is described for oxygen in sodium contents of 5 to 25 ppm. Electron spectroscopy combined with depth profiling is used to determine the vanadium/oxygen ratios inwards from the surface of vanadium foil and these ratios are compared with theoretical predictions. The validity of the vanadium wire technique as an analytical method is examined and a model for the vanadium oxidation is suggested. (author)

  7. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Savchenko, L.A.; Tarasova, D.V.; Tret'yakov, Yu.D.; Olen'kova, I.P.; Nikoro, T.A.; Maksimov, N.G.

    1981-01-01

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts [ru

  8. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  9. Sol–gel synthesis of vanadium doped titania: Effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Godlisten N., E-mail: shaogod@gmail.com [Department of Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Department of Chemistry, Mkwawa College, University of Dar es Salaam, Iringa, United Republic of Tanzania (Tanzania, United Republic of); Imran, S.M.; Jeon, Sun Jeong; Kang, Shin Jae; Haider, S.M. [Department of Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, Hee Taik, E-mail: khtaik@yahoo.com [Department of Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-10-01

    Highlights: • Sol–gel routes to yield vanadium doped titania from cheap source are proposed. • Photocatalysts with different titania polymorphs are yielded through calcination. • The vanadium doped titania samples show strong absorption in the visible region. • The activities of the photocatalysts are assessed in the presence of visible light. • The calcined samples are obtained through two-step process exhibit superior activities. - Abstract: The development of visible-light effective TiO{sub 2} photocatalysts allows low cost degradation of toxic non-biodegradable organic pollutants. In the present study a series of vanadium doped titania (V-TiO{sub 2}) photocatalysts with V-to-Ti of 0.03, 0.06 and 0.1 were synthesized by either one-step or two-step modified sol–gel approaches. Titanium oxychloride solution was used as a titania source while vanadium pentaoxide was used as a vanadia source to form V-TiO{sub 2} in the absence of surfactants. One-step process was performed through the reaction of the TiO{sub 2} source with vanadium source. In two-step route the Ti(OH){sub 4} gel was preformed through gelation of the TiO{sub 2} source using ammonium solution and then peptized in the acidic vanadium solution. The physicochemical properties of the samples were examined by XRF, XRD, UV–visible DRS, SEM-EDAX, TEM, DTA-TGA, XPS and nitrogen gas physisorption studies analyses. It was observed that the morphology, crystal structure and photochemical properties of the obtained samples were largely dependent on the calcination temperature, synthetic approach and V-to-Ti ratios. Calcination of the samples yielded large ultrafine and perhaps monodispersed particles with different sizes depending on the synthetic technique. The photocatalytic performance of the samples was tested in the photodegradation of methylene blue in the presence of natural sunlight. The photocatalytic activities of the samples synthesized by two-step route were higher than that of the

  10. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  11. Joining of Gamma Titanium Aluminides

    National Research Council Canada - National Science Library

    Baeslack, William

    2002-01-01

    .... Although organized and presented by joining process, many of the observations made and relationships developed, particularly those regarding the weldability and welding metallurgy of gamma titanium...

  12. Determination of vanadium in Syrian commercial and raffinate phosphoric acid

    International Nuclear Information System (INIS)

    Al-Merey, R.

    2002-04-01

    This study presents two methods for vanadium determination in Syrian commercial phosphoric acid. The vanadium (V) in the oxidized commercial phosphoric acid by ammonium persulfate solution is extracted from 5-M hydrochloride acid medium using N-benzoyl-N-phenyl hydroxyl amine (BPHA) in chloroform as an extracting solution. The first method, the extract vanadium as VOL 2 Cl is changed to V 2 O 3 L 4 complex by the addition of benzimidazole in 1-butanol to the violet organic layer. The absorbance is then measured at 440 nm (the molar absorptivity was found to be 3865 M -1 cm -1 ), where Beer law is applicable up to 36-μg ml -1 . the accuracy, precision and detection limit were found to be 3.7%, 77 ppb and 37 ppb, respectively. the second method, the organic layer is heated to evaporate chloroform, the residue is digested using 20% ammonium persulfate and 2-M sulfuric acid solutions. The vanadium concentration is measured spectrophotometrically by oxidizing gallic acid with persulfate (S 2 O 8 2- ) anion in phosphoric acid medium, where the vanadium (V) acts as a catalyst in the oxidation reaction. This method has a high sensitivity (∼10 -12 ) with accuracy and precision 5% and 0.621 ppb, respectively. Also Beer law at λ m ax=415 nm (ε=∼2 x 10 6 M -1 ) is applicable in the range 2.58-33.3 ppb. (author)

  13. Absorption of hydrogen by vanadium-palladium alloys

    International Nuclear Information System (INIS)

    Artman, D.; Lynch, J.F.; Flanagan, T.B.

    1976-01-01

    Pressure composition isotherms (273-373 K) have been determined for the absorption of hydrogen by a series of six palladium alloys (f.c.c) in the composition range from 1 to 8 at.% vanadium. At a given hydrogen content, the equilibrium hydrogen pressure progressively increases with vanadium content. Thermodynamic parameters for the absorption of hydrogen are reported at infinite dilution of hydrogen and for the formation of the nonstoichiometric hydride from the hydrogen-saturated alloy. The relative, partial molar enthalpy of solution of hydrogen at infinite dilution increases slightly with vanadium content. The presence of vanadium, which absorbs hydrogen itself in its normal b.c.c. structure, greatly inhibits the ability of palladium to absorb hydrogen. For example, the isobaric solubility of hydrogen (1 atm, 298K) decreases from H/Pd=0.7 (palladium) to 0.024 (V(6%)-Pd). The lattice expansion due to the presence of interstitial hydrogen has been determined by X-ray diffraction. From these data it can be concluded that the formation of two non-stoichiometric hydride phases does not occur at vanadium contents greater that 5 at.% (298 K). Electrical resistance has been measured as a function of the hydrogen content of the alloys. The electrical resistance increases more markedly with hydrogen content for these alloys than for any of the palladium alloys previously examined. (Auth.)

  14. Electrochemical studies on vanadium oxides, 9

    International Nuclear Information System (INIS)

    Miura, Takashi; Yamamoto, Masahiro; Takahashi, Hirobumi; Kishi, Tomiya; Nagai, Takashi

    1979-01-01

    The mechanism of the anodic oxidation of various organic compounds-including methanol, formaldehyde, formic acid, ethanol, acetaldehyde and acetic acid-at illuminated vanadium pentoxide (V 2 O 5 ) single crystal electrodes were investigated in aqueous solutions of an H 2 SO 4 -K 2 SO 4 system of about pH 2, in which oxygen evolution from water molecules had previously been confirmed to occur with a current efficiency of about 100%. It was shown that all the organics were oxidized by the so called hole-current doubling mechanism, and that the oxygen evolution reaction, which competed with the above oxidation reaction at the hole-capturing step from the valence band of the electrode, proceeded by the simple hole-capturing mechanism, not followed by an electron injection step into the conduction band. Furthermore, it is considered that chloride ions added to the electrolytes tended to hinder hole-current doubling oxidation owing to their reactivity with the holes at the illuminated V 2 O 5 electrodes. (author)

  15. Critical currents in columnar vanadium films

    International Nuclear Information System (INIS)

    Cherkasova, V.G.; Kolin'ko, A.E.; Slatin, A.E.; Fogel, N.Y.

    1982-01-01

    The angular dependence of the critical current I/sub c/ is studied in columnar vanadium films. In measurements in constant magnetic fields an anomalous maximum I/sub c/ is found on the I/sub c/(theta) curves at arbitrary values of the external magnetic field and temperature, when the magnetic field is perpendicular to the plane of the specimen. The angular dependence of I/sub c/ measured in constant reduced magnetic fields h = H/H/sub c/2(T,theta) shows no singularities in the vicinity of the angle at which the I/sub c/ peak is found in the case H = const, i.e., the critical current is isotropic. This implies that a change in the relative orientation of the vortices and column boundaries produces no change in critical current. The experimental data obtained permit the conclusion that the anisotropy of I/sub c/ observed in a constant magnetic field H is merely a consequence of the anisotropy of the critical magnetic field H/sub c/: the critical current ''tracking'' the magnitude and angular dependence of H/sub c/

  16. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  17. Concentration of vanadium in crude oil and water using inductively-coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Amin, Y.M.; Hassan, M.A.; Junkin, K.; Mahat, R.H.; Raphie, B.

    1991-01-01

    Vanadium is a trace element that is usually associated to crude oil and its products. In this study the concentration of vanadium in a few samples of local crude oil, sea and river water were determined using inductively-coupled plasma spectrometry (ICP). It is hoped that the concentration of vanadium in water can be used to indicate the possible extent of oil contamination

  18. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular

  19. Process of coke less without waste treatment of direct vanadium allowing steel melting

    International Nuclear Information System (INIS)

    Lisienko, V.G.; Droujinina, O.G.; Morozova, V.A.; Ladigina, N.V.; Yusfin, Yu.S.; Parenkev, A.E.

    2003-01-01

    The development of new methods of steel production are now conducted with the purpose of energy consumption and harmful emissions reduction. The choice of technology and equipment in this case plays a marginal role. It is well known that vanadium alloying steel has increased service properties. The known classical scheme of vanadium steel melting is very power-intensive, as includes such power-intensive processes as blast furnace process and chemical processing of vanadium slag therewith sintering and by-product coke processes are accompanied by significant harmful emissions. In so doing the vanadium losses may run to 60%. In view of requests of environment protection and economical efficiency the new process of coke less without wastes processing of vanadium-bearing raw material with direct vanadium allowing of steel - LP-process is developed. Its purpose is the melting on the basis of vanadium-bearing titanomagnetite of vanadium allowing steel with increase of vanadium concentration in steel and diminution of vanadium losses without application coke and natural gas with use of any coals and carbon-bearing wastes. LP-process consists of three aggregates and corresponding processes: process of liquid-phase reduction, process of vanadium-bearing pellets metallization in the shaft furnace, and process of alloying steel melting in the arc electric furnace. The obtained results have shown, that the LP-process is more energy saving on a comparison with other methods of vanadium allowing steel production. (Original)

  20. 76 FR 78888 - Final Results of Expedited Sunset Review: Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2011-12-20

    ... Sunset Review: Ferrovanadium and Nitrided Vanadium From Russia AGENCY: Import Administration... and nitrided vanadium from the Russian Federation (Russia), pursuant to section 751(c) of the Tariff... vanadium from Russia, pursuant to section 751(c) of the Act. See Initiation of Five-Year (``Sunset...

  1. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  2. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  3. Liquid structure of vanadium tetrachloride from neutron diffraction study

    International Nuclear Information System (INIS)

    Gopala Rao, R.V.; Satpathy, B.M.

    1982-01-01

    Assuming the separation of the intermolecular scattering function into the radial and angular parts and using Egelstaff et al's orientational model for tetrachlorides, the structure of liquid vanadium tetrachloride has been studied. It has been observed that such a separation is approximate for this liquid and the introduction of a third correction term is required to account for the molecular structure function. The chlorine-chlorine partial structure and effective angle-averaged intermolecular chlorine-chlorine potential in the liquid has been evaluated. Without taking the third correction term, introduced to generate theoretically the molecular structure function, the centre structure function has been obtained in an approximate way from the experimentally observed molecular structure function and from it the centre radial distribution function, centre direct correlation function and the angle-averaged vanadium-vanadium effective potential has been evaluated. (author)

  4. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  5. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  6. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    Science.gov (United States)

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  7. Physical metallurgy of titanium alloys

    International Nuclear Information System (INIS)

    Collings, E.W.

    1988-01-01

    Researches in electric, magnetic, thermophysical properties of titanium alloys in the wide range of temperatures (from helium upto elevated one), as well as stability of phases in alloys of different types are generalized. Fundamental description of physical properties of binary model alloys is given. Acoustic emission, shape memory and Bauschinger effects, pseudoelasticity, aging and other aspects of physical metallurgy of titanium alloys are considered

  8. Fragility–structure–conductivity relations in vanadium tellurite glass

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Rodrigues, Ana Candida Martins

    the ability to intercalate lithium-ions, it is a candidate as cathode material. Here, we investigate the correlation between liquid fragility, structure and electronic conductivity in a series of vanadium-tellurite glasses with varying vanadium concentration. We measure dynamic and thermodynamic fragility...... the number of bonding and non-bonding oxygen atoms per network former, while we use IS and ESR to determine the electronic conductivity and the valence states of the system. We correlate the changes in local atomic structures as determined by NMR to the observed changes in macroscopic properties. Since...

  9. Determination of vanadium in high grade carbons by radioanalytical methods

    International Nuclear Information System (INIS)

    Jinno, K.; Sato, M.; Amemiya, S.; Katoh, T.

    1980-01-01

    The present work deals with the determination of vanadium in high grade carbons by three radioanalytical methods, viz. thermal neutron activation analysis with an accelerator, thermal neutron activation analysis with a reactor and proton induced X-ray emission analysis with an accelerator. It is shown that thermal neutron activation with an accelerator is more convenient for the rapid and non-destructive analysis of ppm-level vanadium in bulk carbons than thermal neutron activation analysis with a reactor. Proton-induced X-ray emission is less useful for the analysis of bulk samples. (author)

  10. Fluorine doped vanadium dioxide thin films for smart windows

    International Nuclear Information System (INIS)

    Kiri, Pragna; Warwick, Michael E.A.; Ridley, Ian; Binions, Russell

    2011-01-01

    Thermochromic fluorine doped thin films of vanadium dioxide were deposited from the aerosol assisted chemical vapour deposition reaction of vanadyl acetylacetonate, ethanol and trifluoroacetic acid on glass substrates. The films were characterised with scanning electron microscopy, variable temperature Raman spectroscopy and variable temperature UV/Vis spectroscopy. The incorporation of fluorine in the films led to an increase in the visible transmittance of the films whilst retaining the thermochromic properties. This approach shows promise for improving the aesthetic properties of vanadium dioxide thin films.

  11. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  12. Vanadium(IV)-stimulated hydrolysis of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Stankiewicz, P J

    1989-05-01

    Vanadium(IV) stimulates the hydrolysis of 2,3-diphosphoglycerate at 23 degrees C. The pH optimum is 5.0. Reactions were analyzed by enzymatic and phosphate release assays. The products of 2,3-diphosphoglycerate hydrolysis are inorganic phosphate and 3-phosphoglycerate. The reaction is inhibited by high concentrations of 2,3-diphosphoglycerate and an equation has been formulated that describes the kinetic constants for this reaction at pH 7. The possible relevance of the reaction to the therapeutic lowering by vanadium(IV) of red cell 2,3-diphosphoglycerate in sickle-cell disease is discussed.

  13. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  14. Calculations of oscillation spectra of disordered interstitial solid solutions of vanadium-oxygen system

    International Nuclear Information System (INIS)

    Danilkin, S.A.

