WorldWideScience

Sample records for titanium oxide nanotube

  1. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    Science.gov (United States)

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  2. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application

    International Nuclear Information System (INIS)

    Mujawar, Sarfraj H.; Ambade, Swapnil B.; Battumur, T.; Ambade, Rohan B.; Lee, Soo-Hyoung

    2011-01-01

    Highlights: → Polyaniline (PANI)-Titanium nanotube template (TNT) composite for supercapacitors. → The mechanism of the controlled growth of hollow open ended PANI nanotubes using a TNT template is studied. → A rare effort to electropolymerise PANI on TNTs resulting into an appreciable capacitance of 740 F g -1 . - Abstract: Vertically aligned polyaniline (PANI) nanotubes have great potential application in supercapacitor electrode material. In this paper we have investigated facile growth of PANI nanotubes on a titanium nanotube template (TNT) using electrochemical polymerization. The morphology of PANI nanostructures grown over TNT is strongly influenced by the scan rate in the electrochemical polymerization. The growth morphology of PANI nanotubes has been carefully analyzed by field emission scanning electron microscopy. The detailed growth mechanism of PANI nanotubes has been put forward. Specific capacitance value of 740 F g -1 was obtained for PANI nanotube structures (measured at charge-discharge rate of 3 A g -1 ).

  3. Photocatalytic Oxidation of a Volatile Organic Component of Acetaldehyde Using Titanium Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2007-01-01

    Full Text Available Titanium oxide nanotubes are prepared and treated with Au (Au/nanotube sample and Pt (Pt/nanotube sample, and the photoactivity of these catalysts compared to a standard Degussa P25 photocatalyst is investigated. The samples were analyzed using X-ray diffraction, field emission gun scanning transmission electron microscopy (STEM. Both high-resolution TEM images and high-angle annular dark-field (HAAD images were recorded for the specimens. Oxidation of acetaldehyde was used to test the efficiency of the catalysts. Nanotube samples showed better photoactivity than the standard P25, because the P25 titania deactivates quickly. Enhanced reactivity of the nanotube is related to surface charge polarity developed on outer and inner surfaces due to the difference in overlap of oxygen anions that resulted from curving of octahedral sheets. A tentative and qualitative surface polarity model is proposed for enhancing electron-hole pair separation. The inner surface benefits reduction; whereas, the outer surface benefits oxidation reactions. Both the metal identity and the size of the metal particles in the nanotubes affected the photocatalytic activity. Specifically, the addition of platinum increased the activity significantly, and increased the total yield. The addition of gold had lesser impact compared to the platinum. Formation of Pt large nanoparticles on the nanotube surfaces reduces the oxidation reactivity.

  4. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mir Ghasem, E-mail: mg-hosseini@tabrizu.ac.ir; Faraji, Masoud; Momeni, Mohamad Mohsen

    2011-03-31

    Au/TiO{sub 2}/Ti electrodes have been prepared by galvanic deposition of gold particles on TiO{sub 2} nanotube substrates. Titanium oxide nanotubes are fabricated by anodizing titanium foil in a Dimethyl Sulfoxide electrolyte containing fluoride. The scanning electron microscopy results indicated that gold particles are homogeneously deposited on the surface of TiO{sub 2} nanotubes. The TiO{sub 2} layers consist of individual tubes of about 40-80 nm diameters. The electro-catalytic behavior of Au/TiO{sub 2}/Ti and flat gold electrodes for the ascorbic acid electro-oxidation was studied by cyclic voltammetry. The results showed that the flat gold electrode is not suitable for the oxidation of ascorbic acid. However, the Au/TiO{sub 2}/Ti electrodes are shown to possess catalytic activity toward the oxidation reaction. Catalytic oxidation peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve is obtained in the concentration range of 1-5 mM of ascorbic acid. Also, determination of ascorbic acid in real samples was evaluated. The obtained results were found to be satisfactory. Finally the effects of interference on the detection of ascorbic acid were investigated.

  5. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  6. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  7. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  8. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  9. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  10. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    International Nuclear Information System (INIS)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M.

    2016-01-01

    Amorphous titanium dioxide (TiO_2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO_2 nanotubes.

  11. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  12. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  13. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  14. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  15. Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography

    International Nuclear Information System (INIS)

    Abdi, Yaser; Barati, Fatemeh

    2013-01-01

    We report the fabrication of a titanium oxide/carbon nanotube based field emission device suitable for nanolithography and fabrication of transistors. The growth of carbon nanotubes (CNTs) is performed on silicon substrates using a plasma-enhanced chemical vapor deposition method. The vertically grown CNTs are encapsulated by titanium oxide (TiO 2 ) using an atmospheric pressure chemical vapor deposition system. Field emission from the CNTs is realized by mechanical polishing of the prepared structure. Possible applications of such nanostructures as a lithography tool with variable electron beam diameter has been investigated. The obtained results show that a spot size of less than 30 nm can be obtained by applying the proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of the structure for fabrication of field emission based field effect transistors. By a voltage applied between the gate and the cathode electrode, the emission current from CNTs shows a significant drop, indicating proper control of the gate on the emission current. (paper)

  16. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium

    Science.gov (United States)

    Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül

    2017-11-01

    In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.

  17. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  18. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gao, Hongxu; Hou, Feng; Wan, Zhipeng; Zhao, Sha; Yang, Deming; Liu, Jiachen; Guo, Anran; Gong, Yuxuan

    2015-01-01

    Highlights: • CNTs/TiO 2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO 2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO 2 ) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g −1 , as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g −1 ). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO 2 composite films for large-scale production and application in energy devices were shown

  19. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  20. Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction

    CSIR Research Space (South Africa)

    Zheng, Y

    2017-09-01

    Full Text Available measurements. The results confirm the core-shell structure of the prepared TiN@Pt/CNTs catalyst. More importantly, the catalyst exhibits superb mass activity and durability for the methanol oxidation reaction (MOR) than that of the commercial JM Pt/C catalyst...

  1. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  2. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    Science.gov (United States)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  3. Mechanochemistry of titanium oxides

    Directory of Open Access Journals (Sweden)

    Veljković Ivana

    2009-01-01

    Full Text Available Mechanochemistry represents an alternative route in synthesis of nanomaterials. Mechanochemical routes are attractive because of their simplicity, flexibility, and ability to prepare materials by solid state reactions at room temperature. The aim of this work is the mechanochemical synthesis of nanostructured titanium oxides of different composition starting from mixtures of Ti and TiO2, TiO and TiO2 or Ti2O3 and TiO2. Emphasis is on the Magneli phases Ti4O7 and Ti5O9 because their mixture is commercially known as EBONEX material. The materials prepared were characterized by XRPD, TG/DTA analysis, SEM and optical microscopy. Titanium monoxide and several Magneli oxides, Ti4O7, Ti5O9 and Ti6O11, are successfully prepared. The results are very interesting because the EBONEX materials were prepared at lower than usual temperature, which would decrease the effective cost of production.

  4. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Administrator

    mon method is the deposition of bioactive ceramic mate- rials on the metal ... tion of nanoparticle layer, including carbon nanoparti- ... Coatings made of CNTs provide implants with .... reaches composite of CNT built into titanium oxide formed.

  5. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  7. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  8. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  9. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  10. Thermal degradation of TiO2 nanotubes on titanium

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  11. Effects of Titanium Oxide Nanotube Arrays with Different Lengths on the Characteristics of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2013-01-01

    Full Text Available The self-aligned highly ordered TiO2 nanotube (TNT arrays were fabricated by potentiostatic anodization of Ti foil, and we found that the TNT-array length and diameter were dependent on the electrolyte (NH4F concentration in ethylene glycol and anodization time. The characteristics of the fabricated TNT arrays were characterized by XRD pattern, FESEM, and absorption spectrum. As the electrolyte NH4F concentration in the presence of H2O (2 vol% with anodization was changed from 0.25 to 0.75 wt% and the anodization period was increased from 1 to 5 h, the TNT-array length was changed from 9.55 to 30.2 μm and the TNT-array diameter also increased. As NH4F concentration was 0.5 wt%, the prepared TNT arrays were also used to fabricate the dye-sensitized solar cells (DSSCs. We would show that the measured photovoltaic performance of the DSSCs was dependent on the TNT-array length.

  12. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    International Nuclear Information System (INIS)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y.; Awitor, O.K.; Bonnemoy, F.; Bonnet, J.L.; Bohatier, J.

    2011-01-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  13. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  14. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  15. The titanium oxide phi system

    Science.gov (United States)

    Galehouse, D. C.; Davis, S. P.

    1980-01-01

    The phy system of titanium oxide has been studied in emission in the near-infrared, with the Fourier transform spectrometer at a resolution of 8000,000. Approximately 3000 lines from 25 bands of this system have been identified, including all five 0-0 and 0-1 bands corresponding to the five natural titanium isotopes. Eleven vibrational levels have been observed, and all bands have been rotationally analyzed. Band intensities are agreement with known isotopic abundances and calculated Franck-Condon factors.

  16. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  17. Titanium-dioxide nanotube p-n homojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Alivov, Yahya, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  18. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  19. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    Science.gov (United States)

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    International Nuclear Information System (INIS)

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Highlights: • TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L −1 . Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  1. Optical properties of titanium dioxide nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmoula, Mohamed [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sokoloff, Jeffrey; Lu, Wen-Tao; Menon, Latika [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Close, Thomas; Richter, Christiaan, E-mail: christiaan.richter@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York, 14623 (United States)

    2014-01-07

    We present experimental measurements and a theoretical analysis of the near UV to NIR optical properties of free standing titania nanotube arrays. An improved understanding of the optical physics of this type of nanostructure is important to several next generation solar energy conversion technologies. We measured the transmission, reflection, and absorption of the electromagnetic spectrum from 300 nm to 1000 nm (UV to NIR) of titania nanotube arrays. We measured the total, specular, and diffuse reflection and transmission using both single point detection and an integrating sphere spectrometer. We find that the transmission, but not the reflection, of light (UV to NIR) through the nanotube array is well-explained by classic geometric optics using an effective medium model taking into account the conical geometry of the nanotubes. For wavelengths shorter than ∼500 nm, we find the surprising result that the reflection coefficient for light incident on the open side of the nanotube array is greater than the reflection coefficient for light incident on the closed “floor” of the nanotube array. We consider theoretical models based on the eikonal approximation, photonic crystal band theory, and a statistical treatment of scattering to explain the observed data. We attribute the fact that light with wavelengths shorter than 500 nm is more highly reflected from the open than the closed tube side as being due to disorder scattering inside the nanotube array.

  2. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz; Filip, Vladimir; Joska, Ludek

    2015-11-15

    Graphical abstract: - Highlights: • The nanostructured surface on Ti–36Nb–6Ta alloy was prepared by anodic oxidation. • The nanotubes properties were modified by electrochemical process parameters. • The composition and mechanical properties of the anodized surface were investigated. • The adhesive strength of the nanostructures was over 30 MPa. - Abstract: The nanostructuring of titanium and its alloys surfaces is used inter alia for increasing the medical implants osseointegration. Many papers about this topic were published. However, in most cases there were no informations about nanostructures adhesion to the surface, which is crucial from the application point of view. The aim of this study was to prepare nanostructures on titanium beta alloy and optimized its adhesion to the alloy surface. Nanotubes were formed by anodic polarization in electrolyte containing fluoride ions. The composition of the nanotubes was described by X-ray photoelectron spectroscopy. Nanostructures adhesion was tested by pull-of method. The nanotubes on the Ti–36Nb–6Ta beta alloy surface were prepared by anodization. The nanostructures properties were modified by electrochemical process parameters. The adhesion of the nanotubes prepared in this work was satisfactory for implantological applications.

  3. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    International Nuclear Information System (INIS)

    Savalani, M.M.; Ng, C.C.; Li, Q.H.; Man, H.C.

    2012-01-01

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  4. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Savalani, M.M., E-mail: mmfsmm@inet.polyu.edu.hk [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong); Ng, C.C.; Li, Q.H.; Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong)

    2012-01-15

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  5. Titanium oxide fever; De titaniumoxidekoorts

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, D.; Visser, J. [Afdeling Luchtkwaliteit, GGD Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [Dutch] Een van de maatregelen om de luchtkwaliteit te verbeteren is het aanbrengen van fotokatalytische stoffen waarmee NOx kan worden afgevangen op bijvoorbeeld wegdek of op geluidsschermen langs wegen. Over het effect van titaniumoxidehoudende straatklinkers en hierop aangebrachte coatings verscheen in mei 2011 het rapport 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands'. Dit artikel gaat over de manier waarop de effectiviteit in het hiervoor genoemde onderzoek is bepaald. Kunnen titaniumoxidehoudende klinkers en coatings inderdaad NOx afvangen?.

  6. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  7. Engineering a novel material: Nanometric titanium carbide particles in a matrix of carbon nanotubes

    CERN Document Server

    BADIE, Sylvain

    2015-01-01

    New physics studies at ISOLDE are motivated by new beams available, especially beams of exotic nuclei located at the frontier of the nuclear chart. Such beams are often short lived (in the order of milliseconds) and decay before they can be extracted from the target material, where typical diffusion times are in the order of seconds or more. Novel nanostructured and nanocomposite target materials have been developed to increase the release efficiency by reducing the diffusion paths and so the diffusion times, allowing ISOLDE to deliver new and more intense beams of exotic nuclei. 35Ca (25 ms half-life) was attempted by developing a titanium carbide and carbon black nanocomposite, but such isotope could not be extracted. A different production method with different precursors - titanium oxide and multiwall carbon nanotubes - is here proposed and expected to yield a target material which will increase the release rates of such isotope. A novel material, very porous, consisting of titanium carbide particles disp...

  8. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  9. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  10. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    Science.gov (United States)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  11. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  12. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  13. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  14. Diameter of titanium nanotubes influences anti-bacterial efficacy

    International Nuclear Information System (INIS)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J; Alpaslan, Ece

    2011-01-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  15. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J [School of Engineering, Brown University, Providence, RI 02917 (United States); Alpaslan, Ece, E-mail: thomas_webster@brown.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey)

    2011-07-22

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  16. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Science.gov (United States)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  17. Alkalescent nanotube films on a titanium-based implant: A novel approach to enhance biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanxian [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Dong, Chaofang, E-mail: cfdong@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Yang, Sefei [Department of Stomatology, The PLA General Hospital, Beijing 100853 (China); Wu, Junsheng; Xiao, Kui; Huang, Yunhua; Li, Xiaogang [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-03-01

    The interfacial pH value has a marked effect on cell viability because the pro-mineralization activity of osteoblasts increases at alkaline extracellular pH, whereas the pro-resorptive activity of osteoclasts increases under more acidic conditions. To obtain the more favorable alkaline interface, we developed a novel nanotube layer that was incorporated with magnesium oxide on a titanium implant substrate (MgO/NT/Ti) via ethylenediamine tetraacetic acid (EDTA) chelation. This facile immersion-annealing process successfully created a homogeneous magnesium oxide layer with sustained release kinetics and superior hydrophilicity according to the surface characterization and microenvironment measurement. The titania nanotubes on the substrate with an anatase phase exhibited a lower passivation current and a more positive corrosion potential compared with pure titanium, which guaranteed a reasonable corrosion resistance, even when it was wrapped with a magnesium oxide layer. In vitro cell cultures showed that MgO/NT/Ti significantly increased cell proliferation and alkaline phosphatase (ALP) activity. The resulting alkalescent microenvironment created by the MgO layer encouraged the cells to spread into polygonal shapes, accelerated the differentiation stage to osteoblast and induced a higher expression of vinculin. In summary, the incorporated alkalescent microenvironment of MgO/NT/Ti provided a viable approach to stimulate cell proliferation, adhesion, and differentiation and to improve the implant osseointegration. - Highlights: • We developed a novel nanotube layer incorporated with magnesium oxide to obtain a favorable alkaline interface. • The homogeneous magnesium oxide layer exhibited sustained release kinetics. • The resulting alkalescent microenvironment provided a viable approach to improve the implant osseointegration.

  18. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features

    Directory of Open Access Journals (Sweden)

    Balasubramanian K

    2011-08-01

    Full Text Available Amancherla Rajyalakshmi1, Batur Ercan2,3, K Balasubramanian1, Thomas J Webster2,31Non-Ferrous Materials Technology Development Centre, Hyderabad, India; 2School of Engineering, 3Department of Orthopedics, Brown University, Providence, RI, USAAbstract: One of the important prerequisites for a successful orthopedic implant apart from being osteoconductive is the elicitation of a favorable immune response that does not lead to the rejection of the implant by the host tissue. Anodization is one of the simplest surface modification processes used to create nanotextured and nanotubular features on metal oxides which has been shown to improve bone formation. Anodization of titanium (Ti leads to the formation of TiO2 nanotubes on the surface, and the presence of these nanotubes mimics the natural nanoscale features of bone, which in turn contributes to improved bone cell attachment, migration, and proliferation. However, inflammatory cell responses on anodized Ti remains to be tested. It is hypothesized that surface roughness and surface feature size on anodized Ti can be carefully manipulated to control immune cell (specifically, macrophages responses. Here, when Ti samples were anodized at 10 V in the presence of 1% hydrofluoric acid (HF for 1 minute, nanotextured (nonnanotube surfaces were created. When anodization of Ti samples was carried out with 1% HF for 10 minutes at 15 V, nanotubes with 40–50 nm diameters were formed, whereas at 20 V with 1% HF for 10 minutes, nanotubes with 60–70 nm diameters were formed. In this study, a reduced density of macrophages was observed after 24 hours of culture on nanotextured and nanotubular Ti samples which were anodized at 10, 15, and 20 V, compared with conventional unmodified Ti samples. This in vitro study thus demonstrated a reduced density of macrophages on anodized Ti, thereby providing further evidence of the greater efficacy of anodized Ti for orthopedic applications.Keywords: anodization, titanium

  19. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  20. Preparation and elementary research on electrocatalytic hydrogen evolution of highly ordered titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wu Qinglong; Liao Junsheng; Bai Yun

    2010-01-01

    Well ordered and uniform titanium dioxide nanotube arrays were fabricated by anodiaing process from a bath containing 1% NaF, 1mol/L Na 2 SO 4 , 0.5 mol/L H 2 SO 4 at room temperature. Surface morphology of titanium dioxide nanotube arrays were observed with SEM. The formation process of titanium dioxide nanotube arrays was suggested by current-time transient. Its catalytic hydrogen evolution behavior was studied by electrochemical measurements in a 5%(mass fraction) H 2 SO 4 solution. The results showed that the titanium dioxide nanotube arrays on titanium had better hydrogen evolution activity and trace palladium lead to the maximum electrocatalytic activity of hydrogen production. (authors)

  1. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    Science.gov (United States)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from

  2. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Mei; Guo Daojun; Li Hulin

    2005-01-01

    Electro-oxidation of methanol in sulfuric acid solution was studied using palladium well-dispersed on titanium nanotubes, in relation to methanol oxidation processes in the direct oxidation methanol fuel cell. Pd dispersed on titania nanotubes, which leads to high surface area substrates, showed excellent catalytic activities compared to those of pure Pd and Pd-TiO 2 nanoparticles. TEM results show a narrow distribution of TiO 2 nanoparticles whose particle size is about 10nm, and uniform nano-sized TiO 2 nanotubes with 10nm in diameters are seen from HRTEM . A homogeneous structure in the composite nanomaterials is indicated by XRD analysis. The composite electrode activities were measured by cyclic voltammetry (CV) and at 25 deg. C it was found that 3wt% Pd in titania nanotubes had the best activity for methanol oxidation

  3. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wang, Wei; Xie, Yibing; Du, Hongxiu; Xia, Chi; Wang, Yong; Tian, Fang

    2014-01-01

    A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO 2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM −1 cm −2 , and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication. (author)

  4. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.

