WorldWideScience

Sample records for titanium oxide nanotube

  1. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  2. Photocatalytic Oxidation of a Volatile Organic Component of Acetaldehyde Using Titanium Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2007-01-01

    Full Text Available Titanium oxide nanotubes are prepared and treated with Au (Au/nanotube sample and Pt (Pt/nanotube sample, and the photoactivity of these catalysts compared to a standard Degussa P25 photocatalyst is investigated. The samples were analyzed using X-ray diffraction, field emission gun scanning transmission electron microscopy (STEM. Both high-resolution TEM images and high-angle annular dark-field (HAAD images were recorded for the specimens. Oxidation of acetaldehyde was used to test the efficiency of the catalysts. Nanotube samples showed better photoactivity than the standard P25, because the P25 titania deactivates quickly. Enhanced reactivity of the nanotube is related to surface charge polarity developed on outer and inner surfaces due to the difference in overlap of oxygen anions that resulted from curving of octahedral sheets. A tentative and qualitative surface polarity model is proposed for enhancing electron-hole pair separation. The inner surface benefits reduction; whereas, the outer surface benefits oxidation reactions. Both the metal identity and the size of the metal particles in the nanotubes affected the photocatalytic activity. Specifically, the addition of platinum increased the activity significantly, and increased the total yield. The addition of gold had lesser impact compared to the platinum. Formation of Pt large nanoparticles on the nanotube surfaces reduces the oxidation reactivity.

  3. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  4. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Department of Mechanical and Mechatronic Engineering, Keelung (China); Hsu, Todd [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Tsai, Huei-Ting [National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Chen, Chien-Chon [National United University, Department of Energy and Resources, Miaoli (China); Liu, Shiu-Mei [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Marine Biology, Keelung (China); Lin, Tai-Yuan [National Taiwan Ocean University, Institute of Optoelectronic Sciences, Keelung (China); Chen, Chin-Hsing [National Chiao Tong University, Department of Applied Chemistry, Hsinchu (China)

    2011-02-15

    The use of titanium dioxide (TiO{sub 2}) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH{sub 4}F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously. (orig.)

  5. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  6. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  7. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  8. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  9. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  10. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  11. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  12. Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes

    Science.gov (United States)

    Kondrikov, N. B.; Titov, P. L.; Schegoleva, S. A.; Khorin, M. A.

    Nanotubular titanium oxide coatings with different morphology and dimensional parameters are formed by anodic oxidation under different voltage and time modes in fluorine aqueous-nonaqueous electrolytes containing glycerin as well as several surface-active agents (SAA). Their morphological peculiarities are examined and qualitative and quantitative analysis of obtained types of ordering is carried out, geometric configuration entropy are calculated on the base of analysis SEM images and theory of self-organization.

  13. Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange.

    Science.gov (United States)

    Yun, Dong-Min; Cho, Hyun-Hee; Jang, Jun-Won; Park, Jae-Woo

    2013-04-01

    Here, we demonstrated that nano zero-valent iron (nZVI) impregnated onto self-organized TiO(2) nanotube thin films exhibits both oxidation and reduction capacities in addition to the possible electron transfer from TiO(2) to nZVI. The TiO(2) nanotubes were synthesized by anodization of titanium foil in a two-electrode system. Amorphous TiO(2) (amTiO(2)) nanotubes were annealed at 450 °C for 1 h to produce crystalline TiO(2) (crTiO(2)) nanotubes. The nZVI particles were immobilized on the TiO(2) array film by direct borohydride reduction. Field emission scanning electron microscopy (FE-SEM) analysis of the crystalline TiO(2) nanotube with nZVI (nZVI/crTiO(2)) indicated that the nZVI particles with a mean particle diameter of 28.38 ± 11.81 nm were uniformly distributed onto entire crTiO(2) nanotube surface with a mean pore diameter of 75.24 ± 17.66 nm and a mean length of 40.07 μm. Environmental applicability of our proposed nZVI/TiO(2) nanotube thin films was tested for methyl orange (MO) degradation in the aqueous system with and without oxygen. Since oxygen could facilitate the nZVI oxidation and inhibit electron transfer from crTiO(2) to nZVI surface, MO degradation by nZVI/crTiO(2) in the presence of oxygen was significantly suppressed whereas nZVI/crTiO(2) in the absence of oxygen enhanced MO degradation. MO degradation rate by each sample without oxygen were in following order: nZVI/crTiO(2) (k(obs) = 0.311 min(-1)) > nZVI/amTiO(2) (k(obs) = 0.164 min(-1)) > crTiO(2) (k(obs) = 0.068 min(-1)). This result can be explained with a synergistic effect of the significant reduction by highly-dispersed nZVI particles on TiO(2) nanotubes as well as the electron transfer from the conduction band of crTiO(2) to the nZVI on the crTiO(2) for the degradation of MO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  15. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gao, Hongxu; Hou, Feng; Wan, Zhipeng; Zhao, Sha; Yang, Deming; Liu, Jiachen; Guo, Anran; Gong, Yuxuan

    2015-01-01

    Highlights: • CNTs/TiO 2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO 2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO 2 ) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g −1 , as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g −1 ). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO 2 composite films for large-scale production and application in energy devices were shown

  16. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  17. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  18. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  19. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    International Nuclear Information System (INIS)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y.; Awitor, O.K.; Bonnemoy, F.; Bonnet, J.L.; Bohatier, J.

    2011-01-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  20. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  1. Corrosion behaviors of TiO{sub 2} nanotube layers on titanium in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weiqiang; Qiu Jing; Xu Ling; Zhang Fuqiang, E-mail: fredzc@online.sh.c [Department of Prosthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 (China)

    2009-12-15

    It is well known that the growth of osteoblast cultured on titanium with nanotube layers can be significantly increased compared to unanodized surfaces. In the current study, the corrosion behavior of titanium with nanotube layers was studied in naturally aerated Hank's solution using open circuit potentials (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The electrochemical results indicated that TiO{sub 2} nanotube layers on titanium showed a better corrosion resistance in simulated biofluid than that of smooth-Ti. The OCP, corrosion rate (I{sub corr}), passive current density (I{sub pass}) and the oxygen evolution potential (E{sub o}) were significantly influenced by titanium oxide nanotube layers acquired by anodization. The anatase nanotube layer showed higher OCP and smaller current density than the amorphous nanotube layer. EIS analysis showed that the annealing had a significant effect on the corrosion resistance of the outer tube layer (R{sub t}), but little effect on the corrosion resistance of the inter-barrier layer (R{sub b}) for nanotube layers. The results suggested that titanium with TiO{sub 2} nanotube layers has an adequate electrochemical behavior for use as a dental implant material.

  2. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  3. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    International Nuclear Information System (INIS)

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Highlights: • TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L −1 . Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  4. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz; Filip, Vladimir; Joska, Ludek

    2015-11-15

    Graphical abstract: - Highlights: • The nanostructured surface on Ti–36Nb–6Ta alloy was prepared by anodic oxidation. • The nanotubes properties were modified by electrochemical process parameters. • The composition and mechanical properties of the anodized surface were investigated. • The adhesive strength of the nanostructures was over 30 MPa. - Abstract: The nanostructuring of titanium and its alloys surfaces is used inter alia for increasing the medical implants osseointegration. Many papers about this topic were published. However, in most cases there were no informations about nanostructures adhesion to the surface, which is crucial from the application point of view. The aim of this study was to prepare nanostructures on titanium beta alloy and optimized its adhesion to the alloy surface. Nanotubes were formed by anodic polarization in electrolyte containing fluoride ions. The composition of the nanotubes was described by X-ray photoelectron spectroscopy. Nanostructures adhesion was tested by pull-of method. The nanotubes on the Ti–36Nb–6Ta beta alloy surface were prepared by anodization. The nanostructures properties were modified by electrochemical process parameters. The adhesion of the nanotubes prepared in this work was satisfactory for implantological applications.

  5. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  6. Engineering a novel material: Nanometric titanium carbide particles in a matrix of carbon nanotubes

    CERN Document Server

    BADIE, Sylvain

    2015-01-01

    New physics studies at ISOLDE are motivated by new beams available, especially beams of exotic nuclei located at the frontier of the nuclear chart. Such beams are often short lived (in the order of milliseconds) and decay before they can be extracted from the target material, where typical diffusion times are in the order of seconds or more. Novel nanostructured and nanocomposite target materials have been developed to increase the release efficiency by reducing the diffusion paths and so the diffusion times, allowing ISOLDE to deliver new and more intense beams of exotic nuclei. 35Ca (25 ms half-life) was attempted by developing a titanium carbide and carbon black nanocomposite, but such isotope could not be extracted. A different production method with different precursors - titanium oxide and multiwall carbon nanotubes - is here proposed and expected to yield a target material which will increase the release rates of such isotope. A novel material, very porous, consisting of titanium carbide particles disp...

  7. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Administrator

    1AGH University of Science and Technology, Faculty of Materials Science and Ceramics,. Mickiewicza Avenue 30, 30-059 Krakow, Poland. 2Silesian University of Technology, Faculty of Chemistry, B. Krzywoustego Street 6, 44-100 Gliwice, Poland. 3Medical ... the integration of titanium implant with bone tissue. There are a ...

  8. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  9. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    Science.gov (United States)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  10. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  11. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J [School of Engineering, Brown University, Providence, RI 02917 (United States); Alpaslan, Ece, E-mail: thomas_webster@brown.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey)

    2011-07-22

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  12. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Science.gov (United States)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  13. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  14. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  15. Preparation and elementary research on electrocatalytic hydrogen evolution of highly ordered titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wu Qinglong; Liao Junsheng; Bai Yun

    2010-01-01

    Well ordered and uniform titanium dioxide nanotube arrays were fabricated by anodiaing process from a bath containing 1% NaF, 1mol/L Na 2 SO 4 , 0.5 mol/L H 2 SO 4 at room temperature. Surface morphology of titanium dioxide nanotube arrays were observed with SEM. The formation process of titanium dioxide nanotube arrays was suggested by current-time transient. Its catalytic hydrogen evolution behavior was studied by electrochemical measurements in a 5%(mass fraction) H 2 SO 4 solution. The results showed that the titanium dioxide nanotube arrays on titanium had better hydrogen evolution activity and trace palladium lead to the maximum electrocatalytic activity of hydrogen production. (authors)

  16. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  17. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for the...

  18. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  19. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    OpenAIRE

    Boltz, Janika

    2011-01-01

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO2 and TiO2. In order to ach...

  20. SYNTHESIS OF MESOPOROUS TITANIUM OXIDE AND ...

    African Journals Online (AJOL)

    The catalytic activity of Ru/m-TiO2 for methanol decomposition to carbon monoxide and hydrogen was investigated. It is found that synthesizing conditions of mesoporous materials affect the catalytic activity of Ru/m-TiO2. KEY WORDS: Mesoporous titanium oxide, Methanol decomposition, Ruthenium, Catalyst support, ...

  1. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.

    Science.gov (United States)

    Oliveira, Weslley F; Arruda, Isabel R S; Silva, Germana M M; Machado, Giovanna; Coelho, Luana C B B; Correia, Maria T S

    2017-12-01

    Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application.

    Science.gov (United States)

    Abdalla, Ahmed M; Sahu, Rakesh P; Wallar, Cameron J; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K

    2017-02-17

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g -1 and  an areal capacitance of 3.28 F cm -2 at a scan rate of 2 mV s -1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm -2 .

  4. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  5. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  6. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  8. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.

    Science.gov (United States)

    Roman, Ioan; Trusca, Roxana Doina; Soare, Maria-Laura; Fratila, Corneliu; Krasicka-Cydzik, Elzbieta; Stan, Miruna-Silvia; Dinischiotu, Anca

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550°C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005-0.1mg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  10. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    Science.gov (United States)

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Carbon nanotube and in-situ titanium carbide reinforced titanium diboride matrix composites synthesized by reactive spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Karthiselva, N.S.; Bakshi, Srinivasa R., E-mail: sbakshi@iitm.ac.in

    2016-04-29

    Mechanically milled powder mixtures of Titanium and Boron containing 1, 2, 4 and 6 vol% multi-walled carbon nanotubes (CNT) were consolidated by reactive spark plasma sintering resulting in TiB{sub 2}-TiC-CNT hybrid composites. Addition of CNT was found to affect the reaction rate for TiB{sub 2} formation which results in sudden volume shrinkage. Rod shaped TiC were formed due to reaction between Ti and CNT. TiB{sub 2}-TiC-CNT hybrid composites having more than 96% relative density with nanosized TiB{sub 2} grains were obtained. XRD results revealed TiB{sub 2} and TiC as major and minor phases respectively. Unreacted CNT were observed in SEM and TEM. TiB{sub 2}-TiC-CNT composites showed nanohardness of above 25 GPa and elastic modulus of 520 GPa. Indentation fracture toughness was improved by 55% (3.3±0.1 to 5.11±0.6) by the addition of 4 vol% of CNT. The effect of CNT addition on oxidation and co-efficient of thermal expansion is also presented.

  12. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  13. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  14. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  15. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    Energy Technology Data Exchange (ETDEWEB)

    Cendrowski, Krzysztof, E-mail: kcendrowski@zut.edu.pl [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland); Jedrzejczak, Malgorzata [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Peruzynska, Magdalena [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Dybus, Andrzej [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Drozdzik, Marek [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Mijowska, Ewa [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland)

    2014-08-25

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO{sub 2}-MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO{sub 2} and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO{sub 2}–MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst.

  16. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...... by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results...... indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared...

  17. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  18. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  19. Titanium-Aluminum Oxide Coating on Aluminized Steel

    OpenAIRE

    Fuyan Sun; Guang Wang; Xueyuan Nie

    2014-01-01

    In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors...

  20. Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications

    Science.gov (United States)

    Smith, York R.; Ray, Rupashree S.; Carlson, Krista; Sarma, Biplab; Misra, Mano

    2013-01-01

    Metal oxide nanotubes have become a widely investigated material, more specifically, self-organized titania nanotube arrays synthesized by electrochemical anodization. As a highly investigated material with a wide gamut of applications, the majority of published literature focuses on the solar-based applications of this material. The scope of this review summarizes some of the recent advances made using metal oxide nanotube arrays formed via anodization in solar-based applications. A general methodology for theoretical modeling of titania surfaces in solar applications is also presented. PMID:28811415

  1. Platinum–Vanadium Oxide Nanotube Hybrids

    Directory of Open Access Journals (Sweden)

    Hernández EduardoPadrón

    2010-01-01

    Full Text Available Abstract The present contribution reports on the features of platinum-based systems supported on vanadium oxide nanotubes. The synthesis of nanotubes was carried out using a commercial vanadium pentoxide via hydrothermal route. The nanostructured hybrid materials were prepared by wet impregnation using two different platinum precursors. The formation of platinum nanoparticles was evaluated by applying distinct reduction procedures. All nanostructured samples were essentially analysed by X-ray diffraction and transmission electron microscopy. After reduction, transmission electron microscopy also made it possible to estimate particle size distribution and mean diameter calculations. It could be seen that all reduction procedures did not affect the nanostructure of the supports and that the formation of metallic nanoparticles is quite efficient with an indistinct distribution along the nanotubes. Nevertheless, the reduction procedure determined the diameter, dispersion and shape of the metallic particles. It could be concluded that the use of H2PtCl6 is more suitable and that the use of hydrogen as reducing agent leads to a nanomaterial with unagglomerated round-shaped metallic particles with mean size of 6–7 nm.

  2. Thermal Analysis of Copper-Titanium-Multiwall Carbon Nanotube Composites.

    Science.gov (United States)

    Hamamda, Smail; Jari, Ahmed; Revo, S; Ivanenko, K; Jari, Youcef; Avramenko, T

    2017-12-01

    The aim of this research is the thermostructural study of Cu-Ti, Cu-Ti 1 vol% multiwall carbon nanotubes (MWCNTs) and Cu-Ti 3 vol% MWCNTs. Several investigation techniques were used to achieve this objective. Dilatometric data show that the coefficient of thermal expansion of the nanocomposite containing less multiwall carbon nanotubes is linear and small. The same nanocomposite exhibits regular heat transfer and weak mass exchange with the environment. Raman spectroscopy shows that the nanocomposite with more MWCNTs contains more defects. This implies that the carbon nanotubes have better dispersion in Cu-Ti 1 vol% MWCNTs. Infrared spectroscopy reveals that Cu-Ti 1 vol% MWCNTs has better crystallinity than Cu-Ti 3 vol% MWCNTs.