    1978-01-01

    The frequency spectra calculation of disordered solid interstitial solutions of a vanadium-oxygen system for oxygen concentration of 5.9% and 15.8% (V 16 O and V 16 O 3 ) is carried out. The axially-symmetric model of crystal lattice dinamics with consideration of vanadium-oxygen and vanadium-vanadium interactions up to the second coordination sphere is used. On the whole, the obtained spectra are in qualitative agreement with experiment and reflect correctly all the changes in frequency spectra of pure vanadium on doping with oxygen

  15. Ion-exchange preparation of high-purity vanadium acid from industrial liquors

    International Nuclear Information System (INIS)

    Sajdakhmedov, U.A.; Arslanov, Sh.S.; Vulikh, A.I.

    1994-01-01

    The results of investigations on production of special-purity vanadium acid and vanadium oxide directly from process solutions (technical grade liquors) using ionites are presented. Potentiality of thorough purification of vanadium(5) oxide, when producing vanadium acid on the KU-2 cationite with subsequent purification on anionite, is shown. On the basis of the results obtained a principle flowsheet of ion-exchange production of high-purity vanadium(5) oxide from industrial liquors has been developed. 2 refs.; 1 fig.; 4 tabs

  16. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  17. Absorption of hydrogen in vanadium, enhanced by ion bombardment; Ionenbeschussunterstuetzte Absorption des Wasserstoffs in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    Prior to hydrogen implantation into vanadium, the vanadium specimen usually is exposed to an activation process and is then heated at 1 atm hydrogen to temperatures between 500 and 600 C, subsequently cooled down in several steps. Within this temperature range, hydrogen solubility increases with declining temperature. A decisive factor determining hydrogen absorption is the fact that at temperatures above 250 C, oxygen desorbs from the material surface and thus no longer inhibits hydrogen absorption. Therefore a different approach was chosen for the experiments reported: Hydrogen absorption under UHV conditions at room temperature. After the usual activation process, the vanadium surface was cleaned by 5 keV Ar{sup +} ion bombardment. Thus oxygen absorption at the specimen surface (and new reactions with oxygen from the remaining gas) could be avoided, or removed. By means of thermal desorption mass spectrometry (TDMS), hydrogen absorption as a function of argon ion dose was analysed. TDMS measurements performed for specimens treated by ion bombardment prior to H{sup 2} exposure showed two H{sup 2} desorption peaks, in contrast to the profiles measured with specimens not exposed to ion bombardment. It is assumed that the ion bombardment disturbs the crystal structure so that further sites for hydrogen absorption are produced. (orig./CB) [Deutsch] Bei der Beladung von Vandium mit Wasserstoff wird ueblicherweise die Probe nach einer Aktivierungsprozedur bei 1 atm Wasserstoff auf Temperaturen im Bereich von 500 bis 600 C hochgeheizt und danach schrittweise abgekuehlt. In diesem Temperaturbereich nimmt die Wasserstoffloeslichkeit mit abnehmender Temperatur zu. Entscheidend fuer die Beladung ist aber auch die Tatsache, dass bei Temperaturen groesser 250 C Sauerstoff von der Oberflaeche desorbiert und dadurch die Absorption von Wasserstoff nicht mehr blockieren kann. Im Rahmen der hier beschriebenen Untersuchungen sollte die Wasserstoffbeladung unter UHV-Bedingungen bei

  18. Titanium for salt water service

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Shibad, P.R.

    1980-01-01

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  19. Optimal Location of Vanadium in Muscovite and Its Geometrical and Electronic Properties by DFT Calculation

    Directory of Open Access Journals (Sweden)

    Qiushi Zheng

    2017-02-01

    Full Text Available Vanadium-bearing muscovite is the most valuable component of stone coal, which is a unique source of vanadium manufacture in China. Numbers of experimental studies have been carried out to destroy the carrier muscovite’s structure for efficient extraction of vanadium. Hence, the vanadium location is necessary for exploring the essence of vanadium extraction. Although most infer that vanadium may substitute for trivalent aluminium (Al as the isomorphism in muscovite for the similar atomic radius, there is not enough experimental evidence and theoretical supports to accurately locate the vanadium site in muscovite. In this study, the muscovite model and optimal location of vanadium were calculated by density functional theory (DFT. We find that the vanadium prefers to substitute for the hexa-coordinated aluminum of muscovite for less deformation and lower substitution energy. Furthermore, the local geometry and relative electronic properties were calculated in detail. The basal theoretical research of muscovite contained with vanadium are reported for the first time. It will make a further influence on the technology development of vanadium extraction from stone coal.

  20. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process

    Science.gov (United States)

    Jung, Myungwon; Mishra, Brajendra

    2018-02-01

    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  1. Local structure of vanadium in doped LiFePO4

    International Nuclear Information System (INIS)

    Zhao, Ting; Xu, Wei; Ye, Qing; Cheng, Jie; Zhao, Haifeng; Chu, Wangsheng; Wu, Ziyu; Univ. of Science and Technology of China, Hefei; Xia, Dingguo

    2010-01-01

    LiFePO 4 composites with 5 at.% vanadium doping are prepared by solid state reactions. X-ray absorption fine-structure spectroscopy is used as a novel technique to identify vanadium sites. Both experimental analyses and theoretical simulations show that vanadium does not enter into the LiFePO 4 crystal lattice. When the vanadium concentration is lower then 1 at.%, the dopant remains insoluble. Thus, a single-phase vanadium-doped LiFePO4 cannot be formed and the improved electrochemical properties of vanadium doped LiFePO 4 previously reported cannot be associated with crystal structure changes of the LiFePO 4 via vanadium doping. (orig.)

  2. Valorization of titanium metal wastes as tanning agent used in leather industry

    International Nuclear Information System (INIS)

    Crudu, Marian; Deselnicu, Viorica; Deselnicu, Dana Corina; Albu, Luminita

    2014-01-01

    Highlights: • Valorization of titanium wastes which cannot be recycled in metallurgical industry. • Transferring Ti waste into raw materials for obtaining Ti based tanning agent. • Characterization of new Ti based tanning agents and leather tanned with them. • Characterization of sewage waste water and sludge resulted from leather manufacture. • Analysis of the impact of main metal component of Ti waste. - Abstract: The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77 °C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning

  3. Valorization of titanium metal wastes as tanning agent used in leather industry

    Energy Technology Data Exchange (ETDEWEB)

    Crudu, Marian, E-mail: mariancrudu@yahoo.com [The National Research and Development Institute for Textiles and Leather – Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., Bucharest (Romania); Deselnicu, Viorica, E-mail: viorica.deselnicu@icpi.ro [The National Research and Development Institute for Textiles and Leather – Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., Bucharest (Romania); Deselnicu, Dana Corina, E-mail: d_deselnicu@yahoo.com [University Politehnica Bucharest, Splaiul Independentei Nr. 313, Sector 6, RO-060042 Bucharest (Romania); Albu, Luminita, E-mail: luminita.albu@gmail.com [The National Research and Development Institute for Textiles and Leather – Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., Bucharest (Romania)

    2014-10-15

    Highlights: • Valorization of titanium wastes which cannot be recycled in metallurgical industry. • Transferring Ti waste into raw materials for obtaining Ti based tanning agent. • Characterization of new Ti based tanning agents and leather tanned with them. • Characterization of sewage waste water and sludge resulted from leather manufacture. • Analysis of the impact of main metal component of Ti waste. - Abstract: The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77 °C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning.

  4. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  5. XPS study of vanadium surface oxidation by oxygen ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Alov, N.; Kutsko, D.; Spirovová, Ilona; Bastl, Zdeněk

    2006-01-01

    Roč. 600, č. 8 (2006), s. 1628-1631 ISSN 0039-6028 R&D Projects: GA ČR GA104/04/0467 Institutional research plan: CEZ:AV0Z40400503 Keywords : vanadium oxide * oxide film * ion-beam oxidation * X-ray photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.880, year: 2006

  6. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  7. Vanadium, rubidium and potassium in Octopus vulgaris (Mollusca: Cephalopoda

    Directory of Open Access Journals (Sweden)

    Sónia Seixas

    2005-06-01

    Full Text Available The levels of vanadium, rubidium and potassium were determined in Octopus vulgaris caught during commercial fishing activities at three locations (Cascais, Santa Luzia and Viana do Castelo in Portugal in autumn and spring. We determined the concentration of these elements in digestive gland, branchial heart, gills, mantle and arms in males and females. At least five males and five females were assessed for each season/location combination. Elemental concentrations were determined by Particle Induced X-ray Emission (PIXE. Vanadium was detectable only in digestive gland and branchial heart samples. Its concentration was not correlated with total weight, total length or mantle length. There were no differences in concentrations of V, Rb and K between sexes. There were significant differences in vanadium concentrations in branchial hearts in autumn between samples from Viana do Castelo and those from the other two sites. We found a significant positive relationship between the concentration of vanadium and those of potassium and rubidium in branchial hearts. Branchial hearts appear to play an important role in decontamination of V.

  8. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  9. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  10. Solubility of nitrogen in iron alloys with vanadium and niobium

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.; Lakomskij, V.I.

    1975-01-01

    The solubility of nitrogen in the concentration range under study in Fe-N-V and Fe-N-Nb systems is in compliance with Syverts' law. An equation has been set up so as to estimate the nitrogen solubility in the iron alloys containing up to 10 per cent of vanadium and niobium in the wide temperature range

  11. Effects of Vanadium Pentoxide on the Histological and Sperm ...

    African Journals Online (AJOL)

    The pharmacological effects of intraperitoneal administration of different doses of vanadium pentoxide (V2O5) on the histological and sperm parameters of male guinea pigs were investigated. Also investigated were the effects of oral pretreatment with different doses of vitamin E (a known protein kinase C inhibitor) on the ...

  12. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  13. Experimental study on the alluminothermic reduction of vanadium pentoxide

    International Nuclear Information System (INIS)

    Mourao, M.B.; Capocchi, J.D.T.

    1982-01-01

    The investigation on the alluminothermic reduction of V 2 O 5 carried out in open refractory lined reaction vessels, is reported. The effects of process variables such as particle size of the reactants, size of the charge, excess of alluminium, flux addition to the reacting mixture and the ignition method are considered, regarding the metallic recovery of vanadium. (Author) [pt

  14. Combined effect of vanadium and nickel on lipid peroxidation and ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... to nickel led to a significant decrease (p < 0.001) in SOD, GST activities in liver and GSH content in ..... administration and GSH is oxidized to disulfide form .... Chasteen N (1983). The biochemistry of vanadium. Struct. Bond.

  15. Singlet oxygenation in microemulsion catalysed by vanadium chloroperoxidase

    NARCIS (Netherlands)

    Renirie, R.; Pierlot, C.; Wever, R.; Aubry, J.-M.

    2009-01-01

    Non-ionic microemulsions compatible with the enzyme vanadium chloroperoxidase were designed to perform singlet oxygenation of apolar substrates. The media were based on mono- and polydisperse ethoxylated fatty alcohols (CiEj). octane and aqueous buffer. "Fish" diagrams were determined to identify

  16. Annealing of neutron-irradiated vanadium containing oxygen

    International Nuclear Information System (INIS)

    Foster, R.E.

    1979-01-01

    A study to clarify the role of interstitial oxygen in irradiated vanadium by measuring the activation energy of the 0.2 T/sub m/ recovery stage in well-characterized samples, where T/sub m/ is the melting temperature in degrees Kelvin, is described

  17. Anisotropic Born-Mayer potential in lattice dynamics of Vanadium

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1988-01-01

    A microscopic theory of the lattice dynamics of the transition metal vanadium is developed based on the Animalu's transition metal model potential (TMMP). The Born-Mayer potential associated with the distribution of the transition metal d-electrons is treated as anisotropic. Good agreement with experimental phonon dispersion curves longitudinal branches in the [111] direction

  18. Speciation of Chromium and Vanadium in Medicinal Plants

    African Journals Online (AJOL)

    NICOLAAS

    lamps of vanadium and chromium operating at 318.4 nm and. 357.9 nm have .... Table 1 Results for the determination of Cr and V in soil (n = 6). [Cr(VI)]. Total [Cr] .... hydrogen storage: Attributes for near-term, early market PEM fuel cells, Curr.

  19. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  20. Preparation Of Pure Vanadium Pentoxide From Red Cake

    International Nuclear Information System (INIS)

    ZAREH, M.M.; EL-HAZEK, M.N; BU ZAID, A.H.M; MOHAMED, H.S.

    2010-01-01

    The red cake, extracted from petroleum ash by acid leaching, contains some impurities such as iron, nickel, zinc, Cr and Cu. For purification the red cake, vanadium in the red cake was taken into solution by treating the red cake with soda ash solution at 90 o C, S /L 1/10 and leaching time of 6 h. The obtained leaching efficiency of vanadium reached 99 %. The solution was clarified by filtration and slurred with solid ammonium sulphate (50g/l) and ammonium chloride (50 g/l). The pH of the slurry was kept at 8-9 by adding ammonium hydroxide. Ammonium metavanadate was crystallized from the slurry at room temperature and during the crystallization step, the slurry was kept under mild agitation. The reaction between the sodium vanadate and ammonium sulphate led to the formation of ammonium metavanadate (AMV) 98.35 % (atomic adsorption techniques). The AMV crystals were separated from the residual liquor by filtration, washed with 5% ammonium chloride solution then dried at 100 o C. Over 98.35 % of the vanadium contained in the red cake was recovered by this way as AMV. Thermal decomposition of AMV at 350 o C 1 h yielded 99.32 % pure vanadium pentoxide.

  1. Influence of hydrogen on high cycle fatigue of polycrystalline vanadium

    International Nuclear Information System (INIS)

    Chung, D.W.; Lee, K.S.; Stoloff, N.S.

    1977-02-01

    The room temperature fatigue behavior of several polycrystalline V-H 2 alloys is described. Hydrogen extends the life of unnotched vanadium but has a deleterious effect in notched materials. Crack propagation data are correlated with tensile yield stress and cyclic strain hardening data

  2. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis

    NARCIS (Netherlands)

    Dong, J.; Fernandez Fueyo, E.; Li, Jingbo; Guo, Zheng; Renirie, Rokus; Wever, Ron; Hollmann, F.

    The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s−1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as

  3. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  4. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  5. Preparation of titanium diboride powders from titanium alkoxide and ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Materials and Manufacturing Process, Malek Ashtar University of Technology, Tehran. 15875-1744, Iran ... Titanium diboride is a hard refractory material with a high melting point ... (λ = 1⋅540598 Å) radiation. Morphology of the ...

  6. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    contains Vanadium (9). Today's high strength titanium alloys contain well tolerated alloying components1 like Zr, Nb, Mo and Ta (ISO 5832-14) (7, 15). The corrosion rate of surgical implants is kept low by the passive layer formed when immerged in body fluids (13, 14). The passive layer may be locally destroyed, for instance, by mechanical fretting or by local corrosion conditions like in pitting; it is renewed by an electrochemical corrosion process which releases alloying components like Ni and Cr (Fig. 2) (10). The amount of soluble component may vary markedly depending on the local electrochemical conditions (see below).

  7. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  8. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    Science.gov (United States)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  9. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    Wille, G.W.; Davis, J.W.

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500 0 C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150 0 C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  10. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: xuexx@mail.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  11. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries

    Science.gov (United States)

    Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens

    2017-09-01

    Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.