    Science.gov (United States)

    Oliveira, Weslley F; Arruda, Isabel R S; Silva, Germana M M; Machado, Giovanna; Coelho, Luana C B B; Correia, Maria T S

    2017-12-01

    Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  6. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  7. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  8. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...

  10. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  11. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  12. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  13. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies

    Science.gov (United States)

    Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela

    2018-01-01

    The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration. PMID:29495318

  14. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  15. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Webster, Thomas J [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-23

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  16. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Webster, Thomas J

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants

  17. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  18. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  19. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  20. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    Energy Technology Data Exchange (ETDEWEB)

    Cendrowski, Krzysztof, E-mail: kcendrowski@zut.edu.pl [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland); Jedrzejczak, Malgorzata [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Peruzynska, Magdalena [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Dybus, Andrzej [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Drozdzik, Marek [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Mijowska, Ewa [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland)

    2014-08-25

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO{sub 2}-MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO{sub 2} and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO{sub 2}–MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst.

  1. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    International Nuclear Information System (INIS)

    Cendrowski, Krzysztof; Jedrzejczak, Malgorzata; Peruzynska, Magdalena; Dybus, Andrzej; Drozdzik, Marek; Mijowska, Ewa

    2014-01-01

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO 2 -MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO 2 and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO 2 –MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst

  2. Molecular geometries and relative stabilities of titanium oxide and gold-titanium oxide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Rohan J.; Falcinella, Alexander; Metha, Gregory F., E-mail: greg.metha@adelaide.edu.au

    2016-09-30

    Titanium oxide and gold-titanium oxide clusters of stoichiometry M{sub x}O{sub y} (M{sub x} = Ti{sub 3}, Ti{sub 4} & AuTi{sub 3}; y = 0 − (2x + 2)) have been investigated using density functional theory. Geometries of determined global energy minimum structures are reported and other isomers predicted up to 0.5 eV higher in energy. The Ti{sub 3}O{sub n} geometries build upon a triangular Ti{sub 3} motif, while Ti{sub 4}O{sub n} stoichiometries template upon a pseudo-tetrahedral Ti{sub 4} structure. Addition of a gold atom to the Ti{sub 3}O{sub n} series does not significantly alter the cluster geometry, with the gold atom preferentially binding to titanium atoms over oxygen atoms. Adiabatic ionization energies, electron affinities and HOMO/LUMO energies increase in magnitude with increasing oxygenation. The HOMO-LUMO energy gaps reach the bulk anatase band gap energy at stoichiometry (Au)Ti{sub m}O{sub 2m−1}, and increase above this upon further oxygen addition. The most stable structural moieties are found to be a cage-like, C{sub 3v} symmetric Ti{sub 4}O{sub 6/7} geometry and a Ti{sub 3}O{sub 6} structure with an η{sup 3}-bound oxygen atom.

  3. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  4. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  5. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents

    Directory of Open Access Journals (Sweden)

    Eli Fine

    2009-04-01

    Full Text Available Eli Fine1, Lijie Zhang1, Hicham Fenniri2, Thomas J Webster1 1Department of Engineering, Brown University, Providence, RI, USA; 2National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, AB, CanadaAbstract: One of the main problems with current vascular stents is a lack of endothelial cell interactions, which if sufficient, would create a uniform healthy endothelium masking the underlying foreign metal from inflammatory cell interference. Moreover, if endothelial cells from the arterial wall do not adhere to the stent, the stent can become loose and dislodge. Therefore, the objective of this in vitro study was to design a novel biomimetic nanostructured coating (that does not contain drugs on conventional vascular stent materials (specifically, titanium for improving vascular stent applications. Rosette nanotubes (RNTs are a new class of biomimetic nanotubes that self-assemble from DNA base analogs and have been shown in previous studies to sufficiently coat titanium and enhance osteoblast cell functions. RNTs have many desirable properties for use as vascular stent coatings including spontaneous self-assembly in body fluids, tailorable surface chemistry for specific implant applications, and nanoscale dimensions similar to those of the natural vascular extracellular matrix. Importantly, the results of this study provided the first evidence that RNTs functionalized with lysine (RNT–K, even at low concentrations, significantly increase endothelial cell density over uncoated titanium. Specifically, 0.01 mg/mL RNT–K coated titanium increased endothelial cell density by 37% and 52% compared to uncoated titanium after 4 h and three days, respectively. The excellent cytocompatibility properties of RNTs (as demonstrated here for the first time for endothelial cells suggest the need for the further exploration of these novel nanostructured materials for vascular stent applications.Keywords: stents

  6. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  7. Thermal Analysis of Copper-Titanium-Multiwall Carbon Nanotube Composites.

    Science.gov (United States)

    Hamamda, Smail; Jari, Ahmed; Revo, S; Ivanenko, K; Jari, Youcef; Avramenko, T

    2017-12-01

    The aim of this research is the thermostructural study of Cu-Ti, Cu-Ti 1 vol% multiwall carbon nanotubes (MWCNTs) and Cu-Ti 3 vol% MWCNTs. Several investigation techniques were used to achieve this objective. Dilatometric data show that the coefficient of thermal expansion of the nanocomposite containing less multiwall carbon nanotubes is linear and small. The same nanocomposite exhibits regular heat transfer and weak mass exchange with the environment. Raman spectroscopy shows that the nanocomposite with more MWCNTs contains more defects. This implies that the carbon nanotubes have better dispersion in Cu-Ti 1 vol% MWCNTs. Infrared spectroscopy reveals that Cu-Ti 1 vol% MWCNTs has better crystallinity than Cu-Ti 3 vol% MWCNTs.

  8. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    Science.gov (United States)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  9. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  10. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  11. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells.

    Science.gov (United States)

    Chang, Chih-Hung; Lee, Hsin-Chun; Chen, Chia-Chun; Wu, Yi-Hau; Hsu, Yuan-Ming; Chang, Yin-Pen; Yang, Ta-I; Fang, Hsu-Wei

    2012-07-01

    Titanium oxide (TiO(2) ) surface layers with various surface nanostructures (nanotubes and nanowires) have been developed using an anodizing technique. The pore size and length of TiO(2) nanotubes can be tailored by changing the anodizing time and applied voltage. We developed a novel method to transform the upper part of the formed TiO(2) nanotubes into a nanowire-like structure by rotating the titanium anode during anodizing process. The transformation of nanotubes contributed to the preferential chemical dissolution of TiO(2) on the areas with intense interface tension stress. Furthermore, we further compared the effect of various TiO(2) surface nanostructures including flat, nanotubes, and nanowires on bioactive applications. The MG-63 osteoblastic cells cultured on the TiO(2) nanowires exhibited a polygonal shape with extending filopodia and showed highest levels of cell viability and alkaline phosphatase activity (ALP). The TiO(2) nanowire structure formed by our novel method can provide beneficial effects for MG-63 osteoblastic cells in attachment, proliferation, and secretion of ALP on the TiO(2) surface layer. Copyright © 2012 Wiley Periodicals, Inc.

  12. Titanium dioxide nanotubes/polyhydroxyfullerene composites for formic acid photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Hamandi, Marwa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Berhault, Gilles, E-mail: gilles.berhault@ircelyon.univ-lyon1.fr [Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, University of Lyon I, Villeurbanne 69100 (France); Dappozze, Frederic; Guillard, Chantal [Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, University of Lyon I, Villeurbanne 69100 (France); Kochkar, Hafedh, E-mail: h_kochkar@yahoo.fr [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Laboratoire de Valorisation des Matériaux Utiles, Centre National de Recherches en Sciences des Matériaux (CNRSM), Technopôle Borj-Cédria, 8027 Soliman (Tunisia)

    2017-08-01

    Highlights: • Polyhydroxyfullerene (PHF) decorating TiO{sub 2} nanostructured materials. • PHF helps to maintain surface oxygen vacancies at the TiO{sub 2} surface. • PHF improves the faradic current across the semiconductor interface. • Higher photocatalytic activity is achieved for monolayer PHF onto TiO{sub 2} nanotubes. - Abstract: The influence of polyhydroxyfullerene (PHF) on the photocatalytic properties of calcined hydrogenotitanate nanotubes (HNT) were evaluated in the present study. PHF-HNT nanocomposites were first characterized by N{sub 2} adsorption-desorption measurements, X-ray diffraction, X-ray photoelectron, electron paramagnetic resonance and UV–vis diffuse reflectance spectroscopies, transmission electron microscopy, photoluminescence, and photocurrent experiments. Correlation was then established with the photocatalytic properties of PHF-HNT nanocomposites during the photodegradation of formic acid.

  13. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  14. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  15. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  16. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan; Gao, Nong, E-mail: N.Gao@soton.ac.uk; Starink, Marco J.

    2016-11-30

    Highlights: • HPT has substantially improved the UTS and Hv of pure Ti. • TNT layers was fabricated on UFG Ti made by HPT. • Influence of sample preparation on TNT layers was systematically studied. • Oxide dissolution was accelerated when TNTs formed on the HPT sample. - Abstract: Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH{sub 4}F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  17. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  18. Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Cummings, F.R. [University of the Western Cape, Electron Microscopy Unit, Physics Department, Bellville 7535, Cape Town (South Africa); Turco, S. Lo; Ntwaeaborwa, O.M. [Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)-CNR, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2016-03-31

    Thin films of titanium were deposited on a glass substrate using electron beam evaporator. Femtosecond laser pulses were focused on the surface of the films, and the samples were scanned while mounted on the motorized computer-controlled motion stage to produce an areal modification of the films. X-ray diffraction of the laser-patterned samples showed evidence of the formation of a γ-Ti{sub 3}O{sub 5} with a monoclinic phase. Rutherford backscattering spectrometry simulation showed that there is an increase in the oxygen concentration as the average laser fluence is increased. Time of flight secondary ions mass spectrometry analysis showed an even distribution of the titanium and oxygen ions on the sample and also ionized molecules of the oxides of titanium were observed. The formation of the oxide of titanium was further supported using the UV–Vis-NIR spectroscopy, which showed that for 0.1 J/cm{sup 2} fluence, the laser-exposed film showed the electron transfer band and the d–d transition peak of titanium was observed at lower wavelengths. - Highlights: • γ-Ti{sub 3}O{sub 5} formed using femtosecond laser. • Fluence and oxygen relation were studied. • Nanoflakes of γ-Ti{sub 3}O{sub 5} were observed under HRSEM.

  19. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  20. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences Unviersiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar (Malaysia); Abbasi, S. H., E-mail: sarfrazabbasi@gmail.com [SABIC Plastic Application Development Center, Riyadh Technovalley, Riyadh (Saudi Arabia)

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  1. ONIOM Studies of Esterification at Oxidized Carbon Nanotube Tips

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Torres, F F; Basiuk, V A [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior C.U., A. Postal 70-543, 04510 Mexico D. F. (Mexico)

    2007-03-15

    Esterification of oxidized carbon nanotubes (CNTs) can open a new route for the separation of zigzag and armchair nanotubes. We studied theoretically (by using hybrid DFT within the ONIOM embedding protocol) the reactions of monocarboxy-substituted oxidized tips of zigzag and armchair single-walled CNTs (SWCNTs) with methanol. According to the calculated values of activation energy, Gibbs free-activation barriers, and enthalpies of formation for the SWCNT-(COOH)H5 models, the zigzag nanotube isomer is more reactive as compared to its armchair counterpart. For other models we obtained variable results.

  2. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  3. Modification of titanium oxide membranes by Pt electrodeposition

    International Nuclear Information System (INIS)

    Avalle, L.; Santos, E.; Leiva, E.P.M.; Macagno, V.A.

    1990-01-01

    Electrochemistry techniques mainly voltamperometry and measures of impedance with titanium oxides changed by platinum atoms incorporation, were studied. This changes production some alteration in the physical chemical and electrocatalytic properties, as an example the improvement of corrosion resistance and the uses in nuclear industry. (author)

  4. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Science.gov (United States)

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  5. Oxidation behaviour of titanium in high temperature steam

    Energy Technology Data Exchange (ETDEWEB)

    Moroishi, T; Shida, Y [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Central Research Labs.

    1978-03-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550/sup 0/C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500/sup 0/C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550/sup 0/C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450/sup 0/C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO/sub 2/. Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO/sub 2/ scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal.

  6. Oxidation behaviour of titanium in high temperature steam

    International Nuclear Information System (INIS)

    Moroishi, Taishi; Shida, Yoshiaki

    1978-01-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550 0 C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500 0 C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550 0 C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450 0 C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO 2 . Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO 2 scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal. (auth.)

  7. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  8. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    Science.gov (United States)

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  9. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V

    Czech Academy of Sciences Publication Activity Database

    Moravec, H.; Vandrovcová, Marta; Chotová, K.; Fojt, J.; Průchová, E.; Joska, L.; Bačáková, Lucie

    2016-01-01

    Roč. 65, Aug 1 (2016), s. 313-322 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 Keywords : titanium * electrochemical oxidation * hydrothermal modification * thermal treatment * protein adsorption * cell interaction Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.164, year: 2016

  10. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  11. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  12. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  13. Ultrahighly Dispersed Titanium Oxide on Silica : Effect of Precursors on the Structure and Photocatalysis

    OpenAIRE

    Yoshida , S.; Takenaka , S.; Tanaka , T.; Funabiki , T.

    1997-01-01

    The effect of precursor on the dispersion and catalytic performance of titanium oxide supported on silica has ben investigated. The catalysts were prepared by a simple impregnation method with three kinds of titanium complexes of different ligands (bis(isopropyato)-bis(pivaroylmethanato) : DPM, acetylacetonato : ACAC, tetrakis(isopropylato) : IPRO) with the aim of preparing ultrahighly dispersed titanium oxide on silica. The XAFS study revealed that titanium species in the catalyst prepared f...

  14. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  15. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna

    2013-09-27

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  16. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna; Achour, Amine; Peszke, Jerzy; Hamana, Djamel; Achour, Slimane

    2013-01-01

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  17. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  18. Micromorphology and structure of vanadium oxide nanotubes

    International Nuclear Information System (INIS)

    Grigor'eva, A.V.; Anikina, A.V.; Tarasov, A.B.; Gudilin, E.A.; Knot'ko, A.V.; Volkov, V.V.; Dembo, K.A.; Tret'yakov, Yu.D.

    2006-01-01

    Complex analysis of structural features of V 2 O 5 nanotubes prepared using molecular template, i.e. hexadecyl amine-1 (HDA), was made using the methods of X-ray diffraction, electron microscopy and IR spectroscopy. It has been ascertained that the nanotubes studied are hybrid inorganic-organic material composed of periodically arranged ordered layers of V-O, forming multilayer walls and HDA molecules between them [ru

  19. Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangzhong; Cheng, Li [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research (China); Yang, Hui-lin [Department of Orthopaedics, Wuxi People' s Hospital, Nanjing Medical University, Jiangsu Province (China); Zhao, Quan-ming, E-mail: abc8385@163.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2016-07-15

    Although titanium (Ti) and its alloys have been widely used as implants in clinical settings, failures still occur mainly due to poor bioactivity and implant-associated infections. Here, we coated Ti implants with TiO{sub 2} nanotubes (TNTs) incorporated with the antibacterial agent Ag to produce Ag-TNTs, through anodization in AgNO{sub 3} and xenon light irradiation. We characterized surface morphology and composition of the coating with scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. We investigated surface topography of the coatings by atomic force microscopy (AFM) operated in the tapping mode. The results indicate that Ag was successfully doped onto the TNTs, and that the nanoparticles were mainly distributed on the surface of TNTs. Finally, our antibacterial experiments reveal that Ag-TNTs on Ti implants exhibit excellent antibacterial activities, which promises to have significant clinical applications as implants. (author)

  20. Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method

    International Nuclear Information System (INIS)

    Gopi, D.; Shinyjoy, E.; Sekar, M.; Surendiran, M.; Kavitha, L.; Sampath Kumar, T.S.

    2013-01-01

    Highlights: •Successful development of CNTs reinforced HAP coating on Ti by electrodeposition. •CNTs as a reinforcing material imparts strength and toughness to HAP. •Incorporating CNTs improves crystallinity, morphology, biological properties of HAP. •CNTs–HAP coating on Ti is bioresistive, better candidate for implant applications. -- Abstract: Carbon nanotubes (CNTs) are outstanding reinforcement material for imparting strength and toughness to brittle hydroxyapatite (HAP). This work reports the electrodeposition of CNTs reinforced HAP on titanium substrate at −1.4 V vs. SCE during 30 min with the functionalised CNTs concentration ranging from 0 to 2 wt.%. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HRTEM), mechanical and biological studies were used to characterise the coatings. Also, the corrosion resistance of the coatings was evaluated by electrochemical techniques in simulated body fluid (SBF) solution

  1. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  2. pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction

    KAUST Repository

    Buchholcz, Balázs

    2017-02-06

    Improving the catalytic activity of heterogeneous photocatalysts has become a hot topic recently. To this end, considerable progress has been made in the efficient separation of photogenerated charge carriers by e.g. the realization of heterojunction photocatalysts. V-VI-VII compound semiconductors, namely, bismuth oxyhalides, are popular photocatalysts. However, results on antimony oxyhalides [SbOX (X = Br, Cl, I)], the very promising alternatives to the well-known BiOX photomodifiers, are scarce. Here, we report the successful decoration of titanium oxide nanostructures with 8-11 nm diameter SbOX nanoparticles for the first time ever. The product size and stoichiometry could be controlled by the pH of the reactant mixture, while subsequent calcination could transform the structure of the titanate nanotube (TiONT) support and the prepared antimony oxychloride particles. In contrast to the ease of composite formation in the SbOX/TiONT case, anatase TiO could not facilitate the formation of antimony oxychloride nanoparticles on its surface. The titanate nanotube-based composites showed activity in a generally accepted quasi-standard photocatalytic test reaction (methyl orange dye decolorization). We found that the SbOCl/TiONT synthesized at pH = 1 is the most active sample in a broad temperature range.