  3. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  4. Titanium dioxide nanotubes/polyhydroxyfullerene composites for formic acid photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Hamandi, Marwa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Berhault, Gilles, E-mail: gilles.berhault@ircelyon.univ-lyon1.fr [Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, University of Lyon I, Villeurbanne 69100 (France); Dappozze, Frederic; Guillard, Chantal [Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, University of Lyon I, Villeurbanne 69100 (France); Kochkar, Hafedh, E-mail: h_kochkar@yahoo.fr [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Laboratoire de Valorisation des Matériaux Utiles, Centre National de Recherches en Sciences des Matériaux (CNRSM), Technopôle Borj-Cédria, 8027 Soliman (Tunisia)

    2017-08-01

    Highlights: • Polyhydroxyfullerene (PHF) decorating TiO{sub 2} nanostructured materials. • PHF helps to maintain surface oxygen vacancies at the TiO{sub 2} surface. • PHF improves the faradic current across the semiconductor interface. • Higher photocatalytic activity is achieved for monolayer PHF onto TiO{sub 2} nanotubes. - Abstract: The influence of polyhydroxyfullerene (PHF) on the photocatalytic properties of calcined hydrogenotitanate nanotubes (HNT) were evaluated in the present study. PHF-HNT nanocomposites were first characterized by N{sub 2} adsorption-desorption measurements, X-ray diffraction, X-ray photoelectron, electron paramagnetic resonance and UV–vis diffuse reflectance spectroscopies, transmission electron microscopy, photoluminescence, and photocurrent experiments. Correlation was then established with the photocatalytic properties of PHF-HNT nanocomposites during the photodegradation of formic acid.

  5. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  6. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  7. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan; Gao, Nong, E-mail: N.Gao@soton.ac.uk; Starink, Marco J.

    2016-11-30

    Highlights: • HPT has substantially improved the UTS and Hv of pure Ti. • TNT layers was fabricated on UFG Ti made by HPT. • Influence of sample preparation on TNT layers was systematically studied. • Oxide dissolution was accelerated when TNTs formed on the HPT sample. - Abstract: Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH{sub 4}F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  8. Iron-Oxide-Filled Carbon Nanotubes

    Science.gov (United States)

    Cava, Carlos Eduardo

    Carbon nanotubes (CNT) are recognized as one of the most important materials in the recent history of nanotechnology. In the last 25 years, intensive studies about this material have led to new ideas for the use of nanomaterials in many technological products. The unique properties presented by this material allow its use in a wide range of applications. Known as a crystalline material, CNTs can, however, interact with many materials in different manners, making it easy to use as a composite. One interesting aspect is the possibility of filling the CNT hollow core with a foreign material, forming a filled CNT. This composite can be achieved in situ using chemical vapor deposition and arc-discharge or after the synthesis, by chemical methods. The technique choice to achieve the filled CNT depends on the material inside the CNT. The resulting material can provide new electrical, optical, and mechanical features due to the synergistic effect between the CNTs themselves and the filling, which can originate new multifunctional materials. Concerning the electrical conductivity and the gas sensing, the possible interaction between the CNT and the filling can modify the electronic structure of the material and, consequently, affect the kind of interaction between the CNT and different gases. Commonly, the filled CNTs are obtained with magnetic materials inside the tube, which are also precursors in their syntheses; this feature brings new possibilities to magnetic devices, such as memories. Among them, iron-oxide-filled carbon nanotubes have been suggested as a technological material for use in magnetic, electrical, and medical applications. Therefore, this kind of nanocomposite material can be useful in the preparation of versatile and durable solid-state sensors, memory devices, with simple manufacturing and in a proper size. In this chapter, an introduction about the production and application of iron-oxide-filled CNTs in its many different forms will be presented.

  9. Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Cummings, F.R. [University of the Western Cape, Electron Microscopy Unit, Physics Department, Bellville 7535, Cape Town (South Africa); Turco, S. Lo; Ntwaeaborwa, O.M. [Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)-CNR, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2016-03-31

    Thin films of titanium were deposited on a glass substrate using electron beam evaporator. Femtosecond laser pulses were focused on the surface of the films, and the samples were scanned while mounted on the motorized computer-controlled motion stage to produce an areal modification of the films. X-ray diffraction of the laser-patterned samples showed evidence of the formation of a γ-Ti{sub 3}O{sub 5} with a monoclinic phase. Rutherford backscattering spectrometry simulation showed that there is an increase in the oxygen concentration as the average laser fluence is increased. Time of flight secondary ions mass spectrometry analysis showed an even distribution of the titanium and oxygen ions on the sample and also ionized molecules of the oxides of titanium were observed. The formation of the oxide of titanium was further supported using the UV–Vis-NIR spectroscopy, which showed that for 0.1 J/cm{sup 2} fluence, the laser-exposed film showed the electron transfer band and the d–d transition peak of titanium was observed at lower wavelengths. - Highlights: • γ-Ti{sub 3}O{sub 5} formed using femtosecond laser. • Fluence and oxygen relation were studied. • Nanoflakes of γ-Ti{sub 3}O{sub 5} were observed under HRSEM.

  10. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences Unviersiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar (Malaysia); Abbasi, S. H., E-mail: sarfrazabbasi@gmail.com [SABIC Plastic Application Development Center, Riyadh Technovalley, Riyadh (Saudi Arabia)

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  11. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  12. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  13. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Science.gov (United States)

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  14. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  15. Modification of titanium oxide membranes by Pt electrodeposition

    International Nuclear Information System (INIS)

    Avalle, L.; Santos, E.; Leiva, E.P.M.; Macagno, V.A.

    1990-01-01

    Electrochemistry techniques mainly voltamperometry and measures of impedance with titanium oxides changed by platinum atoms incorporation, were studied. This changes production some alteration in the physical chemical and electrocatalytic properties, as an example the improvement of corrosion resistance and the uses in nuclear industry. (author)

  16. Co-doped titanium oxide foam and water disinfection device

    Science.gov (United States)

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  17. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    OpenAIRE

    IOAN-CEZAR MARCU; JEAN-MARC M. MILLET; IOAN SĂNDULESCU

    2005-01-01

    The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison ...

  18. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V

    Czech Academy of Sciences Publication Activity Database

    Moravec, H.; Vandrovcová, Marta; Chotová, K.; Fojt, J.; Průchová, E.; Joska, L.; Bačáková, Lucie

    2016-01-01

    Roč. 65, Aug 1 (2016), s. 313-322 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 Keywords : titanium * electrochemical oxidation * hydrothermal modification * thermal treatment * protein adsorption * cell interaction Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.164, year: 2016

  19. Electrochemical doping of vanadium oxide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Popa, A.; Hellmann, I.; Klingeler, R.; Kataev, V.; Arango, Y.; Taeschner, C.; Knupfer, M.; Buechner, B. [Leibniz-Institute for Solid State and Materials Research, IFW Dresden (Germany); Vavilova, E. [Leibniz-Institute for Solid State and Materials Research, IFW Dresden (Germany); Kazan Physical Technical Institute, RAS, Kazan (Russian Federation); Klauss, H.H. [Technical University- Dresden (Germany); Masquelier, C. [Laboratoire de Reactivite et de Chimie des Solides, Amiens (France)

    2008-07-01

    A new class of nanoscale low-dimensional magnets, mixed valent vanadium oxide multiwall nanotubes (VO{sub x}-NTs), show up diverse novel properties ranging from spin frustration and semiconductivity to ferromagnetism by doping with either electrons or holes. The structural low dimensionality and mixed valency of vanadium ions yield a complex temperature dependence of the static magnetization and the nuclear relaxation rates. Upon electron doping of VO{sub x}-NTs, our spectroscopic data confirm an increased number of magnetic V{sup 4.4+} sites. Interestingly, a considerable superparamagnetic moment of 0.1 {mu}{sub B} is found at room temperature after electrochemical intercalation of 10% of Li while no strong effect on the magnetization occurs for other doping levels. Recent {mu}SR studies on Li{sub 0.1}VO{sub x}-NT indeed confirm that more than 40% of the sample is magnetic. This result is corroborated by Li{sup 7}-NMR measurements which confirm the increase of V{sup 4.4+} sites upon Li doping and imply an additional internal magnetic field only for the doping level 0.1.

  20. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces.

    Science.gov (United States)

    Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S

    2018-01-01

    The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.

  1. Photoelectrochemical properties of sol–gel obtained titanium oxide

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-12-01

    Full Text Available The photoelectrochemical properties of a sol–gel prepared titanium oxide coating applied onto a Ti substrate were investigated. The oxide coating was formed from an inorganic sol thermally treated in air at 350 °C. The coating consisted of agglomerates of narrow size distribution around 100 nm. The photoelectrochemical characteristics were evaluated by investigating the changes in the open circuit potential, current transients and impedance characteristics of a Ti/TiO2 electrode upon illumination by UV light in H2SO4 solution and in the oxidation of benzyl alcohol. The electrode was found to be active for photoelectrochemical reactions in the investigated solutions.

  2. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  3. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  4. Magnetocaloric effect at cryogenic temperature in gadolinium oxide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Rima, E-mail: rima.paul@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Paramanik, Tapas; Das, Kalipada [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Sen, Pintu [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India); Satpati, B.; Das, I. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-11-01

    We have synthesized fascinating nano-structure of Gadolinium oxide (Gd{sub 2}O{sub 3}) using controlled template-assisted electrochemical deposition technique which showed interesting anisotropic magnetic behavior. The nanotubes of Gd{sub 2}O{sub 3} with average diameter 200 nm, length 10 µm and wall thickness 20 nm are constituted of nanoclusters with average diameter 7.5 nm. The tubes are aligned and are almost uniform throughout their length. Detailed magnetic measurements of aligned Gd{sub 2}O{sub 3} nanotubes have been performed for both parallel and perpendicular magnetic field orientations with respect to the axis of the Gd{sub 2}O{sub 3} nanotube array. Significant differences in magnetization values have been observed between the parallel and perpendicular orientations. Experimental results indicate the superparamagnetic nature of the nanomaterial. Large magnetocaloric effect, associated with the sharp change in magnetization of the Gd{sub 2}O{sub 3} nanotubes, has been observed in the cryogenic temperature regime that shows anisotropic behavior. - Highlights: • Gd{sub 2}O{sub 3} nanotubes of diameter ~200 nm synthesized through electrochemical technique. • The nanotubes are superparamagnetic in nature. • At cryogenic temperature, the nanotubes exhibit large magnetocaloric anisotropic effect.

  5. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna

    2013-09-27

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  6. Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangzhong; Cheng, Li [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research (China); Yang, Hui-lin [Department of Orthopaedics, Wuxi People' s Hospital, Nanjing Medical University, Jiangsu Province (China); Zhao, Quan-ming, E-mail: abc8385@163.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2016-07-15

    Although titanium (Ti) and its alloys have been widely used as implants in clinical settings, failures still occur mainly due to poor bioactivity and implant-associated infections. Here, we coated Ti implants with TiO{sub 2} nanotubes (TNTs) incorporated with the antibacterial agent Ag to produce Ag-TNTs, through anodization in AgNO{sub 3} and xenon light irradiation. We characterized surface morphology and composition of the coating with scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. We investigated surface topography of the coatings by atomic force microscopy (AFM) operated in the tapping mode. The results indicate that Ag was successfully doped onto the TNTs, and that the nanoparticles were mainly distributed on the surface of TNTs. Finally, our antibacterial experiments reveal that Ag-TNTs on Ti implants exhibit excellent antibacterial activities, which promises to have significant clinical applications as implants. (author)

  7. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  8. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  9. Effects of synthesis methods of vanadium oxide nanotubes on the inter layer distances

    International Nuclear Information System (INIS)

    Aghabozorg, H. R.; Mousavi, R.; Asckari, S.; Aghabozorg, H.

    2007-01-01

    Vanadium oxide nanotubes were synthesized via two methods: (1) Adding a template to vanadium oxide gels, (2) Grinding mixture of a template and vanadium oxide by using a ball mill. Influence of preparation method on structure of vanadium oxide nanotubes has been investigated. Vanadium oxide nanotubes has been characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) techniques

  10. pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction

    KAUST Repository

    Buchholcz, Balázs

    2017-02-06

    Improving the catalytic activity of heterogeneous photocatalysts has become a hot topic recently. To this end, considerable progress has been made in the efficient separation of photogenerated charge carriers by e.g. the realization of heterojunction photocatalysts. V-VI-VII compound semiconductors, namely, bismuth oxyhalides, are popular photocatalysts. However, results on antimony oxyhalides [SbOX (X = Br, Cl, I)], the very promising alternatives to the well-known BiOX photomodifiers, are scarce. Here, we report the successful decoration of titanium oxide nanostructures with 8-11 nm diameter SbOX nanoparticles for the first time ever. The product size and stoichiometry could be controlled by the pH of the reactant mixture, while subsequent calcination could transform the structure of the titanate nanotube (TiONT) support and the prepared antimony oxychloride particles. In contrast to the ease of composite formation in the SbOX/TiONT case, anatase TiO could not facilitate the formation of antimony oxychloride nanoparticles on its surface. The titanate nanotube-based composites showed activity in a generally accepted quasi-standard photocatalytic test reaction (methyl orange dye decolorization). We found that the SbOCl/TiONT synthesized at pH = 1 is the most active sample in a broad temperature range.

  11. Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes

    International Nuclear Information System (INIS)

    Hamlekhan, Azhang; Shokuhfar, Tolou; Sinha-Ray, Suman; Yarin, Alexander L; Takoudis, Christos; Mathew, Mathew T; Sukotjo, Cortino

    2015-01-01

    Formation of titanium dioxide nanotubes (TNTs) on a titanium surface holds great potential for promoting desirable cellular response. However, prolongation of drug release from these nano-reservoirs remains to be a challenge. In our previous work TNTs were successfully loaded with a drug. In this study the effect of TNTs dimensions on prolongation of drug release is quantified aiming at the introduction of a simple novel technique which overcomes complications of previously introduced methods. Different groups of TNTs with different lengths and diameters are fabricated. Samples are loaded with a model drug and rate of drug release over time is monitored. The relation of the drug release rate to the TNT dimensions (diameter, length, aspect ratio and volume) is established. The results show that an increase in any of these parameters increases the duration of the release process. However, the strongest parameter affecting the drug release is the aspect ratio. In fact, TNTs with higher aspect ratios release drug slower. It is revealed that drug release from TNT is a diffusion-limited process. Assuming that diffusion of drug in (Phosphate-Buffered Saline) PBS follows one-dimensional Fick’s law, the theoretical predictions for drug release profile is compatible with our experimental data for release from a single TNT. (paper)

  12. Cobalt oxide nanoparticle-modified carbon nanotubes as an ...

    Indian Academy of Sciences (India)

    Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas ... activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed.

  13. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  14. Self-cleaning glass coating containing titanium oxide and silicon

    International Nuclear Information System (INIS)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  15. Self-cleaning glasses containing nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  16. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  17. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    Science.gov (United States)

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  18. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2005-06-01

    Full Text Available The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison with the n-butane reaction allowed different activation pathways for the activation of alkanes to be proposed. The catalytic properties of TiP2O7 in the oxidative dehydrogenation of isobutane was also compared to those obtained previously with several other pyrophosphates and TiP2O7 was found to be less active and selective for this reaction.