  12. Thermomechanical treatment of titanium alloys

    International Nuclear Information System (INIS)

    Khorev, A.K.

    1979-01-01

    The problems of the theory and practical application of thermomechanical treatment of titanium alloys are presented. On the basis of the systematic investigations developed are the methods of thermomechanical treatment of titanium alloys, established are the optimum procedures and produced are the bases of their industrial application with an account of alloy technological peculiarities and the procedure efficiency. It is found that those strengthening methods are more efficient at which the contribution of dispersion hardening prevails over the strengthening by phase hardening

  13. Effects of hydrogen on fatigue of vanadium and niobium. Annual report

    International Nuclear Information System (INIS)

    Stoloff, N.S.; Chung, D.W.

    1977-01-01

    The fatigue behavior of unalloyed vanadium and niobium as well as their alloys with hydrogen is described. The response of vanadium-hydrogen alloys to cyclic loading is shown to depend markedly upon the presence or absence of notches, the hydrogen level, method of test, and frequency. In general, hydrides improve high cycle life of unnotched alloys, but are detrimental in the presence of a notch. Low test frequencies also lead to reduced fatigue lives. Stress-assisted hydride growth in previously hydrided alloys has been noted both in fatigue and in delayed failure experiments. Unalloyed vanadium and solid solution vanadium-hydrogen alloys do not undergo delayed failure. Preliminary tests on unalloyed niobium and several niobium-vanadium alloys reveal improvements in stress-controlled fatigue life and decreased low cycle life, in agreement with previous observations on vanadium-hydrogen alloys

  14. Comparison of the effect of neutron irradiation on high purity vanadium and vanadium oxygen alloys

    International Nuclear Information System (INIS)

    Arsenault, R.J.; Bressers, J.

    1977-01-01

    An investigation of the effect of neutron damage on the low temperature deformation characteristics of high purity vanadium (R/sub 300K//R/sub 4.2K/ = 1100) was undertaken for two purposes. One purpose was to determine if reducing the purity interstitial content to a lower level would result in a large difference in the effective stress between irradiated and non-irradiated samples. The present data along with previously obtained data does indicate that the difference increases as the impurity interstitial content is reduced. The explanation of this observation is based on the rapid increase of the non-irradiated yield stress at 77 0 K due to small increases in the oxygen content; however, the increase of the yield stress of the irradiated samples is much less with the same increase in oxygen content. A second purpose of this investigation was to determine the size and density of observable neutron produced defects as a function of oxygen content by transmission electron microscopy, and to relate the changes in density with changes in the yield stress. It was found that the density decreases and the size increases as the oxygen content decreases. There is qualitative agreement between the increase in yield stress at 300 0 K and the observable defect density. However, the change in the yield stress at 77 0 K due to neutron irradiation cannot be related to defect density and size

  15. Vanadium contents in Kazakhstan fossils hydrocarbons by data of nuclear-physical analysis methods

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Solodukhin, V.P.

    1998-01-01

    Investigation of nuclear physical methods possibilities of vanadium determination analysis in organic fossils and an application of these methods for solution of scientific and practical tasks are presented. Vanadium contents in high viscous petroleums and petroleum bituminous rock of different deposits of Western Kazakhstan and carbonaceous shales of Dzhangariya are studied. Presented data evidence that organic fossils of numerous deposits of Kazakhstan have industrial interest because of high vanadium concentration in its contents

  16. Comparison of damage microstructures in neutron-irradiated vanadium and iron

    International Nuclear Information System (INIS)

    Horton, L.L.; Farrell, K.

    1983-01-01

    The cavity morphology and dislocation loop geometry in bcc vanadium are compared with the previously reported observations for neutron-irradiated iron. The specimens were vanadium (V) with 100 wppM of interstitial impurities and vanadium with boron carbide additions (V-B 4 C) which were irradiated to approx. 1 dpa in the same Oak Ridge Research Reactor capsules as the iron specimens

  17. Investigation of possible application of the chromazole KS reagent to the analytical chemistry of vanadium

    International Nuclear Information System (INIS)

    Gordeeva, M.N.; Fedorova, L.N.; Basargin, N.N.; Rozovskij, Yu.G.

    1978-01-01

    Complex formation of vanadium (4) with chromazole KS has been investigated by the spectrophotometric method. It has been found that two complex compounds are formed: Me:R=1:1 (pH=4.0) and Me:R=1:2 (pH=6.2). The chemistry of the interaction of vanadium (4) with chromazole KS has been studied. A method of the photometric determination of vanadium (4) in standard steels and optical glasses has been developed

  18. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    International Nuclear Information System (INIS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-01-01

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V 2 O 5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V 2 O 5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V 2 O 5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V x O x composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V 2 O 5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing

  19. Oxidation-reduction phenomena in tabular uranium-vanadium bearing sandstone from the Salt Wash deposits (Upper Jurassic) of the Cottonwood Wash district (Utah, USA)

    International Nuclear Information System (INIS)

    Meunier, J.D.

    1984-02-01

    A braided to meandering fluvial environment has been postulated for this area after a sedimentological study. The mineralization is spatially related with conifer derived organic matter and wood is preserved in these sediments because of the reducing environment of deposition. The degree of maturation of the organic matter has been estimated from chemical analyses. Results show the presence of variable diagenetic oxidation depending on the environment. The organic matter which was least affected by this oxidation have attained a thermal maturation characteristic of the end stage of diagenesis. The high grade ore is situated at the edges of or within the trunks of trees (which remained permeable during diagenesis) and at the boundaries of the carbonaceous beds. Geochemical study shows there to be good correlation between uranium and vanadium. Uranium occurs as pitchblende, coffinite or as impregnations in the vanadiferous clay cement. A detailed study of clays shows an association of chlorite and roscoelite which most probably contain V 3+ . Fluid inclusion study suggests burying temperatures of >= 100 0 C and shows the existance of brines before the mineralization. The following genetical model is proposed. Low Eh uraniferous solutions move through a reduced pyritised environment. The low degree of oxidation of the pyrites propagates the destabilization of the clastic iron-titanium oxides which release vanadium and the dissociation of uranylcarbonates. Then, the deposit of pitchblende, coffinite, montroseite and vanadiferous clays took place in association with a secondary pyrite. When the rocks were uplifted to the subsurface, uranium (IV) and vanadium (III) were remobilised in an oxidising environment to form a secondary mineralization essentially represented by tyuyamunite [fr

  20. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  1. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  2. Vanadium levels in marine organisms of Onagawa Bay in Japan

    International Nuclear Information System (INIS)

    Fukushima, M.; Suzuki, H.; Saito, K.; Chatt, A.

    2009-01-01

    Vanadium in marine organisms from Onagawa Bay in Miyagi, Japan, was determined by an instrumental neutron activation analysis (INAA) method using anticoincidence gamma-ray spectrometry at the Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility in Canada. Seaweeds, cultivated oysters, plankton, and four different species of sea squirt were collected from Onagawa Bay during 2005-2008. Vanadium levels around 20 μg g -1 (dry weight) were found in Japanese tangle and hijiki seaweeds. One species of sea squirt (Ciona savignyi) contained 160-500 ppm of V and it was highest among the four species of sea squirts studied. Protein-bound V species were separated by gel permeation chromatography (GPC) and the element determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). (author)

  3. Effect of vanadium application on the paddy rice

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T F

    1953-01-01

    The height, the root length and the weight of rice seedlings were increased by the application of ammonium vanadate. The nitrogen contents of seedlings were generally increased in proportion to the amounts of vanadate applied. Carbon contents of seedlings, however, show little difference. The best result was obtained when V/sub 2/O/sub 3/ 150 ppm was applied, but more than 500 ppm was toxic to rice seedlings, and at 1000 ppm all rice seedlings were killed. N, P, and K fertilizers were added to the rice after transplantation from the nursery, but vanadium was omitted. Little difference was found in growth and yield of the rice plants. Vanadium absorbed by younger rice seedlings has little influence on the latter growth and yields of rice plants.

  4. Spectrophotometric investigation of vanadium(4) complexing with monoamine complexones

    International Nuclear Information System (INIS)

    Merkulov, D.A.; Kornev, V.I.

    1998-01-01

    Interaction of vanadium(4) with iminodiacetic (H 2 Ida) and methyliminodiacetic (H 2 Mida) acids by μ = 0.1 (NaClO 4 ) and t = 20±2 deg C is studied through the spectrophotometric method. It is established that the process of complex formation in quasi-binary systems due to competitive effect of hydroxide ions depends to a large degree on the ligands concentration and properties. The VOIda, VO(OH)Ida - , VOMida, VO(OH)Mida - complexes are identified. The stability constants logarithms of these complexes are equal correspondingly to 9.81±0.02, 18.19±0.03, 10.15±0.03, 18.34±0.02. The results of the study on the VO 2+ -HIda and VO 2+ -H 2 Mida systems agree well with the regularities, identified by the study on the vanadium(4) complex formation with other complexones of the iminodiacetate series

  5. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  6. Structural and thermal properties of vanadium tellurite glasses

    Science.gov (United States)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  7. Study of sulfur and vanadium in heavy petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, J.M.

    1982-10-01

    Sulfur compounds in heavy oil fractions (>450/sup 0/C) are studied in the first part of this work. After chemical oxidation by metachloroperbenzoic acid to obtain sulfones, sulfur compounds are analyzed by infrared spectroscopy for their qualitative and quantitative repartition. The method can be applied for the study of sulfur containing molecules before and after structural modifications of petroleum fractions by any chemical refining processes. In a second part vanadium is characterized in asphalt by physicochemical and chemical methods. 80% of the vanadium in a Boscan asphalt is under the form of porphyrins. Different associations are evidenced in petroleum fractions and metalloporphyrins, but the liaison between the vanadyl group and heterocondensate from asphalts is the more frequent.

  8. Spectrophotometric determination of catecholamine using vanadium and eriochrome cyanine r

    International Nuclear Information System (INIS)

    Nagaraja, Padmarajaiah; Shrestha, Ashwinee Kumar; Shivakumar, Anantharaman; Al-Tayar, Naef Ghallab Saeed; Gowda, Avinask K.

    2011-01-01

    highly sensitive spectrophotometric method for the analysis of catecholamine drugs; L-dopa and methyldopa, is described. The analysis is based on the reaction of drug molecules with vanadium (V) which is reduced to vanadium (IV) and form complex with eriochrome cyanine R to give products having maximum absorbance (λ max ) at 565 nm. Beer's law is obeyed in the range 0.028-0.84 and 0.099-0.996 μg mL -1 for L-dopa and methyldopa, respectively. The statistical analysis as well as comparison with reported methods demonstrated high precision and accuracy of the proposed method. The method was successfully applied in the analysis of pharmaceutical preparations. (author)

  9. Work function in niobium, tantalum and vanadium hydrides

    International Nuclear Information System (INIS)

    Kucherov, Ya.R.; Markin, V.Ya.; Savin, V.I.; Topil'skij, N.D.

    1978-01-01

    The concentration dependences of the work function of electrons in hydrides of Nb, Ta and V are presented. The work function of electrons was studied at room temperature by the contact Kelvin potential difference method to an accuracy of +-0.02 eV. The effect of hydrogen on the work function variations in the systems investigated has been analyzed. It is shown that a higher hydrogen concentration in solid solutions based on the Nb-H and Ta-H systems increases the effective total positive dipole moment, whereby the work function decreases. The abnormal changes in the work function in the region of solid solutions of hydrogen in vanadium seem to be due to the specific electronic structure of vanadium and its interaction with hydrogen

  10. Determination of absolute oscillator strengths for doubly-ionized vanadium

    International Nuclear Information System (INIS)

    Goly, A.

    1978-01-01

    Oscillator strengths of thirty V III lines in the wavelength region from 2300A to 2600A were determined by the emission method using a modified wallstabilized cascade are operating at atmospheric pressure in helium with traces of VOCl 3 -vapour. The plasma radiation was analyzed by using a high dispersion grating spectrograph (0.7 A/mm) and Kodak IIaO-plates. Conventional techniques of intensity measurement were employed. Under the physical conditions created the helium plasma was found more or less distant from LTE, but for singly- and doubly-ionized vanadium according to Drawin's criteria, a Boltzmann distribution of level population can be assumed (and has been proved for VII). Measuring a set of intensities of V II lines (with different energies of upper levels) and using gf-values, obtained previously in an argon-vanadium plasma in LTE, excitation temperatures were determined from slopes of Boltzmann plots. (orig.) 891 WL [de

  11. Muon diffusion and trapping studies in high purity vanadium

    International Nuclear Information System (INIS)

    Heffner, R.H.; Brown, J.A.; Hutson, R.L.; Leon, M.; Parkin, D.M.; Schillaci, M.E.; Gauster, W.B.; Carlson, O.N.; Rehbein, D.K.; Fiory, A.T.

    1979-01-01

    The authors present the results of a study of the effects of varying impurity concentration on the temperature dependence of the depolarization rate of positive muons implanted into vanadium. Data are reported for the most highly purified polycrystalline sample yet measured, and the same sample subsequently doped with about 500 ppm oxygen by weight. The data for the pure sample shows a low depolarization rate ( -1 ) at all temperatures measured, showing a broad minimum centered at approximately 35 K, followed by a sharp peak near 90 K and a rapid drop to negligible values at 200 K. The data is contrasted with previously published data on less pure samples, and calls into question previous interpretations of the behavior of the μ + at low temperatures in impure vanadium as one-phonon-assisted tunneling. (Auth.)

  12. Muon diffusion and trapping studies in high purity vanadium

    International Nuclear Information System (INIS)

    Heffner, R.H.; Brown, J.A.; Hutson, R.L.; Leon, M.; Gauster, W.B.; Carlson, O.N.; Rehbein, D.K.; Fiory, A.T.

    1978-01-01

    The first results of a study of the effects of varying impurity concentration on the temperature dependence of the depolarization rate of positive muons implanted into vanadium are presented. Data are reported for the most highly purified polycrystalline sample yet measured, and the same sample subsequently doped with about 500 ppM oxygen by weight. The data for the pure sample shows a low depolarization rate ( -1 ) at all temperatures measured, showing a broad minimum centered at approx. 35 K, followed by a sharp peak near 90 K and a rapid drop to negligible values at 200 K. The data are contrasted with previously published data on less pure samples, and call into question previous interpretations of the behavior of the μ + at low temperatures in impure vanadium as one-phonon-assisted tunneling. 6 references

  13. Recent Development of Nanocomposite Membranes for Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Sang-Ho Cha

    2015-01-01

    Full Text Available The vanadium redox flow battery (VRB has received considerable attention due to its long cycle life, flexible design, fast response time, deep-discharge capability, and low pollution emissions in large-scale energy storage. The key component of VRB is an ion exchange membrane that prevents cross mixing of the positive and negative electrolytes by separating two electrolyte solutions, while allowing the conduction of ions. This review summarizes efforts in developing nanocomposite membranes with reduced vanadium ion permeability and improved proton conductivity in order to achieve high performance and long life of VRB systems. Moreover, functionalized nanocomposite membranes will be reviewed for the development of next-generation materials to further improve the performance of VRB, focusing on their properties and performance of VRB.