  3. Self-cleaning glass coating containing titanium oxide and silicon

    International Nuclear Information System (INIS)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  4. Self-cleaning glasses containing nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  5. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  6. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  7. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  8. Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes

    International Nuclear Information System (INIS)

    Hamlekhan, Azhang; Shokuhfar, Tolou; Sinha-Ray, Suman; Yarin, Alexander L; Takoudis, Christos; Mathew, Mathew T; Sukotjo, Cortino

    2015-01-01

    Formation of titanium dioxide nanotubes (TNTs) on a titanium surface holds great potential for promoting desirable cellular response. However, prolongation of drug release from these nano-reservoirs remains to be a challenge. In our previous work TNTs were successfully loaded with a drug. In this study the effect of TNTs dimensions on prolongation of drug release is quantified aiming at the introduction of a simple novel technique which overcomes complications of previously introduced methods. Different groups of TNTs with different lengths and diameters are fabricated. Samples are loaded with a model drug and rate of drug release over time is monitored. The relation of the drug release rate to the TNT dimensions (diameter, length, aspect ratio and volume) is established. The results show that an increase in any of these parameters increases the duration of the release process. However, the strongest parameter affecting the drug release is the aspect ratio. In fact, TNTs with higher aspect ratios release drug slower. It is revealed that drug release from TNT is a diffusion-limited process. Assuming that diffusion of drug in (Phosphate-Buffered Saline) PBS follows one-dimensional Fick’s law, the theoretical predictions for drug release profile is compatible with our experimental data for release from a single TNT. (paper)

  9. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    Science.gov (United States)

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  10. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  11. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2005-06-01

    Full Text Available The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison with the n-butane reaction allowed different activation pathways for the activation of alkanes to be proposed. The catalytic properties of TiP2O7 in the oxidative dehydrogenation of isobutane was also compared to those obtained previously with several other pyrophosphates and TiP2O7 was found to be less active and selective for this reaction.

  12. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  13. Guided self-assembly of nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Wang Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu Yingda

    2012-01-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO x nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO x nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO x nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO x nanorods with rough surfaces are formed by the self-assembly of TiO x nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO x nanorods shows stronger ER properties than that of the other nanostructured TiO x particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect. (paper)

  14. Guided self-assembly of nanostructured titanium oxide

    Science.gov (United States)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  15. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    Science.gov (United States)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  16. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  17. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Directory of Open Access Journals (Sweden)

    Kulkarni M

    2015-02-01

    Full Text Available Mukta Kulkarni,1,* Ajda Flašker,1,* Maruša Lokar,1 Katjuša Mrak-Poljšak,2 Anca Mazare,3 Andrej Artenjak,4 Saša Čučnik,2 Slavko Kralj,5 Aljaž Velikonja,1 Patrik Schmuki,3 Veronika Kralj-Iglič,6 Snezna Sodin-Semrl,2,7 Aleš Iglič11Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 2Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany; 4Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia; 5Department for Materials Synthesis, Institute Jožef Stefan (IJS, Ljubljana, Slovenia; 6Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 7Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia *These authors contributed equally to this workAbstract: Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2 nanotubes (NTs by electrochemical anodization. The zeta potential (ζ-potential of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm. We also showed a dose

  18. Oxidation behaviour of the near α-titanium alloy IMI 834

    Indian Academy of Sciences (India)

    Unknown

    Oxidation behaviour of the near α-titanium alloy IMI 834 was investigated over a range of tem- peratures, from ... perties and adequate resistance against environmental degradation. ... the change of weight of the specimen. The oxidation data.

  19. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  20. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Effects of titanium on a ferritic steel oxidation at 950 C

    Energy Technology Data Exchange (ETDEWEB)

    Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; El Messki, S.; Karimi, N. [Lab. Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), IUT de Clermont-Fd1 - Dept. de Chimie - Science des materiaux, Le Puy en Velay (France); Antoni, L. [CEA Grenoble, DTEN/SCSE/LHPAC (France)

    2004-07-01

    This work presents the titanium effect on the oxidation behaviour of chromia-forming alloys at 950 C. When the amount of titanium is high enough in the substrate, in situ XRD permit to show that this element reacts with oxygen to form Cr{sub 2}TiO{sub 5}. This oxide is quickly transformed into TiO{sub 2} during the first hours of oxidation. These oxides contribute to an increase of the mass gain registered. Titanium leads to a doping effect of the chromia layer inducing an increase of the cationic vacancies concentration and chromium diffusion. (orig.)

  2. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  3. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  4. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  5. Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates

    Directory of Open Access Journals (Sweden)

    Chuantong Liu

    2012-04-01

    Full Text Available In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2 double layer coatings were successfully developed on titanium (Ti substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement.

  6. Production and characterization of a novel carbon nanotube/titanium nitride nanocomposite

    Science.gov (United States)

    Baddour, Carole Emilie; Das, Kaushik; Vengallatore, Srikar; Meunier, Jean-Luc

    2016-12-01

    A novel titanium nitride (TiN)/carbon nanotube (CNT) nanocomposite is produced with the purpose to mechanically, structurally and chemically stabilize a ‘felt-like’ CNT growth structure. The CNTs are grown on stainless steel (SS) 304 by chemical vapor deposition using the direct growth method previously developed, which does not require the use of an additional catalyst precursor. The TiN coating is achieved by physical vapor deposition and is shown here to generate a nanocomposite with a porous three-dimensional architecture. The contact stiffness is evaluated using nanoindentation, and wetting properties of the TiN/CNT nanocomposites are determined from contact angle measurements. An increase in contact stiffness and effective elastic modulus with TiN coating time was observed. The TiN coating on the non-wetting CNT felt results in a wetting nanocomposite surface. The wetting property is found to be a function of the TiN coating thickness on the CNT structure.

  7. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Doped titanium oxide photcatalysts: Preparation, structure and interaction with viruses

    Science.gov (United States)

    Li, Qi

    Since the discovery of photoelectrochemical splitting of water on n-titanium oxide (n-TiO2) electrodes by Fujishima and Honda in 1972, there has been much interest in semiconductor-based materials as photocatalysts for both solar energy conversion and environmental applications in the past several decades. Among various semiconductor-based photocatalysts, TiO2 is the only candidate suitable for industrial use because of its high chemical stability, good photoactivity, relatively low cost, and nontoxicity. However, the photocatalytic capability of TiO 2 is limited to only ultraviolet (UV) light (wavelength, lambda, strategy to use atomic force microscope (AFM) to conduct in-situ observation of viruses on semiconductor surfaces in aqueous environment was developed, which combines information from both height profile and phase profile and solves the difficulty of observing small nanosized biomolecules on substrates with similar feature sizes.

  9. Synthesis and characterization of titanium oxide/bismuth sulfide nanorods for solar cells applications

    International Nuclear Information System (INIS)

    Solis, M.; Rincon, M. E.

    2008-01-01

    In the present work is showed the synthesis and characterization of titanium oxide/bismuth sulfide nanowires hetero-junctions for solar cells applications. Conductive glass substrates (Corning 25 x 75 mm) were coated with a thin layer of sol-gel TiO2 and used as substrates for the subsequent deposition of bismuth sulfide nanorods (BN). TiO2 films (∼400 nm) were deposited with a semiautomatic immersion system with controlled immersion/withdraw velocity, using titanium isopropoxide as the titania precursor [1]. For BN synthesis and deposition, the solvo-thermal method was used, introducing air annealed TiO2-substrates in the autoclave. The typical bilayer TiO2/BN hetero-junction was 600 nm thick. The synthesized materials (powders and films) were characterized by X-Ray Diffraction, Scanning Electron Microscopy, and UV-Visible Spectroscopy. Anatase was the crystalline phase of TiO2, while bismuth sulfide nanotubes show a diffraction pattern characteristic of bismuthinite distorted by the preferential growth of some planes [2-4]. The optoelectronic characterization of TiO2/NB hetero-junctions was compared with hetero-junctions obtained by sensitizing TiO2 with chemically deposited bismuth sulfide films. Bismuth sulfide nanowires are 2µm long and 70nm wide (aspect ratio L/D = 43), while chemically deposited bismuth sulfide have L/D = 1, therefore the effect of particle size evaluation and geometry in the photosensitization phenomena will be discussed in the context of new materials for solar-cells applications. (Full text)

  10. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  11. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  12. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  13. Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative/ionic liquid for simultaneous determination of isoproterenol and serotonin

    International Nuclear Information System (INIS)

    Mazloum-Ardakani, Mohammad; Khoshroo, Alireza

    2014-01-01

    Highlights: • TiO 2 and benzofuran derivative were uniformly deposited onto carbon nanotubes • This nanocomposite can be used as a sensor in isoproterenol detection • This sensor shows a great enhancement in sensitivity, selectivity and stability - Abstract: In this paper we report synthesis and application of functionalized multiwalled carbon nanotubes (CNTs) with titanium dioxide nanoparticles (TiO 2 ), 9-(1,3-dithiolan-2-yl)-6,7-dihydroxy-3,3-dimethyl-3,4-dihydrodibenzo[b,d] furan-1(2H)-one (benzofuran derivative (DDF)) and 1-butyl-3-methylimidazolium tetrafluoroborate (IL) as high sensitive sensors for simultaneous determination of isoproterenol (IP) and serotonin (5-HT) using glassy carbon electrode. The modified electrode was characterized by different methods including a scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and voltammetry. A pair of well-defined redox peaks of DDF was obtained at the modified glassy carbon electrode by direct electron transfer between the DDF and the electrode. Dramatically enhanced electrocatalytic activity was exemplified at the modified electrode, as an electrochemical sensor to study the electro oxidation of IP and 5-HT. The differential pulse voltammetry data showed that the obtained anodic peak currents were linearly dependent on the IP and 5-HT concentrations in the range of 0.1–1300.0 and 1.0–650.0 μM, respectively. The applicability of the modified electrode was demonstrated by simultaneous determination of IP and 5-HT in human serum

  14. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  15. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2017-11-01

    Full Text Available Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM and transmission electron microscopy (TEM micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM. The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes.

  16. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Science.gov (United States)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  17. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning

    Czech Academy of Sciences Publication Activity Database

    Motola, M.; Satrapinskyy, L.; Roch, T.; Šubrt, Jan; Kupčík, Jaroslav; Klementová, Mariana; Jakubičková, M.; Peterka, F.; Plesch, G.

    2017-01-01

    Roč. 287, JUN (2017), s. 59-64 ISSN 0920-5861. [European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA) /9./. Strasbourg, 13.06.2016-17.06.2016] R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Titanium mesh * Anatase nanotubes array * Liquid state deposition * NOx removal * Photocatalysis Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  18. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  19. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  20. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.

  1. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  2. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  3. Characterization polyethylene terephthalate nanocomposites mixing with nano-silica and titanium oxide

    Directory of Open Access Journals (Sweden)

    Rusu Mircea A.

    2017-01-01

    Full Text Available Polyethylene terephthalate (PET based nanocomposites containing nano-silica (Aerosil (Degusa and titanium oxide (TiO2 (Merk were prepared by melt compounding. Influence of nano-silica and titanium oxide on properties of the resulting nanocomposites was investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and atomic force microscopy (AFM. The possible interaction between nano-silica and titanium oxide particles with PET functional groups at bulk and surface was elucidated by transmission of FTIR-ATR spectroscopy. AFM studies of the resulting nanocomposites showed an increased surface roughness compared to pure PET. SEM images illustrated that nano-silica particles have tendency to migrate to the surface of the PET matrix much more than titanium oxide powder.

  4. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  5. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  6. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  7. Microstructural variation in titanium oxide thin films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Kamruddin, M.; Tyagi, A.K.

    2013-01-01

    We report on the microstructural evolution of titanium oxide thin films deposited by reactive DC magnetron sputtering using titanium metal target. By varying the ratio of sputter-gas mixture containing argon, oxygen and nitrogen various phases of titanium oxide, almost pure rutile, rutile-rich and anatase-rich nano-crystalline, were deposited on Si substrates at room temperature. Using high-resolution scanning electron microscopy, X-ray diffraction and micro-Raman techniques the microstructure of the films were revealed. The relationship between the microstructure of the films and the oxygen partial pressure during sputtering is discussed

  8. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  9. Viscous properties of aluminum oxide nanotubes and aluminium oxide nanoparticles - silicone oil suspensions

    Science.gov (United States)

    Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen

    2010-03-01

    Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.

  10. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    Science.gov (United States)

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  12. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  13. Photo-assisted electrochemical oxidation of the urea onto TiO2-nanotubes modified by hematite

    Directory of Open Access Journals (Sweden)

    Waleed M. Omymen

    2017-12-01

    Full Text Available The electrochemical oxidation of the urea in near neutral pH is investigated on platinum electrode. It is shown that oxidation reaction is practically inhibited up to the potentials of ∼0.9 V. The same reaction is investigated onto electrochemically obtained titanium dioxide nanotubes modified by hematite using facile, low-cost successive ion layer adsorption and reaction (SILAR method. It is shown that such system possesses electrocatalytic activity at very low potentials, and activity can be further improved by the illumination of the electrode in the photo-assisted reaction. The possible application of the photoactive anode is considered in the application of urea based water electrolysis and urea based fuel cell. Keywords: Photoelectrochemical cell, Water electrolysis, Fuel cell, SILAR

  14. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  15. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  16. Carbon nanotube transistors with graphene oxide films as gate dielectrics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Carbon nanomaterials,including the one-dimensional(1-D) carbon nanotube(CNT) and two-dimensional(2-D) graphene,are heralded as ideal candidates for next generation nanoelectronics.An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide.Here,in analogy to the widespread use of silicon dioxide(SiO2) in silicon microelectronic industry,we report the proof-of-principle use of graphite oxide(GO) as a gate dielectrics for CNT field-effect transistor(FET) via a fast and simple solution-based processing in the ambient condition.The exceptional transistor characteristics,including low operation voltage(2 V),high carrier mobility(950 cm2/V-1 s-1),and the negligible gate hysteresis,suggest a potential route to the future all-carbon nanoelectronics.

  17. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins.

    Science.gov (United States)

    Hirano, Atsushi; Kameda, Tomoshi; Wada, Momoyo; Tanaka, Takeshi; Kataura, Hiromichi

    2017-10-19

    The adsorption of proteins onto nanoparticles such as carbon nanotubes (CNTs) governs the early stages of nanoparticle uptake into biological systems. Previous studies regarding these adsorption processes have primarily focused on the physical interactions between proteins and nanoparticles. In this study, using reduced lysozyme and intact human serum albumin in aqueous solutions, we demonstrated that CNTs interact chemically with proteins. The CNTs induce the oxidation of cysteine residues of the proteins, which is accounted for by charge transfer from the sulfhydryl groups of the cysteine residues to the CNTs. The redox reaction simultaneously suppresses the intermolecular association of proteins via disulfide bonds. These results suggest that CNTs can affect the folding and oxidation degree of proteins in biological systems such as blood and cytosol.

  18. Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA)

    International Nuclear Information System (INIS)

    Alberton, J; Martelli, S M; Soldi, V; Fakhouri, F M

    2014-01-01

    Polylactic acid (PLA) has been larger used in biomedical field due to its low toxicity and biodegradability. The aim of this study was to produce PLLA nanocomposites, by melt extrusion, containing Halloysite nanotubes (HNT) and/or titanium dioxide (TiO 2 ) nanoparticles. Immediately after drying, PLLA was mechanically homogenized with the nanofillers and then melt blended using a single screw extruder (L/D = 30) at a speed of 110 rpm, with three heating zones in which the following temperatures were maintained: 150, 150 and 160°C (AX Plasticos model AX14 LD30). The film samples were obtained by compression molding in a press with a temperature profile of 235 ± 5°C for 2.5 min, after pressing, films were cooled up to room temperature. The mechanical tests were performed according to ASTM D882-09 and the water vapor permeability (WVP) was measured according to ASTM E-96, in triplicate. The tensile properties indicated that the modulus was improved with increased TiO 2 content up to 1g/100g PLLA. The Young's modulus (YM) of the PLA was increased from 3047 MPa to 3222 MPa with the addition of 1g TiO 2 /100g PLLA. The tensile strength (TS) of films increases with the TiO 2 content. In both cases, the YM and TS are achieved at the 1% content of TiO 2 and is due to the reinforcing effect of nanoparticles. Pristine PLA showed a strain at break (SB) of 3.56%, while the SB of nanocomposites were significant lower, for instance the SB of composite containing 7.5 g HNT/100g PLLA was around 1.90 %. The WVP of samples was increased by increasing the nano filler content. It should be expected that an increase of nanofiller content would decrease the mass transfer of water molecules throughout the samples due to the increase in the way water molecules will have to cross to permeate the material. However, this was not observed. Therefore, this result can be explained considering the molecular structure of both fillers, which contain several hydroxyl groups in the surface

  19. Synthesis and luminescence properties for europium oxide nanotubes

    International Nuclear Information System (INIS)

    Mo Zunli; Deng Zhepeng; Guo Ruibin; Fu Qiangang; Feng Chao; Liu Pengwei; Sun Yu

    2012-01-01

    Highlights: ► A novel high temperature sensitive fluorescent CNTs/Eu 2 O 3 nanocomposite was fabricated. ► The nanocomposite showed strong fluorescent emission peaks at around 540 and 580 nm after calcined beyond 620 °C for 4 h. ► The ultrahigh fluorescence intensity of the nanocomposites resulted from a synergetic effect of CNTs and europium oxide. ► We also discovered that CNTs had an effect of fluorescence quenching. - Abstract: A novel high temperature sensitive fluorescent nanocomposite has been successfully synthesized by an economic hydrothermal method using carbon nanotubes (CNTs), europium oxide, and sodium dodecyl benzene sulfonate (SDBS). To our great interest, the nanocomposites show high temperature sensitivity after calcinations at various temperatures, suggesting a synergetic effect of CNTs and europium oxide which leads to ultrahigh fluorescence intensity of europium oxide nanotubes. When the novel high temperature sensitive fluorescent nanocomposites were calcined beyond 620 °C for 4 h, the obtained nanocomposites have a strong emission peak at around 540 and 580 nm, due to the 5 D 0 → 7 F j (j = 0, 1) forced electric dipole transition of Eu 3+ ions. In turn, the emission spectra showed a slight blue shift. The intensity of this photoluminescence (PL) band is remarkably temperature-dependent and promotes strongly beyond 620 °C. This novel feature is attributed to the thermally activated carrier transfer process from nanocrystals and charged intrinsic defects states to Eu 3+ energy levels. The novel high temperature sensitive fluorescent nanocomposite has potential applications in high temperature warning materials, sensors and field emission displays. It is also interesting to discover that CNTs have the effect of fluorescence quenching.