  19. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Directory of Open Access Journals (Sweden)

    Kulkarni M

    2015-02-01

    Full Text Available Mukta Kulkarni,1,* Ajda Flašker,1,* Maruša Lokar,1 Katjuša Mrak-Poljšak,2 Anca Mazare,3 Andrej Artenjak,4 Saša Čučnik,2 Slavko Kralj,5 Aljaž Velikonja,1 Patrik Schmuki,3 Veronika Kralj-Iglič,6 Snezna Sodin-Semrl,2,7 Aleš Iglič11Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 2Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany; 4Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia; 5Department for Materials Synthesis, Institute Jožef Stefan (IJS, Ljubljana, Slovenia; 6Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 7Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia *These authors contributed equally to this workAbstract: Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2 nanotubes (NTs by electrochemical anodization. The zeta potential (ζ-potential of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm. We also showed a dose

  20. Guided self-assembly of nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Wang Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu Yingda

    2012-01-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO x nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO x nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO x nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO x nanorods with rough surfaces are formed by the self-assembly of TiO x nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO x nanorods shows stronger ER properties than that of the other nanostructured TiO x particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect. (paper)

  1. Titanium-Oxide Host Clusters with Exchangeable Guests.

    Science.gov (United States)

    Zhang, Guanyun; Li, Wenyun; Liu, Caiyun; Jia, Jiong; Tung, Chen-Ho; Wang, Yifeng

    2018-01-10

    A novel family of water-soluble, polyoxocationic titanium-oxide host-guest clusters are reported herein. They exhibit an unprecedented hexagonal prismatic core structure for hosting univalent cationic guests like K + , Rb + , Cs + and H 3 O + . Guest exchange has been studied using 133 Cs NMR, showing the flexible pore of a host permits passage of a comparatively larger cation and giving an equilibrium constant of ca. 13 for displacing Rb + by Cs + . Attractive ion-dipole interaction, depending on host-guest size complementarity, plays a dominant role for the preferential encapsulation of larger alkali-metal cationic guests.

  2. Nanostructured Titanium Oxide Film- And Membrane-Based Photocatalysis For Water Treatment

    Science.gov (United States)

    Titanium Oxide (TiO2) photocatalysis, one of the ultraviolet (UV)-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness ...

  3. Titanium and Carbon Nanotubes as Nanomaterial Behavioral Markers: Impacts of Environmental Conditions

    Science.gov (United States)

    Johnson, Corliss A.

    Applications of nanotechnology have been making paradigm shifts in many areas in science and engineering. This has been made possible due to technological advancements of producing nanomaterials of various kinds that behave differently from large size counterparts made of the same material. Understanding major physiochemical properties of nanomaterials, such as aggregation and dispersion, in aqueous environments can provide critical information about their potencies in real life applications. Yet, the extent of investigation on physicochemical behaviors of nanomaterial is still minimal. Titanium and carbon nanotubes (CNTs) were used to synthesize photocatalytic nano hybrid material that showed a very effective removal rate on methylene blue, a surrogate water pollutant tested in fresh water environment. Ballast water, which often comes from ocean water, however, contains 3.5% of sodium. This changes the mechanisms and outcomes of photocatalytic treatments in a very different way. For this reason, this study tested how different levels of sodium and pH in the media holding titanium and CNTs influence the aggregation and dispersion patterns of those nanomaterial in both empirical and qualitative ways. Results from zeta-potential measurements for surface charge and size measurements, which are indirect ways of estimating the extent of aggregation, showed that the sodium concentration at the level of 0.5% is almost a threshold level for dictating aggregation and dispersion patterns of those nanomaterials. The pH level of ocean water over 8 also influences the behaviors of nanomaterials that are different from those observed in fresh water. They are typically observed in other places with pH below 7. From this observation, the following conclusions were made: 1) Treatment of polluted water with salt content close to 0.5% may need an additional treatment process that is different from fresh water, 2) Nanomaterial behaviors in terms of aggregation and dispersion may be

  4. Nanotubes from Oxide-Based Misfit Family: The Case of Calcium Cobalt Oxide.

    Science.gov (United States)

    Panchakarla, Leela S; Lajaunie, Luc; Ramasubramaniam, Ashwin; Arenal, Raul; Tenne, Reshef

    2016-06-28

    Misfit layered compounds (MLCs) have generated significant interest in recent years as potential thermoelectric materials. MLC nanotubes could reveal behavior that is entirely different from the bulk material. Recently, new chemical strategies were exploited for the synthesis of nanotubular forms of chalcogenide-based MLCs, which are promising candidates for thermoelectric materials. However, analogous synthesis of oxide-based MLC nanotubes has not been demonstrated until now. Here, we report a chemical strategy for synthesis of cobalt-oxide-based misfit nanotubes. A combination of high-resolution (scanning) transmission electron microscopy (including image simulations), spatially resolved electron energy-loss spectroscopy, electron diffraction, and density functional theory (DFT) calculations is used to discover the formation of a phase within these nanotubes that differs significantly from bulk calcium cobaltite MLCs. Furthermore, DFT calculations show that this phase is semiconducting with a band gap in excess of 1 eV, unlike bulk calcium cobaltite MLCs, which are known to be metallic. Through systematic experiments, we propose a formation mechanism for these nanotubes that could also apply more generally to realizing other oxide-based MLC nanotubes.

  5. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2017-03-01

    Full Text Available Bacterial infection and tissue inflammation are the major causes of early failure of titanium-based orthopedic implants; thus, surgical implants with tunable drug releasing properties represent an appealing way to address some of these problems of bacterial infection and tissue inflammation in early age of orthopedic implants. In this work, a hybrid surface system composed of biodegradable poly(lactic-co-glycolic acid (PLGA and titania nanotubes (TNTs has been successfully constructed on Ti implants with the aim of preventing bacterial infection via long-term drug release. By varying the size of the TNTs and the thickness of the polymer film, the drug release profile can be tuned to achieve the optimal therapeutic action throughout the treatment time. The size of TNTs plays a dominant role in the drug loading dose of TNTs/PLGA hybrid coatings. In this work, TNTs with an average size of 80 nm can achieve the largest loading dose. Depending on the polymer thickness, significant improvement in the drug release characteristics is attained, for instance, reduced burst release (from 84% to 27% and overall release time extended from 5 to over 40 days. In addition, the PLGA layers may favor the proliferation and osteogenesis of MC3T3-E1 mouse cells at an earlier stage. Therefore, this TNT/PLGA hybrid surface system can be employed as an effective bioplatform for improving both self-antibacterial performance and biocompatibility of Ti-based biomaterials.

  6. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  7. Dyes Degradation with Fe-Doped Titanium Nanotube Photocatalysts Prepared from Spend Steel Slag

    Directory of Open Access Journals (Sweden)

    Chih Ming Ma

    2013-01-01

    Full Text Available TiO2 has been studied most commonly because it has high stability, nontoxicity, high catalytic activity, and high conductivity. Many studies have shown that TiO2 would generate electron-hole pairs illuminated with UV and surround more energy than that before being illuminated. In this study, the titanium nanotube (TNT photocatalysts were prepared to increase the surface area and adsorption capacity. The Fe TNT was also prepared from a slag iron since many slag irons cause waste treatment problems. In this study, a different Fe loading was also assessed since TNT doped with metals can be used to improve the degradation efficiency. Furthermore, five kinds of dye concentration, including 10, 20, 100, 200, and 400 ppm, and five kinds of Fe-doped content, including 0, 0.77, 1.13, 2.24, and 4.50%, were tested. Different kinds of reaction time and dye species were also assessed. In this result, Direct Black 22 was the most difficult to be degraded, although the concentration was decreased or the dose amount was increased. The degradation efficiency of 10 ppm Direct Black 22 was below 40% with 0.04 gL−1 TNT under 365 nm UV irradiation.

  8. Evaluation of Osteoblast-Like Cell Viability and Differentiation on the Gly-Arg-Gly-Asp-Ser Peptide Immobilized Titanium Dioxide Nanotube via Chemical Grafting.

    Science.gov (United States)

    Kim, Ga-Hyun; Kim, Il-Shin; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Ji, Min-Kyung; Lim, Hyun-Pil

    2016-02-01

    This study examined the effect of the immobilization of the Gly-Arg-Gly-Asp-Ser (GRGDS) peptide on titanium dioxide (TiO2) nanotube via chemical grafting on osteoblast-like cell (MG-63) viability and differentiation. The specimens were divided into two groups; TiO2 nanotubes and GRGDS-immobilized TiO2 nanotubes. The surface characteristics of GRGDS-immobilized TiO2 nanotubes were observed by using X-ray photoelectron spectroscopy (XPS) and a field emission scanning electron microscope (FE-SEM). The morphology of cells on specimens was observed by FE-SEM after 2 hr and 24 hr. The level of cell viability was investigated via a tetrazolium (XTT) assay after 2 and 4 days. Alkaline phosphatase (ALP) activity was evaluated to measure the cell differentiation after 4 and 7 days. The presence of nitrogen up-regulation or C==O carbons con- firmed that TiO2 nanotubes were immobilized with GRGDS peptides. Cell adhesion was enhanced on the GRGDS-immobilized TiO2 nanotubes compared to TiO2 nanotubes. Furthermore, significantly increased cell spreading and proliferation were observed with the cells grown on GRGDS-immobilized TiO2 nanotubes (P nanotubes and TiO2 nanotubes. These results suggest that the GRGDS-immobilized TiO2 nanotubes might be effective in improving the osseointegration of dental implants.

  9. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  10. Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; Vallejo, Federico Calle

    2011-01-01

    ,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces. These formation energies can be described semiquantitatively (mean absolute error ≈ 0.12 eV) by the fraction of metal−oxygen bonds broken and the metal d-band and p-band centers in the bulk metal oxide.......The formation energies of nanostructures play an important role in determining their properties, including their catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we used density functional theory (DFT) to calculate the formation energies of (2...

  11. The Wear behavior of UHMWPE against Surface Modified CP-Titanium by Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    B.T. Prayoga

    2016-12-01

    Full Text Available The effects of thermal oxidation duration on hardness, roughness, and wettability of the CP-titanium surfaces were investigated in this paper. The thermal oxidation treatment was done at 700 oC for 12-36 hours in an air atmosphere. The wear behavior of the UHMWPE sliding against treated thermal oxidation of the CP-titanium was tested by a pin-on-plate tribometer under lubrication of the solution of 75 % distilled water and 25 % bovine serum. The results showed that the layer of the oxide titanium was formed on the surface after being treated by the thermal oxidation for 12-36 hours. The oxide titanium layer was dominated by rutile form of TiO2, that offers an improvement of hardness and wettability of the CP-titanium surfaces. The average wear factor of the UHMWPE reduced significantly when the sliding against of the CP-titanium was modified by the thermal oxidation, and the lowest average wear factor was reached when the sliding against the 12 hour oxidized CP-titanium counterfaces.

  12. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2017-11-01

    Full Text Available Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM and transmission electron microscopy (TEM micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM. The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes.

  14. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, F. [Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Bât. Berthollet, Université Claude Bernard—Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne (France); IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon (UMR 5256 CNRS/Université Lyon 1), Lyon (France); Bois, L., E-mail: laurence.bois@univ-lyon1.fr [Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Bât. Berthollet, Université Claude Bernard—Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne (France); Chiriac, R.; Toche, F.; Chassagneux, F. [Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Bât. Berthollet, Université Claude Bernard—Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne (France); Besson, M.; Descorme, C. [IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon (UMR 5256 CNRS/Université Lyon 1), Lyon (France); Khrouz, L. [ENS LYON Laboratoire de Chimie (LR6, site Monod), 46, allée d’Italie, 69364 Lyon Cedex 07 (France)

    2015-01-15

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol–gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated. - Graphical abstract: One-pot amorphous MnO{sub 2} supported on mesoporous anataseTiO{sub 2}. - Highlights: • Mesoporous manganese titanium oxides were synthesized using block copolymer. • Block copolymers form complexes with Mn{sup 2+} from MnCl{sub 2}. • With block copolymer, manganese oxide can be dispersed around the titania crystallites. • With Mn(acac){sub 2}, manganese is dispersed inside titania. • MnOOH crystallizes outside mesoporous titania during hydrothermal treatment.

  15. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    Directory of Open Access Journals (Sweden)

    Wang Z

    2013-08-01

    Full Text Available Zheng Wang,1 Yan Sun,1 Dongzhou Wang,2 Hong Liu,2 Robert I Boughton31Department of Cardiology, Heilongjiang Provincial Hospital, Haerbin, Heilongjiang, People’s Republic of China; 2State Key Laboratory of Crystal Materials, Shandong University, Jinan, People’s Republic of China; 3Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH, USAAbstract: A silver nanoparticle (AgNP-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants.Keywords: titanium implant, silver nanoparticle filling, ion substitution, bacteriostasis, cytocompatibility

  16. Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative/ionic liquid for simultaneous determination of isoproterenol and serotonin

    International Nuclear Information System (INIS)

    Mazloum-Ardakani, Mohammad; Khoshroo, Alireza

    2014-01-01

    Highlights: • TiO 2 and benzofuran derivative were uniformly deposited onto carbon nanotubes • This nanocomposite can be used as a sensor in isoproterenol detection • This sensor shows a great enhancement in sensitivity, selectivity and stability - Abstract: In this paper we report synthesis and application of functionalized multiwalled carbon nanotubes (CNTs) with titanium dioxide nanoparticles (TiO 2 ), 9-(1,3-dithiolan-2-yl)-6,7-dihydroxy-3,3-dimethyl-3,4-dihydrodibenzo[b,d] furan-1(2H)-one (benzofuran derivative (DDF)) and 1-butyl-3-methylimidazolium tetrafluoroborate (IL) as high sensitive sensors for simultaneous determination of isoproterenol (IP) and serotonin (5-HT) using glassy carbon electrode. The modified electrode was characterized by different methods including a scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and voltammetry. A pair of well-defined redox peaks of DDF was obtained at the modified glassy carbon electrode by direct electron transfer between the DDF and the electrode. Dramatically enhanced electrocatalytic activity was exemplified at the modified electrode, as an electrochemical sensor to study the electro oxidation of IP and 5-HT. The differential pulse voltammetry data showed that the obtained anodic peak currents were linearly dependent on the IP and 5-HT concentrations in the range of 0.1–1300.0 and 1.0–650.0 μM, respectively. The applicability of the modified electrode was demonstrated by simultaneous determination of IP and 5-HT in human serum

  17. Uranium adsorption properties of hydrous titanium oxide granulated with polyacrylonitrile

    International Nuclear Information System (INIS)

    Nakamura, S.; Mori, S.; Yoshimuta, H.; Ito, Y.; Kanno, M.

    1988-01-01

    The performance of hydrous titanium oxide (HTO) adsorber granulated with polyacrylonitrile (PAN) has been studied by a batch method using natural sea water. The adsorber was classified into four classes of 24/28, 28/32, 32/35, and 35/48 mesh, and the sea water temperature was varied from 15 to 30 0 C. The effects of particle size and sea water temperature on the liquid film mass transfer coefficient and the intraparticle diffusion coefficient of the uranium ion were estimated. It was found that the uranium adsorption rate was dependent on both liquid film mass transfer and intraparticle diffusion for the PAN-HTO adsorber. The equilibrium adsorption capacity was in the range of 175 to 127 μg-U/g-AD at 30 0 C. Particle size of PAN-HTO adsorber had no distinct influence on the adsorption capacity and rates. Both adsorption capacity and rates increased with increasing sea water temperature

  18. Tunable Nanostructures and Crystal Structures in Titanium Oxide Films

    Directory of Open Access Journals (Sweden)

    Fuess H

    2008-01-01

    Full Text Available Abstract Controllable nanostructures in spin coated titanium oxide (TiO2 films have been achieved by a very simple means, through change of post deposition annealing temperature. Electron beam imaging and reciprocal space analysis revealed as-deposited TiO2films to be characterized by a dominant anatase phase which converts to the rutile form at 600 °C and reverts to the anatase modification at 1,200 °C. The phase changes are also accompanied by changes in the film microstructure: from regular nanoparticles (as-deposited to nanowires (600 °C and finally to dendrite like shapes at 1,200 °C. Photoluminescence studies, Raman spectral results, and X-ray diffraction data also furnish evidence in support of the observed solid state phase transformations in TiO2.

  19. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  20. Titanium-nitride-oxide-coated coronary stents: insights from the available evidence.