  14. Critical safety features of the vanadium redox flow battery

    Science.gov (United States)

    Whitehead, A. H.; Rabbow, T. J.; Trampert, M.; Pokorny, P.

    2017-05-01

    In this work the behaviour of the vanadium redox flow battery is examined under a variety of short-circuit conditions (e.g. with and without the pumps stopping as a result of the short). In contrast to other battery types, only a small proportion of the electroactive material, in a flow battery, is held between the electrodes at any given time. Therefore, together with the relatively low energy density of the vanadium electrolyte, the immediate release of energy, which occurs as a result of electrical shorting, is somewhat limited. The high heat capacity of the aqueous electrolyte is also beneficial in limiting the temperature rise. It will be seen that the flow battery is therefore considerably safer than other battery types, in this respect.

  15. Additive for vanadium and sulfur oxide capture in catalytic cracking

    International Nuclear Information System (INIS)

    Chin, A.A.; Sapre, A.V.; Sarli, M.S.

    1991-01-01

    This patent describes a fluid catalytic cracking process in which a hydrocarbon feedstock. It comprises: a vanadium contaminant in an amount of a least 2 ppmw is cracked under fluid catalytic cracking conditions with a solid, particulate cracking catalyst to produce cracking products of lower molecular weight while depositing carbonaceous material on the particles of cracking catalyst, separating the particles of cracking catalyst from the cracking products in the disengaging zone and oxidatively regenerating the cracking catalyst by burning off the deposited carbonaceous material in a regeneration zone, the improvement comprising reducing the make-up rate of the cracking catalyst by contacting the cracking feed with a particulate additive composition for passivating the vanadium content of the feed, comprising an alkaline earth metal oxide and an alkaline earth metal spinel

  16. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  17. A nuclear on-line sensor for continuous control of vanadium content in oil pipelines

    International Nuclear Information System (INIS)

    Rizk, R.A.M.

    1989-01-01

    Trace amounts of vanadium in crude oil and in heavy distillate fuels are very harmful due to their corrosive action. Thus the necessity arises for continuous control of the vanadium content in oil pipelines. Moreover, the development of a nuclear on-line sensor that can continuously analyze the vanadium content in oil pipelines may lead to a better control of processing operations. In this paper a feasibility study for on-line analysis of vanadium in crude oil by means of neutron activation analysis is presented. (author)

  18. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    Science.gov (United States)

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    Science.gov (United States)

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  20. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  1. Fast Neutron Elastic and Inelastic Scattering of Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T

    1969-11-15

    Fast neutron scattering interactions with vanadium were studied using time-of-flight techniques at several energies in the interval 1.5 to 8.1 MeV. The experimental differential elastic scattering cross sections have been fitted to optical model calculations and the inelastic scattering cross sections have been compared with Hauser-Feshbach calculations, corrected for the fluctuation of compound-nuclear level widths.

  2. Solid state bonding of beryllium to copper and vanadium

    International Nuclear Information System (INIS)

    Floyd, D.R.; Liby, A.L.; Weaver, W.

    1993-01-01

    The intent of this effort was to demonstrate that ingot metallurgy (IM) beryllium (Be) can be bonded to dissimilar metals such as copper (Cu) or vanadium (V) at low temperatures by using silver (Ag) as a bonding aid. It is hoped that success at the coupon stage will stimulate more extensive studies of the mechanical and thermal integrity of such joints, leading ultimately to use of this technology to fabricate first wall structures for ITER. (orig.)

  3. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  4. Optimization of a Vanadium Redox Flow Battery with Hydrogen generation

    OpenAIRE

    Wrang, Daniel

    2016-01-01

    We consider the modelling and optimal control of energy storage systems, in this study a Vanadium Redox Flow Battery. Such a battery can be introduced in the electrical grid to be charged when demand is low and discharged when demand is high, increasing the overall efficiency of the network while reducing costs and emission of greenhouse gases. The model of the battery proposed in this study is less complex than the majority of models on batteries and energy storage systems found in literatur...

  5. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x). ZnO(40−x)V2O5(60)(where x = 0·1–0·5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been ...

  6. Complexes of vanadium (V) oxotrichloride with amides and tertiary amines

    International Nuclear Information System (INIS)

    Paul, R.C.; Sharma, N.C.; Sahi, Y.P.; Chadha, S.L.; Sharma, A.K.

    1975-01-01

    Vanadium(V) oxotrichloride forms dark brown hygroscopic solid complexes of the composition VOCl 3 .3B and VOCl 3 .2B' where B represents pyridine, α-, β-, and γ-picolines, quinoline, isoquinoline, urea, N-methylformamide or acetanilide while B' represents N, N'-dimethylformamide, N-methylacetamide or dimethylacetamide. These complexes have been characterized on the basis of their analytical and IR spectral data. (author)

  7. Vanadium extraction by combined process of lixiviation and toasting

    International Nuclear Information System (INIS)

    Coral, Aldo

    1992-01-01

    Combinated toasting and leaching processes were applied at laboratory level to vanadiferous ore from Puyango deposit in order to evaluate different rates. Before leaching, a pretreatment consisting in toasting at open atmosphere was given to the ore. Both raw and toasted ore were later washed in organic solvents. In reason of mineralogical and petrographic characteristics of the ore, only alcaline leaching was tested under different pressure temperature and pH conditions of leaching solution (pH=9.8) in order to optimize time and efficiency of each individual process. Four different unitary alcaline leaching processes were studied: MECHANICAL STIRRING, PNEUMATIC STIRRING, LEACHING IN AUTOCLAVE AND LEACHING IN COLUMNS. For these four processes were obtained recovery rates (in percentage) of 18.63 and 87.82; 17.03 and 82.57; 60.42 and 99.55; 2.5 and 30.10; respectively from raw and pre-toasted ore. After filtration, vanadium was extracted from enriched solutions by using liquid resin ALAMINE 336, selective for vanadium at pH=2.8. Vanadium was later discharged with a Sodium Carbonate solution (10 per cent) and finally precipitated as the commercial compound Ammonium Vanadate, NH4VO3. Nuclear techniques as X-ray fluorescence and Atomic Absorption spectroscopy were used for analysis all over the investigation

  8. Performance Modeling of a Vanadium Redox Flow Battery during Discharging

    International Nuclear Information System (INIS)

    Yang, W.W.; He, Y.L.; Li, Y.S.

    2015-01-01

    A two-dimensional quasi-steady-state model is presented to simulate coupled mass-species-charge transfer and electrochemical reactions in all vanadium redox flow battery. Emphasis is located on examining the influences of applied current density, initial vanadium concentration, initial acid concentration and electrolyte flow rate on overpotentials in both electrodes, ohmic loss in electrolyte phase as well as battery discharging voltage. It is indicated that overpotential in negative electrode is the dominant factor causing the loss of battery discharging voltage at relatively lower or higher state of charge, while ohmic loss in electrolyte phase is dominant when discharging at moderate state of charge. Increasing initial vanadium concentration, the battery discharging voltage is significantly increased due to the reduced overpotentials in both electrodes. With the increase in initial acid concentration, the battery discharging voltage is also obviously increased because of increased open circuit voltage and decreased ohmic loss in electrolyte phase. As the electrolyte flow rate increases, the total discharging time is extended due to the retarded concentration polarization and the battery discharging voltage is obviously increased at lower state of charge

  9. Titanium pigmentation. An electron probe microanalysis study

    International Nuclear Information System (INIS)

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-01-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis

  10. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  11. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    Science.gov (United States)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  12. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  13. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  14. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C.

    2013-01-01

    Highlights: • The permeability of vanadium ions through the silica nanocomposite AEM (SNAEM) is ten times lower than that for Nafion 115. • The rates of self-discharge and capacity fading of the VRFB are substantially reduced with the use of the SNAEM. • The Coulombic and energy efficiencies are as high as 92% and 73%, respectively, at 40 mA cm −2 . -- Abstract: Crossover of vanadium ions through the membranes of all-vanadium redox flow batteries (VRFB) is an issue that limits the performance of this type of flow battery. This paper reports on the preparation of a sol–gel derived silica nanocomposite anion exchange membrane (AEM) for VRFBs. The EDS and FT-IR characterizations confirm the presence and the uniformity of the silica nanoparticles formed in the membrane via an in situ sol–gel process. The properties of the obtained membrane, including the ion-exchange capacity, the area resistance, and the water uptake, are evaluated and compared to the pristine AEM and the Nafion cation exchange membrane (CEM). The experimental results show that the permeability of the vanadium ions through the silica nanocomposite AEM is about 20% lower than that of the pristine AEM, and one order of magnitude lower than that of the Nafion CEM. As a result, the rates of self-discharge and the capacity fading of the VRFB are substantially reduced. The Coulombic and energy efficiencies at a current density of 40 mA cm −2 are, respectively, as high as 92% and 73%

  15. The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations

    Directory of Open Access Journals (Sweden)

    Aleksandra Wilk

    2017-09-01

    Additionally, this research identifies the doses of vanadium which lead to pathological alterations becoming visible within tissues. Moreover, this study includes information about the protective efficacy of some substances in view of the toxicity of vanadium.

  16. Uranium fluorides analysis. Titanium spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Titanium determination in uranium hexafluoride in the range 0.7 to 100 microgrammes after transformation of uranium fluoride in sulfate. Titanium is separated by extraction with N-benzoylphenylhydroxylamine, reextracted by hydrochloric-hydrofluoric acid. The complex titanium-N-benzoylphenylhydroxylamine is extracted by chloroform. Spectrophotometric determination at 400 nm [fr

  17. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  18. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  19. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  20. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  1. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  2. Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis

    International Nuclear Information System (INIS)

    Chen Zuliang; Owens, Gary; Naidu, Ravendra

    2007-01-01

    Capillary zone electrophoresis (CZE) with UV detection was used to determine vanadium species. Nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA) and 2,6-pyridinedicarboxylic acid (PDCA) were investigated to determine whether these ligands formed stable anionic complexes with vanadium. Of all the ligands studied HEDTA was the most suitable ligand because it gave the largest UV response with reasonable migration time. Electrospray mass spectrometry (ES-MS) was used to confirm the formation of [VO 2 (HEDTA)] 2- and [VO(HEDTA)] 1- in solution. An electrolyte containing 25 mM phosphate, 0.25 mM tetradecyltrimethylammonium bromide (TTAB) at pH 5.5 was optimum for the separation of these anionic vanadium complexes. Sample stacking techniques, including large-volume sample stacking (LVSS) and field-amplified sample injection (FASI), were tested to improve the sensitivity. Best sensitivity was obtained using FASI, with detection limits of 0.001 μM, equivalent to 0.4 μg L -1 , for [VO 2 (HEDTA)] 2- and 0.01 μM, equivalent to 3.4 μg L -1 for [VO(HEDTA)] 1- . The utility of the method for the speciation of V(IV) and V(V) was demonstrated using ground water samples

  3. Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz

    2017-07-10

    All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zuliang [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)]. E-mail: zuliang.chen@unisa.edu.au; Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC for Contamination Assessment and Remediation of Environments, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2007-02-28

    Capillary zone electrophoresis (CZE) with UV detection was used to determine vanadium species. Nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA) and 2,6-pyridinedicarboxylic acid (PDCA) were investigated to determine whether these ligands formed stable anionic complexes with vanadium. Of all the ligands studied HEDTA was the most suitable ligand because it gave the largest UV response with reasonable migration time. Electrospray mass spectrometry (ES-MS) was used to confirm the formation of [VO{sub 2}(HEDTA)]{sup 2-} and [VO(HEDTA)]{sup 1-} in solution. An electrolyte containing 25 mM phosphate, 0.25 mM tetradecyltrimethylammonium bromide (TTAB) at pH 5.5 was optimum for the separation of these anionic vanadium complexes. Sample stacking techniques, including large-volume sample stacking (LVSS) and field-amplified sample injection (FASI), were tested to improve the sensitivity. Best sensitivity was obtained using FASI, with detection limits of 0.001 {mu}M, equivalent to 0.4 {mu}g L{sup -1}, for [VO{sub 2}(HEDTA)]{sup 2-} and 0.01 {mu}M, equivalent to 3.4 {mu}g L{sup -1} for [VO(HEDTA)]{sup 1-}. The utility of the method for the speciation of V(IV) and V(V) was demonstrated using ground water samples.

  5. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  6. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  7. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin.

    Science.gov (United States)

    Franco, Ana; De, Sudipta; Balu, Alina M; Garcia, Araceli; Luque, Rafael

    2017-01-01

    Vanillin is one of the most commonly used natural products, which can also be produced from lignin-derived feedstocks. The chemical synthesis of vanillin is well-established in large-scale production from petrochemical-based starting materials. To overcome this problem, lignin-derived monomers (such as eugenol, isoeugenol, ferulic acid etc.) have been effectively used in the past few years. However, selective and efficient production of vanillin from these feedstocks still remains an issue to replace the existing process. In this work, new transition metal-based catalysts were proposed to investigate their efficiency in vanillin production. Reduced graphene oxide supported Fe and Co catalysts showed high conversion of isoeugenol under mild reaction conditions using H 2 O 2 as oxidizing agent. Fe catalysts were more selective as compared to Co catalysts, providing a 63% vanillin selectivity at 61% conversion in 2 h. The mechanochemical process was demonstrated as an effective approach to prepare supported metal catalysts that exhibited high activity for the production of vanillin from isoeugenol.

  8. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin

    Directory of Open Access Journals (Sweden)

    Ana Franco

    2017-07-01

    Full Text Available Vanillin is one of the most commonly used natural products, which can also be produced from lignin-derived feedstocks. The chemical synthesis of vanillin is well-established in large-scale production from petrochemical-based starting materials. To overcome this problem, lignin-derived monomers (such as eugenol, isoeugenol, ferulic acid etc. have been effectively used in the past few years. However, selective and efficient production of vanillin from these feedstocks still remains an issue to replace the existing process. In this work, new transition metal-based catalysts were proposed to investigate their efficiency in vanillin production. Reduced graphene oxide supported Fe and Co catalysts showed high conversion of isoeugenol under mild reaction conditions using H2O2 as oxidizing agent. Fe catalysts were more selective as compared to Co catalysts, providing a 63% vanillin selectivity at 61% conversion in 2 h. The mechanochemical process was demonstrated as an effective approach to prepare supported metal catalysts that exhibited high activity for the production of vanillin from isoeugenol.

  9. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Directory of Open Access Journals (Sweden)

    M.S. Fal Desai

    2015-03-01

    Full Text Available The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reservedReceived: 22nd November 2014; Revised: 31st December 2014; Accepted: 2nd January 2015How to Cite: Fal Desai, M.S., Kunkalekar, R.K., Salker, A.V. (2015. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 98-103. (doi:10.9767/bcrec.10.1.7802.98-103Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7802.98-103 

  10. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  11. In Situ Structure-Function Studies of Oxide Supported Rhodium Catalysts by Combined Energy Dispersive XAFS and DRIFTS Spectroscopies

    International Nuclear Information System (INIS)

    Evans, John; Dent, Andrew J.; Diaz-Moreno, Sofia; Fiddy, Steven G.; Jyoti, Bhrat; Tromp, Moniek; Newton, Mark A.