  20. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    Science.gov (United States)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  1. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO_2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti_2O_3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  2. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  3. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano; Lamberti, Andrea; Roppolo, Ignazio; Casu, Alberto; Bianco, Stefano; Scaiola, Davide; Falqui, Andrea; Pirri, Candido Fabrizio; Ricciardi, Carlo

    2017-01-01

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect

  4. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga; Neitzert, Heinz-Christoph [Department of Industrial Engineering – DIIn - Università di Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy); Simon, George [Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia)

    2016-05-18

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  5. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    Science.gov (United States)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  6. Formation of pyridine N-oxides using mesoporous titanium silicalite-1

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Perez-Ferreras, Susana

    2014-01-01

    Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome the...

  7. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  8. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  9. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  10. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  11. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pen-Cheng, E-mail: wangpc@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liao, Yu-Chun [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Liu, Li-Hung [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lai, Yu-Ling; Lin, Ying-Chang [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hsu, Yao-Jane [Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in I{sub on}/I{sub off} ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  12. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Science.gov (United States)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  13. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Mazov, Ilya, E-mail: ilya.mazov@gmail.com [Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090 (Russian Federation); Kuznetsov, Vladimir L. [Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation); Simonova, Irina A. [Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090 (Russian Federation); Stadnichenko, Andrey I. [Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation); Ishchenko, Arkady V. [Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090 (Russian Federation); Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B. [Nikolaev Institute of Inorganic Chemistry, Lavrentieva ave. 3, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation)

    2012-06-15

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ('melange' solution) and mixture of sulfuric acid and hydrogen peroxide ('piranha' solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  14. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    Science.gov (United States)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  15. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  16. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors.

    Science.gov (United States)

    Tominaka, Satoshi

    2012-10-01

    Detailed analyses of reduced, single crystal, rutile-type TiO(2) via high-resolution transmission electron microscopy (TEM) are reported which reveal that the reduction proceeds topotactically via interstitial diffusion of Ti ions at low temperature, around 350 °C. This important finding encouraged the production of various nanostructured reduced titanium oxides from TiO(2) precursors with morphology retention, and in the process, the synthesis of black titanium oxide nanorods using TiO(2) nanorods was demonstrated. Interestingly, as opposed to the semiconductive behavior of Ti(2)O(3) synthesized at high temperature, topotactically synthesized Ti(2)O(3) exhibits metallic electrical resistance, and the value at room temperature is quite low (topotactically synthesized Ti(2)O(3). This work shows that topotactically reduced titanium oxides can have fascinating properties as well as nanostructures.

  17. Isolation and characterisation of barium sulphate and titanium oxides in monument crusts

    Energy Technology Data Exchange (ETDEWEB)

    Luis Perez-Rodriguez, Jose; Carmen Jimenez de Haro, Maria del; Maqueda, Celia

    2004-10-25

    Black crusts from historical ornamental materials contain Ba and Ti. These elements are in low proportion, making their determination difficult and especially the characterisation of the phases in which they are present. For this reason, works on the mineralogical composition of the two elements in black crusts is scarce. Thus the isolation, previous to their characterisation, is important for the study of the surface layer in altered monuments. An acid attack for the isolation of barium sulphate and titanium oxides in black crusts from polluted areas has been used. The acid employed is a mixture of HF, HNO{sub 3} and HClO{sub 4}. The residue isolated by acid attack was analysed by energy dispersive X-ray fluorescence and X-ray diffraction. It was characterised, and the percentages of barite (barium sulphate), anatase (titanium oxide), and rutile (titanium oxide) phases present in the surface layers were calculated.

  18. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  19. Enhanced photocatalytic activity of nano titanium dioxide coated on ethanol-soluble carbon nanotubes

    International Nuclear Information System (INIS)

    Fu, Xiaofei; Yang, Hanpei; He, Kuanyan; Zhang, Yingchao; Wu, Junming

    2013-01-01

    Graphical abstract: Homogenous and dense spreading of TiO 2 on surface modified CNTs and improved photocatalytic performance of TiO 2 was achieved by coupling TiO 2 with ethanol-soluble CNTs. Display Omitted Highlights: ► Ethanol-soluble CNTs were acquired by surface modification. ► Enhanced photoactivity of TiO 2 coated on modified CNTs was obtained. ► Improved activity of TiO 2 is attributed to the intimate contact between TiO 2 and CNTs. ► Dense heterojunctions through Ti–O–CNTs at the interface is proposed. -- Abstract: Surface functionalized carbon nanotubes (CNTs) with ethanol solubility were synthesized and the CNTs–TiO 2 nanocomposites were prepared by coupling of TiO 2 with modified CNTs through a sol–gel method. The as-prepared CNTs and composites were characterized and the composite samples were evaluated for their photocatalytic activity toward the degradation of aqueous methyl orange. It is showed that the acid oxidation of CNTs leads to the embedding of oxygenated functional groups, and as a result, the acid-treated CNTs in turn may serve as chemical reactors for subsequent covalent grafting of octadecylamine. Improved photocatalytic performance of CNTs–TiO 2 composites was obtained, which is mainly attributed to the high dispersion of TiO 2 on ethanol-soluble CNTs and the intimate contact between TiO 2 and CNTs resulted from the dense heterojunctions through the Ti-O-C structure at the interface between TiO 2 and CNTs.

  20. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  1. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  2. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  3. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2012-01-01

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM -1 cm -2 , a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  4. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  5. Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis.

    Science.gov (United States)

    Hirschfeld, Josefine; Akinoglu, Eser M; Wirtz, Dieter C; Hoerauf, Achim; Bekeredjian-Ding, Isabelle; Jepsen, Søren; Haddouti, El-Mustapha; Limmer, Andreas; Giersig, Michael

    2017-05-01

    Bacterial biofilms cause a considerable amount of prosthetic joint infections every year, resulting in morbidity and expensive revision surgery. To address this problem, surface modifications of implant materials such as carbon nanotube (CNT) coatings have been investigated in the past years. CNTs are biologically compatible and can be utilized as drug delivery systems. In this study, multi-walled carbon nanotube (MWCNT) coated TiAl6V4 titanium alloy discs were fabricated and impregnated with Rifampicin, and tested for their ability to prevent biofilm formation over a period of ten days. Agar plate-based assays were employed to assess the antimicrobial activity of these surfaces against Staphylococcus epidermidis. It was shown that vertically aligned MWCNTs were more stable against attrition on rough surfaces than on polished TiAl6V4 surfaces. Discs with coated surfaces caused a significant inhibition of biofilm formation for up to five days. Therefore, MWCNT-modified surfaces may be effective against pathogenic biofilm formation on endoprostheses. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Phases quantification in titanium oxides by means of X-ray diffraction

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Ita T, A. de; Chavez R, A.

    2001-01-01

    In this work two phases of titanium oxides are quantified which belong to the same crystalline system and by means of a computer program named Quanto created by the first author, contains the information for calculating the absorption coefficients, it can be quantified phases having one of the pure phases and the problem samples. In order to perform this work different mixtures of different titanium oxides were prepared measuring by means of the X-ray diffraction technique in the Siemens X-ray diffractometer of ININ which were processed with the Peakfit package and also they were evaluated by means of the computer program with the necessary information finding acceptable results. (Author)

  7. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  8. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  9. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  10. Localized and collectivized behaviour of d-electrons in complicated titanium, vanadium and niobium oxides

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Shvejkin, G.P.

    1980-01-01

    On the basis of investigation of electric and magnetic properties of oxide compounds of transition metals made are the conclusions on the degree of localization and delocalization of d-electrons in them. Generalized are the investigation results of complicated titanium, vanadium, niobium oxide compounds in low degrees of oxidation with rare earth and alkaline earth elements belonging to the two structural types: perovskite and pyrochlore. Presented are the results of investigations of perovskite-like solid solutions and of variable-content phases containing cations of transition metals in two different oxidation degrees: oxide niobium bronzes of two-valent europium and titanium bronzes of rare-earth elements, as well as Lnsub(1-x)Msub(x)Vsub(1-x)sup(3+)Vsub(x)sup(4+)Osub(3), where M is an alkaline earth element

  11. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  12. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  13. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  14. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  15. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Sousa, Marcelo de; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-01-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H_2SO_4 and HNO_3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  16. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  17. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  18. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  19. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  20. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  1. Non thermal preparation of photoactive titanium (IV) oxide thin layers

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Cajthaml, Tomáš; Šolcová, Olga

    2006-01-01

    Roč. 495, - (2006), s. 18-23 ISSN 0040-6090 R&D Projects: GA ČR GA104/04/0963; GA ČR GD203/03/H140; GA MPO FT-TA/023 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40720504 Keywords : titanium dioxide * nanostructures * photocatalysis Subject RIV: EE - Microbiology, Virology Impact factor: 1.666, year: 2006

  2. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Mrlík, M.; Pavlínek, V.; Sáha, P.; Quadrat, Otakar

    2012-01-01

    Roč. 290, č. 1 (2012), s. 41-48 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * titanium oxide * hollow globular clusters Subject RIV: JI - Composite Materials Impact factor: 2.161, year: 2012

  3. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  4. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  5. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  6. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2013-01-01

    on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context

  7. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  8. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  9. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  10. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E., E-mail: sarahamindelima@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: souzajulio@joinville.udesc.br, E-mail: gemelli@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2009-07-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  11. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    International Nuclear Information System (INIS)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E.

    2009-01-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  12. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  13. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  14. Microwave synthesis of Titanium Dioxide nanotubes for use in water treatment

    CSIR Research Space (South Africa)

    Sikhwivhilu, L

    2010-09-01

    Full Text Available various methods have been used to synthesise Titanium Dioxide (TiO2) (also known as Titania) nanoparticles hydrothermal synthesis in the presence of a base solution, has proved to be an effective approach to prepare 1D nanostructures of TiO2...

  15. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  16. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  17. Clean forming of stainless steel and titanium products by lubricious oxides

    DEFF Research Database (Denmark)

    Heikkilä, Irma; Wadman, Boel; Thoors, Håkan

    2012-01-01

    to industrial forming processes. Preliminary evaluations show a beneficial influence of two oxides types, on stainless steel and on titanium. More work is needed to test the lubricating effect in other forming operations and to analyse the sustainability aspects for products manufactured with this alternative......Big social benefits can be attained through increased use of stainless steel or titanium in new sheet metal applications. Unfortunately, forming of these materials is often a challenging and costly operation, that can lead to environmental and health problems when solving the technical limitations...

  18. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  19. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    Science.gov (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  20. Selectivity of multi-wall carbon nanotube network sensoric units to ethanol vapors achieved by carbon nanotube oxidation

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Slobodian, P.; Říha, Pavel; Sáha, P.

    2012-01-01

    Roč. 1, č. 1 (2012), s. 101-106 ISSN 1927-0585 Grant - others:UTB Zlín(CZ) IGA/3/FT/11/D; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * buckypaper * oxidation * sensor * electrical resistance Subject RIV: BK - Fluid Dynamics

  1. Anodic aluminium oxide membranes used for the growth of carbon nanotubes.

    Science.gov (United States)

    López, Vicente; Morant, Carmen; Márquez, Francisco; Zamora, Félix; Elizalde, Eduardo

    2009-11-01

    The suitability of anodic aluminum oxide (AAO) membranes as template supported on Si substrates for obtaining organized iron catalyst for carbon nanotube (CNT) growth has been investigated. The iron catalyst was confined in the holes of the AAO membrane. CVD synthesis with ethylene as carbon source led to a variety of carbon structures (nanotubes, helices, bamboo-like, etc). In absence of AAO membrane the catalyst was homogeneously distributed on the Si surface producing a high density of micron-length CNTs.

  2. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  3. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    International Nuclear Information System (INIS)

    Russo, V.L.; Ivanov, E.N.

    1977-01-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100 deg C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed

  4. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V L; Ivanov, E N

    1977-03-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100/sup 0/C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed.

  5. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method

    International Nuclear Information System (INIS)

    Singhal, S. K.; Srivastava, A. K.; Gupta, Anil K.; Chen, Z. G.

    2010-01-01

    We report a new method for the synthesis of boron nitride (BN) nanotubes employing a two-step process in which some oxides have found to catalyze the growth of BN nanotubes. In the first step, a precursor containing B-N-O-Fe/Mg was prepared by ball milling a mixture of B, B 2 O 3 , Fe 2 O 3 and MgO (1:7:2:1 mass ratio) in NH 3 for 3 h. BN nanotubes (diameter: 20-100 nm) were grown in the second step from this precursor by isothermal annealing at 1,350 o C in NH 3 for about 4 h. XRD, SEM and HR-TEM studies elucidated the spindle-like morphology of these nanotubes of hexagonal crystal structure. The Raman spectrum showed the peak broadening and shifts to higher frequency. The present method showed that some oxides assisted the growth of BN nanotubes. A possible reaction mechanism on the formation of BN nanotubes in the presence of these oxides is discussed.

  6. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution

    Science.gov (United States)

    Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco

    2016-12-01

    Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50 mV overpotential). The Tafel slope of ~130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.

  7. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  8. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  9. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  10. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    International Nuclear Information System (INIS)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V.; Grigorieva, Anastasia V.

    2016-01-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm -1 , a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  11. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Grigorieva, Anastasia V. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Materials Science

    2016-11-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm{sup -1}, a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  12. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials

    International Nuclear Information System (INIS)

    Zhang Lina; Zhang Haoxu; Zhou Ruifeng; Chen Zhuo; Li Qunqing; Fan Shoushan; Jiang Kaili; Ge Guanglu; Liu Renxiao

    2011-01-01

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  13. Carbon nanotube/platinum nanoparticle nanocomposites: preparation, characterization and application in electro oxidation of alcohols

    International Nuclear Information System (INIS)

    Kalinke, Adir H.; Zarbin, Aldo J. G.

    2014-01-01

    The synthesis and characterization of different platinum nanoparticle/ carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm -2 were determined for the oxidation of methanol and ethanol, respectively. (author)

  14. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  15. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  16. Self-assembling Synthesis of Vanadium Oxide Nanotubes and Simple Determination of the Content of Ⅴ(Ⅳ)

    Institute of Scientific and Technical Information of China (English)

    MAI Li-qiang; CHEN Wen; XU Qing; ZHU Quan-yao; HAN Chun-hua; PENG Jun-feng

    2003-01-01

    High-yielding low-cost vanadium oxide nanotubes were prepared by the hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates. Moreover, a new method was discovered for determining the content of V (Ⅳ) in vanadium oxide nanotubes by thermogravimetric analysis ( TGA ). This method is simple, precise and feasible and can be extended to determine the content of low oxidation state in the other transition metal oxide nanomaterials.

  17. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    International Nuclear Information System (INIS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-01-01

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution

  18. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Tamara, E-mail: t.s.galloway@exeter.ac.u [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Lewis, Ceri [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Dolciotti, Ida [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy); Johnston, Blair D. [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Moger, Julian [School of Physics, Stocker Road, University of Exeter, Devon EX4 4QL (United Kingdom); Regoli, Francesco [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy)

    2010-05-15

    The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO{sub 2} and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO{sub 2}, with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO{sub 2} of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected. - This study explores the hypothesis that nano-TiO{sub 2} and single walled nanotubes (SWNT) can cause sublethal impacts to Arenicola marina exposed through natural sediments.

  19. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  20. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  1. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  2. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  3. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  4. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  5. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions

    International Nuclear Information System (INIS)

    Naeimi, Hossein; Mohajeri, Ali; Moradi, Leila; Rashidi, Ali Morad

    2009-01-01

    Graphical abstract: In this work, oxidation of carbon nanotubes with ozone in the presence of hydrogen peroxide was studied. The reactions were performed under clean and mild conditions and oxidized products with high concentration of oxygenated groups were yielded. The reaction products were characterized with attenuated total reflectance (ATR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffractometry (XRD), back titration, X-ray photoelectron spectroscopy (XPS) and the dispersion behavior of the oxidized multiwalled carbon nanotubes (MWCNTs) was also studied. The results confirmed the presence of high concentrations of oxidative groups on the carbon nanotubes (CNTs) treated by the method of the present work.

  6. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    Science.gov (United States)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  7. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  8. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Anodic oxidation of commercially pure titanium for purification of polluted water

    Science.gov (United States)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  10. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  11. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  12. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  13. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  14. The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ding XL

    2015-11-01

    Full Text Available Xianglong Ding,1 Lei Zhou,1 Jingxu Wang,2 Qingxia Zhao,3 Xi Lin,1 Yan Gao,1 Shaobing Li,4 Jingyi Wu,1 Mingdeng Rong,4 Zehong Guo,1 Chunhua Lai,1 Haibin Lu,4 Fang Jia11Center of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, 2Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, 3Department of Stomatology, Nanfang Hospital, 4Department of Periodontics and Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of ChinaAbstract: In the present work, a hierarchical hybrid micro/nanostructured titanium surface was obtained by sandblasting with large grit and acid etching (SLA, and nanotubes of different diameters (30 nm, 50 nm, and 80 nm were superimposed by anodization. The effect of each SLA-treated surface decorated with nanotubes (SLA + 30 nm, SLA + 50 nm, and SLA + 80 nm on osteogenesis was studied in vitro and in vivo. The human MG63 osteosarcoma cell line was used for cytocompatibility evaluation, which showed that cell adhesion and proliferation were dramatically enhanced on SLA + 30 nm. In comparison with cells grown on the other tested surfaces, those grown on SLA + 80 nm showed an enhanced expression of osteogenesis-related genes. Cell spread was also enhanced on SLA + 80 nm. A canine model was used for in vivo evaluation of bone bonding. Histological examination demonstrated that new bone was formed more rapidly on SLA-treated surfaces with nanotubes (especially SLA + 80 nm than on those without nanotubes. All of these results indicate that SLA + 80 nm is favorable for promoting the activity of osteoblasts and early bone bonding.Keywords: nanotopography, osseointegration, dental and orthopedic implant, titanium

  15. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Oxidized Single-Walled Carbon Nanotubes (SWCNs-COOH) as a ...

    African Journals Online (AJOL)

    Nano-materials are considered as suitable heterogeneous catalysts for many organic reactions. Herein oxidized carbon nanotube (SWCNTs-COOH) has been reported as a heterogeneous catalyst, for protection of carbonyl groups as hydrazones in EtOH at 80 °C. The reactions proceed smoothly with good to excellent ...

  17. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    Background: The applications of oxidized carbon nanotubes (o-CNTs) have shown potentials in novel drug delivery including the brain which is usually a challenge. This underscores the importance to study its potential toxic effect in animals. Despite being a promising tool for biomedical applications little is known about the ...