    Science.gov (United States)

    Karjalainen, Pasi P; Nammas, Wail

    2017-06-01

    Coating of stent surface with a biocompatible material is suggested to improve stent safety profile. A proprietary process was developed to coat titanium-nitride-oxide on the stent surface, based on plasma technology that uses the nano-synthesis of gas and metal. Preclinical in vitro and in vivo investigation confirmed blood compatibility of titanium (nitride-) oxide films. Titanium-nitride-oxide-coated stents demonstrated a better angiographic outcome, compared with bare-metal stents at mid-term follow-up; however, they failed to achieve non-inferiority for angiographic outcome versus second-generation drug-eluting stents. Observational studies showed adequate clinical outcome at mid-term follow-up. Non-randomized studies showed an outcome of titanium-nitride-oxide-coated stents comparable to - or better than - first-generation drug-eluting stents at long-term follow-up. Two randomized controlled trials demonstrated comparable efficacy outcome, and a better safety outcome of titanium-nitride-oxide-coated stents versus drug-eluting stents at long-term follow-up. Evaluation by optical coherence tomography at mid-term follow-up revealed better neointimal strut coverage associated with titanium-nitride-oxide-coated stents versus drug-eluting stents; yet, neointimal hyperplasia thickness was greater. Key messages Stents coated with titanium-nitride-oxide demonstrated biocompatibility in preclinical studies: they inhibit platelet and fibrin deposition, and reduce neointimal growth. In observational and non-randomized studies, titanium-nitride-oxide-coated stents were associated with adequate safety and efficacy outcome. In randomized trials of patients with acute coronary syndrome, titanium-nitride-oxide-coated stents were associated with a better safety outcome, compared with drug-eluting stents; efficacy outcome was comparable.

  1. Titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition and a process for making the same

    International Nuclear Information System (INIS)

    Holcombe, C.E.; Dykes, N.L.

    1991-01-01

    This patent describes a ceramic composition. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1 - A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2 - The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3 - The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness

  2. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning

    Czech Academy of Sciences Publication Activity Database

    Motola, M.; Satrapinskyy, L.; Roch, T.; Šubrt, Jan; Kupčík, Jaroslav; Klementová, Mariana; Jakubičková, M.; Peterka, F.; Plesch, G.

    2017-01-01

    Roč. 287, JUN (2017), s. 59-64 ISSN 0920-5861. [European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA) /9./. Strasbourg, 13.06.2016-17.06.2016] R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Titanium mesh * Anatase nanotubes array * Liquid state deposition * NOx removal * Photocatalysis Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  3. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  4. Oxidation behaviour of the near α-titanium alloy IMI 834

    Indian Academy of Sciences (India)

    Unknown

    Many titanium alloys have been developed for aero- space applications where mechanical properties are the primary consideration. In industrial applications, how- ever, corrosion resistance is the most important property. Titanium and its alloys provide excellent resistance to general localized attack under most oxidizing, ...

  5. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  6. Photocatalysis of titanium dioxide-carbon nanotube composites with reversible superhydrophobicity and superhydrophilicity (Conference Presentation)

    Science.gov (United States)

    Yang, Ta-I.; Hong, Shi-Hui; Lin, Yu-Jhen; Tseng, I.-Hsiang

    2017-04-01

    Titanium dioxide- carbon nanotube (TiO2-CNT) composites are promising for application of photocatalysis. Therefore, the aim of this study is to develop a TiO2-CNTcomposite with reversible superhydrophobicity and superhydrophilicity for use in self-cleaning application. The amount of TiO2 precursor, the added water, and the reaction time were systematically studied to obtain a TiO2 layer with desired thickness coated on the surface of CNT. In addition, the heat-treatment was utilized to control the crystalline structure of TiO2 and the hydrophobicity and hydrophilicity of resulting TiO2-CNT composites. The photocatalytic activity of the developed composites was evaluated by the photodegradation of a methylene blue (MB) solution under the illumination of ultraviolet (UV) light at ambient temperature. Experimental results demonstrated that a layer of anatase TiO2 with thickness of 21nm, 27nm, or 65nm was successfully coated on the surface of CNT. The resulting TiO2-CNT composites are superhydrophobic, which the water contact angles ranged from 143o to126o based on the thickness of TiO2 layers. After subjected to a UV light, they became hydrophilic with a water contact angle less than 50o . Furthermore, the water contact angle of these TiO2-CNT composites restored to their original values without UV exposure, confirming they were with reversible superhydrophobicity and superhydrophilicity. Moreover, the developed TiO2-CNT composites also exhibited the capability of photocatalytic degradation of methylene blue (MB).

  7. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis

    Science.gov (United States)

    Madhavi, V.; Kondaiah, P.; Mohan Rao, G.

    2018-04-01

    Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.

  8. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  9. Nanotubes oxidation temperature controls the height of single-walled carbon nanotube forests on gold micropatterned thin layers.

    Science.gov (United States)

    Lamberti, Francesco; Agnoli, Stefano; Meneghetti, Moreno; Elvassore, Nicola

    2010-07-06

    We developed a simple methodology for a direct control of the height of carboxylated single-walled carbon nanotube (SWNT) forests. We found that the important step is a good control of the oxidation temperature of the nanotubes. SWNTs oxidation at different temperature was followed by Raman and X-ray photoelectron spectroscopies. Atomic force microscopy images showed that micropatterned self-assembled monolayers forests have average height from 20 to 80 nm using SWNTs oxidized in the temperature ranging from 323 to 303 K, respectively.

  10. Influence of concentration in phosphoric acid treatment of titanium oxide and their powder properties

    Directory of Open Access Journals (Sweden)

    Hiroaki Onoda

    2015-03-01

    Full Text Available Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with various concentrations of phosphoric acid to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium oxide; however, these peak intensities became weak by phosphoric acid treatment. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment to protect the sebum on the skin. The high concentration of phosphoric acid was suitable to obtain a novel white pigment in the phosphoric acid treatment of titanium oxide.

  11. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  12. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins.

    Science.gov (United States)

    Hirano, Atsushi; Kameda, Tomoshi; Wada, Momoyo; Tanaka, Takeshi; Kataura, Hiromichi

    2017-10-19

    The adsorption of proteins onto nanoparticles such as carbon nanotubes (CNTs) governs the early stages of nanoparticle uptake into biological systems. Previous studies regarding these adsorption processes have primarily focused on the physical interactions between proteins and nanoparticles. In this study, using reduced lysozyme and intact human serum albumin in aqueous solutions, we demonstrated that CNTs interact chemically with proteins. The CNTs induce the oxidation of cysteine residues of the proteins, which is accounted for by charge transfer from the sulfhydryl groups of the cysteine residues to the CNTs. The redox reaction simultaneously suppresses the intermolecular association of proteins via disulfide bonds. These results suggest that CNTs can affect the folding and oxidation degree of proteins in biological systems such as blood and cytosol.

  13. Synthesis and luminescence properties for europium oxide nanotubes

    International Nuclear Information System (INIS)

    Mo Zunli; Deng Zhepeng; Guo Ruibin; Fu Qiangang; Feng Chao; Liu Pengwei; Sun Yu

    2012-01-01

    Highlights: ► A novel high temperature sensitive fluorescent CNTs/Eu 2 O 3 nanocomposite was fabricated. ► The nanocomposite showed strong fluorescent emission peaks at around 540 and 580 nm after calcined beyond 620 °C for 4 h. ► The ultrahigh fluorescence intensity of the nanocomposites resulted from a synergetic effect of CNTs and europium oxide. ► We also discovered that CNTs had an effect of fluorescence quenching. - Abstract: A novel high temperature sensitive fluorescent nanocomposite has been successfully synthesized by an economic hydrothermal method using carbon nanotubes (CNTs), europium oxide, and sodium dodecyl benzene sulfonate (SDBS). To our great interest, the nanocomposites show high temperature sensitivity after calcinations at various temperatures, suggesting a synergetic effect of CNTs and europium oxide which leads to ultrahigh fluorescence intensity of europium oxide nanotubes. When the novel high temperature sensitive fluorescent nanocomposites were calcined beyond 620 °C for 4 h, the obtained nanocomposites have a strong emission peak at around 540 and 580 nm, due to the 5 D 0 → 7 F j (j = 0, 1) forced electric dipole transition of Eu 3+ ions. In turn, the emission spectra showed a slight blue shift. The intensity of this photoluminescence (PL) band is remarkably temperature-dependent and promotes strongly beyond 620 °C. This novel feature is attributed to the thermally activated carrier transfer process from nanocrystals and charged intrinsic defects states to Eu 3+ energy levels. The novel high temperature sensitive fluorescent nanocomposite has potential applications in high temperature warning materials, sensors and field emission displays. It is also interesting to discover that CNTs have the effect of fluorescence quenching.

  14. Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA)

    Science.gov (United States)

    Alberton, J.; Martelli, S. M.; Fakhouri, F. M.; Soldi, V.

    2014-08-01

    Polylactic acid (PLA) has been larger used in biomedical field due to its low toxicity and biodegradability. The aim of this study was to produce PLLA nanocomposites, by melt extrusion, containing Halloysite nanotubes (HNT) and/or titanium dioxide (TiO2) nanoparticles. Immediately after drying, PLLA was mechanically homogenized with the nanofillers and then melt blended using a single screw extruder (L/D = 30) at a speed of 110 rpm, with three heating zones in which the following temperatures were maintained: 150, 150 and 160°C (AX Plasticos model AX14 LD30). The film samples were obtained by compression molding in a press with a temperature profile of 235 ± 5°C for 2.5 min, after pressing, films were cooled up to room temperature. The mechanical tests were performed according to ASTM D882-09 and the water vapor permeability (WVP) was measured according to ASTM E-96, in triplicate. The tensile properties indicated that the modulus was improved with increased TiO2 content up to 1g/100g PLLA. The Young's modulus (YM) of the PLA was increased from 3047 MPa to 3222 MPa with the addition of 1g TiO2/100g PLLA. The tensile strength (TS) of films increases with the TiO2 content. In both cases, the YM and TS are achieved at the 1% content of TiO2 and is due to the reinforcing effect of nanoparticles. Pristine PLA showed a strain at break (SB) of 3.56%, while the SB of nanocomposites were significant lower, for instance the SB of composite containing 7.5 g HNT/100g PLLA was around 1.90 %. The WVP of samples was increased by increasing the nano filler content. It should be expected that an increase of nanofiller content would decrease the mass transfer of water molecules throughout the samples due to the increase in the way water molecules will have to cross to permeate the material. However, this was not observed. Therefore, this result can be explained considering the molecular structure of both fillers, which contain several hydroxyl groups in the surface, making the

  15. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.

    Science.gov (United States)

    Rouhi, S; Alizadeh, Y; Ansari, R

    2016-01-01

    Molecular dynamics simulations are used to study the physical and mechanical properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites. The effects of nanotube atomic structure, diameter, and volume fraction on the polymer density distribution, polymer atom distribution, stress-strain curves of nanocomposites and Young's, and shear moduli of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites are explored. It is shown that the density of polymer, surrounding the nanotube surface, has a peak near the nanotube surface. However, increasing distance leads to dropping it to the value near the density of pure polymer. It is seen that for armchair nanotubes, the average polymer atoms distances from the single-walled carbon nanotubes are larger than the polymer atom distance from zigzag nanotubes. It further is shown that zigzag nanotubes are better candidates to reinforce poly (ethylene oxide) than their armchair counterparts.

  16. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  17. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  18. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  19. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga; Neitzert, Heinz-Christoph [Department of Industrial Engineering – DIIn - Università di Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy); Simon, George [Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia)

    2016-05-18

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  20. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO{sub 2} nanotube composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-09-30

    Highlights: • Silver-substituted hydroxyapatite coating was successfully deposited on anodic TiO{sub 2} nanotubes by electrochemical deposition. • The bond strength between the AgHAp coatings and the substrate was improved by anodization pretreatment. • The antibacterial capability of the HAp coatings were enhanced with Ag{sup +} incorporation against E. coli. • The AgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Hydroxyapatite doped with Ag{sup +} ions (AgHAp) was synthesized via electrochemical deposition method on anodized titanium. The samples were characterized via X-ray diffraction, Fourier transform infrared spectrum analysis, X-Ray photoelectron spectroscopy and scanning electron microscopy to investigate the phase formation and microstructure of the samples. Highly ordered TiO{sub 2} nanotubes with a diameter of 100 nm were successfully synthesized, and the AgHAp coating was deposited on the TiO{sub 2} nanotubes, which has a thickness of about 17.7 ± 1.5 μm. Moreover, silver was uniformly-distributed on the nanotubes. Bioactivity and electrochemical studies were performed for the AgHAp-coated TiO{sub 2} in a simulated body fluid, where significant good bioactivity and corrosion resistance were exhibited. The antibacterial and osteoblast cell adhesion tests in vitro revealed that the AgHAp coating with 2.03 wt% silver had significant antibacterial and osteogenic properties. Thus, the AgHAp coating was regarded as a promising candidate for coating orthopedic implants.

  1. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  2. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  3. Human safety review of "nano" titanium dioxide and zinc oxide.

    Science.gov (United States)

    Schilling, Karsten; Bradford, Bobbie; Castelli, Dominique; Dufour, Eric; Nash, J Frank; Pape, Wolfgang; Schulte, Stefan; Tooley, Ian; van den Bosch, Jeroen; Schellauf, Florian

    2010-04-01

    Based on the current weight of evidence of all available data, the risk for humans from the use of nano-structured titanium dioxide (TiO(2)) or zinc oxide (ZnO) currently used in cosmetic preparations or sunscreens is considered negligible. There is a large body of information that when viewed in its entirety is considered as sufficient to demonstrate that these nano-structured ultraviolet (UV) filters, irrespective of various treatments (coatings) or crystalline structure, can be regarded as safe for use at concentrations up to 25% in cosmetic products to protect the skin from harmful effects of solar UV radiation. "Nano" TiO(2) and ZnO formulated in topically applied sunscreen products exist as aggregates of primary particles ranging from 30-150 nm in size. These aggregates are bonded such that the force of sunscreen product application onto the skin would have no impact on their structure or result in the release of primary particles. Multiple studies have shown that under exaggerated test conditions neither nano-structured TiO(2) nor ZnO penetrates beyond the stratum corneum of skin. Further, the distribution and persistence of these nano-structured metal oxides is the same compared to larger pigment-grade (i.e., >100 nm) particles, demonstrating equivalence in the recognition and elimination of such material from the body. Finally, the in vitro genotoxic and photogenotoxic profiles of these nano-structured metal oxides are of no consequence to human health. Whereas the most logical, straightforward conclusion based on data from internationally-recognized guideline studies and current 20+ year history of human use is that nano-structured TiO(2) and ZnO are safe, there will continue to be questions as "nano" conjures images of technology gone awry. Despite this rather sober view, the public health benefits of sunscreens containing nano TiO(2) and/or ZnO outweigh human safety concerns for these UV filters.

  4. Synthesis and characterization of black amorphous titanium oxide nanoparticles by spark discharge method

    Science.gov (United States)

    Sabzehparvar, Milad; Kiani, Fatemeh; Tabrizi, Nooshin Salman

    2018-01-01

    In the last decade, while crystalline titanium oxide nanoparticles have been extensively studied, the studies on amorphous polymorph nanoparticles are relatively rare and limited to the ab initio studies. We have synthesized black amorphous titanium oxide nanoparticles using, for the first time, spark ablation in the argon gas followed by oxidation at atmospheric conditions. The produced nanoparticles were characterized by various characterization methods to study their structure, size, morphology, surface area and optical properties. XRD analysis indicated the formation of an amorphous TiO2 phase together with Ti, TiO and Ti2O3 crystalline phases. FESEM demonstrated that the produced nanoparticles had a narrow size distribution. EDS analysis suggested the formation of nonstoichiometric titanium oxide. TEM and SAED analyses showed that the majority of nanoparticles were in amorphous state and possessed an average size of about 5.2 nm. A very high specific surface area of 310 m2/g was measured for the produced nanoparticles by the BJH analysis. These titanium oxide nanoparticles showed an optical band gap of around 3.2eV and an enhanced absorption in the whole visible spectrum measured by the UV-Vis and DRS analyses due to the oxygen deficiency. These results indicate that the spark ablation in the gas phase is a facile method for the synthesis of black amorphous titanium oxide nanoparticles.