    2007-01-01

    The techniques of energy dispersive EXAFS (EDE), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and mass spectrometry (MS) have been combined to study the structure and function of an oxide supported metal catalyst, namely 5 wt% Rh/Al2O3. Using a FreLoN camera as the EDE detector and a rapid-scanning IR spectrometer, experiments could be performed with a repetition rate of 50 ms. The results show that the nature of the rhodium centers is a function of the partial pressures of the reacting gases (CO and NO) and also temperature. This combination of gases oxidizes metallic rhodium particles to Rh(CO)2 at room temperature. The proportion of the rhodium adopting this site increases as the temperature is raised (up to 450 K). Above that temperature the dicarbonyl decomposes and the metal reclusters. Once this condition is met, catalysis ensues. Gas switching techniques show that at 573 K with NO in excess, the clusters can be oxidized rapidly to afford a linear nitrosyl complex; re-exposure to CO also promotes reclustering and the CO adopts terminal (atop) and bridging (2-fold) sites

  12. Valorization of titanium metal wastes as tanning agent used in leather industry.

    Science.gov (United States)

    Crudu, Marian; Deselnicu, Viorica; Deselnicu, Dana Corina; Albu, Luminita

    2014-10-01

    The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77°C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The titanium oxide phi system

    Science.gov (United States)

    Galehouse, D. C.; Davis, S. P.

    1980-01-01

    The phy system of titanium oxide has been studied in emission in the near-infrared, with the Fourier transform spectrometer at a resolution of 8000,000. Approximately 3000 lines from 25 bands of this system have been identified, including all five 0-0 and 0-1 bands corresponding to the five natural titanium isotopes. Eleven vibrational levels have been observed, and all bands have been rotationally analyzed. Band intensities are agreement with known isotopic abundances and calculated Franck-Condon factors.

  14. 77 FR 54897 - Ferrovanadium and Nitrided Vanadium from the Russian Federation: Revocation of Antidumping Duty...

    Science.gov (United States)

    2012-09-06

    ... foreseeable time.\\5\\ \\5\\ See ITC Final and Ferrovanadium and Nitrided Vanadium From Russia: Investigation No... nitrided vanadium from the Russian Federation (Russia) would not be likely to lead to continuation or... foreseeable time,\\1\\ the Department of Commerce (the Department) is publishing this notice of revocation of...

  15. Anthropogenic vanadium emissions to air and ambient air concentrations in North-West Europe

    NARCIS (Netherlands)

    Visschedijk, A.H.J.; Denier van der Gon, H.A.C.; Hulskotte, J.H.J.; Quass, U.

    2013-01-01

    An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were

  16. Study using macroscopic autoradiography of the distribution of vanadium 48 in the rat and mouse

    International Nuclear Information System (INIS)

    Serhrouchni, M.

    1982-07-01

    Study of vanadium 48 distribution in the laboratory animal by macroscopic autoradiography. Vanadium 48 bioavailability is zero after oral administration and good after pulmonary administration. It is distributed throughout the body with a particular affinity for bone and teeth. Study of perinatal metabolism [fr

  17. Studies in transition metal chemistry ; V. Soluble Ziegler-type catalysts based on vanadium, part 1

    NARCIS (Netherlands)

    Liefde Meijer, H.J. de; Hurk, J.W.G. van den; Kerk, G.J.M. van der

    1966-01-01

    Experiments are described aiming at a simplification of the catalyst system originally consisting of a mixture of tetraphenyltin, aluminium bromide and vanadium tetrachloride (or vanadium oxytrichloride). It is shown that tetraphenyltin merely acts as a phenylating agent for the aluminium bromide

  18. Gastroprotective effect of vanadium in rats - the roles of gastric acid ...

    African Journals Online (AJOL)

    Stimulation with histamine caused significant increases in gastric output by 187.72%, 57.40% and 78.69% in control, 50 and 200 ppm V respectively and was significantly reduced in the vanadium treated groups. A significant decrease in H+K+ ATPase (proton) pump activities of the vanadium exposed groups compared ...

  19. Vanadium Mining and Cattle Health : Sentinel studies, epidemiological and veterinary public health issues

    NARCIS (Netherlands)

    Gummow, B.

    2005-01-01

    The thesis covers a field outbreak investigation into the cause and pathogenesis of "illthrift" on a dairy farm that was due to vanadium exposure, it examines methods of treating vanadium poisoning in cattle using an experimental study, looks at the use of cattle as sentinels for detecting and

  20. Adsorption Behavior of Vanadium in Presence of alumina with Emphasize on Triple Layer Model Simulation

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    2006-01-01

    Adsorption behavior of vanadium in alumina colloidal solution as simulation for soil-water and/or sediment - water system was investigated. factors affecting this behavior including Ph, humic acid and alumina concentrations were studied. Three stages of vanadium adsorption on alumina were approved due to Ph changes. The first is increasing adsorption with increasing Ph, in the range 1-3. the second is decreasing adsorption with increasing Ph in the range 6-10. the third is constant adsorption at 100% adsorption in Ph range 3-8 at 10 g/l concentration of alumina. However, at 0.2 g/l, the maximum adsorption of vanadium became less than 100%.The effect of humic acid on the adsorption behavior of vanadium (V) was studied and compared with that of vanadium (IV) . Adsorption behaviors were studied at concentration 4.1 E-4 M for vanadium at 0.1 M ionic strength. Triple layer model was used for simulation of vanadium adsorption behavior in presence of alumina under the same working conditions. the results showed good validation and verification to the data practically found. speciation of vanadium in both homogenous and heterogeneous systems was also studied theoretically so as to verify the most abundant elemental species and its impact on the environment

  1. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  2. Determination of Vanadium Binding Mode on Seawater-Contacted Polyamidoxime Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhicheng [Lawrence Berkeley National Laboratory (LBNL); Rao, Linfeng [Lawrence Berkeley National Laboratory (LBNL); Abney, Carter W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryantsev, Vyacheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Aleksandr [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Adsorbents developed for the recovery of uranium from seawater display poor selectivity over other transition metals present in the ocean, with vanadium particularly problematic. To improve selectivity, an indispensable step is the positive identification of metal binding environments following actual seawater deployment. In this work we apply x-ray absorption fine structure (XAFS) spectroscopy to directly investigate the vanadium binding environment on seawater-deployed polyamidoxime adsorbents. Comparison of the x-ray absorption near edge spectra (XANES) reveal marked similarities to recently a reported non-oxido vanadium (V) structure formed upon binding with cyclic imidedioxime, a byproduct of generating amidoxime functionalities. Density functional theory (DFT) calculations provided a series of putative vanadium binding environments for both vanadium (IV) and vanadium (V) oxidation states, and with both amidoxime and cyclic imidedioxime. Fits of the extended XAFS (EXAFS) data confirmed vanadium (V) is bound exclusively by the cyclic imidedioxime moiety in a 1:2 metal:ligand fashion, though a modest structural distortion is also observed compared to crystal structure data and computationally optimized geometries which is attributed to morphology effects from the polymer graft chain and the absence of crystal packing interactions. These results demonstrate that improved selectivity for uranium over vanadium can be achieved by suppressing the formation of cyclic imidedioxime during preparation of polyamidoxime adsorbents for seawater uranium recovery.

  3. Advances in cost effective processing of titanium

    International Nuclear Information System (INIS)

    Nelson, O.E.

    1993-01-01

    Recently an industry expert pointed out that one of the greatest hindrances to the growth of titanium usage has been the low percentage of material usable in the final product. Due to the extensive processing, forming, and machining operations typically performed on titanium, yield losses are high. This is especially true in aerospace applications where most titanium is used. In engine components, the start to finish ratio, known as the buy to fly ratio, is often as high as 7 to 1. This can be illustrated by looking at the use of titanium in Pratt and Whitney engines. In the JT-8D-217 used on Boeing's 737-200, the titanium buyweight is 5,385 pounds, whereas the finished titanium, flyweight is just 758 pounds. This start to finish ratio is 7.1:1, giving titanium 17.0% of total engine weight. (orig.)

  4. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    Science.gov (United States)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  5. Temperature dependence of the damage microstructures in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Horton, L.L.; Farrell, K.

    1983-01-01

    Vanadium and vanadium with boron carbide additions (V-B 4 C) were irradiated to approx. 1 dpa in the Oak Ridge Research Reactor at controlled temperatures ranging from 455 to 925 K. The V-B 4 C alloy was enriched in 10 B, which produced approx. 3900 at. ppM helium. In the vanadium specimens, the dislocation microstructures varied from clusters of small ( . The V-B 4 C specimens contained only tangled dislocation segments. Cavities were observed in all specimens. The cavity concentration decrease and the average diameter increased with increasing irradiation temperature. At 725 K, the maximum swelling was observed in both the vanadium (0.1%) and V-B 4 C (1.4%). At comparable temperatures the cavities in the V-B 4 C specimens were smaller and more numerous than those in the vanadium specimens. Helium bubbles were found on the grain boundaries in all of the V-B 4 specimens

  6. Ferrocenometric deterrination of vanadium and iron in the presence of each other

    International Nuclear Information System (INIS)

    Malyuta, V.F.; Solomatin, V.T.; Nemodruk, A.A.

    1983-01-01

    Real redox potentials have been measured for the V(4)/V(3), Fe(3)/Fe(2) and Fec + /Fec systems in HCl-H 3 PO 4 and H 2 SO 4 -H 3 PO 4 aqueous solutions. The mechanism is suggested for the reduction of vanadium (4) with ferrocene in the presence of iron (3). The possibility has been shown of differential titration of vanadium (4) and iron (3) by ferrocene in the presence of each other in aqueous solutions. A procedure of determining vanadium in steel and a procedure of determining vanadium and iron in ferrovanadium, vanadium slags and cobalt-based alloys have been worked out by the method of potentiometric and amperometric titration with ferrocene solution

  7. Vanadium determination in raw materials and products of aluminium production using pulse polarography

    International Nuclear Information System (INIS)

    Grigor'eva, M.F.; Bal'de, I.; Markovich, I.A.

    1992-01-01

    Possibility of using differential pulse polarography (DPP) for determination of vanadium in raw materials and products of aluminium production was studied. Ammonium-cheoride buffer solution with pH 9-10, aqueous solution of mixture of sodium carbonate and borax (1:3) and rhodanide-acefic acid solutions (1:1) were tested as a background. Current-voltage curves of vanadium reduction were plotted and peak potentials on DPP were determined against the background of chosen electrolytes. Effect of parameters, providing the maximal height of DPP peak, on the height of measured signal, was studied. Rhodanide background was chosen for polarographic determination of vanadium, because the detection limit of vanadium was the lowest against this background. Pulse polarography enafles to determine vanadium in products of aluminium production in amounts from 1x10 -4 to 0.01 % and more

  8. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mandiwana, Khakhathi L.; Panichev, Nikolay

    2010-01-01

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na 2 CO 3 . The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g -1 . It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  9. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  10. On structural recrystallization in titanium

    International Nuclear Information System (INIS)

    Mirzaev, D.A.; Schastlivtsev, V.M.; Shtejnberg, M.M.; Ul'yanov, V.G.; AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-01-01

    The effect of preliminary superfast quenching on structural changes at inverse α→β transformation in titanium is studied. Cooling at rates more than 10 4 deg/s results in grain refining at succeeding annealing in β- and α- regions. The obtained effect is explained by additional phase transformation-induced hardening conditioned by decrease of the transformation point at superfast cooling

  11. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    Kostyuk, K.O.; Kostyuk, V.O.

    2015-01-01

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T 2 B, TiB, TiB 2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  12. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei, 230031 (China); Ding, Congcong; Cheng, Wencai [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke, E-mail: xkwang@ipp.ac.cn [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-09-15

    Graphical abstract: - Highlights: • Sorption and in-situ reduction of U(VI) is observed. • The composites are more effective for U(VI) removal and solidification. • The inner-sphere surface complexes are observed. - Abstract: The reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized by chemical deposition method and were characterized by SEM, high resolution TEM, Raman and potentiometric acid-base titrations. The characteristic results showed that the nZVI nanoparticles can be uniformly dispersed on the surface of rGO. The removal of U(VI) on nZVI/rGO composites as a function of contact time, pH and U(VI) initial concentration was investigated by batch technique. The removal kinetics of U(VI) on nZVI and nZVI/rGO were well simulated by a pseudo-first-order kinetic model and pseudo-second-order kinetic model, respectively. The presence of rGO on nZVI nanoparticles increased the reaction rate and removal capacity of U(VI) significantly, which was attributed to the chemisorbed OH{sup −} groups of rGO and the massive enrichment of Fe{sup 2+} on rGO surface by XPS analysis. The XRD analysis revealed that the presence of rGO retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite. According to the fitting of EXAFS spectra, the U-C (at ∼2.9 Å) and U-Fe (at ∼3.2 Å) shells were observed, indicating the formation of inner-sphere surface complexes on nZVI/rGO composites. Therefore, the nZVI/rGO composites can be suitable as efficient materials for the in-situ remediation of uranium-contaminated groundwater in the environmental pollution management.

  13. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2.

    Science.gov (United States)

    Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang

    2017-03-01

    A catalyst composed of manganese oxides supported on titania (MnO x /TiO 2 ) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg 0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O 2 and a proper ratio of [NH 3 ]/[NO] are essential for the denitration reaction. Both NO conversion and Hg 0 removal efficiency could reach more than 80% when NO and Hg 0 were removed simultaneously using Mn0.8Ti at 240°C. Hg 0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg 0 removal efficiency. O 2 and HCl had a promotional effect on Hg 0 removal. SO 2 and NH 3 were observed to weaken Hg 0 removal because of competitive adsorption. NO first facilitated Hg 0 removal and then had an inhibiting effect as NO concentration increased without O 2 , and it exhibited weak inhibition of Hg 0 removal efficiency in the presence of O 2 . The oxidation of Hg 0 on MnO x /TiO 2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.

  14. Nitrogen and vanadium Co-doped TiO{sub 2} mesosponge layers for enhancement in visible photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jiasong Zhong [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Xu, Jinrong [Department of Mathematics and Physics, Anhui University of Architecture, Hefei, 230022 (China); Wang, Qingyao, E-mail: wangqingyao0532@163.com [School of Chemistry and Materials Science, Ludong University, Yantai, 264025 (China)

    2014-10-01

    Graphical abstract: - Highlights: • N and V co-doped TiO{sub 2} mesosponges were prepared by hydrothermal method. • The first-principle was used to investigate the novel porous materials. • N-V-TMSW had a remarkable visible absorption and photocatalytic activity. - Abstract: Novel N and V co-doped TiO{sub 2} mesosponge (N-V-TMSW) layers were successfully prepared by one-step hydrothermal treatment of TiO{sub 2} nanotube arrays, and the phase composition, morphology and optical property were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffusion reflectance spectroscopy (DRS). The crystal structure and density of states were studied by means of the first-principle pseudo-potential plane wave. The results indicated that titanium ions and oxygen atoms in TiO{sub 2} were successfully substituted by vanadium ions and nitrogen atoms, respectively. The sample N-V0.1-TMSW showed a remarkable absorption in the visible light range of 400–600 nm and high visible photocatalytic activity.