  18. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO_2 nanotubes

    International Nuclear Information System (INIS)

    Wu, Junshu; Wang, Jinshu; Du, Yucheng; Li, Hongyi; Jia, Xinjian

    2016-01-01

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO_2 nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO_2 nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO_2 nanotubes by both bidentate-type bridge link of Ce"4"+ cations from sulfonate SO_3"− groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO_2 nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO_2 nanotubes to be promising materials for dye removal from aqueous solution.Graphical AbstractCeO_2 nanotubes composed of crystallized nanoparticles exhibit well adsorption ability for a typical azo dye Congo red.

  19. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  20. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  1. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes

    Science.gov (United States)

    Sun, Yu; Sun, Shupei; Liao, Xiaoming; Wen, Jiang; Yin, Guangfu; Pu, Ximing; Yao, Yadong; Huang, Zhongbing

    2018-05-01

    The aim of this study is to investigate the effect of different annealing temperature and atmosphere on the surface wettability retaining properties of titania nanotubes (TNs) fabricated by anodization. The TNs morphology, crystal phase composition and surface elemental composition and water contact angle (WCA) were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle instrument, respectively. After the samples annealed at 200 °C, 450 °C, 850 °C have been stored in air for 28 days, the WCAs increase to 31.7°, 21.1° and 110.5°, respectively. The results indicate that crystal phase composition of TNs plays an important role in surface wettability. Compared with the WCA (21.1°) of the samples annealed in air after 28 days, the WCA of samples annealed in oxygen-deficient atmosphere is lower, suggesting the contribution of oxygen vacancy in the enhanced hydrophilicity-retaining ability. Our study demonstrates that the surface hydrophilicity-retaining ability of TNs is related to the ordered nanotubular structure, crystal structure, the amount of surface hydroxyl group and oxygen vacancy defects.

  2. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  3. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  4. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  5. Self-cleaning glasses containing nanostructured titanium oxide; Vidros autolimpantes contendo oxido de titanio nanoestruturado

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (DEMa/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais

    2010-07-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  6. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Feng Wei; Feng Yiyu; Wu Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-01-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO 2 -s-MWNTs) was prepared from a suspension of TiO 2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO 2 -s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO 2 into consideration

  7. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  8. Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

    Directory of Open Access Journals (Sweden)

    Joan Lario

    2018-01-01

    Full Text Available The implant osseointegration rate depends on the surface’s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM, and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS. The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV irradiation of the TiO2 nanotubes decrease the water contact angle.

  9. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.

    Science.gov (United States)

    Liu, Xiao Tong; Mu, Xi Yan; Wu, Xiao Li; Meng, Li Xuan; Guan, Wen Bi; Ma, Yong Qiang; Sun, Hua; Wang, Cheng Ju; Li, Xue Feng

    2014-09-01

    This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes

    Science.gov (United States)

    Goh, P. S.; Ismail, A. F.; Aziz, M.

    2009-06-01

    A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.

  11. Langmuir-Blodgett assembly of visible light responsive TiO{sub 2} nanotube arrays/graphene oxide heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan, E-mail: yan.cao@wku.edu

    2017-01-15

    Highlights: • First to report a heterostructure of TNA with GO prepared by LB assembly. • Much better photocurrent (32 μAcm{sup −2}) of TNA-GO, contrasting to TNA (12 μAcm{sup −2}). • Schottky junction formed between TNA and GO enhanced the photocurrent. • GO on TNA improved the hydrophilicity of TNA-GO. - Abstract: The hybrid nanocomposites of titanium dioxide (TiO{sub 2}) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO{sub 2} nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  12. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Park, Y.S.; Butt, D.P.

    1999-01-01

    The oxidation behavior of titanium-tantalum alloys was investigated with respective concentrations of each element ranging from 0 to 100 wt.%. Alloys were exposed to argon-20% oxygen at 800 to 1400 C. The slowest oxidation rates were observed in alloys with 5--20% Ta. The oxidation kinetics of alloys containing less than approximately 40% Ta were approximately parabolic. Pure Ta exhibited nearly linear kinetics. Alloys containing 50% or more Ta exhibited paralinear kinetics. The activation energies for oxidation ranged between 232 kJ/mole for pure Ti and 119 kJ/mole for pure Ta, with the activation energies of the alloys falling between these values and generally decreasing with increasing Ta content. The activation energies for oxidation of the end members, Ti and Ta, agree well with published values for the activation energies for diffusion of oxygen in α-Ti and Ta. Scale formation in the alloys was found to be complex exhibiting various layers of Ti-, Ta-, and TiTa-oxides. The outermost layer of the oxidized alloys was predominantly rutile (TiO 2 ). Beneath the TiO 2 grew a variety of other oxides with the Ta content generally increasing with proximity to the metal-oxide interface. It was found that the most oxidation-resistant alloys had compositions falling between Ti-5Ta and Ti-15Ta. Although Ta stabilizes the β-phase of Ti, the kinetics of oxidation appeared to be rate limited by oxygen transport through the oxygen-stabilized α-phase. However, the kinetics are complicated by the formation of a complex oxide, which cracks periodically. Tantalum appears to increase the compositional range of oxygen-stabilized α-phase and reduces both the solubility of oxygen and diffusivity of Ti in the α- and β-phases

  13. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  14. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  15. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  16. Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals

    Science.gov (United States)

    Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.

    2008-12-01

    Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal

  17. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  18. Oxidation of Catechol using Titanium Silicate (TS-1 Catalyst: Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Sonali Sengupta

    2013-12-01

    Full Text Available The oxidation of catechol was studied in an eco-friendly process with commercial titanium silicate-1 (TS-1 catalyst and hydrogen peroxide as oxidant in absence of all mass transfer effects. The process was opti-mized by Box-Behnken design in terms of three independent process variables such as reaction tempera-ture, moles of hydrogen peroxide per mole of catechol and catalyst amount whose optimum values of the process variables were found to be 60 °C, 13.2 and 1.24 g respectively for maximum conversion of 75.8 %. The effects of different process parameters such as mole ratio of hydrogen peroxide to catechol, catalyst par-ticle size, catalyst amount, temperature and reaction time were studied. A pseudo first order kinetic model was fitted with the experimental rate data. The apparent activation energy for the reaction was found to be 11.37 kJ/mole.  © 2013 BCREC UNDIP. All rights reservedReceived: 22nd April 2013; Revised: 25th October 2013; Accepted: 1st November 2013[How to Cite: Sengupta, S., Ghosal, D., Basu, J.K. (2013. Oxidation of Catechol using Titanium Silicate (TS-1 Catalyst: Modeling and Optimization. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 167-177. (doi:10.9767/bcrec.8.2.4759.167-177][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4759.167-177

  19. Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A., E-mail: rouahi_ahlem@yahoo.fr [Univ. Grenoble Alpes, G2Elab, F-38000 (France); Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Challali, F. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM)-CNRS-UPR3407, Université Paris13, 99 Avenue Jean-Baptiste Clément, 93430, Villetaneuse (France); Dakhlaoui, I. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Vallée, C. [CNRS, LTM, CEA-LETI, F-38000 Grenoble (France); Salimy, S. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Jomni, F.; Yangui, B. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Besland, M.P.; Goullet, A. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Sylvestre, A. [Univ. Grenoble Alpes, G2Elab, F-38000 (France)

    2016-05-01

    In this study, the dielectric properties of metal-oxide-metal capacitors based on Tantalum Titanium Oxide (TiTaO) thin films deposited by reactive magnetron sputtering on aluminum bottom electrode are investigated. The structure of the films was characterized by Atomic Force Microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric properties of TiTaO thin films were studied by complex impedance spectroscopy over a wide frequency range (10{sup -2} - to 10{sup 5} Hz) and temperatures in -50 °C to 325 °C range. The contributions of different phases, phases’ boundaries and conductivity effect were highlighted by Cole – Cole diagram (ε” versus ε’). Two relaxation processes have been identified in the electric modulus plot. A first relaxation process appears at low temperature with activation energy of 0.37 eV and it is related to the motion of Ti{sup 4+} (Skanavi’s model). A second relaxation process at high temperature is related to Maxwell-Wagner-Sillars relaxation with activation energy of 0.41 eV. - Highlights: • Titanium Tantalum Oxide thin films are grown on Aluminum substrate. • The existence of phases was confirmed by X-ray photoelectron spectroscopy. • Conductivity effect appears in Cole-Cole plot. • At low temperatures, a relaxation phenomenon obeys to Skanavi’s model. • Maxwell-Wagner-Sillars polarization is processed at high temperatures.

  20. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  1. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  2. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes

    NARCIS (Netherlands)

    Maijenburg, A.W.; Maas, M.G.; Rodijk, E.J.B.; Ahmed, W.; Kooij, Ernst S.; Carlen, Edwin; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of

  3. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    Science.gov (United States)

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and the...

  4. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, J E; Enache-Pommer, E; Aydil, E S [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455 (United States)], E-mail: aydil@umn.edu

    2008-03-05

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes through hydrothermal oxidation in NaOH. Next, the Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes by ion exchange. Finally, the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} sheets, which exfoliate and spiral into nanotubes. The Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes are immersed in HCl solution to replace the Na{sup +} ions with H{sup +} ions. During the topotactic transformation of H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes to anatase TiO{sub 2} nanowires, the sheets made of edge bonded TiO{sub 6} octahedra in the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO{sub 2} nanowire films were suitable for use as dye-sensitized solar cell photoanodes.

  5. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-01-01

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na 2 Ti 2 O 4 (OH) 2 nanotubes through hydrothermal oxidation in NaOH. Next, the Na 2 Ti 2 O 4 (OH) 2 nanotubes were converted to H 2 Ti 2 O 4 (OH) 2 nanotubes by ion exchange. Finally, the H 2 Ti 2 O 4 (OH) 2 nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na 2 Ti 2 O 4 (OH) 2 sheets, which exfoliate and spiral into nanotubes. The Na 2 Ti 2 O 4 (OH) 2 nanotubes are immersed in HCl solution to replace the Na + ions with H + ions. During the topotactic transformation of H 2 Ti 2 O 4 (OH) 2 nanotubes to anatase TiO 2 nanowires, the sheets made of edge bonded TiO 6 octahedra in the H 2 Ti 2 O 4 (OH) 2 nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO 2 nanowire films were suitable for use as dye-sensitized solar cell photoanodes

  6. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...... silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  7. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  8. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    International Nuclear Information System (INIS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-01-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol–gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue–black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  9. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  10. Preparation of TiO{sub 2} nanotubes, study of their morphology and photocatalytic properties; Priprava nanotrubiek TiO{sub 2}, studium ich morfologie a fotokatalytickych vlastnosti

    Energy Technology Data Exchange (ETDEWEB)

    Motola, M.; Plasch, G. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra anorganickej chemie, 84215 Bratislava (Slovakia); Satrapinskyy, L. [Univerzita Komenskeho, Fakulta matematiky, fyziky a informatiky, Katedra experimentalnej fyziky, 84248 Bratislava (Slovakia)

    2013-04-16

    The present paper deals with the synthesis and characterization of titanium dioxide nanotubes (TNTs) for photocatalytic applications. Nanotubes were prepared by electrochemical anodic oxidation. The samples were heat treated by annealing to become photocatalytically active. Using scanning electron microscopy morphology of the nanotubes was studied. Phase composition of samples was measured by X-ray diffraction (XRD). The photocatalytic activity of nanotubes leads to decrease of the concentration of Rhodamine B during irradiation with UV A light. The photocatalytic activity of nanotubes was compared with the photocatalytic activity of Aeroxide P25 nanocrystalline titania powder. The best photocatalytic active show the samples annealed at 400 grad C. (authors)

  11. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  12. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    International Nuclear Information System (INIS)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth; Geier, Michael L.; Prabhumirashi, Pradyumna L.; Hersam, Mark C.

    2014-01-01

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm 2 V −1 s −1 at low operating voltages ( 10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures

  13. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  14. Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; ten Elshof, Johan E.; Blank, David H.A.; Nielsch, K.; Fontcuberta i Morral, A.; Holt, J.K.; Thomson, C.V.

    2010-01-01

    Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was

  15. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  16. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. In-situ synthesis and performance of titanium oxide/poly(methyl methacrylate) nanocomposites.

    Science.gov (United States)

    Bandugula, Uttam C; Clayton, L M; Harmon, J P; Kumar, Ashok

    2005-05-01

    Polymer nanocomposites have elicited extensive research efforts due to their potential to exhibit spectacular properties. They have immense potential and are befitting materials to serve as an ideal and futuristic alternative for varied applications. Poly(methyl methacrylate) (PMMA) and titanium oxide (TiO2) nanocomposites used in this study were fabricated by an in-situ free radical polymerization process. Three point bend tests were conducted with a modified universal microtribometer to evaluate fracture toughness. The results indicated that the stress intensity values increase as the concentration of titanium oxide increases up to 1 vol% and subsequently decrease at higher concentrations. Scanning electron microscopy (SEM) images of fracture surfaces afforded clues as to the possible deformation mechanism. Ultraviolet-visible spectroscopy (UV-vis) evaluated the degree of transparency of the nanocomposites. It was observed that samples became opaque as the concentration was increased beyond 0.01% volume fraction. X-ray diffraction characterized the TiO2 crystalline phase and Scherrer's equation was used to calculate the crystallite size. Among the concentrations considered the 3% volume fraction sample had the largest crystallite size. Finally, microhardness measurements further characterized the mechanical properties of the composites.

  18. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  19. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  20. Microstructure of titanium oxide films synthesized by ion beam dynamic mixing

    International Nuclear Information System (INIS)

    Makino, Y.; Setsuhara, Y.; Miyake, S.

    1994-01-01

    The microstructure of titanium oxide films synthesized by the ion beam dynamic mixing (IBDM) method is investigated by glancing angle X-ray diffraction and multi-reflectance FT-IR methods. Titanium oxide films are identified as rutile phases having different degrees of (110) orientation. The IBDM rutile phase with a standard crystalline state is produced by controlling the ratio of the intensities between the (110) and (101) peaks of the rutile, I(110)/I(101), so as to approach the ratio to the value (=2.0) of ASTM standard rutile. The crystallite size of the rutile phase increases with increasing ratio of intensities of the two XRD peaks, I(110)/I(101). The increase of the crystallite size is suggested to be attributed to the increase of oxygen ion energy per Ti atom. From the dependence of the IR absorption near 500 cm -1 upon I(110)/I(101), it is indicated that the Ti-O bond strength is delicately affected by the degree of (110) orientation of the IBDM rultile phase. ((orig.))

  1. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N_2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N_2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N_2O onto CNT, the horizontal adsorption with E_a_d_s = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N_2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N_2O were investigated. Adsorption of N_2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N_2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N_2O sensors.

  2. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  3. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  4. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    Science.gov (United States)

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles.

    Science.gov (United States)

    Hu, Xiangang; Ouyang, Shaohu; Mu, Li; An, Jing; Zhou, Qixing

    2015-09-15

    Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.

  6. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Du, Yucheng; Li, Hongyi; Jia, Xinjian [Beijing University of Technology, School of Materials Science and Engineering (China)

    2016-07-15

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO{sub 2} nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO{sub 2} nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO{sub 2} nanotubes by both bidentate-type bridge link of Ce{sup 4+} cations from sulfonate SO{sub 3}{sup −} groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO{sub 2} nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO{sub 2} nanotubes to be promising materials for dye removal from aqueous solution.Graphical AbstractCeO{sub 2} nanotubes composed of crystallized nanoparticles exhibit well adsorption ability for a typical azo dye Congo red.

  7. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    International Nuclear Information System (INIS)

    Sears, Kallista; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-01-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency

  8. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Kallista, E-mail: kallista.sears@csiro.au; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-03-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency.

  9. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  10. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  11. ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2015-01-01

    Full Text Available A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times fall of magnitude of electrostatic potential of thin (200–300 nm titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks contact of samples with simulated body fluid (SBF promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3 > Ti–O–N (1/1, TiO2 > Steel. It may be explained by: 1 the corrosion-preventive properties of thin titanium oxide and oxynitride films;2 a store of surface negative charge for Ti–O–N (1/3 film; 3 minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.

  12. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  13. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  14. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei

    2013-09-11

    Two times higher activity and three times higher stability in methanol oxidation reaction, a 0.12 V negative shift of the CO oxidation peak potential, and a 0.07 V positive shift of the oxygen reaction potential compared to Pt nanoparticles on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context of an electronic structure model, showing an improvement in electrochemical activity when the Fermi level of the support material in Pt/TiOx systems is close to the Pt Fermi level and the redox potential of the reaction. The present approach provides guidance for the selection of the support material of Pt/TiOx systems and may be applied to other metal-oxide support materials, thus having direct implications in the design and optimization of fuel cell catalyst supports. © 2013 American Chemical Society.

  15. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Fray, Derek J.

    2003-01-01

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  16. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  17. Photocatalytic selective oxidation of phenol in suspensions of titanium dioxide with exposed {0 0 1} facets

    International Nuclear Information System (INIS)

    Ye, Hengpeng; Lu, Shaoming

    2013-01-01

    Anatase TiO 2 nanocrystals with exposed {0 0 1} facets were tailored by hydrothermal treatment of Ti(OC 4 H 9 ) 4 –HF–H 2 O mixed solution. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption–desorption isotherms and X-ray photoelectron spectroscopy (XPS). The effect of structure of the photocatalyst on the photocatalytic selective oxidation of phenol under UV irradiation was studied. The experiment results showed that (1) the percentage of the exposed {0 0 1} facets of the nanocrystal increases with increasing the nominal atomic ratio of fluorine to titanium (R F ), (2) catechol and hydroquinone are main intermediates detected during photocatalytic oxidation of phenol, and (3) both photocatalytic oxidation of phenol and selectivity (yield) of catechol are positively correlated with the percentage of exposed {0 0 1} facets of the high-energy TiO 2 nanocrystals. The enhanced conversion of phenol and selectivity (yield) of catechol were ascribed to the synergistic effects of the exposed high-energy {0 0 1} facets and surface fluorination. This study may provide new insight into the selective oxidation of organics.

  18. Enhancement photocatalytic activity of spinel oxide (Co, Ni3O4 by combination with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Kahdum Bashaer J.