  5. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO 2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti 2 O 3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  6. Properties and structure of oxide layers on thin coating of titanium alloy

    Directory of Open Access Journals (Sweden)

    Jan Krčil

    2015-12-01

    Full Text Available Present work discusses issues of growth and characterization of a thin oxide layer formed on the surface of a titanium-niobium alloy. An oxide layer on the surface of titanium alloys introduces a corrosion resistance and also a bio-compatibility, which is required for a medical application. Although this oxide layer is a result of a spontaneous passivation, for the practical applications it is necessary to control the growth of oxides. In this work the oxide layer was formed on the PVD coating from Ti39Nb alloy which was sputtered on three different base materials: CP Ti grade 2, stainless steel AISI 316LVM and titanium alloy Ti–6Al–4V ELI. The oxide layer was created by a thermal oxidation at 600 °C for three different oxidation periods: 1, 4 and 8 hours. After the oxidation process the influence of oxidation characteristics and base materials on the thickness and properties of oxide layer was studied. There was observed a change of color and surface roughness. The oxide layer surface as well as the layer thickness was observed by SEM. The influence of the substrate material under the coating on the oxide layer should be more investigated in the future.

  7. Optimized anodization setup for the growth of TiO2 nanotubes on flat surfaces of titanium based materials

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available An extensive research work on development of nanostructured TiO2 layers on the surface of titanium based materials for biomedical implants led the authors to the optimization of process parameters of electrochemical anodization in phosphate/fluoride based electrolytes. Based on those parameters, a dedicated optimized electrochemical anodization setup was originally designed and realized. The anodization bath was designed in order to provide a proper circulation of electrolyte and the possibility of distance anode-cathode modification, the DC power supply was designed accordingly to the electrical parameters requested by the nanotubes development, and a dedicated software (Nanosource was developed for process control and ease and flexibility of process parameters acquisition, storage and processing.

  8. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    Science.gov (United States)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  9. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    Science.gov (United States)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-02-01

    Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  10. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  11. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  12. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures.

    Science.gov (United States)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-06-25

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter.

  13. Biological insertion of nanostructured germanium and titanium oxides into diatom biosilica

    Science.gov (United States)

    Jeffryes, Clayton S.

    There is significant interest in titanium oxide and germanium-silicon oxide nanocomposites for optoelectronic, photocatalytic, and solar cell applications. The ability of the marine diatom Pinnularia sp. to uptake soluble metal oxides from cell culture medium, and incorporate them into the micro- and nano-structure of their amorphous silica cell walls, called frustules, was evaluated using an engineered photobioreactor system. The effects of metal oxides on the structural and elemental properties of the frustule were also evaluated. Diatom cell cultures grown in 5 L photobioreactors were initially charged with 0.5 mM of soluble silicon, Si(OH)4, an obligate substrate required for frustule fomation. Upon exhaustion of Si(OH)4 cells were exposed to the mixed pulse-addition of soluble silicon and germanium or co-perfusion addition of soluble silicon and titanium, which were incorporated into the frustules. Metals composition of the cell culture medium, diatom biomass and purified frustules were measured, as was the local elemental composition within the frustule pores and the metal oxide crystallinity. Diatom frustules having a germanium composition of 1.6 wt % were devoid of the native intra-pore structures and possessed enhanced photoluminescence and electroluminescence when compared to frustules without Ge. Diatoms cultivated in the presence of soluble titanium incorporated amorphous titania into the frustule, which maintained native structure even when local TiO2 concentrations within the nanopores approached 60 wt. %. Titanium oxide could also be biomimetically deposited directly within the diatom nanopores by adsorbing poly-L-lysine to the diatom biosilica where it catalyzed the soluble titanium precursor Ti-BALDH into amorphous titania nanoparticles. Both biogenic and biomimetic titania could be converted to anatase titanium by thermal annealing. It was determined that nanostructured metal oxide composites can be fabricated biomimetically or in cell culture to

  14. The evolution of titanium oxidation at elevated temperature and its oxide scale morphology

    Science.gov (United States)

    Imbrie, Peter Kenneth

    The purpose of this study was to experimentally quantify the multi-dimensional growth characteristics of the oxide scale formed on commercially pure titanium at 700°C in a flowing air environment. The geometries considered herein had characteristic dimensions that were appropriately sized to match the thickness of the oxide scale and were fabricated into shapes of solid and hollow cylinders and external and internal wedges. Scanning electron microscopy (SEM) image analysis was used to measure the oxide layer thickness and the Pilling-Bedworth ratio (PBR) as a function of time. An effective diffusion coefficient was determined from one-dimensional planar oxide thickness data and experimentally obtained PBR values served as the necessary input to a solid state diffusion model, which was modified to account for the volumetric expansion of the oxide. Oxidation of the solid cylinder and external wedge geometries were shown to develop a scale morphology similar to that observed on a flat specimen. The oxide had two notable features: (1) at the air-oxide interface, the oxide appeared to be compact and its thickness grew with time and (2) from the metal-oxide interface up to the compact scale, the oxide was found to have a porous-layered arrangement with the pore size being a function of distance from the metal-oxide interface. Conversely, the oxide scale growth on the hollow cylinders and external wedges, while still layered, appeared to be much less porous and had considerably less cracking and spalling damage. The modified solid-state diffusion model and experimentally obtained values of the diffusion coefficient and PBR were used to demonstrate the competing influences of oxide expansion and curvature effects. In addition, the predictive capability of the model, for the case of a solid cylinder, was shown to under predict experimental results, whereas scale growth on the inner surface of a hollow cylinder was over predicted. The differences are primarily attributed to

  15. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors.

    Science.gov (United States)

    Tominaka, Satoshi

    2012-10-01

    Detailed analyses of reduced, single crystal, rutile-type TiO(2) via high-resolution transmission electron microscopy (TEM) are reported which reveal that the reduction proceeds topotactically via interstitial diffusion of Ti ions at low temperature, around 350 °C. This important finding encouraged the production of various nanostructured reduced titanium oxides from TiO(2) precursors with morphology retention, and in the process, the synthesis of black titanium oxide nanorods using TiO(2) nanorods was demonstrated. Interestingly, as opposed to the semiconductive behavior of Ti(2)O(3) synthesized at high temperature, topotactically synthesized Ti(2)O(3) exhibits metallic electrical resistance, and the value at room temperature is quite low (topotactically synthesized Ti(2)O(3). This work shows that topotactically reduced titanium oxides can have fascinating properties as well as nanostructures.

  16. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  17. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  18. Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, V. I.; Ageev, O. A.; Kolomiitsev, A. S.; Konoplev, B. G., E-mail: kbg@sfedu.ru; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute of Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2014-12-15

    The results of investigation of a memristor-matrix model on the basis of titanium-oxide nanoscale structures (ONSs) fabricated by methods of focused ion beams and atomic-force microscopy (AFM) are presented. The effect of the intensity of interaction between the AFM probe and the sample surface on the memristor effect in the titanium ONS is shown. The memristor effect in the titanium ONS is investigated by an AFM in the mode of spreading-resistance map. The possibility of the recording and erasure of information in the submicron cells is shown on the basis of using the memristor effect in the titanium ONS, which is most promising for developing the technological processes of the formation of resistive operation memory cells.

  19. Phases quantification in titanium oxides by means of X-ray diffraction

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Ita T, A. de; Chavez R, A.

    2001-01-01

    In this work two phases of titanium oxides are quantified which belong to the same crystalline system and by means of a computer program named Quanto created by the first author, contains the information for calculating the absorption coefficients, it can be quantified phases having one of the pure phases and the problem samples. In order to perform this work different mixtures of different titanium oxides were prepared measuring by means of the X-ray diffraction technique in the Siemens X-ray diffractometer of ININ which were processed with the Peakfit package and also they were evaluated by means of the computer program with the necessary information finding acceptable results. (Author)

  20. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  1. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    Science.gov (United States)

    Behzadi, Shahed; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Simchi, Abdolreza; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-02-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses.

  2. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  3. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  4. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  5. Reduction Behaviors of Iron, Vanadium and Titanium Oxides in Smelting of Vanadium Titanomagnetite Metallized Pellets

    Science.gov (United States)

    Wang, Shuai; Guo, Yufeng; Jiang, Tao; Yang, Lu; Chen, Feng; Zheng, Fuqiang; Xie, Xiaolin; Tang, Minjun

    2017-09-01

    The complicated reduction behaviors of iron, vanadium and titanium oxides must be accurately controlled for the successful smelting of vanadium titanomagnetite. The aim of this study is to investigate the effects of the binary basicity, MgO content, smelting temperature, duration and reductants on the reduction of iron, vanadium and titanium oxides during the electric furnace smelting of vanadium titanomagnetite metallized pellets. The results demonstrate that the recovery ratios of both iron and vanadium increase as the binary basicity increases from 0.9 to 1.2, whereas the reduction of titanium oxides is mitigated when the basicity is maintained at 1.1. Compared to its weak effect on the recovery ratio of iron, increasing MgO content improves the vanadium recovery ratio. A low content of titanium in molten iron is obtained when the MgO content in the slag is lower than 11%, whereas the titanium content in the molten iron increases as the MgO content increases further. Moreover, the iron and vanadium recovery ratios, and the Ti content in the molten iron, increase with increasing smelting temperature, duration and reductant content.

  6. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    Science.gov (United States)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-03-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  7. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  8. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  9. Positive Biomechanical Effects of Titanium Oxide for Sandblasting Implant Surface as an Alternative to Aluminium Oxide.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; Taschieri, Silvio; Del Fabbro, Massimo; Coelho, Paulo Guilherme

    2015-10-01

    The aim of this study was to evaluate the physico-chemical properties and the in vivo host response of a surface sandblasted with particles of titanium oxide (TiO2) followed by acid etching as an alternative to aluminium oxide. Thirty titanium disks manufactured in the same conditions as the implants and 24 conventional cylindrical implants were used. Half of the implants had a machined surface (Gcon) while in the other half; the surface was treated with particles of TiO2 followed by acid etching (Gexp). Surface characterization was assessed by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), profilometry, and wettability. For the in vivo test, 12 implants of each group were implanted in the tibia of 6 rabbits, and were reverse torque tested after periods of 30 or 60 days after implantation. Following torque, SEM was utilized to assess residual bone-implant contact. The surface characterization by SEM showed a very homogeneous surface with uniform irregularities for Gexp and a small amount of residues of the blasting procedure, while Gcon presented a surface with minimal irregularities from the machining tools. Wettability test showed decreased contact angle for the Gcon relative to the Gexp. The Gexp removal torque at 30 and 60 days was 28.7%, and 33.2% higher relative to the Gcon, respectively. Blasting the surface with particles of TiO2 represents an adequate option for the surface treatment of dental implants, with minimal risk of contamination by the residual debris from the blasting procedure.

  10. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  11. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  12. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  13. The Effects of Different Wavelength UV Photofunctionalization on Micro-Arc Oxidized Titanium

    Science.gov (United States)

    Zhou, Lei; Guo, Zehong; Rong, Mingdeng; Liu, Xiangning; Lai, Chunhua; Ding, Xianglong

    2013-01-01

    Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation. PMID:23861853

  14. Gold supported on ceria nanotubes for CO oxidation

    Science.gov (United States)

    Zhang, Rongbin; Lu, Kun; Zong, Lijuan; Tong, Sai; Wang, Xuewen; Feng, Gang

    2017-09-01

    CeO2 is a typical of fluorite structure, semiconductor material, has high oxygen storage capability as well as unique redox property, which is widely used as catalysts supports in catalysis. Ceria nanotubes and nanocubes are prepared via hydrothermal method in the present work, and Au/CeO2 catalysts are prepared using deposition-precipitation technique with HAuCl4 as gold precursor. The prepared samples were used as catalysts for the CO oxidation reaction using a fix-bed reactor at 50-130 °C and characterized by XRD, BET, SEM, TEM, XPS, TPR and ICP. It is found that CeO2-NT and CeO2-NC expose different surface planes. The XPS and H2-TPR results illustrates that the {110} surface exposed by CeO2-NT has stronger interaction with gold particles, which benefits the electron and oxygen transfer between Au and ceria. All these characters of the Au/CeO2-NT(3%) result in the better activity and stability than the Au/CeO2-NC(3%).

  15. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  16. Studies on pore morphology of titanium and its oxide by small angle ...

    Indian Academy of Sciences (India)

    and its oxide by small angle neutron scattering. P K TRIPATHY1 ... Titanium metal bodies have been prepared from the sintered powder com- pacts of TiO2 ... XRD of the sintered pellet was first recorded prior to the reduction. Again XRD of the as-reduced metal was recorded after the reduction was over. Then, the sintered.

  17. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  18. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    Science.gov (United States)

    Aloia Games, L.; Pastore, J.; Bouchet, A.; Ballarre, J.

    2011-12-01

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  19. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    International Nuclear Information System (INIS)

    Games, L Aloia; Ballarre, J; Pastore, J; Bouchet, A

    2011-01-01

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  20. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Mrlík, M.; Pavlínek, V.; Sáha, P.; Quadrat, Otakar

    2012-01-01

    Roč. 290, č. 1 (2012), s. 41-48 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * titanium oxide * hollow globular clusters Subject RIV: JI - Composite Materials Impact factor: 2.161, year: 2012

  1. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  2. Selectivity of multi-wall carbon nanotube network sensoric units to ethanol vapors achieved by carbon nanotube oxidation

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Slobodian, P.; Říha, Pavel; Sáha, P.

    2012-01-01

    Roč. 1, č. 1 (2012), s. 101-106 ISSN 1927-0585 Grant - others:UTB Zlín(CZ) IGA/3/FT/11/D; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * buckypaper * oxidation * sensor * electrical resistance Subject RIV: BK - Fluid Dynamics

  3. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    Science.gov (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  4. Clean forming of stainless steel and titanium products by lubricious oxides

    DEFF Research Database (Denmark)

    Heikkilä, Irma; Wadman, Boel; Thoors, Håkan

    2012-01-01

    Big social benefits can be attained through increased use of stainless steel or titanium in new sheet metal applications. Unfortunately, forming of these materials is often a challenging and costly operation, that can lead to environmental and health problems when solving the technical limitations...... is called lubricious oxides with a rutile crystal structure. Oxides of Ti, Mo, V, and Zn can build rutiles under certain contact temperatures during rolling and forming. The aim of this investigation is to evaluate if oxides designed on metal sheets display a lubricious effect under conditions similar...... to industrial forming processes. Preliminary evaluations show a beneficial influence of two oxides types, on stainless steel and on titanium. More work is needed to test the lubricating effect in other forming operations and to analyse the sustainability aspects for products manufactured with this alternative...

  5. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    International Nuclear Information System (INIS)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E.

    2009-01-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  6. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  7. Titanium coated with functionalized carbon nanotubes — A promising novel material for biomedical application as an implantable orthopaedic electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Przekora, Agata, E-mail: agata.przekora@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chodzki 1, 20-093 Lublin (Poland); Benko, Aleksandra; Nocun, Marek; Wyrwa, Jan; Blazewicz, Marta [Faculty of Materials Science and Ceramics, AGH-Univ. of Science and Technology, A. Mickiewicz 30 Ave., 30-059 Cracow (Poland); Ginalska, Grazyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chodzki 1, 20-093 Lublin (Poland)

    2014-12-01

    The aim of the study was to fabricate titanium (Ti) material coated with functionalized carbon nanotubes (f-CNTs) that would have potential medical application in orthopaedics as an implantable electronic device. The novel biomedical material (Ti-CNTs-H{sub 2}O) would possess specific set of properties, such as: electrical conductivity, non-toxicity, and ability to inhibit connective tissue cell growth and proliferation protecting the Ti-CNTs-H{sub 2}O surface against covering by cells. The novel material was obtained via an electrophoretic deposition of CNTs-H{sub 2}O on the Ti surface. Then, physicochemical, electrical, and biological properties were evaluated. Electrical property evaluation revealed that a Ti-CNTs-H{sub 2}O material is highly conductive and X-ray photoelectron spectroscopy analysis demonstrated that there are mainly COOH groups on the Ti-CNTs-H{sub 2}O surface that are found to inhibit cell growth. Biological properties were assessed using normal human foetal osteoblast cell line (hFOB 1.19). Conducted cytotoxicity tests and live/dead fluorescent staining demonstrated that Ti-CNTs-H{sub 2}O does not exert toxic effect on hFOB cells. Moreover, fluorescence laser scanning microscope observation demonstrated that Ti-CNTs-H{sub 2}O surface retards to a great extent cell proliferation. The study resulted in successful fabrication of highly conductive, non-toxic Ti-CNTs-H{sub 2}O material that possesses ability to inhibit osteoblast proliferation and thus has a great potential as an orthopaedic implantable electronic device. - Highlights: • Functionalized carbon nanotubes were electrophoretically deposited on Ti surface. • Physicochemical, electrical, and biological properties were evaluated. • Ti-CNTs-H{sub 2}O is highly conductive and there are mainly COOH groups on its surface. • Novel material is non-toxic and retards to a great extent osteoblast proliferation. • Ti-CNTs-H{sub 2}O has a promising potential as implantable orthopaedic

  8. Carbon coated titanium dioxide nanotubes: synthesis, characterization and potential application as sorbents in dispersive micro solid phase extraction.