  15. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  16. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    Science.gov (United States)

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Corrosion resistance investigation of vanadium alloys in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Borovitskaya, I. V., E-mail: symp@imet.ac.ru [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Lyublinskiy, I. E. [JSC Red Star (Russian Federation); Bondarenko, G. G. [National Research University Higher School of Economics (Russian Federation); Paramonova, V. V. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Korshunov, S. N.; Mansurova, A. N. [National Research Center Kurchatov Institute (Russian Federation); Lyakhovitskiy, M. M. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Zharkov, M. Yu. [JSC Red Star (Russian Federation)

    2016-12-15

    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  18. Enrichment, Distribution of Vanadium-Containing Protein in Vanadium-Enriched Sea Cucumber Apostichopus japonicus and the Ameliorative Effect on Insulin Resistance.

    Science.gov (United States)

    Liu, Yanjun; Zhou, Qingxin; Zhao, Yanlei; Wang, Yiming; Wang, Yuming; Wang, Jingfeng; Xu, Jie; Xue, Changhu

    2016-05-01

    Sea cucumbers are a potential source of natural organic vanadium that may improve insulin resistance. In this work, vanadium was accumulated rapidly in blood, body wall, and intestine by sea cucumber Apostichopus japonicus. Furthermore, water-soluble vanadium-containing proteins, the main form of the organic vanadium, were tentatively accumulated and isolated by a bioaccumulation experiment. It was also designed to evaluate the beneficial effect of vanadium-containing proteins (VCPs) from sea cucumber rich in vanadium on the development of hyperglycemia and insulin resistance in C57BL/6J mice fed with a high-fat high-sucrose diet (HFSD). HFSD mice treated with VCPs significantly decreased fasting blood glucose, serum insulin, and HOMA-IR values as compared to HFSD mice, respectively. Serum adiponectin, resistin, TNF-α, and leptin levels in insulin-resistant mice were dramatically reduced by a VCP supplement. These results show an ameliorative effect on insulin resistance by treatment with VCPs. Such compound seems to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes.

  19. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  20. Effect of vanadium on germination and seedling growth of lettuce (Lactuca sativa L. C. V. salad bowl)

    Energy Technology Data Exchange (ETDEWEB)

    Lepp, N.W.

    1977-01-01

    The effect of vanadium, applied as VOSO/sub 4/, on germination and subsequent seedling growth of Lettuce has been studied. No differences in germination were observed at any of the applied vanadium concentrations, when compared to a vanadium-free control. Subsequent seedling growth, however, was significantly inhibited by all vanadium treatments. Reductions in shoot growth, root growth and fresh weight were apparent. Similar, but less dramatic effects were observed when 3 day old seedlings were transferred to vanadium enriched media. 13 references, 2 tables.

  1. Obtaining uranium and/or vanadium values from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vojkovic, M

    1982-04-22

    A process for the recovery of at least one of uranium and vanadium from an aqueous liquor is claimed. It comprises: (a) treating the liquor with a low molecular weight completely water-miscible solvent selected from the group consisting of methanol, iso-propyl alcohol or acetone to form at least two phases; (b) separating the phases; (c) recovering the solvent from the first phase as the azeotropic solvent/water mixture by simple, non-fractional distillation and recycling the mixture to step (a); and (d) recovering metal values from a second one of the phases.

  2. Periodic arrays of pinning centers in thin vanadium films.

    Energy Technology Data Exchange (ETDEWEB)

    Brueck, S. R. J.; Chung, K.; Crabtree, G.; DeLong, L. E.; Hesketh, P. J.; Ilic, B.; Metlushko, V.; Watkins, B.; Welp, U.; Zhang, Z.

    1997-07-13

    Commensurability effects between the superconducting flux line lattice and a square lattice (period d=1{micro}m and diameter D=0.4{micro}m) of submicron holes in 1500 {angstrom} vanadium films were studied by atomic force microscopy, DC magnetization, AC susceptibility, magnetoresistivity and I-V measurements. Peaks in the magnetization and critical current at matching fields are found to depend nonlinearly upon the value of external AC field or current, as well as the inferred symmetry of the flux line lattice.

  3. Vanadium determination in pretoleum by neutron activation analysis

    International Nuclear Information System (INIS)

    Lopez, M.; Espinosa, R.

    1983-01-01

    The vanadium concentration in an Peruvian petroleum sample is determined by neutron activation analysis. The samples were irradiated for 20 minutes with a flux of thermal neutrons of 1.75 x 10 7 n/cm 2 -s in a subcritical assembly. The activity of the created samples decreases to half 15 minutes after the irradiation. The result is 28.3 +- 0.8 p.p.m. with a typical deviation of 2.8%. The detection limit of this method is 4 p.p.m

  4. Growth of Vanadium Carbide by Halide-Activated Pack Diffusion

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Dahl, Kristian Vinter

    The present work investigates growth of vanadium carbide (VC) layers by the pack diffusion method on a Vanadis 6 tool steel. The VC layers were produced by pack diffusion at 1000°C for 1, 4 and 16 hours. The VC layers were characterized with optical and electron microscopy, Vickers hardness tests...... and X-ray diffraction. Homogeneous VC mono-phase layers with Vickers hardness of more than 2400 HV were obtained. Hardening and tempering of the vanadized Vanadis 6 steel did not affect the VC layers....

  5. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  6. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  7. Electromigration of hydrogen and deuterium in vanadium, niobium, and tantalum

    International Nuclear Information System (INIS)

    Jensen, C.L.

    1977-10-01

    The electric mobility and effective valence of hydrogen and deuterium in vanadium, niobium, tantalum and three niobium-tantalum alloys were measured. A resistance technique was used to directly determine the electric mobility of hydrogen and deuterium at 30 0 C while a steady-state method was used to measure the effective valence. The use of mass spectrographic techniques on a single specimen which contained both hydrogen and deuterium greatly increased the precision with which the isotope effect in the effective valence could be measured

  8. Medium carbon vanadium micro alloyed steels for drop forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-01-01

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author)

  9. Synthesis of vanadium oxide powders by evaporative decomposition of solutions

    International Nuclear Information System (INIS)

    Lawton, S.A.; Theby, E.A.

    1995-01-01

    Powders of the vanadium oxides V 2 O 4 , V 6 O 13 , and V 2 O 5 were produced by thermal decomposition of aqueous solutions of vanadyl sulfate hydrate in atmospheres of N 2 , H 2 mixed with N 2 , or air. The composition of the oxide powder was determined by the reactor temperature and gas composition. Residual sulfur concentrations in powders produced by decomposition at 740 C were less than 1 at.%, and these powders consisted of hollow, roughly spherical aggregates of particles less than 1 microm in diameter

  10. Electron spin resonance of vanadium(4)-thallium(1) dithiocarbamate complexes

    International Nuclear Information System (INIS)

    Ivanov, A.V.; Solozhenkin, P.M.; Baratova, Z.R.; Klyashtornyj, V.B.; Uskov, V.Yu.

    1990-01-01

    Heteronuclear vanadium(4), thallium(1) dithiocarbanate complexes of the composition TlVO(Dtc) 3 and Tl 2 VO(Dtc) 4 under conditions of magnetic dilution were studied by ESR spectroscopy. Magnetically diluted complexes were prepared by coprecipitation from aqueous solutions of thallium(1) and oxovanadium(2) by solutions of sodium diethyldithiocarbamate, dibutyldithiocarbamate, hexamethylenedithiocarbamate, taken in superstoichiometric excess. Analysis of parameters of ESR spectra of the complexes synthesized shows that thallium atoms are not included in the first coordination sphere of oxovanadium(2), and chelate node VS 4 in thallium(1) complex lattice practically preserves its plane quadratic structure

  11. Structure and vibrational properties of oxyhalides of Vanadium

    International Nuclear Information System (INIS)

    Allaf, A.

    2010-01-01

    We study the structure and vibrational modes of a wide range of oxyhalides of vanadium (VOX n Y m ; X, Y) = F, Cl, Br, I; n, m = 0-3, n + m≤ 3). The results agree well with experimental results for VOCl 3 and VOF 3 and suggest reassignment of the experimentally observed VOF to VOF 2 . We provide new assignments for various experimental modes, identifying several intermediates (VOBr 2 , VOBr) and mixed structures (e.g., VOCl 2 Br), and discuss formation trends and stabilities.(author)

  12. Determination of total vanadium and vanadium(V) in groundwater from Mt. Etna and estimate of daily intake of vanadium(V) through drinking water.

    Science.gov (United States)

    Arena, Giovanni; Copat, Chiara; Dimartino, Angela; Grasso, Alfina; Fallico, Roberto; Sciacca, Salvatore; Fiore, Maria; Ferrante, Margherita

    2015-06-01

    Vanadium(V) can be found in natural waters in the form of V(IV) and V(V) species, which have different biological properties and toxicity. The purpose of this study was to determine the concentrations of total V and V(V) in groundwater from the area of Mt. Etna and to assess the estimated daily intake (EDI) of V(V) of adults and children through drinking water. Water was sampled monthly at 21 sites in 2011. Total vanadium was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and speciation by ion chromatography-ICP-MS (IC-ICP-MS). The concentration of V(V) species ranged from 62.8 to 98.9% of total V, with significantly higher concentrations in samples from the S/SW slope of Mt. Etna. The annual mean concentrations of total V exceeded the Italian legal limit of 140 μg/L at four sites on the S/SW slope. In the absence of thresholds for V(V) intake, only the Environmental Protection Agency (EPA) has calculated a reference dose. Children's EDI of V(V) at the sites with the higher V concentrations exceeded EPA thresholds (9 μg/kg/day). In particular, we found in Camporotondo, Mascalucia, Ragalna and San Pietro Clarenza sites children's EDIs of 11, 9.3, 11 and 9.9, respectively. The EDI of V(V) was significantly higher than the literature range (0.09-0.34 μg/kg/day).

  13. Analysis of titanium content in titanium tetrachloride solution

    Science.gov (United States)

    Bi, Xiaoguo; Dong, Yingnan; Li, Shanshan; Guan, Duojiao; Wang, Jianyu; Tang, Meiling

    2018-03-01

    Strontium titanate, barium titan and lead titanate are new type of functional ceramic materials with good prospect, and titanium tetrachloride is a commonly in the production such products. Which excellent electrochemical performance of ferroelectric tempreature coefficient effect.In this article, three methods are used to calibrate the samples of titanium tetrachloride solution by back titration method, replacement titration method and gravimetric analysis method. The results show that the back titration method has many good points, for example, relatively simple operation, easy to judgment the titration end point, better accuracy and precision of analytical results, the relative standard deviation not less than 0.2%. So, it is the ideal of conventional analysis methods in the mass production.

  14. Investigation on the fates of vanadium and nickel during co-gasification of petroleum coke with biomass.

    Science.gov (United States)

    Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian

    2018-06-01

    This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Atomic layer deposition of VO{sub 2} films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xinrui [Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cao, Yunzhen, E-mail: yzhcao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, Lu; Li, Ying; Song, Lixin [Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-02-28

    Highlights: • VO{sub 2} film was easily deposited by ALD using novel vanadium precursor V(NMe{sub 2}){sub 4}. • Deposition and annealing condition were systematically investigated. • Comparable transition properties of VO{sub 2} film on resistance and spectral transmittance were studied. - Abstract: VO{sub 2} thin films have been grown on Si(100) (VO{sub 2}/Si) and fused silica substrates (VO{sub 2}/SiO{sub 2}) by atomic layer deposition (ALD) using tetrakis-dimethyl-amino vanadium (IV) (TDMAV) as a novel vanadium precursor and water as reactant gas. The quartz crystal microbalance (QCM) measurement was performed to study the ALD process of VO{sub 2} thin film deposition, and a constant growth rate of about 0.95 Å/cycle was obtained at the temperature range of 150–200 °C. XRD measurement was performed to study the influence of deposition temperature and post-annealing condition on the crystallization of VO{sub 2} films, which indicated that the films deposited between 150 and 200 °C showed well crystallinity after annealing at 475 °C for 100 min in Ar atmosphere. XPS measurement verified that the vanadium oxidation state was 4+ for both as-deposited film and post-annealed VO{sub 2}/Si film. AFM was applied to study the surface morphology of VO{sub 2}/Si films, which showed a dense polycrystalline film with roughness of about 1 nm. The resistance of VO{sub 2}/Si films deposited between 150 °C and 200 °C as a function of temperature showed similar semiconductor-to-metal transition (SMT) characters with the transition temperature for heating branch (T{sub c,h}) of about 72 °C, a hysteresis width of about 10 °C and the resistance change of two orders of magnitude. The increase of T{sub c,h} compared with the bulk VO{sub 2} (68 °C) may be attributed to the tensile stress along the c-axis in the film. Transmittance measurement of VO{sub 2}/SiO{sub 2} films showed typical thermochromic property with a NIR switching efficiency of above 50% at 2 μm across

  16. Effects of vanadium on population growth and Na-K-ATPase activity of the brackish water hydroid Cordylophora caspia

    Energy Technology Data Exchange (ETDEWEB)

    Ringelband, U.; Karbe, L. [Institut fuer Hydrobiologie und Fischereiwissenschaft, Hamburg (Germany)

    1996-07-01

    Vanadium, a relatively abundant heavy metal, enters the environment naturally through rock weathering. A large fraction of vanadium input is of human origin. The combustion of petroleum- and coal-products, which contain relatively high concentrations of vanadium, is one of the most important sources of the enrichment of vanadium in the environment. As it is used as an alloy, and vanadium rich iron-ores of various origin are used in steel production, the residual slag-stones of the steel industry can contain considerable vanadium concentrations. Wherever slag-stones serve as a cheap and convenient material in riverbank reinforcement, vanadium can leach into the aquatic environment. Vanadium is regarded as an essential trace element for higher animals. Cantley et al. indicated a regulatory function of vanadate in vivo. Although considerable information is available on the toxic effects of vanadium on humans, very little is known about the toxicity of vanadium towards aquatic organisms, especially invertebrates. Bell and Sargent have shown an inhibition of Na-K-ATPase activity in gills of the eel Anguilla anguilla. Holleland and Towle have demonstrated the inhibition of Na-K-ATPase activity in the gills of the shore crab Carcinus maenas. The aim of this study was to determine the toxicity of vanadium towards the brackish water hydroid Cordylophora caspia. Hydroids are known to be particularly sensitive to heavy metals and their asexual reproduction can be used in a well-established population growth test. Furthermore, the effects of vanadium on Na-K-ATPase activity in hydroids were studied in in vivo experiments, wherein the animals were exposed to sublethal concentrations of vanadium. In addition, the inhibition of Na-K-ATPase was measured in vitro, by adding vanadium to a microsomal preparation. 16 refs., 4 figs.

  17. Characterization of a new beta titanium alloy, Ti–12Mo–3Nb, for biomedical applications

    International Nuclear Information System (INIS)

    Gabriel, S.B.; Panaino, J.V.P.; Santos, I.D.; Araujo, L.S.; Mei, P.R.; Almeida, L.H. de; Nunes, C.A.