    2017-09-01

    Full Text Available In this study, some types of composites consisting of multi-walled carbon nanotubes (MWCNTs and spinel oxide (Co, Ni3O4 were synthesized by simple evaporation method. These composites were characterized by UV–Vis diffuse reflectance spectroscopy, X-rays diffraction(XRD, Scanning electron microscopy (SEM and specific surface area(SBET. The photocatalytic activity of the prepared composites was investigated by the following removal of Bismarck brown G (BBG dye from its aqueous solutions. The obtained results showed that using MWCNTs in combination with spinel oxide to produced composites (spinel/MWCNTs which succeeded in increasing the activity of spinel oxide and exhibited higher photocatalytic activity than spinel oxide alone. Also it was found that, multiwalled carbon nanotubes were successful in increasing the adsorption and improving the activity of photocatalytic degradation of Bismarck brown G dye(BBG. The obtained results showed that spinel/MWCNTs was more active in dye removal in comparison with each of spinel oxide and MWCNTs alone under the same reaction conditions. Also band gap energies for the prepared composites showed lower values in comparison with neat spinel. This point represents a promising observation as these composites can be excited using a lower energy radiation sources.

  19. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu

    2011-02-22

    Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.

  20. Temperature induced complementary switching in titanium oxide resistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Panda, D., E-mail: dpanda@nist.edu [Department of Electronics Engineering, National Institute of Science and Technology, Berhampur, Odisha 761008 (India); Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Simanjuntak, F. M.; Tseng, T.-Y. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device to initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.

  1. Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane

    International Nuclear Information System (INIS)

    Li Haipeng; Zhao Naiqin; He Chunnian; Shi Chunsheng; Du Xiwen; Li Jiajun

    2008-01-01

    Changes in the thermogravimetrically determined oxidation behaviors of CVD-grown multi-walled carbon nanotubes (MWNTs) over Ni/Al catalyst with different Ni content were examined. Catalyst type was found to have a measurable impact upon nanotube stability, suggesting differing levels of crystalline perfection in the resulting nanotubes. With increasing the Ni content in the Ni/Al catalyst, the CNTs obtained became less stable during heat treatment in air. Furthermore, high-resolution transmission electron microscopy was employed to investigate the defect sites of as-grown MWNTs. The results provide evidence showing that defect sites along the walls and at the ends of the raw MWNTs facilitate the thermal oxidative destruction of the nanotubes

  2. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    Science.gov (United States)

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  4. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  5. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  6. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  7. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  8. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    International Nuclear Information System (INIS)

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive

  9. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si......), and post-deposition annealing temperature were investigated. We have observed that that SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si. TiO2 thin film passivation layers alone result in lower effective carrier lifetime. Further annealing at 200  ̊C in N2 gas enhances the surface...

  10. A study of nitride formation during the oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Hanrahan, R.J. Jr.; Lu, Y.C.; Kung, H.; Butt, D.P.

    1996-01-01

    The oxidation rates of Ti rich titanium-tantalum alloys are significantly lower in air than in oxygen. This nitrogen effect has been shown to be associated with the formation of a nitride layer at or near the scale-metal interface. In the present work the authors used transmission electron microscopy and microdiffraction to identify the nitrides formed on Ti5Ta and Ti40Ta (5 and 40 weight percent Ta alloys) during identical exposures. In both alloys the nitride develops in contact with the oxygen stabilized α-phase in the substrate. In Ti5Ta a continuous layer of TiN forms, while in Ti40Ta a discontinuous layer of Ti 2 N interspersed with Ta 2 O 5 (formed from the Ta rich β-phase) is formed. The nitride layer acts as an oxygen diffusion barrier, reducing the dissolution of oxygen in the substrate

  11. Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts

    International Nuclear Information System (INIS)

    Dong, Z.J.; Li, X.K.; Yuan, G.M.; Cong, Y.; Li, N.; Jiang, Z.Y.; Hu, Z.J.

    2009-01-01

    Using carbon fibres and titanium hydride as a reactive carbon source and a metal source, respectively, a protective titanium carbide (TiC) coating was formed on carbon fibres in molten salts, composed of LiCl-KCl-KF, at 750-950 o C. The structure and morphology of the TiC coatings were characterised by X-ray diffraction and scanning electron microscopy, respectively. The oxidation resistance of the TiC-coated carbon fibres was measured by thermogravimetric analysis. The results reveal that control of the coating thickness is very important for improvement of the oxidation resistance of TiC-coated carbon fibres. The oxidative weight loss initiation temperature for the TiC-coated carbon fibres increases significantly when an appropriate coating thickness is used. However, thicker coatings lead to a decrease of the carbon fibres' weight loss initiation temperature due to the formation of cracks in the coating. The TiC coating thickness on carbon fibres can be controlled by adjusting the reaction temperature and time of the molten salt synthesis.

  12. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  13. Molten salt synthesis of sodium lithium titanium oxide anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yin, S.Y., E-mail: yshy2004@hotmail.com [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Feng, C.Q. [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Wu, S.J.; Liu, H.L.; Ke, B.Q. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Zhang, K.L. [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Chen, D.H. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, Hubei (China)

    2015-09-05

    Highlights: • Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} has been successfully synthesized via a molten salt route. • Calcination temperature is an important effect on the component and microstructure of the product. • Pure phase Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} could be obtained at 700 °C for 2 h. - Abstract: The sodium lithium titanium oxide with composition Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 14} has been synthesized by a molten salt synthesis method using sodium chloride and potassium chloride mixture as a flux medium. Synthetic variables on the synthesis, such as sintering temperature, sintering time and the amount of lithium carbonate, were intensively investigated. Powder X-ray diffraction and scanning electron microscopy images of the reaction products indicates that pure phase sodium lithium titanium oxide has been obtained at 700 °C, and impure phase sodium hexatitanate with whiskers produced at higher temperature due to lithium evaporative losses. The results of cyclic voltammetry and discharge–charge tests demonstrate that the synthesized products prepared at various temperatures exhibited electrochemical diversities due to the difference of the components. And the sample obtained at 700 °C revealed highly reversible insertion and extraction of Li{sup +} and displayed a single potential plateau at around 1.3 V. The product obtained at 700 °C for 2 h exhibits good cycling properties and retains the specific capacity of 62 mAh g{sup −1} after 500 cycles.

  14. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    Directory of Open Access Journals (Sweden)

    Hadi Nur

    2007-01-01

    Full Text Available Stannic oxide-titanium dioxide (SnO2–TiO2 coupled semiconductor photocatalyst loaded with polyaniline (PANI, a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic activity was observed in the case of PANI-SnO2–TiO2 compared to PANI-TiO2, SnO2–TiO2, and TiO2. A higher photocatalytic activity in the oxidation of 1-octene on PANI-SnO2–TiO2 than SnO2–TiO2, PANI-TiO2, and TiO2 can be considered as an evidence of enhanced charge separation of PANI-SnO2–TiO2 photocatalyst as confirmed by photoluminescence spectroscopy. It suggests that photoinjected electrons are tunneled from TiO2 to SnO2 and then to PANI in order to allow wider separation of excited carriers.

  15. Preparation of graphene oxide/polypyrrole/multi-walled carbon nanotube composite and its application in supercapacitors

    International Nuclear Information System (INIS)

    Wang, Bin; Qiu, Jianhui; Feng, Huixia; Sakai, Eiichi

    2015-01-01

    Highlights: • A novel method for synthesizing graphene oxide/polypyrrole/multi-walled nanotube composites. • Investigation of the effects of the mass ratio of GO, CM and Py on the capacitance of prepared composites. • Excellent electrochemical performance of PCMG composites. - Abstract: We report a novel method for preparing graphene oxide/polypyrrole/multi-walled carbon nanotubes (MWCNTs) composites (PCMG). The MWCNTs are treated by sulfuric acid, nitric acid and thionyl chloride, and then composite with graphene oxide and PPy by in suit polymerization. Transition electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results show that in 3-D structure of PCMG composites, PPy chains act as the “bridge” between graphene oxide and chlorinated-MWCNTs. Electrochemical tests reveal that the PCMG1-1 composite has high capacitance of 406.7 F g −1 at current density of 0.5 A g −1 , and the capacitance retention of PCMG1-1 composite is 92% after 1000 cycles

  16. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    Science.gov (United States)

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  17. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  18. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-08-19

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  19. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.

    Science.gov (United States)

    Dickey, Michael D; Weiss, Emily A; Smythe, Elizabeth J; Chiechi, Ryan C; Capasso, Federico; Whitesides, George M

    2008-04-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.

  20. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  1. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  2. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  3. Photocatalytic oxidation of methyl orange in water phase by immobilized TiO{sub 2}-carbon nanotube nanocomposite photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yinmao [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Sciences/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048 (China); Tang, Dongyan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li, Chensha, E-mail: lichnsa@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-03-01

    Highlights: • An immobilized photocatalyst with heterostructure of nanophase CNT-TiO{sub 2} was developed. • The unique 3-D network structure of the photocatalyst resulted in high and available surface area. • The nano-photocatalyst exhibited a high photocatalysis performance. • The immobilized nano-photocatalyst possess the merits of powder nano-photocatalyst. • The immobilized nano-photocatalyst adapts the requirement for clean and convenient manipulation. - Abstract: We developed an immobilized carbon nanotube (CNT)–titanium dioxide (TiO{sub 2}) heterostructure material for the photocatalytic oxidation of methyl orange in aqueous phase. The catalyst material was prepared via sol–gel method using multi-walled CNTs grown on graphite substrate as carriers. The multi-walled CNTs were synthesized from thermal decomposing of hydrocarbon gas directly on thin graphite plate, forming immobilized 3-dimensional network of CNTs. The nanophase TiO{sub 2} was synthesized coating on CNTs to form “coral”-shaped nanocomposite 3-dimensional network on graphite substrate, thus bringing effective porous structure and high specific surface area, and possessing the merit of dispersive powder photocatalysts, which is the fully available surface area, while adapting the requirement for clean and convenient manipulation as an immobilized photocatalyst. Moreover, the CNT–TiO{sub 2} heterostructure reduced the electron–hole pair recombination rate and enhanced the photoabsorption and the adsorption ability, resulting in elevating the photocatalysis efficiency. These synergistic effects due to the hybrid nature of the materials and interphase interaction greatly improved the catalytic activity, and demonstrated superior photocatalytic performances. Our work can be a significant inspiration for developing hybrid nano-phase materials to realize sophisticated functions, and bear tremendous significance for the development and applications of semiconductor nano-materials.

  4. Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; Vallejo, Federico Calle

    2011-01-01

    The formation energies of nanostructures play an important role in determining their properties, including their catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we used density functional theory (DFT) to calculate the formation energies of (2,2) na...

  5. Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films

    Science.gov (United States)

    Miller, Lawrence W.

    A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic

  6. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  7. Cobalt oxide nanoparticle-modified carbon nanotubes as an ...

    Indian Academy of Sciences (India)

    of 60 mV were observed at. 100 mV s. −1 for CoOx−MWNT/GCE. An anodic peak at. 100 mV attributed to Co(II)/Co(III) redox transition associated with the electrode surface. The cathodic peak at 20 mV corre- spond to the reduction of various cobalt oxide species formed during the anodic sweep. The stability of the modified ...

  8. Vanadium oxide nanotubes as cathode material for Mg-ion batteries

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Sørensen, Daniel Risskov; Bøjesen, Espen Drath

    Vanadium oxide compounds as cathode material for secondary Li-ion batteries gained interest in the 1970’s due to high specific capacity (>250mAh/g), but showed substantial capacity fading.1 Developments in the control of nanostructured morphologies have led to more advanced materials, and recently...... vanadium oxide nanotubes (VOx-NT) were shown to perform well as a cathode material for Mg-ion batteries.2 The VOx-NTs are easily prepared via a hydrothermal process to form multiwalled scrolls of VO layer with primary amines interlayer spacer molecules.3 The tunable and relative large layer spacing 1-3 nm...... synchrotron powder X-ray diffraction measured during battery operation. These results indicate Mg-intercalation in the multiwalled VOx-NTs occurs within the space between the individual vanadium oxide layers while the underlying VOx frameworks constructing the walls are affected only to a minor degree...

  9. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Geier, Michael L.; Prabhumirashi, Pradyumna L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Department of Medicine, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-02-10

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm{sup 2} V{sup −1} s{sup −1} at low operating voltages (<5 V) in air. We further show that the SWCNT-ZTO hybrid ambipolar FETs can be integrated into functional inverter circuits that display high peak gain (>10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures.

  10. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  11. Preparation of carbon nanotube-neodymium oxide composite and research on its catalytic performance

    International Nuclear Information System (INIS)

    Zhao Lei; Wang Zhihua; Han Dongmei; Tao Dongliang; Guo Guangsheng

    2009-01-01

    Carbon Nanotube-Neodymium Oxide (CNT-Nd 2 O 3 ) composite was prepared by using acid treated carbon nanotubes (CNTs) and neodymium nitrate in the presence of sodium dodecyl sulfate and ammonia liquid. Techniques of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential thermal analysis (DTA) are used to characterize the morphology, structure, composition and catalytic property of the CNT-Nd 2 O 3 composite. The experimental results show that the Nd 2 O 3 nanoparticles, which have an average diameter of about 30-40 nm, are loaded on the surface of carbon nanotube. Compared with pure Nd 2 O 3 nanorods, the CNT-Nd 2 O 3 composite can catalyze the thermal decomposition of ammonium perchlorate more effectively. The sampling methods of the experimental samples made a difference on the catalytic experiment results, and the best catalytic result was obtained when de-ionized water served as the solvent of ammonium perchlorate

  12. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Rachi, T.; Yokouchi, M.; Kamimoto, Y. [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Nakajima, A. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan); Okada, K. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori, Yokohama, Kanagawa 226-8503 (Japan)

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  13. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  14. Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites

    Science.gov (United States)

    Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.

    2018-04-01

    Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.

  15. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Marín, E. [Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07300 (Mexico); Villalpando, I. [Centro de Investigación para los Recursos Naturales, Salaices, Chihuahua 33941 (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, México, Ciudad de México 07738 (Mexico); Cervantes-Sodi, F. [Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219 (Mexico); Vargas-García, J.R. [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico); Torres-Torres, C., E-mail: ctorrest@ipn.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico)

    2017-06-15

    Highlights: • Nickel oxide decorated carbon nanotubes were prepared by chemical vapor deposition. • Contrast in photoconductivity phenomena in the nanohybrid was analyzed. • Electrical and nonlinear optical properties were evaluated. • A Wheatstone bridge sensor based metal/carbon nanostructures was proposed. - Abstract: Within this work was explored the influence of nickel oxide decoration on the photoconductive effects exhibited by multiwall carbon nanotubes. Samples in thin film form were prepared by a chemical vapor deposition method. Experiments for evaluating the photo-response of the nanomaterials at 532 nanometers wavelength were undertaken. A contrasting behavior in the photoelectrical characteristics of the decorated nanostructures was analyzed. The decoration technique allowed us to control a decrease in photoconduction of the sample from approximately 100 μmhos/cm to −600 μmhos/cm. Two-wave mixing experiments confirmed an enhancement in nanosecond nonlinearities derived by nickel oxide contributions. It was considered that metallic nanoparticles present a strong responsibility for the evolution of the optoelectronic phenomena in metal/carbon nanohybrids. Impedance spectroscopy explorations indicated that a capacitive behavior correspond to the samples. A potential development of high-sensitive Wheatstone bridge sensors based on the optoelectrical performance of the studied samples was proposed.

  16. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, J.V., E-mail: jvrojas@vcu.edu [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Toro-Gonzalez, M.; Molina-Higgins, M.C. [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Castano, C.E., E-mail: cecastanolond@vcu.edu [Nanomaterials Core Characterization Facility, Chemical and Life Science Engineering Department, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia, 23284 (United States)

    2016-03-15

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a {sup 60}Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  17. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Rojas, J.V.; Toro-Gonzalez, M.; Molina-Higgins, M.C.; Castano, C.E.

    2016-01-01

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a "6"0Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  18. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    International Nuclear Information System (INIS)

    Wang Luning; Luo Jingli

    2011-01-01

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO 2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  19. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, F; Baque, L; Troiani, H; Granada, M; Serquis, A, E-mail: aserquis@cab.cnea.gov.a [Instituto Balseiro-Centro Atomico Bariloche and CONICET, San Carlos de Bariloche (Argentina)

    2009-05-01

    La{sub 1-x}Sr{sub x}Co{sub 1-y}FeyO{sub 3-d}elta oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d}elta (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  20. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  1. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film

    Science.gov (United States)

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-01

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  2. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    Science.gov (United States)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  3. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    International Nuclear Information System (INIS)

    Ajayi, Obafunso A; Wong, Chee Wei; Guitierrez, Daniel H; Peaslee, David; Cheng, Arthur; Chen, Bin; Gao, Theodore

    2015-01-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT–GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g"−"1. Upon thermal reduction, MWCNT–GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs. (paper)

  4. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Kyung [Department of Chemical Engineering, University of Seoul, 90 Chonnong-dong, Tongdaemun-gu, Seoul (Korea, Republic of); Pathan, Habib M.; Jung, Kwang-Deog; Joo, Oh-Shim [Eco-Nano Research Center, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul (Korea, Republic of)

    2006-09-22

    This work reports the supercapacitive properties of composite films of multiwalled carbon nanotubes (MWNT) and ruthenium oxide (RuO{sub 2}). Transmission and scanning electron microscopy, cyclic voltammetry, and electrochemical studies revealed that the nanoporous three-dimensional arrangement of RuO{sub 2}-coated MWNT in these films facilitated the improvement of electron and ion transfer relative to MWNT films. The capacitance was measured for films of different RuO{sub 2} loading, revealing specific capacitances per mass as high as 628Fg{sup -1}. The energy storage density of the electrode has increased about three times as compared to MWNT treated with piranha solution. (author)

  5. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  6. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  8. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  9. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, D.; Wren, A.W.; Misture, S.T.; Mellott, N.P., E-mail: mellott@alfred.edu

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb{sub 2}O{sub 5}) and titanium (TiO{sub 2}) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb{sub 2}O{sub 5} at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO{sub 2} an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb{sub 2}O{sub 5} (450 °C), hexagonal-Nb{sub 2}O{sub 5} (525 °C), orthorhombic-Nb{sub 2}O{sub 5} (650 °C), amorphous-TiO{sub 2} (275 °C) and tetragonal TiO{sub 2} (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb{sub 2}O{sub 5} (525 °C) and TiO{sub 2} (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO{sub 2} (122%) samples when compared to the growing cell population while Nb{sub 2}O{sub 5} samples exhibited a range of viability (64–105%), partially dependent on materials atomic structure. - Highlights: • Niobium and titanium oxides were prepared to determine the effect of structure on bioactivity. • Simulated body fluid testing resulted in positive surface chemical and morphological changes. • Amorphous, rod-like CaP deposits were observed on the surfaces. • Niobium oxide exhibited a range of viability partially dependent on materials atomic structure.