    Science.gov (United States)

    García-Valverde, M T; Lucena, R; Galán-Cano, F; Cárdenas, S; Valcárcel, M

    2014-05-23

    In this article, carbon coated titanium dioxide nanotubes (c-TNTs) have been synthesized. The synthesis of the bare TNTs (b-TNTs) using anatase as precursor and their coating with a caramel layer have been performed by simple and cheap hydrothermal processes. The final conversion of the caramel layer in a carbon coating has been accomplished by a thermal treatment (600°C) in an inert (Ar) atmosphere. The c-TNTs have been characterized by different techniques including transmission microscopy, infrared spectroscopy, X-ray powder diffraction, thermogravimetry and Brunauer, Emmett and Teller (BET) adsorption isotherms. The extraction performance of the c-TNTs under a microextraction format has been evaluated and compared with that provided by b-TNTs and multiwalled carbon nanotubes (MWCNTs) using naproxen and ketoprofen as model analytes. c-TNTs provided better results than the other nanoparticles, especially at low acidic pH values. In addition, c-TNTs presented a better dispersibility than MWCNTs, which is very interesting for their use in dispersive micro-solid phase extraction. Finally, a microextraction format, adapted to low sample volumes, has been proposed and applied for the determination of naproxen and ketoprofen in saliva and urine samples by liquid chromatography with UV detection. The results indicate that this approach is promising for the analysis of biological samples. In fact, the recoveries were in the range between 96% and 119% while the precision, expressed as relative standard deviation, was better than 8.5% and 26.3% for urine and saliva, respectively. The detection limits were in the range 34.1-40.8μg/L for saliva samples and 81.1-110μg/L for urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  10. Revealing the interparticle magnetic interactions of iron oxide nanoparticles-carbon nanotubes hybrid materials

    NARCIS (Netherlands)

    Douvalis, A.P.; Georgakilas, V.; Tsoufis, T.; Gournis, D.; Kooi, B.; Bakas, T.

    2010-01-01

    Spinel iron oxide nanoparticles capped with organic molecules have been successfully prepared and used to produce iron oxide nanoparticles-single wall carbon nanotubes hybrid materials, which were characterized by a number of experimental techniques. The nanoparticles in both samples have an average

  11. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    R. Benlikaya

    2013-01-01

    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  12. The local environment of Co2+ ions intercalated in vanadium oxide/hexadecylamine nanotubes.

    Science.gov (United States)

    Saleta, M E; Aurelio, G; Bardelli, F; Sánchez, R D; Malta, M; Torresi, R M

    2012-10-31

    Vanadium oxide nanotubes constitute promising materials for applications in nanoelectronics as cathode materials, in sensor technology and in catalysis. In this work we present a study on hybrid vanadium oxide/hexadecylamine multiwall nanotubes doped with Co ions using state of the art x-ray diffraction and absorption techniques, to address the issue of the dopant location within the nanotubes' structure. The x-ray absorption near-edge structure analysis shows that the Co ions in the nanotubes are in the 2 + oxidation state, while extended x-ray absorption fine structure spectroscopy reveals the local environment of the Co(2+) ions. Results indicate that Co atoms are exchanged at the interface between the vanadium oxide's layers and the hexadecylamines, reducing the amount of amine chains and therefore the interlayer distance, but preserving the tubular shape. The findings in this work are important for describing Co(2+) interaction with vanadium oxide nanotubes at the molecular level and will help to improve the understanding of their physicochemical behavior, which is desired in view of their promising applications.

  13. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  14. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  15. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    International Nuclear Information System (INIS)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V.; Grigorieva, Anastasia V.

    2016-01-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm -1 , a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  16. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Grigorieva, Anastasia V. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Materials Science

    2016-11-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm{sup -1}, a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  17. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...... evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved....

  18. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution

    Science.gov (United States)

    Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco

    2016-12-01

    Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50 mV overpotential). The Tafel slope of ~130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.

  19. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes.

    Science.gov (United States)

    Tavares, Ana M; Louro, Henriqueta; Antunes, Susana; Quarré, Stephanie; Simar, Sophie; De Temmerman, Pieter-Jan; Verleysen, Eveline; Mast, Jan; Jensen, Keld A; Norppa, Hannu; Nesslany, Fabrice; Silva, Maria João

    2014-02-01

    Toxicological characterization of manufactured nanomaterials (NMs) is essential for safety assessment, while keeping pace with innovation from their development and application in consumer products. The specific physicochemical properties of NMs, including size and morphology, might influence their toxicity and have impact on human health. The present work aimed to evaluate the genotoxicity of nanosized titanium dioxide (TiO2), synthetic amorphous silica (SAS) and multiwalled carbon nanotubes (MWCNTs), in human lymphocytes. The morphology and size of those NMs were characterized by transmission electron microscopy, while the hydrodynamic particle size-distributions were determined by dynamic light scattering. Using a standardized procedure to ensure the dispersion of the NMs and the cytokinesis-block micronucleus assay (without metabolic activation), we observed significant increases in the frequencies of micronucleated binucleated cells (MNBCs) for some TiO2 NMs and for two MWCNTs, although no clear dose-response relationships could be disclosed. In contrast, all forms of SAS analyzed in this study were unable to induce micronuclei. The present findings increase the weight of evidence towards a genotoxic effect of some forms of TiO2 and some MWCNTs. Regarding safety assessment, the differential genotoxicity observed for closely related NMs highlights the importance of investigating the toxic potential of each NM individually, instead of assuming a common mechanism and equal genotoxic effects for a set of similar NMs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The adsorption mechanism of titanium-binding ferritin to amphoteric oxide.

    Science.gov (United States)

    Fukuta, Megumi; Zettsu, Nobuyuki; Yamashita, Ichiro; Uraoka, Yukiharu; Watanabe, Heiji

    2013-02-01

    We investigated the origin of selective adsorption of titanium-binding ferritin (TBF), the outer surface of which is genetically modified with titanium-binding peptides (TBPs). By varying pH conditions (7-9), TBF adsorption behavior onto amphoteric and acidic oxide substrates was observed using atomic force microscopy, and the zeta potential of substrates was measured. This suggests that a TBP interacted with local charges such as -O(-), -OH(+), and -OH(2)(+) on substrates regardless of the constituent elements of the substrate, which makes it possible for TBF to adsorb on TiO(X), ZrO(2), Fe(2)O(3), and SiO(2) substrates despite the presence of an overall electrostatic repulsive force between TBF and the substrates. This also suggests that a surfactant, TWEEN20, can completely hamper attractive interaction between TBF and acidic oxide, but amphoteric oxide can withstand TWEEN20 interference. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study.

    Science.gov (United States)

    Lee, Jae-Kwan; Choi, Dong-Soon; Jang, Insan; Choi, Won-Youl

    2015-01-01

    TiO2 nanotube arrays on the surface of dental implants were fabricated by two-step anodic oxidation. Their effects on bone-implant contact were researched by a pilot in vivo study. The implants were classified into four groups. An implant group with TiO2 nanotube arrays and recombinant human bone morphogenetic protein-2 (rhBMP-2) was compared with various surface implants, including machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. The diameter of the TiO2 nanotube window and TiO2 nanotube were ~70 nm and ~110 nm, respectively. The rhBMP-2 was loaded into TiO2 nanotube arrays and elution was detected by an interferometric biosensing method. A change in optical thickness of ~75 nm was measured by flow cell testing for 9 days, indicating elution of rhBMP-2 from the TiO2 nanotube arrays. For the in vivo study, the four groups of implants were placed into the proximal tibia of New Zealand White rabbits. In the implant group with TiO2 nanotube arrays and rhBMP-2, the bone-to-implant contact ratio was 29.5% and the bone volume ratio was 77.3%. Bone remodeling was observed not only in the periosteum but also in the interface between the bone and implant threads. These values were higher than in the machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. Our results suggest that TiO2 nanotube arrays could potentially be used as a reservoir for rhBMP-2 to reinforce osseointegration on the surface of dental implants.

  2. The Study of Oxidized Multi-Walled Carbon Nanotubes Efficiency in Lead Removing from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    M Malakootian

    2015-07-01

    Full Text Available Introduction: Carbon nano tubes are products which have the ability to remove some contaminants from aqueous solutions and wastewater. The efficiency of these products depends on different factors such as PH, concentration, contact, mixing time, etc. in this research the efficiency of oxidized multi- walled carbon nanotubes is studied. Methods: The study is Experimental. The multi-walled carbon nanotubes were oxidized and Three PH 4, 7 and 10 and contact times 5, 10 and 40 min, and the concentrations of 50, 100 and 125 mg of carbon nanotubes from aqueous Pb removal efficiency were examined.All of the tests were done according to the standard methods for the examination of water and wastewater book 21th edited..Real samples of drinking water was the village of Ebrahim Abad RazaviSirjan. Data analysis was done using SPSS statistical software version 16 Results: By Simultaneous changes in time and PH was changed the efficiency of lead removal by the oxidized multi- walled carbon nanotubes. The most important factor in increasing the efficiency of removal, using acidic PH (PH =4 is. With a Simultaneous increase in contact time and concentration of nanotubes, the removal efficiency increased. In optimal conditions, 125 mg of nanotube concentration, contact time of 10 minutes and PH=4 removal of lead in synthetic samples and real samples, respectively, 99.1 and 94% were achieved. In total there is little difference between the real conditions and the synthetic conditions of the removal efficiency that this difference arises from the interaction of cations, anions and heavy metals in real samples. Conclusion: Oxidized multi-walled Carbon nanotubes has a high capacity for the removal of lead from aqueous solutions.

  3. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO{sub 2} nanotube by electrochemical deposition for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Mao, Huanhuan [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-02-28

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO{sub 2} nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO{sub 2} nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  4. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Tamara, E-mail: t.s.galloway@exeter.ac.u [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Lewis, Ceri [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Dolciotti, Ida [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy); Johnston, Blair D. [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Moger, Julian [School of Physics, Stocker Road, University of Exeter, Devon EX4 4QL (United Kingdom); Regoli, Francesco [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy)

    2010-05-15

    The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO{sub 2} and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO{sub 2}, with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO{sub 2} of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected. - This study explores the hypothesis that nano-TiO{sub 2} and single walled nanotubes (SWNT) can cause sublethal impacts to Arenicola marina exposed through natural sediments.

  5. Organic-ligand-assisted supercritical hydrothermal synthesis of titanium oxide nanocrystals leading to perfectly dispersed titanium oxide nanoparticle in organic phase

    International Nuclear Information System (INIS)

    Mousavand, Tahereh; Zhang Jing; Ohara, Satoshi; Umetsu, Mitsuo; Naka, Takashi; Adschiri, Tadafumi

    2007-01-01

    Titanium oxide (TiO 2 ) nanocyrstals which are perfectly dispersed in organic solvents are synthesized by organic-ligand-assisted supercritical hydrothermal synthesis. The addition of hexaldehyde to the supercritical hydrothermal synthesis of TiO 2 leads to the in-situ surface modification, which enables the synthsized TiO 2 nanocrystals to be perfectly dispersed in iso-octane because of its hydrophobic nature. Further, the one-pot synthesis of hybrid materials results in the significant reduction of the particles size, probably due to the capping effect of hexaldehyde to suppress the particles growth

  6. Formation of pyridine N-oxides using mesoporous titanium silicalite-1

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Perez-Ferreras, Susana

    2014-01-01

    Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome...... indicate that desilication may cause a surface densification of less catalytically active extra-framework Ti species. Carbon-templating is thus a more gentle and effective method for generating secondary porosity. Utilization of carbon-templated mesoporous TS-1 for oxidation of pyridine derivatives...

  7. Controlled release of vanadium from titanium oxide coatings for improved integration of soft tissue implants.

    Science.gov (United States)

    Jarrell, John D; Dolly, Brandon; Morgan, Jeffrey R

    2009-07-01

    This study evaluates the potential of titanium oxide coatings for short-term delivery of vanadium for improved wound healing around implants. Titanium and vanadium oxides are bioactive agents that elicit different bioresponses in cells, ranging from implant integration and reduction of inflammation to modulation of cell proliferation and morphology. These oxides were combined in biomaterial coatings using metal-organic precursors and rapidly screened in cell-culture microplates to establish how vanadium-loading influences cell proliferation and morphology. Twenty-eight-day elution studies indicated that there was a controlled release of vanadium from stable titanium oxide matrices. Elution profiles were mathematically modeled for vanadium loading of 20-1.25% up to a period of 28 days. Scanning electron microscopy and energy dispersive spectroscopy of the coatings indicated that the vanadium was present as a nanoscale dispersion and not segregated micron-scale islands. The study confirmed that the observed bioresponse of cells was modulated by the soluble release of vanadium into the surrounding medium. Controlled release of vanadium from titania coatings may be used to influence soft-tissue integration of implants by modulating cell proliferation, attachment, inflammation, and wound healing dynamics.

  8. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions

    International Nuclear Information System (INIS)

    Naeimi, Hossein; Mohajeri, Ali; Moradi, Leila; Rashidi, Ali Morad

    2009-01-01

    Graphical abstract: In this work, oxidation of carbon nanotubes with ozone in the presence of hydrogen peroxide was studied. The reactions were performed under clean and mild conditions and oxidized products with high concentration of oxygenated groups were yielded. The reaction products were characterized with attenuated total reflectance (ATR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffractometry (XRD), back titration, X-ray photoelectron spectroscopy (XPS) and the dispersion behavior of the oxidized multiwalled carbon nanotubes (MWCNTs) was also studied. The results confirmed the presence of high concentrations of oxidative groups on the carbon nanotubes (CNTs) treated by the method of the present work.

  9. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions

    Science.gov (United States)

    Naeimi, Hossein; Mohajeri, Ali; Moradi, Leila; Rashidi, Ali Morad

    2009-11-01

    In this study, oxidation of carbon nanotubes with ozone in the presence of hydrogen peroxide was investigated. The reaction was performed under clean and mild conditions and oxidized products with high concentration of oxygenated groups were yielded. The reaction products were characterized with attenuated total reflectance (ATR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffractometry (XRD), back titration, X-ray photoelectron spectroscopy (XPS) and the dispersion behavior of the oxidized multiwalled carbon nanotubes (MWCNTs) was also studied. The results confirmed the presence of high concentrations of oxidative groups on the carbon nanotubes (CNTs) treated by the method of the present work.

  10. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Naeimi, Hossein, E-mail: naeimi@kashanu.ac.ir [Department of Chemistry, Faculty of Science, University of Kashan, 87317 Kashan (Iran, Islamic Republic of); Mohajeri, Ali [West Blvd. Olympic Village Blvd. Azadi Sports Complex, Gas Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Moradi, Leila [Department of Chemistry, Faculty of Science, University of Kashan, 87317 Kashan (Iran, Islamic Republic of); Rashidi, Ali Morad [West Blvd. Olympic Village Blvd. Azadi Sports Complex, Gas Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2009-11-15

    Graphical abstract: In this work, oxidation of carbon nanotubes with ozone in the presence of hydrogen peroxide was studied. The reactions were performed under clean and mild conditions and oxidized products with high concentration of oxygenated groups were yielded. The reaction products were characterized with attenuated total reflectance (ATR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffractometry (XRD), back titration, X-ray photoelectron spectroscopy (XPS) and the dispersion behavior of the oxidized multiwalled carbon nanotubes (MWCNTs) was also studied. The results confirmed the presence of high concentrations of oxidative groups on the carbon nanotubes (CNTs) treated by the method of the present work.