    2012-01-01

    Highlights: ► This paper focused on the development of Ti–12Mo–3Nb alloy for it to be used as a bone substitute. ► The alloy show good mechanical properties and exhibit spontaneous passivity. ► The Ti–12Mo–3Nb alloy can be a promising alternative for biomedical application. - Abstract: In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti–12Mo–3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti–6Al–4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti–12Mo–3Nb alloy heat-treated at 950 °C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 °C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation.

  18. Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization.

    Science.gov (United States)

    Dumas, Virginie; Rattner, Aline; Vico, Laurence; Audouard, Eric; Dumas, Jean Claude; Naisson, Pierre; Bertrand, Philippe

    2012-11-01

    The femtosecond laser processing enabled the structuring of six types of surfaces on titanium-6aluminium-4vanadium (Ti-6Al-4V) plates. The obtained hierarchical features consisted of a combination of microgrooves and oriented nanostructures. By adjusting beam properties such as laser polarization, the width of the microgrooves (20 or 60 μm) and the orientation of the nanostructures (parallel or perpendicular to the microgrooves) can be precisely controlled. Mesenchymal stem cells (MSCs) grown on these structured surfaces produced cytoplasmic extensions with focal contacts, while on the smooth titanium, the cells were found to be well spread and without any focal contact 12 h postseeding. The 600-nm wide nanostructures on their own were sufficient to orient the MSCs. For the multiscale structured areas, when the orientation of the nanostructures was orthogonal in relation to the microgrooves, there was an important decrease in or even a loss of cell alignment signifying that cells were sensitive to the directional nanostructures in the microgrooves. At 7 days, cell proliferation was not affected but the direction of nanostructures controlled the matrix organization. The ultrafast laser, as a new method for producing micro-nanohybrid surfaces, is a promising approach to promote desired tissue organization for tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  19. Corrosion control of vanadium in aqueous solutions by amino acids

    International Nuclear Information System (INIS)

    El-Rabiee, M.M.; Helal, N.H.; El-Hafez, Gh.M. Abd; Badawy, W.A.

    2008-01-01

    The electrochemical behavior of vanadium in amino acid free and amino acid containing aqueous solutions of different pH was studied using open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The corrosion current density, i corr , the corrosion potential, E corr and the corrosion resistance, R corr , were calculated. A group of amino acids, namely, glycine, alanine, valine, histidine, glutamic and cysteine has been investigated as environmentally safe inhibitors. The effect of Cl - on the corrosion inhibition efficiency especially in acid solutions was investigated. In neutral and basic solutions, the presence of amino acids increases the corrosion resistance of the metal. The electrochemical behavior of V before and after the corrosion inhibition process has shown that some amino acids like glutamic acid and histidine have promising corrosion inhibition efficiency at low concentration (≅25 mM). The inhibition efficiency (η) was found to depend on the structure of the amino acid and the constituents of the corrosive medium. The corrosion inhibition process is based on the adsorption of the amino acid molecules on the metal surface and the adsorption process follows the Freundlich isotherm. The adsorption free energy for valine on V in acidic solutions was found to be -9.4 kJ/mol which reveals strong physical adsorption of the amino acid molecules on the vanadium surface

  20. Temperature fluctuation effect on microstructural evolution of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hideo; Ochiai, Kenso; Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    To compare the damage structure of vanadium and it`s alloy by irradiation at a constant and fluctuating temperature, the microstructure of samples irradiated by heavy ion were observed by an electron microscope. Pure vanadium (99.9%) from China was used as samples. After preparing the samples for the electron microscope, they are covered with Zr and Ta film, vacuum sealed and annealed for 2h at 1323K. Then the samples were irradiated by 3 MeV Cu ion of 0.75-100 dpa at 473-873K. Temperature was changed from low to high (473K/673K, 473K/873K, 673K/873K). On the irradiation experiments at constant temperature, the density of dislocation decreased with increasing temperature, but, more than 773K, the density became very low and the needle precipitation grown to <100> and void were observed. On the irradiation experiment at 673K/873K, the density of number of precipitation and void were decreased. (S.Y.)

  1. Porphyrin doped vanadium pentoxide xerogel as electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Anaissi, F.J.; Engelmann, F.M.; Araki, K.; Toma, H.E. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    2003-04-01

    The lamellar composite material, VXG-TMPyP, obtained from the combination of cationic, water-soluble meso-(tetra-4-methyl-pyridinium)porphyrin (TMPyP) and vanadium pentoxide gel was investigated and employed as electrode modifying material. This material was isolated as a xerogel and characterized by X-ray diffraction, UV-Vis spectroscopy, cyclic voltammetry, spectro-electrochemistry and TG analysis. According to the X-ray diffraction data, the original VXG lamellar matrix framework is kept in the composite, evidencing a topotatic reaction. UV-Vis spectra indicated a strong interaction between VXG and TMPyP leading to the protonation of the porphyrin ring. In contrast with the vanadium oxide xerogel the new material is stable in water. The presence of the cationic porphyrin species in its structure turns it able to incorporate negatively charged ions, such as ferrocyanide and I{sup -}. The presence of the I{sub 2}/I{sup -} couple gives rise to a dramatic increase in the reversibility of the V{sup V/IV} process and in the charge capacity of the material. (authors)

  2. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel

    International Nuclear Information System (INIS)

    Wei, Hai-lian; Liu, Guo-quan; Xiao, Xiang; Zhang, Ming-he

    2013-01-01

    The dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel was systematically investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.01 s −1 to 10 s −1 on a Gleeble-1500 thermo-simulation machine. The flow stress constitutive equation of hot deformation for this steel was developed with the activation energy Q being about 273 kJ/mol, which is in reasonable agreement with those reported before. Activation energy analysis showed that vanadium addition in microalloyed steels seemed not to affect the activation energy much. The effect of Zener–Hollomon parameter on the characteristic points of flow curves was studied using the power law relation, and the dependence of critical strain (stress) on peak strain (stress) obeyed a linear equation. Dynamic recrystallization is the most important softening mechanism for the experimental steel during hot compression. The dynamic recrystallization kinetics model of this steel was established based on flow stress and a frequently-used dynamic recrystallization kinetics equation. Dynamic recrystallization microstructure under different deformation conditions was also observed and the dependence of steady-state grain size on the Zener–Hollomon parameter was plotted

  3. Kinetic spectrophotometric determination of trace amounts of selenium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, A.; Sedghy, H.R.; Shams, E. [Dept. of Chemistry, Shiraz Univ. (Iran)

    1999-11-01

    A sensitive kinetic spectrophotometric method has been developed for the determination of Se(IV) over the range of 45 to 4000 ng in 10 mL of solution. The method is based on the catalytic effect of Se(IV) on the reduction reaction of bromate by hydrazinium dichloride, with subsequent reaction of Ponceau S with products of the above reaction (chlorine and bromine), causing color changing of Ponceau S. Method development includes optimization of time interval for measurement of slope, pH, reagents concentration, and temperature. The optimized conditions yielded a theoretical detection limit of 33 ng/10 mL of solution of Se(IV). The interfering effects were studied and removed. The method was applied to the determination of selenium in spiked water, Kjeldahl tablet, selenium tablet, and shampoo. Vanadium(V) has an inhibition effect on the catalyzed reaction of bromate and hydrazine by selenium. Using this effect, V(V) can be determined in the range of 70 to 2500 ng in 10 mL of solution. The optimization procedure includes pH and selenium concentration. An extraction method was used for interference removal. The method was applied to the determination of vanadium in petroleum. (orig.)

  4. Effect of iron on vanadium (001) strained surface magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M; Al-Barwani, M; Gismelseed, A; Al-Rawas, A; Yousif, A; Widatallah, H; Bouziane, K; Al-Omari, I, E-mail: elzain@squ.edu.o [Department of Physics, College Of Science, Box 36, Sultan Qaboos University, Al Khod 123 (Oman)

    2010-03-01

    The magnetism of the vanadium (001) surface has been a controversial subject on both theoretical and experiment fronts. Both strongly ferromagnetic and paramagnetic phases were reported. We have used the first principle full-potential linearized-augmented plane waves (FP-LAPW) as implemented in WIEN2k package to study the magnetic properties of strained surfaces of vanadium films as a function of film thickness. We found that for films thicker than about 11 monolayers, the magnetism of the strained surfaces converge to a constant value of about 0.15{mu}{sub B}. Introduction of Fe monolayers and impurities at the centre of the films affects the magnetic structure of thin films but has no influence on the surface magnetism of thicker films. For Fe monolayers positioned at the centre of thick films, the Fe atoms maintain magnetic moment of order 0.86{mu}{sub B}, a quadruple splitting of order -0.3 mm/s and a small negative isomer shift, while an Fe impurity has vanishing hyperfine fields and magnetic moment. In addition we have varied the location of the Fe monolayer and impurity within the V films and found that their position affects the surface magnetism.

  5. Study of propane partial oxidation on vanadium-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, G.A.; Khalamejda, S.V.; Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    The present results indicate that maximum selectivity to acrylic acid can be reached over V-P-Zr-O catalysts. When the hydrocarbon concentration is 5.1 vol.% the selectivity is about 30% at quite high paraffin conversion. Conclusively, some explanations to the observed facts can be given. The V-P-O catalyst promotion with lanthanum by means of mechanochemical treatment is distinguished by the additive uniform spreading all over the matrix surface. Such twophase system is highly active in propane conversion (lanthanum oxide) and further oxidation of the desired products. The similar properties are attributed to V-P-Bi-La-O catalyst. Bismuth, tellurium and zirconium additives having clearly defined acidic properties provoke the surface acidity strengthening and make easier desorption of the acidic product (acrylic acid) from the surface lowering its further oxidation. Additionally, since bismuth and zirconium are able to form phosphates and, according to, to create space limitations for the paraffin molecule movement out of the active group boundaries, this can be one more support in favour of the selectivity increase. With this point of view very interesting results were obtained. It has been shown that the more limited the size of the vanadium unit, the higher the selectivity is. Monoclinic phase AV{sub 2}P{sub 2}O{sub 10} which consists in clusters of four vanadium atoms is sensibly more reactive than the orthorhombic phase consists in V{sub {infinity}} infinite chains. (orig.)

  6. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Zambrano, G. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia); Escobar-Alarcon, L.; Camps, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico, DF 11801 (Mexico)

    2011-10-15

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N{sub 2} gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  7. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-01-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  8. Effect of vanadium and yttrium doping on BSCCO superconductors

    International Nuclear Information System (INIS)

    Mohamed, S.B.; Halim, S.A.; Azhan, H.; Sidek, H.A.A; Tee, T.W.; Hassan, Z.A.

    1999-01-01

    The effect of vanadium and yttrium doping on the superconductivity is investigated. The doping was done on the calcium site ranging from x=0.00-0.10. The temperature dependence of electrical resistance and AC susceptibility measurements were made on these samples. The zero resistance for vanadium doped samples varied from 107 K (x = 0.00) to 68.5K (x = 0.10), whereas for yttrium doped samples it varied from 107 K (x = 0.00) to 54K (x 0.10). The volume fraction of the 2223 phase for both dopalit decreases witli increasing doping concentration. The nature of the temperature derivative of the resistance curves indicates the presence of a superconducting transition between grains coupled by weak links. The AC susceptibility data show enrichment of the volume fraction of the low Tc phase at higher compositions. The presence of low Tc phase (∼70 K) is visible in the susceptibility data. X-ray diffraction confirms the presence of mixed phases in the samples. (author)

  9. Phase equilibria in the niobium-vanadium-hydrogen system

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J. (Grumman Aerospace Corp., Bethpage, NY (USA)); Welch, D.O. (Brookhaven National Lab., Upton, NY (USA)); Pick, M.A. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)

    1990-01-01

    The effect of vanadium additions to niobium on the metal-hydrogen phase equilibria has been studied. Measurements of the equilibrium H{sub 2}(D{sub 2}) pressure-composition-temperature isotherms for Nb{sub 1-x}V{sub x} alloys with 0{le}x<0.2 were used to determine the depression of the {alpha} - {alpha}' critical temperature with increasing vanadium concentration. A simple lattice-fluid model guided reduction of the data. Changes in the triple point temperature as well as the shift of the {zeta} {yields} {epsilon} phase transition were determined by differential scanning calorimetry measurements. A rapid overall depression was found, of the order of 7 K (at.% substituted V){sup -1}, for the metal-hydrogen (deuterium) phase boundary structure when compared with the Nb-H system in the hydrogen concentration range of interest. The results explain the enhanced terminal solubility of hydrogen in this system found previously by other authors. The changes in the phase equilibria are discussed in terms of the effect of hydrogen trapping and compared with the results of a cluster-variation calculation for random-field systems of previous authors, taking into account a distribution of H-site energies due to alloying. (author).

  10. Quantitative LIBS analysis of vanadium in samples of hexagonal mesoporous silica catalysts.

    Science.gov (United States)

    Pouzar, Miloslav; Kratochvíl, Tomás; Capek, Libor; Smoláková, Lucie; Cernohorský, Tomás; Krejcová, Anna; Hromádko, Ludek

    2011-02-15

    The method for the analysis of vanadium in hexagonal mesoporous silica (V-HMS) catalysts using Laser Induced Breakdown Spectrometry (LIBS) was suggested. Commercially available LIBS spectrometer was calibrated with the aid of authentic V-HMS samples previously analyzed by ICP OES after microwave digestion. Deposition of the sample on the surface of adhesive tape was adopted as a sample preparation method. Strong matrix effect connected with the catalyst preparation technique (1st vanadium added in the process of HMS synthesis, 2nd already synthesised silica matrix was impregnated by vanadium) was observed. The concentration range of V in the set of nine calibration standards was 1.3-4.5% (w/w). Limit of detection was 0.13% (w/w) and it was calculated as a triple standard deviation from five replicated determinations of vanadium in the real sample with a very low vanadium concentration. Comparable results of LIBS and ED XRF were obtained if the same set of standards was used for calibration of both methods and vanadium was measured in the same type of real samples. LIBS calibration constructed using V-HMS-impregnated samples failed for measuring of V-HMS-synthesized samples. LIBS measurements seem to be strongly influenced with different chemical forms of vanadium in impregnated and synthesised samples. The combination of LIBS and ED XRF is able to provide new information about measured samples (in our case for example about procedure of catalyst preparation). Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys provide an attractive solution for fusion power plants as they exhibit a potential for low environmental impact due to low level of activation from neutron fluence and a relatively short half-life. They also have attractive material properties for use in a reactor. General Atomics along with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan to utilize vanadium alloys as part of the Radiative Divertor Project (RDP) modification for the DIII-D tokamak. The goal for using vanadium alloys is to provide a meaningful step towards developing advanced materials for fusion power applications by demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak in conjunction with developing essential fabrication technology for the manufacture of full-scale vanadium alloy components. A phased approach towards utilizing vanadium in DIII-D is being used starting with small coupons and samples, advancing to a small component, and finally a portion of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. A major portion of the program is research and development to support fabrication and resolve key issues related to environmental effects

  12. Processing, characterization, and bactericidal activity of undoped and silver-doped vanadium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tousley, M.E.; Wren, A.W.; Towler, M.R. [Inamori School of Engineering, Alfred University, Alfred, NY 14803 (United States); Mellott, N.P., E-mail: mellott@alfred.edu [Inamori School of Engineering, Alfred University, Alfred, NY 14803 (United States)

    2012-12-14

    Vanadium oxide (V) and silver-doped vanadium oxide (Ag-V) powders were prepared via sol-gel processing. Structural evolution and bactericidal activity was examined as a function of temperature ranging from 250, 350, 450 and 550 Degree-Sign C. Powders were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy. Results from all techniques showed vanadium pentoxide (V{sub 2}O{sub 5}) is the predominant phase regardless of heat treatment temperature or the addition of silver (Ag). XRD analysis suggests Ag is present as AgCl in samples heat treated to 250, 350, and 450 Degree-Sign C and as AgV{sub 6}O{sub 15} at 550 Degree-Sign C. Bactericidal activity was evaluated against Escherichia coli using the agar disk diffusion method considering both Ag-V and undoped, V powders. While the addition of Ag significantly increased bactericidal properties, the specific Ag valency, or crystal structure and morphology formed at higher temperatures, had little effect on functionality. -- Highlights: Black-Right-Pointing-Pointer Vanadium and silver-doped vanadium oxide powders were prepared via sol-gel. Black-Right-Pointing-Pointer Powders were characterized using advanced, complementary structural techniques. Black-Right-Pointing-Pointer Bactericidal activity was evaluated against E. coli. Black-Right-Pointing-Pointer Both vanadium and silver doped vanadium oxide show bactericidal activity.