  10. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    Science.gov (United States)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  11. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix

    2015-02-01

    Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

  12. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    Science.gov (United States)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  13. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  14. Platinized titanium dioxide electrodes for methanol oxidation and photo-oxidation

    Directory of Open Access Journals (Sweden)

    IOANNIS POULIOS

    2012-11-01

    Full Text Available Platinized deposits have been formed on TiO2 particulate films supported on Ti substrates, by means of galvanic replacement of pre-deposited metallic Cu and subsequent immersion of the Cu/TiO2 coatings into a chloroplatinic acid solution. The spontaneous replacement of Cu by Pt results in Pt(Cu/TiO2/Ti electrodes. Both the platinized and the precursor TiO2/Ti electrodes have been characterized by SEM micro­scopy/EDS spectroscopy, their surface electrochemistry has been assessed by cyclic voltammetry in the dark and their photoelectrochemical properties by photovolta­m­metry under UV illumination. It has been found that, although platinized rutile-rich electrodes exhibit typical Pt surface electrochemistry, the anatase-rich electrodes show only traces of oxide formation and stripping. The latter has been translated to a suppression of methanol oxidation at anatase-rich electrodes. On the contrary, methanol oxidation at platinized rutile-rich electrodes occurs at significant rates and can be further enhanced upon UV illumination, as a result of Pt and TiO2 synergism in the photoelectrochemical oxidation of methanol.

  15. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine; Baker, L. Robert; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2011-01-01

    formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results

  16. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    spectra indicate that the red characteristic emission of TiO{sub 2}: Eu{sup 3+} due to electric dipole {sup 5}D{sub 0} {yields}{sup 7} F{sub 2} transition occurring after ultraviolet excitation is the strongest. The decay time of the phosphorescence after UV excitation with a Nd:YAG laser (355 nm, f=10Hz) is temperature dependent in the range from 200 C up to 400 C. Finally, it has been found that the lifetime show a significant dependency on europium concentration. The development of rutile phase of titanium dioxide films on stainless steel substrates as protective coatings were investigated. Generally the rutile phases of TiO{sub 2} thin films do not adhere well on stainless steel substrates. In order to improve the adhesion, stainless steel substrates were first coated with titanium films using cathodic vacuum arc deposition. Then these titanium coatings were partially transformed to the rutile phase of titanium dioxide by thermal oxidation. The presence of the rutile phase of titanium dioxide and metallic titanium were confirmed by XRD. Cavitation erosion was used for the first time to investigate the adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile films with a Ti inter layer are well adherent to stainless steel substrates and protect the substrate from erosion. The total mass loss of the thermally oxidized samples of Ti coated stainless steel was found around 3.5 times lower than of the uncoated samples. (orig.)

  17. Electrocatalytic oxidative determination of reserpine at electrochemically functionalized single walled carbon nanotube with polyaniline

    International Nuclear Information System (INIS)

    Dar, Riyaz Ahmad; Naikoo, Gowhar Ahmad; Pitre, Krishna Sadashive

    2013-01-01

    Graphical abstract: Electrode oxidation mechanism of reserpine at PANI modified-SWCNT/CPE. -- Highlights: • Electropolymerization of polyaniline at SWCNT/CPE. • CV, EIS, CC SEM techniques were used for characterization of electrode. • Electrode showed electrocatalytic activity towards anodic oxidation of reserpine. • Oxidation process as irreversible and adsorption-controlled. • Reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations. -- Abstract: In the present work a polyaniline film was successfully deposited by electropolymerization on single walled carbon nanotube paste electrode. The electrode was characterized using cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and scanning electron microscopy. The modified electrode showed electrocatalytic behaviour towards the anodic oxidation of reserpine. The adsorptive stripping voltammetric behaviour of reserpine at polyaniline film modified single walled carbon nanotube paste electrode (modified-SWCNTPE) was investigated and validated in pharmaceuticals and biological fluids by cyclic voltammetry (CV) and adsorptive stripping differential pulse voltammetry (AdSDPV) in 0.02 M phosphate buffer in the pH range of 2.5–8.5. Cyclic voltammetry has shown that the oxidation process is irreversible over the pH range studied and exhibited an adsorption-controlled behaviour. Further, the overall electrode process is mainly diffusion controlled with adsorption effects. The proposed more sensitive AdSDPV method allow quantitation over the range 0.085 μg mL −1 to 0.87 μg mL −1 with the detection limit of 0.407 ng mL −1 and has been successfully used to determine reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations

  18. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  19. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device

    International Nuclear Information System (INIS)

    Seo, Kyungah; Park, Sangsu; Lee, Kwanghee; Lee, Byounghun; Hwang, Hyunsang; Kim, Insung; Jung, Seungjae; Jo, Minseok; Park, Jubong; Shin, Jungho; Biju, Kuyyadi P; Kong, Jaemin

    2011-01-01

    We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices. By developing a simple resistive switching device that can emulate a synaptic function, the unique characteristics of synapses in the brain, e.g. combined memory and computing in one synapse and adaptation to the outside environment, were successfully demonstrated in a solid state device.

  20. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    Science.gov (United States)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  1. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Institute of Hybrid Materials, Laboratory of New Fiber Materials and Modern Textile—The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Wang, Ning; Dou, Xiaowei; Han, Liangliang; Wen, Shuguang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-12-31

    Titanium oxide (TiO{sub X}) is an effective electron transport layer (ETL) in polymer solar cells (PSCs). We report efficient inverted PSCs with a simple solution-processed amorphous TiO{sub X} (s-TiO{sub X}) film as an ETL. The s-TiO{sub X} film with high light transmittance was prepared by spin-coating titanium (IV) isopropoxide isopropanol solution on indium tin oxide coated glass in inert and then placed in air under room temperature for 60 min. The introduction of s-TiO{sub X} ETL greatly improved the short circuit current density of the devices. PSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester and poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl -thieno[3,4-b]thiophene):[6,6]-phenyl- C71-butyric acid methyl ester using s-TiO{sub X} film as ETL shows high power conversion efficiency of 4.29% and 6.7% under the illumination of AM 1.5G, 100 mW/cm{sup 2}, which shows enhancements compared to the conventional PSCs with poly(styrenesulfonate)-doped poly(ethylenedioxythiophene) as anode buffer layer. In addition, the device exhibits good stability in a humid ambient atmosphere without capsulation. The results indicate that the annealing-free, simple solution processed s-TiO{sub X} film is an efficient ETL for high-performance PSCs. - Highlights: • High quality s-TiO{sub X} films were prepared by a simple, solution method without thermal treatment. • The s-TiO{sub X} films with high transmittance are very smooth. • The organic photovoltaic performance with s-TiO{sub X} film improved greatly and exhibited good stability. • The annealing-free, simple prepared s-TiO{sub X} film will be much compatible with flexible substrates.

  2. Halloysite nanotubes-titanium dioxide as a solid-phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion.

    Science.gov (United States)

    Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi

    2016-07-05

    Halloysite nanotubes-titanium dioxide (HNTs-TiO2) as a biocompatible environmentally friendly solid-phase microextraction (SPME) fiber coating was prepared. HNTs-TiO2 was chemically coated on the surface of a fused-silica fiber using a sol-gel process. Parathion as an organophosphorus pesticide was selected as a model compound to investigate the extraction efficiency of the fiber. The extracted analyte was detected by negative corona discharge-ion mobility spectrometer (NCD-IMS). The effective parameters on the extraction efficiency, such as salt effect, extraction temperature and extraction time were investigated and optimized. The extraction efficiency of HNTs-TiO2 fiber was compared with bare-silica (sol-gel based coating without HNTs-TiO2), HNTs, carbon nanotubes and commercial SPME fibers (PA, PDMS, and PDMS-DVB). The HNTs-TiO2 fiber showed highest extraction efficiency among the studied fibers. The intra- and inter-day relative standard deviations were found to be 4.3 and 6.3%, respectively. The limit of detection and limit of quantification values were 0.03 and 0.1 μg L(-1), respectively. The dynamic range of the method was in the range of 0.1-25 μg L(-1). The spiking recoveries were between 85 (±9) and 97 (±6). The SPME-HNTs-TiO2 combined with NCD-IMS was successfully applied for the determination of parathion in apple, strawberry, celery and water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Taeksoo Ji

    2011-05-01

    Full Text Available The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a fabrication of biomaterials into nanostructures, (b alignment of the nanostructures and (c immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  4. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors

    Science.gov (United States)

    Moon, Geon Dae; Joo, Ji Bong; Yin, Yadong

    2013-11-01

    A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production.A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images and additional electrochemical data. See DOI: 10.1039/c3nr04339h

  5. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  6. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Engelhard, Mark H. [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.

    2017-02-22

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.

  7. High-performance photoresponse from single-walled carbon nanotube-zinc oxide heterojunctions

    International Nuclear Information System (INIS)

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Lee, Minsu; Kim, Jae-Ho

    2011-01-01

    Photoactive materials consisting of single-walled carbon nanotube (SWNT)-zinc oxide (ZnO) heterojunctions targeted for optoelectronic applications are investigated in terms of photoresponse and photovoltaic effects. The devices based on SWNT-ZnO heterojunction films are fabricated by two step processes: first, a well aligned SWNT monolayer is deposited on an oxide substrate by the Langmuir-Blodgett (LB) technique; then a ZnO film prepared by filtration of ZnO nanowire solution is transferred onto the SWNT film to form SWNT-ZnO junctions. The SWNT-ZnO heterojunction demonstrates faster photoresponse time (2.75 s) up to 18 times and photovoltaic efficiency (1.33 nA) up to 4 times higher than that of only a ZnO device. Furthermore, the mechanisms of UV sensitivity enhancement and photovoltaic effects are explained according to the high electron mobility in the SWNT-ZnO heterojunctions.

  8. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min-Kang [Department of Chemistry, Inha University, 253, Incheon 402-751 (Korea, Republic of); Saouab, Abdelghani [Department of Mechanical Engineering, University of Le Havre, Place Robert Schuman, BP 4006, 76610 Le Havre (France); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Department of Chemistry, Inha University, 253, Incheon 402-751 (Korea, Republic of)

    2010-02-25

    The preparation and characterization of high-surface-area ruthenium oxide (RuO{sub 2})/multi-walled carbon nanotubes (MWCNTs) composite electrodes for use in supercapacitors is reported in this work. The RuO{sub 2}/MWCNTs composites were prepared by the polyol process of RuO{sub 2} into MWCNTs and by Ru annealing in air before mixed with MWCNTs. The chemically oxidized and annealed Ru nanoparticles contribute a pseudocapacitance to the electrodes and dramatically improve the energy storage characteristics of the MWCNTs. These composites annealed at 200 deg. C demonstrate specific capacitances in excess of 130 F/g in comparison to 80 F/g for pristine MWCNTs. The annealing temperature is found to play an important role, as it affects the electrochemical performance of annealed RuO{sub 2}/MWCNTs composites critically due to its influence on the diffusion of protons into the structure.

  10. Formation of titanium oxide coatings on NiTi shape memory alloys by selective oxidation

    International Nuclear Information System (INIS)

    Pohl, M.; Glogowski, T.; Kuehn, S.; Hessing, C.; Unterumsberger, F.

    2008-01-01

    Materials used for medical devices that are in contact with human tissue must have good corrosion resistance and biocompatibility. NiTi shape memory alloys (SMAs) are often used in medical applications due to their special functional and mechanical properties (shape memory effect, pseudo elasticity). Because of the high Ni content in nearly stoichiometric NiTi SMAs, the possibility of Ni being released needs to be considered as Ni may cause problems in the human body. SMAs exhibit a high intrinsic corrosion resistance because of the thermodynamic stability of Ni (thermodynamic reason) and the low degree of disorder in a thin protective TiO 2 -layer (kinetic reason). While therefore there is no need to be concerned too much about a normal corrosive attack in the human body, it has to be kept in mind that in medical applications, these materials represent one part of a tribological system where wear processes need to be considered. The formation of a uniform TiO 2 -layer can be beneficial in this respect. The selective oxidation of Ti to TiO 2 on the surface is a promising method to decrease the Ni release significantly. This can be achieved by controlling the partial pressure of oxygen during a controlled oxidation process. The atmosphere must be adjusted so that TiO 2 is stable while NiO cannot yet form. The result of a selective oxidation is a TiO 2 -layer that has an excellent degree of purity and represents a safe barrier against Ni emission

  11. Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxia [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Duan, Jinming, E-mail: jinmingduan@xauat.edu.cn [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, South Australia (Australia); Li, Wei [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Beecham, Simon; Mulcahy, Dennis [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, South Australia (Australia)

    2016-02-13

    Highlights: • A simultaneous UV catalysed oxidation–coagulation for As(III) removal is proposed. • As(III) was effectively oxidised to As(V) by the UV catalysed coagulation. • >99% removal for As(III) in pH 4–6 at low doses of Ti(SO{sub 4}){sub 2} was achieved. • Concurrent UV radiation in massive small crystal formation facilitate the effects. • Reaction mechanisms involve both hydroxyl radicals and superoxide radicals. - Abstract: This study explored the efficacy and efficiency of a simultaneous UV-catalyzed oxidation–coagulation process of titanium sulfate (UV/Ti(SO{sub 4}){sub 2}) for efficient removal of As(III) from water. It revealed that, As(III) could be oxidized to As(V) during the UV catalyzed coagulation of Ti(SO{sub 4}){sub 2} with highly efficient As(III) removal in the pH range 4–6{sub .} The UV catalyzed oxidation–coagulation showed surprisingly effective oxidation of As(III) to As(V) within a short time. XPS indicated that 84.7% of arsenic on the coagulated precipitate was in the oxidized form of As(V) after the UV/Ti(SO{sub 4}){sub 2} treatment of As(III) aqueous solutions at pH 5. Arsenic remaining in solution at high pH was in the oxidized form As(V). Removal efficiencies of As(III) were investigated as a function of pH, Ti(SO{sub 4}){sub 2} dosage, initial As(III) concentration and irradiation energy. As(III) could almost completely be removed (>99%) by the photocatalytic oxidation–coagulation process with a moderate dose of Ti(SO{sub 4}){sub 2} in the pH range 4–6 at an initial arsenic concentration of 200 μg/L. The mechanisms of the photocatalytic coagulation oxidation of Ti(SO{sub 4}){sub 2} are similar to those of UV/crystalline TiO{sub 2} particles, involving the formation and reactions of the hydroxyl radical OH· and superoxide HO{sub 2}·/O{sub 2}{sup ·−}.

  12. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    International Nuclear Information System (INIS)

    Alanis O, R.; Jimenez B, J.

    2010-01-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO 2 , which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO 2 synthesized by the Degussa company (TiO 2 Degussa P25) with and oxide of mixed cobalt valence (Co 3 O 4 ) synthesized using the sol-gel method. The synthesized photo catalyst TiO 2 /Co 3 O 4 was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  13. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  14. Synthesis, characterization and photo catalytic activity of titanium oxide modified with nitrogen; Sintesis, caracterizacion y actividad fotocatalitica de oxido de titanio modificado con nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Enriquez, J. M.; Garcia Alamilla, R.; Garcia Serrano, L. A.; Cueto Hernandez, A.

    2011-07-01

    Titanium oxides (TiO{sub 2}) were synthesized by precipitation of titanium tetrachloride (TiCl{sub 4}) using ammonium hydroxide (NH{sub 4}OH). The synthesized materials were characterized by means of nitrogen physisorption, X-ray diffraction, infrared spectroscopy, U.V.-visible diffuse reflectance spectroscopy and the photo catalytic activity of the samples were measured by the degradation of the methyl orange. By means of this synthesis method we have doped the titanium oxide structure with nitrogen (N-TiO{sub 2}), stabilizing the anatase phase and obtaining meso porous and nanocrystalline materials. The titanium oxide with higher specific surface area (132 m{sup 2}/g) degraded the azo-compound to 100% in 180 min of reaction. (Author) 33 refs.

  15. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  16. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    International Nuclear Information System (INIS)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  17. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    Science.gov (United States)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  18. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  19. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  20. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Valkonen, Minna; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2014-12-18

    The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review

    Science.gov (United States)

    Bogdan, Janusz; Pławińska-Czarnak, Joanna; Zarzyńska, Joanna

    2017-03-01

    Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.

  2. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  3. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  4. Effect of silver on the phase transition and wettability of titanium oxide films

    Science.gov (United States)

    Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  5. Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier

    International Nuclear Information System (INIS)

    Tian Xiao-Bo; Xu Hui

    2014-01-01

    The recent published experimental data of titanium oxide memristor devices which are tested under the same experimental conditions exhibit the strange instability and complexity of these devices. Such undesired characteristics preclude the understanding of the device conductive processes and the memristor-based practical applications. The possibility of the coexistence of dopant drift and tunnel barrier conduction in a memristor provides preliminary explanations for the undesired characteristics. However, current research lacks detailed discussion about the coexistence case. In this paper, dopant drift and tunnel barrier-based theories are first analyzed for studying the relations between parameters and physical variables which affect characteristics of memristors, and then the influences of each parameter change on the conductive behaviors in the single and coexistence cases of the two mechanisms are simulated and discussed respectively. The simulation results provide further explanations of the complex device conduction. Theoretical methods of eliminating or reducing the coexistence of the two mechanisms are proposed, in order to increase the stability of the device conduction. This work also provides the support for optimizing the fabrications of memristor devices with excellent performance

  6. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  7. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  8. Gas transport properties of polybenzimidazole and poly(phenylene oxide) mixed matrix membranes incorporated with PDA-functionalised titanate nanotubes

    Czech Academy of Sciences Publication Activity Database

    Giel, Verena; Perchacz, Magdalena; Kredatusová, Jana; Pientka, Zbyněk

    2017-01-01

    Roč. 12, č. 1 (2017), s. 1-15, č. článku 3. ISSN 1931-7573 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polybenzimidazole * poly(phenylene oxide) * titanate nanotubes Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  9. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  10. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  11. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  12. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Macedo, Andreia G.; Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S.; Grova, Isabel R.; Ackcelrud, Leni; Reis, Françoise T.; Sartorelli, Maria L.; Roman, Lucimara S.

    2012-01-01

    In this work, porous ordered TiO 2 films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  13. Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer

    OpenAIRE

    Kuwabara, Takayuki; Sugiyama, Hirokazu; Kuzuba, Mitsuhiro  ; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-01-01

    Chemical bath deposited titanium oxide (TiOx ) as an electron collection layer is introduced between the organic layer and the indium tin oxide (ITO) electrode for improving the performance of inverted bulk-heterojunction organic thin film solar cells with 1 cm2 active area, where regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were mainly used as the photo-active layer. The uniform and thin TiOx film was easily prepared onto the ITO electrode ...