  11. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    Science.gov (United States)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  12. Efficient Hydrogen Evolution Electrocatalysis Using Cobalt Nanotubes Decorated with Titanium Dioxide Nanodots.

    Science.gov (United States)

    Feng, Jin-Xian; Xu, Han; Dong, Yu-Tao; Lu, Xue-Feng; Tong, Ye-Xiang; Li, Gao-Ren

    2017-03-06

    TiO 2 Co nanotubes decorated with nanodots (TiO 2 NDs/Co NSNTs-CFs) are reported as high-performance earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. TiO 2 NDs/Co NSNTs can promote water adsorption and optimize the free energy of hydrogen adsorption. More importantly, the absorbed water can be easily activated in the presence of the TiO 2 -Co hybrid structure. These advantages will significantly promote HER. TiO 2 NDs/Co NSNTs-CFs as electrocatalysts show a high catalytic performance towards HER in alkaline solution. This study will open up a new avenue for designing and fabricating low-cost high-performance HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation

    International Nuclear Information System (INIS)

    Ni Jiahua; Shi Yulong; Yan Fengying; Chen Jianzhi; Wang Lei

    2008-01-01

    Hydroxyapatite-containing titania coatings on titanium substrates were formed by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca.H 2 O) and sodium phosphate monobasic dihydrate (NaH 2 PO 4 .2H 2 O) using a pulse power supply. Scanning electron microscopy (SEM) with Energy dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD) were employed to characterize the microstructure, elemental composition and phase components of the coatings. The coatings were rough and porous, without apparent interface to the titanium substrates. All the oxidized coatings contained Ca and P as well as Ti and O, and the porous coatings were made up of anatase, rutile and hydroxyapatite. Such MAO films are expected to have significant applications as artificial bone joints and dental implants

  14. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  15. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c......-Si). The TiO2 films were deposited by thermal atomic layer deposition (ALD) at temperatures in the range of 80-300  ̊C using titanium tetrachloride (TiCl4) as Ti precursor and water as the oxidant. The influence of TiO2 thickness (5, 10, 20 nm), presence of additional tunneling interlayer (SiO2 or Al2O3...

  16. CL-5209 solvent-containing resin preseparation and spectrophotometric determination of microamount of titanium in uranium oxide

    International Nuclear Information System (INIS)

    Zhao Yaping; Yu Guilian; Li Daling

    1990-01-01

    A spectrophotometric method for determination of microamount of titanium in uranium oxide with diantipyrylmethane is described. The titanium is preseparared from uranium using CL-5209 solvent-containing resin. The complex formed is very stable. Beer's law is obeyed over the tange 0-20 μg Ti/25ml. The recovery by this method is 100 ∼ 104% and the relative standard deviation is ± 3%. This method is simple, rapid and selective, and it is now used as a routine method for titanium determination in uranium oxide

  17. Oxidation behaviour of the near α-titanium alloy IMI 834

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Oxidation behaviour of the near α-titanium alloy IMI 834 was investigated over a range of tem- peratures, from 600–800°C, in air. Specimens were solution-treated in the α + β and β phase fields for 1 h and. 1/2 h, respectively and cooled in air to room temperature. The solution treated samples were subjected to sta-.

  18. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Oxidized Single-Walled Carbon Nanotubes (SWCNs-COOH) as a ...

    African Journals Online (AJOL)

    Nano-materials are considered as suitable heterogeneous catalysts for many organic reactions. Herein oxidized carbon nanotube (SWCNTs-COOH) has been reported as a heterogeneous catalyst, for protection of carbonyl groups as hydrazones in EtOH at 80 °C. The reactions proceed smoothly with good to excellent ...

  20. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    Background: The applications of oxidized carbon nanotubes (o-CNTs) have shown potentials in novel drug delivery including the brain which is usually a challenge. This underscores the importance to study its potential toxic effect in animals. Despite being a promising tool for biomedical applications little is known about the ...

  1. pH-driven assembly of various supported lipid platforms: a comparative study on silicon oxide and titanium oxide.

    Science.gov (United States)

    Cho, Nam-Joon; Jackman, Joshua A; Liu, Michael; Frank, Curtis W

    2011-04-05

    Supported lipid platforms are versatile cell membrane mimics whose structural properties can be tailored to suit the application of interest. By identifying parameters that control the self-assembly of these platforms, there is potential to develop advanced biomimetic systems that overcome the surface specificity of lipid vesicle interactions under physiological conditions. In this work, we investigated the adsorption kinetics of vesicles onto silicon and titanium oxides as a function of pH. On each substrate, a planar bilayer and a layer of intact vesicles could be self-assembled in a pH-dependent manner, demonstrating the role of surface charge density in the self-assembly process. Under acidic pH conditions where both zwitterionic lipid vesicles and the oxide films possess near-neutral electric surface charges, vesicle rupture could occur, demonstrating that the process is driven by nonelectrostatic interactions. However, we observed that the initial rupturing process is insufficient for propagating bilayer formation. The role of electrostatic interactions for propagating bilayer formation differs for the two substrates; electrostatic attraction between vesicles and the substrate is necessary for complete bilayer formation on titanium oxide but is not necessary on silicon oxide. Conversely, in the high pH regime, repulsive electrostatic interactions can result in the irreversible adsorption of intact vesicles on silicon oxide and even a reversibly adsorbed vesicle layer on titanium oxide. Together, the results show that pH is an effective tool to modulate vesicle-substrate interactions in order to create various self-assembled lipid platforms on hydrophilic substrates.

  2. Titanium coated with functionalized carbon nanotubes--a promising novel material for biomedical application as an implantable orthopaedic electronic device.

    Science.gov (United States)

    Przekora, Agata; Benko, Aleksandra; Nocun, Marek; Wyrwa, Jan; Blazewicz, Marta; Ginalska, Grazyna

    2014-12-01

    The aim of the study was to fabricate titanium (Ti) material coated with functionalized carbon nanotubes (f-CNTs) that would have potential medical application in orthopaedics as an implantable electronic device. The novel biomedical material (Ti-CNTs-H2O) would possess specific set of properties, such as: electrical conductivity, non-toxicity, and ability to inhibit connective tissue cell growth and proliferation protecting the Ti-CNTs-H2O surface against covering by cells. The novel material was obtained via an electrophoretic deposition of CNTs-H2O on the Ti surface. Then, physicochemical, electrical, and biological properties were evaluated. Electrical property evaluation revealed that a Ti-CNTs-H2O material is highly conductive and X-ray photoelectron spectroscopy analysis demonstrated that there are mainly COOH groups on the Ti-CNTs-H2O surface that are found to inhibit cell growth. Biological properties were assessed using normal human foetal osteoblast cell line (hFOB 1.19). Conducted cytotoxicity tests and live/dead fluorescent staining demonstrated that Ti-CNTs-H2O does not exert toxic effect on hFOB cells. Moreover, fluorescence laser scanning microscope observation demonstrated that Ti-CNTs-H2O surface retards to a great extent cell proliferation. The study resulted in successful fabrication of highly conductive, non-toxic Ti-CNTs-H2O material that possesses ability to inhibit osteoblast proliferation and thus has a great potential as an orthopaedic implantable electronic device. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Microwave synthesis of Titanium Dioxide nanotubes for use in water treatment

    CSIR Research Space (South Africa)

    Sikhwivhilu, L

    2010-09-01

    Full Text Available Synthesis and engineering of the nanostructured semiconductors based on metal oxides have received considerable attention due to their unique physical and chemical properties, and their potential applications in industry and technology. While...

  4. Au nanoparticles in carbon nanotubes with high photocatalytic activity for hydrocarbon selective oxidation.

    Science.gov (United States)

    Liu, Juan; Liu, Ruihua; Li, Haitao; Kong, Weiqian; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2014-09-14

    High-efficiency and high-selectivity catalytic oxidation of alkanes under mild conditions with air is a major aim of current catalytic chemistry and chemical production. Despite extensive development efforts on new catalysts for cyclohexane oxidation, current commercial processes still suffer from low conversion, poor selectivity, and excessive production of waste. Here, we present the design and synthesis of gold nanoparticle/carbon nanotube (CNT) composites for high-efficiency and high-selectivity photocatalyst systems for the green oxidation of cyclohexane. Remarkably, Au nanoparticles confined in carbon nanotubes (Au-in-CNTs) are photocatalytically active for the oxidation of cyclohexane with 14.64% conversion of cyclohexane and a high selectivity of 86.88% of cyclohexanol using air and visible light at room temperature. Given its diversity and versatility of structural and composition design, gold nanoparticle/CNT composites may provide a powerful pathway for the development of high-performance catalysts and production processes for green chemical industry.

  5. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    OpenAIRE

    Hadi Nur; Izan Izwan Misnon; Lim Kheng Wei

    2007-01-01

    Stannic oxide-titanium dioxide (SnO2–TiO2) coupled semiconductor photocatalyst loaded with polyaniline (PANI), a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic act...

  6. Functionalization of oxidized single-walled carbon nanotubes with 4 ...

    Indian Academy of Sciences (India)

    The low-dimension and remarkable physical proper- ties of single-walled carbon nanotubes (SWCNTs) ren- der them unique material properties with a wide range of potential applications.1,2 However, the lack of sol- ubility in solvents presents a considerable impediment toward harnessing of their applications.

  7. Oxidation of aniline: polyaniline granules, nanotubes and oligoaniline microspheres

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.; Trchová, Miroslava; Konyushenko, Elena

    2008-01-01

    Roč. 41, č. 10 (2008), s. 3530-3536 ISSN 0024-9297 R&D Projects: GA ČR GA202/06/0419; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * nanotube Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  8. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes

    Science.gov (United States)

    Sun, Yu; Sun, Shupei; Liao, Xiaoming; Wen, Jiang; Yin, Guangfu; Pu, Ximing; Yao, Yadong; Huang, Zhongbing

    2018-05-01

    The aim of this study is to investigate the effect of different annealing temperature and atmosphere on the surface wettability retaining properties of titania nanotubes (TNs) fabricated by anodization. The TNs morphology, crystal phase composition and surface elemental composition and water contact angle (WCA) were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle instrument, respectively. After the samples annealed at 200 °C, 450 °C, 850 °C have been stored in air for 28 days, the WCAs increase to 31.7°, 21.1° and 110.5°, respectively. The results indicate that crystal phase composition of TNs plays an important role in surface wettability. Compared with the WCA (21.1°) of the samples annealed in air after 28 days, the WCA of samples annealed in oxygen-deficient atmosphere is lower, suggesting the contribution of oxygen vacancy in the enhanced hydrophilicity-retaining ability. Our study demonstrates that the surface hydrophilicity-retaining ability of TNs is related to the ordered nanotubular structure, crystal structure, the amount of surface hydroxyl group and oxygen vacancy defects.

  10. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  11. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  12. Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications

    CSIR Research Space (South Africa)

    Motshekga, SC

    2012-01-01

    Full Text Available The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other...

  13. Evaluation of Chemical Structure and Resistance Switching Characteristics of Undoped Titanium Oxide and Titanium-Yttrium Mixed Oxide

    Science.gov (United States)

    Ohta, Akio; Goto, Yuta; Wei, Guobin; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2011-10-01

    We have studied the chemical bonding features in the region near the TiO2/Pt interface after resistance change to gain a better understanding of the mechanism of resistance switching in TiO2-based resistance random access memory (ReRAM). For the Pt/TiO2/Pt structure after resistance switching, oxidation of the Pt electrode at the Pt/TiO2 interface in switching from a high resistance state (HRS) to a low resistance state (LRS) and reduction of this Pt-oxide in switching from the LRS to the HRS were observed by hard X-ray photoelectron spectroscopy. The result suggests that the generation of oxygen vacancies in the Ti-oxide matrix is responsible for the formation of the conductive pass resulting in the LRS and that repeatable redox reaction at the Pt/TiO2 interface plays an important role in resistance switching behavior. To modify the oxide network, which leads to the change in the conduction pass formation, trivalent Y ions were added to the oxide matrix of quadrivalent Ti ions. Raman scattering and X-ray diffraction measurements show that the crystallization of TiO2 by thermal annealing was suppressed by the Y2O3 addition. In Au/TiYxOy/Pt structures, it has been demonstrated that the variations in resistance switching voltages are markedly suppressed by the Y2O3 addition to TiO2.

  14. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  15. Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

    Directory of Open Access Journals (Sweden)

    Joan Lario

    2018-01-01

    Full Text Available The implant osseointegration rate depends on the surface’s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM, and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS. The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV irradiation of the TiO2 nanotubes decrease the water contact angle.

  16. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid.

    Science.gov (United States)

    Xie, Yibing; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. © 2013 Elsevier B.V. All rights reserved.

  17. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    Science.gov (United States)

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  18. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.

    Science.gov (United States)

    Suriyasena Liyanage, Luckshitha; Xu, Xiaoqing; Pitner, Greg; Bao, Zhenan; Wong, H-S Philip

    2014-01-01

    Single-wall carbon nanotubes (SWCNTs) have great potential to become the channel material for future high-speed transistor technology. However, as-made carbon nanotube field effect transistors (CNFETs) are p-type in ambient, and a consistent and reproducible n-type carbon nanotube (CNT) doping technique has yet to be realized. In addition, for very large scale integration (VLSI) of CNT transistors, it is imperative to use a solid-state method that can be applied on the wafer scale. Herein we present a novel, VLSI-compatible doping technique to fabricate n-type CNT transistors using low work-function metal oxides as gate dielectrics. Using this technique we demonstrate wafer-scale, aligned CNT transistors with yttrium oxide (Y2Ox) gate dielectrics that exhibit n-type behavior with Ion/Ioff of 10(6) and inverse subthreshold slope of 95 mV/dec. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses confirm that slow (∼1 Å/s) evaporation of yttrium on the CNTs can form a smooth surface that provides excellent wetting to CNTs. Further analysis of the yttrium oxide gate dielectric using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques revealed that partially oxidized elemental yttrium content increases underneath the surface where it acts as a reducing agent on nanotubes by donating electrons that gives rise to n-type doping in CNTs. We further confirm the mechanism for this technique with other low work-function metals such as lanthanum (La), erbium (Er), and scandium (Sc) which also provide similar CNT NFET behavior after transistor fabrication. This study paves the way to exploiting a wide range of materials for an effective n-type carbon nanotube transistor for a complementary (p- and n-type) transistor technology.

  19. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  20. Self-cleaning glasses containing nanostructured titanium oxide; Vidros autolimpantes contendo oxido de titanio nanoestruturado

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (DEMa/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais

    2010-07-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  1. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  2. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  3. Preparation and Photocatalytic Activity of Potassium- Incorporated Titanium Oxide Nanostructures Produced by the Wet Corrosion Process Using Various Titanium Alloys

    Directory of Open Access Journals (Sweden)

    So Yoon Lee

    2015-08-01

    Full Text Available Nanostructured potassium-incorporated Ti-based oxides have attracted much attention because the incorporated potassium can influence their structural and physico-chemical properties. With the aim of tuning the structural and physical properties, we have demonstrated the wet corrosion process (WCP as a simple method for nanostructure fabrication using various Ti-based materials, namely Ti–6Al–4V alloy (TAV, Ti–Ni (TN alloy and pure Ti, which have 90%, 50% and 100% initial Ti content, respectively. We have systematically investigated the relationship between the Ti content in the initial metal and the precise condition of WCP to control the structural and physical properties of the resulting nanostructures. The WCP treatment involved various concentrations of KOH solutions. The precise conditions for producing K-incorporated nanostructured titanium oxide films (nTOFs were strongly dependent on the Ti content of the initial metal. Ti and TAV yielded one-dimensional nanowires of K-incorporated nTOFs after treatment with 10 mol/L-KOH solution, whereas TN required a higher concentration (20 mol/L-KOH solution to produce comparable nanostructures. The obtained nanostructures revealed a blue-shift in UV absorption spectra due to the quantum confinement effects. A significant enhancement of the photocatalytic activity was observed via the chromomeric change and the intermediate formation of methylene blue molecules under UV irradiation. This study demonstrates the WCP as a simple, versatile and scalable method for the production of nanostructured K-incorporated nTOFs to be used as high-performance photocatalysts for environmental and energy applications.