  13. Vanadium in organic fossils as determined by nuclear-physical methods of analysis

    International Nuclear Information System (INIS)

    Nadirov, N.N.; Solodukhin, V.P.

    1998-01-01

    Results are presented of several year investigation to study possibilities of the NPMA for the determination of vanadium in organic fossils and applications of these methods to scientific and practical tasks. For these purposes, various versions of activation analysis (AA), X-ray fluorescence analysis (XRFA), electron spin resonance (ESR) spectroscopy and atomic emission with inductively coupled plasma spectroscopy (AES-ICP). Advantages and pitfalls of individual methods are discussed. The techniques developed can be used for estimation and calculation of stocks of vanadium in organic fossils at the territories of Kazakstan, Tatarstan and along the Volga-river. Analysis results helped in discovering new, industrially important deposits of this valuable metal. Quantitative determination of vanadium was carried out at different stages of technological processes of its extraction from high-viscous oils and oil-bitumen rocks. Results of analyses allowed to reveal the most effective versions of technologies of demetallization of these fossils. Content of vanadium was also studied in different locations of high-viscous oil deposits being explored by the method of inside-stratum burning. Results of analyses showed that the concentration of vanadium in oil decreases considerably with increasing temperature, that is, a considerable part of vanadium (up to 60 percent) may be lost irretrievably. Thus, for the exploration of these deposits a method of vapor-thermal influence onto the stratum was recommended, by using of which the loss of vanadium is insignificant

  14. Titanium gettering in Doublet III

    International Nuclear Information System (INIS)

    de Grassie, J.S.; Callis, R.; Campbell, G.

    1980-08-01

    The application of mild titanium gettering in the Doublet III tokamak has led to a significant improvement in the obtainable operating regimes and discharge parameters for all of the many plasma cross-sectional shapes studied. With gettering, low-Z impurities and radiated power are greatly reduced. The maximum line averaged electron density has increased 50% (anti n/sub e max/ approx. 1 x 10 20 /m 3 ), corresponding to a Murakami coefficient of nearly 6

  15. Analogy and differences between aluminium and titanium electrowinning

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2006-09-01

    Full Text Available larger market. The authors have tested this route experimentally, but could not produce pure titanium. The failure of electrowinning pure, molten titanium has been interpreted in terms of the analogy and differences between aluminium and titanium...

  16. Research and Development on Titanium Alloys

    Science.gov (United States)

    1949-10-31

    information concerning the runs made * * In order to check the general operation of the train and furnace, a number of qualitative runs were made. These runs... General Technique. * . . * * . 109 The Analysis of Titanium . . . . ... ... 112 Notes and Comments, . . . .. . .. . . . 113 The Results from Vacuum...described in this report are as follows: 1. Arc ielting Titanium-Base Alloys. 2. Evaluation of Experimental Titanium-Base Alloys. 3. Investigation of

  17. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  18. Production of titanium from ilmenite: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  19. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  20. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  1. Machinability evaluation of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Okuno, Osamu

    2004-03-01

    In the present study, the machinability of titanium, Ti-6Al-4V, Ti-6A1-7Nb, and free-cutting brass was evaluated using a milling machine. The metals were slotted with square end mills under four cutting conditions. The cutting force and the rotational speed of the spindle were measured. The cutting forces for Ti-6Al-4V and Ti-6Al-7Nb were higher and that for brass was lower than that for titanium. The rotational speed of the spindle was barely affected by cutting. The cross sections of the Ti-6Al-4V and Ti-6Al-7Nb chips were more clearly serrated than those of titanium, which is an indication of difficult-to-cut metals. There was no marked difference in the surface roughness of the cut surfaces among the metals. Cutting force and the appearance of the metal chips were found to be useful as indices of machinability and will aid in the development of new alloys for dental CAD/CAM and the selection of suitable machining conditions.

  2. Some Ternary Phenylmethoxybis(tetrazolium) Complexes of Vanadium(IV,V) and Their Constants of Association

    OpenAIRE

    Gavazov, Kiril Blazhev; Racheva, Petya Vasileva; Lekova, Vanya Dimitrova; Dimitrov, Atanas Nikolov; Türkyilmaz, Murat; Genç, Fatma

    2012-01-01

    Several liquid-liquid extraction systems containing vanadium {vanadium(IV) or vanadium(V)}, azoderivative of resorcinol {ADR: 4-(2-pyridylazo)-resorcinol (PAR) or 4-(2-thiazolylazo)-resorcinol (TAR)} and (phenylmethoxibis)tetrazolium salts {MBT: 3,3'-(3,3'-dimetoxy-4,4'-biphenylene)-bis(2,5-diphenyl-2H-tetrazolium) chloride (Blue Tetrazolium, BT) or 3,3'-(3,3'-dimetoxy-4,4'-biphenylene)-bis[2,5-di(4-nitrophenyl)-2H-tetrazolium] chloride (Tetranitroblue Tetrazolium, TNBT)} were studied. The op...

  3. The use of vanadium as a scattering standard for pulsed source neutron spectrometers

    International Nuclear Information System (INIS)

    Mayers, J.

    1983-06-01

    The Gaussian approximation for multiphonon cross-sections has been used in a calculation of the variation of vanadium cross-sections with incident neutron energy. The results show that vanadium behaves as an elastic scatterer to within a few percent on pulsed neutron spectrometers with incident neutron energies up to 1 eV. There is a calculated anisotropy in the scattering of 8%. It is found that the scattering properties of vanadium at 77K and 293K differ by a maximum of 1% except for neutron energies < 15 meV. (author)

  4. Distributions of traces of metals on sorption from solutions of vanadium(V)

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turnaov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    A study is made of the distributions of traces of metals between aqueous solutions of vanadium(V) and a solid reagent made by introducing di-2-ethylhexylphosphoric acid into an inert matrix: a nonionic macroporous copolymer of polystyrene with divinyl benzene (wofatit Y 29). As regards degree of extraction, the trace components fall in the series zinc > cadmium > manganese > copper > cobalt, which resemble the extractability series. The vanadium content of the solution and the concentrations of the trace components have virtually no effect on the sorption. The process is effective in concentrating trace components from solutions containing vanadium(V)

  5. Distribution of microimpurities of metals at their sorption from vanadium (5) solutions

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turanov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    Distribution of metal microimpurities (Zn, Mn, Cu, Co, Fe) between aqueous solutions of vanadium (5) and solid extracting agent, prepared by means of introduction of di-2-ethylhexylphosphoric acid into inert matrix-nonionogeneous macropore copolymer of polystyrene with divinylbenzene (vofatit Y-29), has been studied. Accroding to the degree of extraction the microimpurities are arranged in the series: zinc > cadmium > manganese > copper > cobalt, which is similar to the series of extractability. Vanadium content in solution and concentration of microimpurities practically does not affect the sorption. It has been established that the process is effective for microimpurities concentration from solutions containing vanadium (5)

  6. Distribution of microimpurities of metals at their sorption from vanadium (5) solutions

    Energy Technology Data Exchange (ETDEWEB)

    Evseeva, N.K.; Turanov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    Distribution of metal microimpurities (Zn, Mn, Cu, Co, Fe) between aqueous solutions of vanadium (5) and solid extracting agent, prepared by means of introduction of di-2-ethylhexylphosphoric acid into inert matrix-nonionogeneous macropore copolymer of polystyrene with divinylbenzene (vofatit Y-29), has been studied. According to the degree of extraction the microimpurities are arranged in the series: zinc > cadmium > manganese > copper > cobalt, which is similar to the series of extractability. Vanadium content in solution and concentration of microimpurities practically does not affect the sorption. It has been established that the process is effective for microimpurities concentration from solutions containing vanadium (5).

  7. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  8. Rutile vanadium antimonates. A new class of catalysts for selective reduction of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Brazdil, James F.; Ebner, Ann M.; Cavalcanti, Fernando A.P. [BP Chemicals Inc., Cleveland, OH (United States)

    1997-12-31

    This paper describes a new class of vanadium containing oxide catalysts that are active and selective for the selective catalytic reduction of NO with ammonia. Vanadium antimony oxide based catalysts were found to be effective in the conversion of NO with little or no ammonia slippage when tested using gas mixtures containing between 300 and 700ppm NO. X-ray diffraction analyses of the catalysts show that the dominant phase present in the catalyst is vanadium antimonate having a defect rutile crystal structure. The catalysts are active and selective in the ranges of 400-460C and gas hourly space velocities of 3000-8000h{sup -1}

  9. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  10. On change of vanadium carbide state during 20Kh3MVF steel heat treatment

    International Nuclear Information System (INIS)

    Gitgarts, M.I.; Maksimenko, V.N.

    1975-01-01

    The Xray diffraction study of vanadium carbide MC has been made in the steel-20KH3MVF quenched from 970 and 1040 deg and tempered at 660 deg for 210 hrs. It has been found that the constant of the MC crystal lattice regularly varies with the temperature of isothermal hold-up. In the steel tempered after quenching two vanadium carbides of different content could co-exist simultaneously: carbide formed in the quenching process and carbide formed during tempering. The discovered effect of the temperature dependence of the MC content is, evidently, inherent also to other steels containing vanadium

  11. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  12. Appcelerator Titanium patterns and best practices

    CERN Document Server

    Pollentine, Boydlee

    2013-01-01

    The book takes a step-by-step approach to help you understand CommonJS and Titanium architecture patterns, with easy to follow samples and plenty of in-depth explanations If you're an existing Titanium developer or perhaps a new developer looking to start off your Titanium applications "the right way", then this book is for you. With easy to follow examples and a full step-by-step account of architecting a sample application using CommonJS and MVC, along with chapters on new features such as ACS, you'll be implementing enterprise grade Titanium solutions in no time. You should have some JavaSc

  13. Criterion of titanium aviation alloy application

    International Nuclear Information System (INIS)

    Stasyunas, O.P.

    1976-01-01

    The most significant statistic mechanical characteristics are presented of titanium as compared with those of aluminium and steel. Based on these data one can draw conclusions as to the advantages and disadvantages of titanium. High chemical activity and diffusivity of titanium place limitations on the use of its alloys. Despite the promising features of a needle-like structure, specifications still keep relying on a globular structure, which is explained by the easeiness of the production. Titanium is expensive, sometimes its cost may by a factor of 20 exceed that of other aviation materials

  14. Titanium. Properties, raw datum surface, physicochemical basis and fabrication technique

    International Nuclear Information System (INIS)

    Garmata, V.A.; Petrun'ko, A.N.; Galitskij, N.V.; Olesov, Yu.G.; Sandler, R.A.

    1983-01-01

    On the nowadays science and technology achievements the complex of titanium metallurgy problems comprising raw material base, physico-chemical basis and fabrication technique, properties and titanium usage fields is considered for the first time. A particular attention is given to raw material base, manufacturing titanium concentrates and titanium tetrachloride, metallothermal reduction, improvement of metal quality. Data on titanium properties are given, processes of titanium powder metallurgy, scrap and waste processing, problems of economics and complex raw material use are considered

  15. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  16. The vapour phase deposition of boron on titanium by the reaction between gaseous boron trichloride and titanium metal. Final report

    International Nuclear Information System (INIS)

    Cameron, D.J.; Shelton, R.A.J.

    1965-03-01

    The reaction, between boron trichloride vapour and titanium has been investigated in the temperature range 200 - 1350 deg. C. It has been found that an initial reaction leads to the formation of titanium tetrachloride and the deposition of boron on titanium, but that except for reactions between 900 and 1000 deg. C, the system is complicated by the formation of lower titanium chlorides due to secondary reactions between the titanium and titanium tetrachloride

  17. Characterization of vanadium-doped mesoporous titania and its adsorption of gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Phan, Thuy-Duong; Song, Myoung Bock; Yun, Hyunran; Kim, Eui Jung; Oh, Eun-Suok [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of); Shin, Eun Woo, E-mail: ewshin@mail.ulsan.ac.kr [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2011-01-01

    A series of vanadium-doped mesoporous titania with different metal contents was synthesized in the study via a sol-gel process with the assistance of a dodecylamine surfactant. The existence of vanadium ions not only suppressed crystallization and sintering but also enhanced the porosity of the mesoporous TiO{sub 2}. Varying the vanadium concentration led to significant changes in the chemical oxidation state of each component. The presence of metal dopants significantly improved the removal efficiency of benzene and the doping the titania with 5 mol% vanadium removed the most benzene, regardless of the adsorption temperature. The adsorption behavior was elucidated by the specific surface area, the interactions between surface hydroxyl groups and the {pi}-electrons of benzene, and the formation of {sigma}-bonding and d-{pi}* back-donation between the adsorbent and organic compounds.

  18. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    Directory of Open Access Journals (Sweden)

    Ana Lorena Alvarado-Gámez

    2014-02-01

    Full Text Available A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4 and a reproducibility of 8% (n = 3. A study of the possible interferences shows that the presence of Mo(VI, Cr(III, Ca(II and W(VI, may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water.

  19. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Chung, H.M.; Loomis, B.A.; Matsui, H.; Votinov, S.; VanWitzenburg, W.

    1994-01-01

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  20. LPTR irradiation of LLL vanadium tensile specimens and LLL Nb--1Zr tensile specimens

    International Nuclear Information System (INIS)

    MacLean, S.C.; Rowe, C.L.

    1977-01-01

    The LPTR irradiation of 14 LLL vanadium tensile specimens and 14 LLL Nb-1Zr tensile specimens is described. Sample packaging, the irradiation schedule and neutron fluences for three energy ranges are given