  14. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    Energy Technology Data Exchange (ETDEWEB)

    Uudeküll, Peep, E-mail: peep.uudekull@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kozlova, Jekaterina; Mändar, Hugo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Link, Joosep [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Sihtmäe, Mariliis [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Käosaar, Sandra [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Faculty of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Blinova, Irina; Kasemets, Kaja; Kahru, Anne [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Stern, Raivo [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Tätte, Tanel [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia)

    2017-05-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  15. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    International Nuclear Information System (INIS)

    Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile

    2017-01-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  16. Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor

    NARCIS (Netherlands)

    Slooff, L.H.; Wienk, M.M.; Kroon, J.M.

    2004-01-01

    Hybrid TiO2:polymer photovoltaic cells were made from mixtures of titanium(IV) isopropoxide and poly[2-methoxy-5-(3',7'-dimethyloctyl)-p-phenylene vinylene] (MDMO-PPV) or poly(3-octyl thiophene) (P3OT) via hydrolysis in air. Cells were made with varying titanium(IV) isopropoxide:polymer ratios.

  17. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  18. Synthesis and characterization of polyacrylic acid- grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies.

    Science.gov (United States)

    Anirudhan, Thayyath S; Shainy, F; Christa, J

    2017-02-15

    Polyacrylic acid-grafted-carboxylic graphene/titanium nanotube (PAA-g-CGR/TNT) composite was synthesized. It was effectively used as adsorbent as well as photocatalyst. The composite was characterized by FTIR, XRD, SEM, TEM, Surface Area Analyzer, XPS and DRS. The photocatalytic activity of PAA-g-CGR/TNT composite was evaluated on the basis of the degradation of pollutants by using sunlight. The band gap of the prepared photocatalyst was found to be 2.6eV. The removal of the antibiotic enrofloxacin (ENR) was achieved by two step mechanism based on adsorption and photodegradation. The maximum adsorption was observed at pH 5.0. The best fitted kinetic model was found to be pseudo-second-order. The maximum adsorption was observed at 30°C. The maximum adsorption capacity was found to be 13.40mg/g. The kinetics of photodegradation of ENR onto PAA-g-CGR/TNT composite follow first-order kinetics and optimum pH was found to be 5.0. The regeneration and reuse of the adsorbent-cum-photocatalyst were also examined upto five cycles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    Science.gov (United States)

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  20. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode

    Directory of Open Access Journals (Sweden)

    Mohammad Mazloum-Ardakani

    2016-01-01

    Full Text Available In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H-one (DTD and oxidized multi-walled carbon nanotubes (OCNTs is described for determination of levodopa (LD, acetaminophen (AC and tryptophan (Trp by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated oxidation of LD at the modified electrode is investigated. At the optimum pH of 7.4, the oxidation of LD occurs at a potential about 330 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV, the oxidation current of LD exhibits a linear range between 1.0 and 2000.0 μM of LD with a detection limit (3σ of 0.36 μM. DPV was also used for simultaneous determination of LD, AC and Trp at the modified electrode. Finally, the proposed electrochemical sensor was used for determinations of these substances in human serum sample.

  2. Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    L. Fotouhi

    2014-04-01

    Full Text Available The electrochemical oxidation of sulfamethazine (SMZ has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE by cyclic voltammetry. This modified electrode (MWCNT-GCE exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less positive values (170 mV in comparison with the bare GCE. The formal potential, E0', of SMZ is pH dependent with a slope of 54 mV per unit of pH, close to the anticipated Nerstian value of 59 mV for a 2-electron and 2-proton oxidation process. A detailed analysis of cyclic voltammograms gave fundamental electrochemical parameters including the electroactive surface coverage (Г, the transfer coefficient (a, the heterogeneous rate constant (ks. Under the selected conditions, the peak current shows two dynamic linear ranges of 10-200 mM and 300-3000 mM with the detection limit of 6.1 mM. The method was successfully applied to analyze SMZ in serum sample

  3. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R.; Picasso Escobar, Gino I.

    2013-01-01

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C 12 H 15 N 3 O 2 S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 o C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H 2 NCONH 2 ·H 2 O 2 ) as oxidizing agent and methanol (CH 3 OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N 2 (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  4. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  5. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudsonzanin@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Saito, E., E-mail: esaito135@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Ceragioli, H.J., E-mail: helderjc@gmail.com [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Baranauskas, V., E-mail: vitor@dsif.fee.unicamp.br [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Corat, E.J., E-mail: corat@las.inpe.br [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  6. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  7. Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits

    Directory of Open Access Journals (Sweden)

    Thuy-Duong Thi Nguyen

    2017-07-01

    Full Text Available The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05. CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo.

  8. Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications

    Directory of Open Access Journals (Sweden)

    Sarah C. Motshekga

    2012-01-01

    Full Text Available The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of carbon nanotubes and metal/oxides is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. The synthesis of these composites is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors. These techniques based on thermal heating can be time consuming and often lack control of particle size and morphology. Hence, there is interest in microwave technology recently, where using microwaves represents an alternative way of power input into chemical reactions through dielectric heating. This paper covers the synthesis and applications of carbon-nanotube-coated metal/oxides nanoparticles prepared by a microwave-assisted method. The reviewed studies show that the microwave-assisted synthesis of the composites allows processes to be completed within a shorter reaction time with uniform and well-dispersed nanoparticle formation.

  9. Inorganic ion exchanger based on tin/titanium mixed oxide doped with europium to be used in radioactive waste

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.

    2009-01-01

    This work presents the results of synthesis and characterization of an inorganic ion exchanger based on tin/titanium mixed oxides doped with europium (SnO 2 /TiO 2 :Eu 3+ ) to be used in environmental field. The adsorption study of nickel was realized in this exchanger to recover the nickel metal which is in thorium-nickel alloys used as electrode of discharge lamps. The studied exchanger was synthesized by neutralization of tin chloride (IV) and titanium chloride (III) mixed solution and characterized by thermogravimetric measurement (TG), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM). The adsorption study showed that these inorganic ion exchangers are good materials to recovery nickel with high weight distribution ratios (Dw Ni 2+ ) and percent adsorption. (author)

  10. Self-cleaning glass coating containing titanium oxide and silicon; Revestimentos autolimpantes para vidros contendo oxido de titanio e silicio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Lab. de Materiais Ceramicos

    2009-07-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  11. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    Science.gov (United States)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  12. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

    Science.gov (United States)

    Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2010-10-01

    Titanium oxide nanotube layers by anodization have excellent potential for dental implants because of good bone cell promotion. It is necessary to evaluate osteoblast behavior on different annealing temperature titania nanotubes for actual implant designs.  Scanning Electron Microscopy, X-Ray polycrystalline Diffractometer (XRD), X-ray photoelectron Spectroscope, and Atomic Force Microscopy (AFM) were used to characterize the different annealing temperature titania nanotubes. Confocal laser scanning microscopy, MTT, and Alizarin Red-S staining were used to evaluate the MC3T3-E1 preosteoblast behavior on different annealing temperature nanotubes.  The tubular morphology was constant when annealed at 450°C and 550°C, but collapsed when annealed at 650°C. XRD exhibited the crystal form of nanotubes after formation (amorphous), after annealing at 450°C (anatase), and after annealing at 550°C (anatase/rutile). Annealing led to the complete loss of fluorine on nanotubes at 550°C. Average surface roughness of different annealing temperature nanotubes showed no difference by AFM analysis. The proliferation and mineralization of preostoblasts cultured on anatase or anatase/rutile nanotube layers were shown to be significantly higher than smooth, amorphous nanotube layers.  Annealing can change the crystal form and composition of nanotubes. The nanotubes after annealing can promote osteoblast proliferation and mineralization in vitro. © 2010 John Wiley & Sons A/S.

  13. Preparation of TiO₂/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B.

    Science.gov (United States)

    Huang, Yanzhen; Chen, Dongping; Hu, Xinling; Qian, Yingjiang; Li, Dongxu

    2018-06-13

    In this report, ternary titanium dioxide (TiO₂)/carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composites were fabricated by a facile and environmentally friendly one-pot solvethermal method for the removal of Rhodamine B (RhB). Its structures were represented by X-ray powder diffraction (XRD), Raman spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance was tested by the degradation efficiency of RhB under UV-vis light irradiation. The experimental results indicated that photocatalytic activity improved as the ratio of CNTs:TiO₂ ranged from 0.5% to 3% but reduced when the content increased to 5% and 10%, and the TiO₂/CNTs/rGO-3% composites showed superior photocatalytic activity compared with the binary ones (i.e., TiO₂/CNTs, TiO₂/rGO) and pristine TiO₂. The rate constant k of the pseudo first-order reaction was about 1.5 times that of TiO₂. The improved photocatalytic activity can be attributed to the addition of rGO and CNTs, which reduced the recombination of photo-induced electron-hole pairs, and the fact that CNTs and rGO, with a high specific surface area and high adsorption ability to efficiently adsorb O₂, H₂O and organics, can increase the hydroxyl content of the photocatalyst surface.

  14. Synthesis, characterization and enhanced photocatalytic activity of iron oxide/carbon nanotube/Ag-doped TiO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Marques Neto, José O.; Bellato, Carlos R.; Souza, Carlos H.F. de; Silva, Renê C. da; Rocha, Pablo A., E-mail: bellato@ufv.br [Universidade Federal de Viçosa (UFV), MG (Brazil)

    2017-07-01

    A novel magnetically recoverable catalyst (Fe/MWCNT/TiO{sub 2}-Ag) was prepared in this study by a process that involves few steps. Titanium dioxide doped with silver and iron oxide was deposited on support of multi-walled carbon nanotubes (MWCNT). The synthesized catalysts were characterized by inductively coupled plasma mass spectrometry (ICP-MS), N{sub 2} adsorption/desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), infrared spectroscopy (IR) and UV-Vis diffuse reflectance spectra (DRS). Phenol in aqueous solution (50 mg L{sup -1}) was used as a model compound for evaluation of UV-Vis (filter cut off for λ > 300 nm) photocatalytic activity. The composite catalyst has a high photocatalytic activity, destroying ca. 100% of phenol and removing 85% of total organic carbon in an aqueous solution after 180 min. The Fe/MWCNT/TiO{sub 2}-Ag catalyst remained stable, presenting an 8% decrease in phenol degradation efficiency after ten consecutive photocatalytic cycles. (author)

  15. A simple approach for synthesis of TiO{sub 2} nanotubes with through-hole morphology

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Krishna; Losic, Dusan [University of South Australia, Ian Wark Research Institute, Mawson lakes, SA (Australia)

    2009-07-15

    The present work reports a simple approach for fabrication of self-standing titania (TiO{sub 2}) nanotube membranes with through-hole morphology. The method is hydrofluoric acid free and the pore opening of TiO{sub 2}nanotubes is performed by electrochemical thinning of the oxide barrier layer. A reduction of anodization voltage was applied at the end of the anodization process to cause a successful removal of the remaining barrier layer from the TiO{sub 2} nanotubes during their detachment from the underlying titanium substrate. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    OpenAIRE

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-01-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNT...

  17. Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode

    International Nuclear Information System (INIS)

    Liu Zhuan; Zhou Yikai; Wang Yanying; Cheng Qin; Wu Kangbing

    2012-01-01

    Highlights: ► The enhanced oxidation of ractopamine on MWCNT film surface was firstly studied. ► The oxidation occurred at phenolic hydroxyl groups and transferred two electrons. ► A sensitive and effective electrochemical sensor was developed for ractopamine. ► It was used to detect ractopamine in animal tissues, the recovery was satisfactory. - Abstract: Insoluble multi-walled carbon nanotube (MWCNT) was readily dispersed into water in the presence of dihexadecyl hydrogen phosphate, and then used to modify the surface of glassy carbon electrode (GCE) by means of solvent evaporation. Scanning electron microscopy test indicated that the GCE surface was coated with uniform MWCNT film. The resulting MWCNT film-modified GCE greatly enhanced the oxidation signal of ractopamine. The oxidation mechanism was studied, and it was found that the oxidation of ractopamine occurred at two phenolic hydroxyl groups, involving two protons and two electrons. Moreover, the influences of pH value, amount of MWCNT, accumulation potential and time were investigated on the oxidation signal of ractopamine. Based on the strong enhancement effect of MWCNT, a sensitive, rapid and simple electrochemical method was developed for the detection of ractopamine. The linear range was from 50 μg L −1 to 2 mg L −1 , and the detection limit was 20 μg L −1 . Finally, this method was successfully used to detect the content of ractopamine in pork and liver samples, and the recovery was in the range from 93.1% to 107.2%.

  18. Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation

    Science.gov (United States)

    Dadras, Sedigheh; Faraji, Maryam

    2018-05-01

    In this study, we achieved superfast growth of carbon nanotubes (CNTs) in an anodic aluminum oxide (AAO) template by applying microwave (MW) radiation. This is a simple and direct approach for growing CNTs using a MW oven. The CNTs were synthesized using MW radiation at a frequency of 2.45 GHz and power was applied at various levels of 900, 600, and 450 W. We used graphite and ferrocene in equal portions as precursors. The optimum conditions for the growth of CNTs inside a MW oven were a time period of 5 s and power of 450 W. In order to grow uniform CNTs, an AAO template was applied with the CNTs synthesized under optimum conditions. The morphology of the synthesized CNTs was investigated by scanning electron microscopy analysis. The average diameters of the CNTs obtained without the template were 22-27 nm, whereas the diameters of the CNTs prepared inside the AAO template were about 4-6 nm.

  19. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Lee, Kun-Hong [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2004-08-15

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C{sub 2}H{sub 2} and H{sub 2} at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/mum and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  20. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  1. High Methanol Oxidation Activity of Well-Dispersed Pt Nanoparticles on Carbon Nanotubes Using Nitrogen Doping

    Directory of Open Access Journals (Sweden)

    Fang Wei-Chuan

    2009-01-01

    Full Text Available Abstract Pt nanoparticles (NPs with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  2. Inhibiting the VIM-2 Metallo-β-Lactamase by Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Huang, Po-Jung Jimmy; Pautler, Rachel; Shanmugaraj, Jenitta; Labbé, Geneviève; Liu, Juewen

    2015-05-13

    Metallo-β-lactamases (MBLs) degrade a broad spectrum of antibiotics including the latest carbapenems. So far, limited success has been achieved in developing its inhibitors using small organic molecules. VIM-2 is one of the most studied and important MBLs. In this work, we screened 10 nanomaterials, covering a diverse range of surface properties including charge, hydrophobicity, and specific chemical bonding. Among these, graphene oxide and carbon nanotubes are the most potent inhibitors, while most other materials do not show much inhibition effect. The inhibition is noncompetitive and is attributed to the hydrophobic interaction with the enzyme. Adsorption of VIM-2 was further probed using protein displacement assays where it cannot displace or be displaced by bovine serum albumin (BSA). This information is useful for rational design inhibitors for MBLs and more specific inhibition might be achieved by further surface modifications on these nanocarbons.

  3. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    Science.gov (United States)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  4. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    International Nuclear Information System (INIS)

    Chen, Chia-Ling; Yang, Chih-Feng; Dokmeci, Mehmet R; Agarwal, Vinay; Sonkusale, Sameer; Kim, Taehoon; Busnaina, Ahmed; Chen, Michelle

    2010-01-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ∼ 300% and ∼ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  5. The adsorption of L-phenylalanine on oxidized single-walled carbon nanotubes.

    Science.gov (United States)

    Piao, Lingyu; Liu, Quanrun; Li, Yongdan; Wang, Chen

    2009-02-01

    A simple and green approach was proceeded to obtain a stable single-walled carbon nanotubes (SWNTs)/L-phenylalanine (Phe) solution. The oxidized SWNTs (OSWNT) were used in this work. The scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), Raman spectrometer, Fourier transform-infrared resonance (FT-IR), Ultraviolet-visible (UV-vis) spectroscopy, Thermogravimetric analysis (TGA) and High performance liquid chromatography (HPLC) were joined together to investigate the interaction between OSWNT and Phe. The OSWNT became soluble in the water and formed a stable solution since the Phe was adsorbed. The absorbed amount of Phe on the OSWNT is around 33 wt%. Adsorption of the Phe was mainly carried out on the OSWNT with smaller diameters. The Phe molecules were absorbed on the OSWNT by conjunct interaction of the pi-pi stacking, hydrogen bond and part of covalent bond.

  6. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    Science.gov (United States)

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    Science.gov (United States)

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization of ceramics of titanium oxide to treatment of effluents from nuclear area

    International Nuclear Information System (INIS)

    Silva, Milena Hudson da; Oliveira, Elizabeth E. de Mello

    2017-01-01

    Membrane separation processes (PSM) have become increasingly important technology, with application in several areas to separate, concentrate or purify solutions. PSM has been justified because it is an easy-to-operate separation technique and, in general, does not involve phase change. Ceramic membranes exhibit superior properties as polymeric, mainly about chemical resistance to solvents and extremes of temperature and pH. Ceramic membranes are composed of a porous support, responsible for the mechanical resistance and covered by a thin layer, responsible for selectivity. In this work were prepared supports based on titanium oxide (TiO 2 ), which features high stability, thermal, chemical resistance to organic solvents and application in a wide pH range (0-14). Three aqueous solutions were prepared containing TiO 2 and corn starch at concentrations of 0, 15 and 30%, acting as a pores former. The solutions were dried in Spray-Dryer, to obtain a homogeneous mixture and grainy. The support has been compressed to a pressure of 1.5 Kgfcm -2 in the form of cylindrical disks of 2.5 cm diameter sintered at temperatures of 1100 and and 1150° C. The discs were weighed and their dimensions measured for the determination of geometric density and porosity. Hydraulic permeability tests were performed at pressures of 1 to 4 bar. The conditions of 1100 ° C without addition of starch and 1150 ° C with 15% of starch had porosities of 42% and 44%, respectively, values close to that suggested in the literature, between 35-40%

  9. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    Science.gov (United States)

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  10. Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mund, R., E-mail: rachnamund@gmail.com; Panda, N., E-mail: niladri1panda@gmail.com [National Institute of Technology, Department of Biotechnology and Medical Engineering (India); Nimesh, S., E-mail: surendranimesh@curaj.ac.in [Central University of Rajasthan, Department of Biotechnology, School of Life Sciences (India); Biswas, A., E-mail: amitb79@gmail.com [National Institute of Technology, Department of Biotechnology and Medical Engineering (India)

    2014-12-15

    Novel titanium oxide (TiO{sub 2}) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO{sub 2} nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ∼30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ∼63.61 % while those prepared through propanol-induced drying step showed ∼69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO{sub 2} nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO{sub 2} nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.

  11. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    EB

    Methods: The pristine multi-walled carbon nanotubes (p-MWCNTs) were ... characterize the MWCNTs. ..... South Africa and NRF Focus Area, Nanotechnology ... of carbon nanotubes in drug delivery. Current. Opinion in Chemical Biology, 2005 ...

  12. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    International Nuclear Information System (INIS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  13. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obvi