  4. Langmuir-Blodgett assembly of visible light responsive TiO{sub 2} nanotube arrays/graphene oxide heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan, E-mail: yan.cao@wku.edu

    2017-01-15

    Highlights: • First to report a heterostructure of TNA with GO prepared by LB assembly. • Much better photocurrent (32 μAcm{sup −2}) of TNA-GO, contrasting to TNA (12 μAcm{sup −2}). • Schottky junction formed between TNA and GO enhanced the photocurrent. • GO on TNA improved the hydrophilicity of TNA-GO. - Abstract: The hybrid nanocomposites of titanium dioxide (TiO{sub 2}) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO{sub 2} nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  5. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  6. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    Science.gov (United States)

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and the...

  7. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO2 nanotubes

    Science.gov (United States)

    Wu, Junshu; Wang, Jinshu; Du, Yucheng; Li, Hongyi; Jia, Xinjian

    2016-07-01

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO2 nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO2 nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO2 nanotubes by both bidentate-type bridge link of Ce4+ cations from sulfonate SO3 - groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO2 nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO2 nanotubes to be promising materials for dye removal from aqueous solution.

  8. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    Science.gov (United States)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  9. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes.

    Science.gov (United States)

    Maiz, Jon; Martin, Jaime; Mijangos, Carmen

    2012-08-21

    In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.

  10. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-01-01

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na 2 Ti 2 O 4 (OH) 2 nanotubes through hydrothermal oxidation in NaOH. Next, the Na 2 Ti 2 O 4 (OH) 2 nanotubes were converted to H 2 Ti 2 O 4 (OH) 2 nanotubes by ion exchange. Finally, the H 2 Ti 2 O 4 (OH) 2 nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na 2 Ti 2 O 4 (OH) 2 sheets, which exfoliate and spiral into nanotubes. The Na 2 Ti 2 O 4 (OH) 2 nanotubes are immersed in HCl solution to replace the Na + ions with H + ions. During the topotactic transformation of H 2 Ti 2 O 4 (OH) 2 nanotubes to anatase TiO 2 nanowires, the sheets made of edge bonded TiO 6 octahedra in the H 2 Ti 2 O 4 (OH) 2 nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO 2 nanowire films were suitable for use as dye-sensitized solar cell photoanodes

  11. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, J E; Enache-Pommer, E; Aydil, E S [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455 (United States)], E-mail: aydil@umn.edu

    2008-03-05

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes through hydrothermal oxidation in NaOH. Next, the Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes by ion exchange. Finally, the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} sheets, which exfoliate and spiral into nanotubes. The Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes are immersed in HCl solution to replace the Na{sup +} ions with H{sup +} ions. During the topotactic transformation of H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes to anatase TiO{sub 2} nanowires, the sheets made of edge bonded TiO{sub 6} octahedra in the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO{sub 2} nanowire films were suitable for use as dye-sensitized solar cell photoanodes.

  12. Decomposition of aluminum oxide, titanium(IV) oxide and niobium(V) oxide by fusion with ammonium sulfate

    International Nuclear Information System (INIS)

    Hashiba, Minoru; Miura, Eiji; Nurishi, Yukio; Hibino, Taizo

    1980-01-01

    A decomposition method with ammonium sulfate for Al 2 O 3 , TiO 2 and Nb 2 O 5 is presented. Al 2 O 3 and TiO 2 were fused at 400 and 450 0 C, for 2 h and 1 h, respectively, in the presence of ammonium sulfate (oxide/ammonium sulfate = 1/20 in weight). The fused products were dissolved and extracted into 4N H 2 SO 4 aqueous solution by warming on the water bath or gently boiling on asbestos. The degree of decomposition by fusion was confirmed from the amount of the oxides recovered in the following manner; with the aid of filter pulp, the residue was completely separated by filtration and washed thoroughly by hot water. To the filtrate was added ammonia water in order to precipitate aluminum and titanium hydroxide. The precipitates were ignited in platinum crucible at 1000 0 C and weighed in oxide form. Nb 2 O 5 was fused at 400 0 C for 1 h in the presence of ammonium sulfate (niobium pentoxide/ammonium sulfate = 1/10 in weight). The fused product was extracted with 20% tartaric acid aqueous solution. The degree of decomposition by fusion was confirmed from the amount of the oxide recovered as follows; after separation of the residue by a filter paper with the aid of filter pulp and washed thoroughly by 2% tartaric acid aqueous solution, freshly prepared 6% aqueous solution of cupferron was added to the filtrate and the precipitate formed was filtered immediately. The precipitate was ignited in platinum crucible at 1000 0 C and weighed as Nb 2 O 5 . The recovery of Al 2 O 3 , TiO 2 and Nb 2 O 5 by the present method was (99.2 +- 0.4), (100.1 +- 0.2) and (100.1 +- 0.2)%, respectively. It is concluded that Al 2 O 3 , TiO 2 and Nb 2 O 5 could be completely decomposed with ammonium sulfate. (author)

  13. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Park, Y.S.; Butt, D.P.

    1999-01-01

    The oxidation behavior of titanium-tantalum alloys was investigated with respective concentrations of each element ranging from 0 to 100 wt.%. Alloys were exposed to argon-20% oxygen at 800 to 1400 C. The slowest oxidation rates were observed in alloys with 5--20% Ta. The oxidation kinetics of alloys containing less than approximately 40% Ta were approximately parabolic. Pure Ta exhibited nearly linear kinetics. Alloys containing 50% or more Ta exhibited paralinear kinetics. The activation energies for oxidation ranged between 232 kJ/mole for pure Ti and 119 kJ/mole for pure Ta, with the activation energies of the alloys falling between these values and generally decreasing with increasing Ta content. The activation energies for oxidation of the end members, Ti and Ta, agree well with published values for the activation energies for diffusion of oxygen in α-Ti and Ta. Scale formation in the alloys was found to be complex exhibiting various layers of Ti-, Ta-, and TiTa-oxides. The outermost layer of the oxidized alloys was predominantly rutile (TiO 2 ). Beneath the TiO 2 grew a variety of other oxides with the Ta content generally increasing with proximity to the metal-oxide interface. It was found that the most oxidation-resistant alloys had compositions falling between Ti-5Ta and Ti-15Ta. Although Ta stabilizes the β-phase of Ti, the kinetics of oxidation appeared to be rate limited by oxygen transport through the oxygen-stabilized α-phase. However, the kinetics are complicated by the formation of a complex oxide, which cracks periodically. Tantalum appears to increase the compositional range of oxygen-stabilized α-phase and reduces both the solubility of oxygen and diffusivity of Ti in the α- and β-phases

  14. Oxidation of iron and of titanium nitride by hydrogen sulphide and water vapour

    International Nuclear Information System (INIS)

    Nardou, Francoise

    1980-01-01

    This research thesis reports the study of the kinetic mechanism of reactions in heterogeneous phases with gaseous release within the frame of metallic or ceramic material oxidation. The first part discusses the use of the linear law of sulfuration of iron by the H 2 S gas, and discusses the sulfuration mechanism. The second part addresses the oxidation of iron in an H 2 /H 2 O atmosphere between 800 and 1000 C. It notably studies the nature of the linear regime mentioned in the literature. The last part addresses the very different case of titanium nitride, and studies the influence of water vapour on the oxidation mechanism. A close correlation between kinetic results and morphological observations highlights an embrittlement of TiN by hydrogen which diffuses at grain boundaries [fr

  15. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  16. Visible-Light-Induced Photocatalytic Inactivation of Bacteria by Composite Photocatalysts of Palladium Oxide and Nitrogen-Doped Titanium Oxide.

    Science.gov (United States)

    Wu, Pinggui; Xie, Rongcai; Imlay, James A; Shang, Jian Ku

    2009-05-20

    Composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide (PdO/TiON) were synthesized by a solgel process, as convenient forms of nanopowder or immobilized powder on nanofiber. The PdO/TiON catalysts were tested for visible-light-activated photocatalysis using different bacterial indicators, including gram-negative cells of Escherichia coli and Pseudomonas aeruginosa, and gram-positive cells of Staphylococcus aureus. Disinfection data indicated that PdO/TiON composite photocatalysts have a much better photocatalytic activity than either palladium-doped (PdO/TiO(2)) or nitrogen-doped titanium oxide (TiON) under visible-light illumination. The roles of Pd and N were discussed in terms of the production and separation of the charge carriers under visible light illumination. The photocatalytic activity was thus dependent on dopants and light intensity. Microscopic characterization demonstrated that visible-light photocatalysis on PdO/TiON caused drastic damage on the bacteria cell wall and the cell membrane.

  17. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells

    Science.gov (United States)

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    2016-01-01

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue. PMID:27789947

  18. Thermoelectric Power Generation from Lanthanum Strontium Titanium Oxide at Room Temperature through the Addition of Graphene.

    Science.gov (United States)

    Lin, Yue; Norman, Colin; Srivastava, Deepanshu; Azough, Feridoon; Wang, Li; Robbins, Mark; Simpson, Kevin; Freer, Robert; Kinloch, Ian A

    2015-07-29

    The applications of strontium titanium oxide based thermoelectric materials are currently limited by their high operating temperatures of >700 °C. Herein, we show that the thermal operating window of lanthanum strontium titanium oxide (LSTO) can be reduced to room temperature by the addition of a small amount of graphene. This increase in operating performance will enable future applications such as generators in vehicles and other sectors. The LSTO composites incorporated one percent or less of graphene and were sintered under an argon/hydrogen atmosphere. The resultant materials were reduced and possessed a multiphase structure with nanosized grains. The thermal conductivity of the nanocomposites decreased upon the addition of graphene, whereas the electrical conductivity and power factor both increased significantly. These factors, together with a moderate Seebeck coefficient, meant that a high power factor of ∼2500 μWm(-1)K(-2) was reached at room temperature at a loading of 0.6 wt % graphene. The highest thermoelectric figure of merit (ZT) was achieved when 0.6 wt % graphene was added (ZT = 0.42 at room temperature and 0.36 at 750 °C), with >280% enhancement compared to that of pure LSTO. A preliminary 7-couple device was produced using bismuth strontium cobalt oxide/graphene-LSTO pucks. This device had a Seebeck coefficient of ∼1500 μV/K and an open voltage of 600 mV at a mean temperature of 219 °C.

  19. Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; ten Elshof, Johan E.; Blank, David H.A.; Nielsch, K.; Fontcuberta i Morral, A.; Holt, J.K.; Thomson, C.V.

    2010-01-01

    Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was

  20. The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties.

    Science.gov (United States)

    Panić, Vladimir V; Dekanski, Aleksandar B; Mitrić, Miodrag; Milonjić, Slobodan K; Misković-Stanković, Vesna B; Nikolić, Branislav Z

    2010-07-21

    Electrochemical properties of sol-gel processed Ti(0.6)Ir(0.4)O(2) and Ti(0.6)Ru(0.3)Ir(0.1)O(2) coatings on titanium substrate were investigated using cyclic voltammetry, polarization measurements and electrochemical impedance spectroscopy and compared to the properties of Ti(0.6)Ru(0.4)O(2) coating. The role of iridium oxide in the improvement of the electrocatalytic, capacitive and stability properties of titanium anodes activated by a RuO(2)-TiO(2) coating is discussed. The oxide sols were prepared by forced hydrolysis of the metal chlorides. The characterization by dynamic light scattering and X-ray diffraction showed that polydisperse oxide sols were obtained with the particles tending to form agglomerates. The presence of IrO(2) causes a suppression of the X-ray diffraction peaks of TiO(2) and RuO(2) in the sol-gel prepared Ti(0.6)Ir(0.4)O(2) and Ti(0.6)Ru(0.3)Ir(0.1)O(2) coatings. The IrO(2)-containing coatings had an enhanced charge storage ability and activity for the oxygen evolution reaction (OER) in comparison to Ti(0.6)Ru(0.4)O(2) coating. The voltammogram of the Ti(0.6)Ir(0.4)O(2)/Ti electrode showed well-resolved peaks related to Ir redox transitions, which are responsible for the enhanced charge storage ability of IrO(2)-containing coatings. Redox transitions of Ir were also registered in the high-frequency domain of the ac impedance spectra of the coatings as a semicircle with characteristics insensitive to the electrolyte composition and to the electrode potential prior to OER. However, the semicircle characteristics were different for the two IrO(2)-containing coatings, as well as at potentials outside the OER in comparison to those at which the OER occurs.

  1. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  2. Specifically Grafting Hematin on MPTS-Coated Carbon Nanotubes for Catalyzing the Oxidation of Aniline

    OpenAIRE

    Kunkun Zheng; Peng Li; Hao Wu; Mengmeng Du; Peijun Ji

    2016-01-01

    Catalysts supported on nanomaterials have been widely investigated for the treatment of hazardous materials. This work has developed a novel method for grafting hematin on nanomaterials for catalyzing the oxidation of aniline in order to remove aniline from wastewater. Magnetic multi-walled carbon nanotubes (M-MWCNTs) were coated with a layer formed through the hydrolysis and condensation of 3-mercaptopropyltriethoxysilane (MPTS). Hematin was specifically grafted on the MPTS-coated M-MWCNTs t...

  3. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N 2 O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N 2 O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N 2 O onto CNT, the horizontal adsorption with E ads = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N 2 O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N 2 O were investigated. Adsorption of N 2 O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N 2 O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N 2 O sensors.

  4. Surface and Bulk Electronic Structure and Chemisorption Properties of Titanium and Vanadium Oxides

    Science.gov (United States)

    Smith, Kevin Eugene

    The unusual electronic properties of Ti _2O_3 and V _2O_3, in particular the metal-insulator transitions which they undergo, have produced widespread interest in the physics of these materials, while the use of titanium and vanadium oxides as catalysts and catalyst supports makes a detailed understanding of their surface properties of great importance. The electronic structure and gas adsorption properties of single crystal titanium and vanadium oxides have been studied here using ultraviolet and x-ray photoemission spectroscopy, synchrotron radiation, Auger electron spectroscopy and low energy electron diffraction. Spatially anisotropic resonant photoemission from 3d states in Ti_2O_3 and V_2O_3 was observed and shown to originate from localised molecular orbitals. This contrasts with an energy analysis of the photoemission data which revealed dispersing, delocalised d-bands in both oxides. A large resonance was observed in the O 2p emission at the cation 3p to 3d absorption edge in Ti_2O _3 which is inconsistent with hybridisation, indicating the possible existence of inter-atomic resonances. The first detailed photoemission observation of metal-insulator transitions in Cr-doped V_2O _3 is reported; large changes in the density of states at the Fermi level are seen at these transitions. The surface electronic structure of single crystal TiO_2, Ti_2O _3 and V_2O _3 was found to be indistinguishable from that of the bulk. The interaction of SO_2 with these oxides was extensively studied since sulfur is a notorious catalyst poison. SO_2 reacts vigorously with the titanium oxides, dissociating in the presence of Ti^{3+} cations to form TiO_2 and TiS _2; in their absence no reaction occurs. Surprisingly, SO_2 reacts very weakly with V _2O_3, adsorbing in both dissociated and molecular form. Additionally, only a weak reaction of H_2S and TiO _2 was found. The electronic structure of these oxides is shown to be extremely complex, displaying both localised and

  5. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    Science.gov (United States)

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  7. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    International Nuclear Information System (INIS)

    Sears, Kallista; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-01-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency

  8. Poly(ethylene oxide) Crystallization in Single Walled Carbon Nanotube Based Nanocomposites: Kinetics and Structural Consequences

    Energy Technology Data Exchange (ETDEWEB)

    T Chatterjee; A Lorenzo; R Krishnamoorti

    2011-12-31

    The overall isothermal crystallization behavior of poly(ethylene oxide) (PEO) in single walled carbon nanotube (SWNT) based nanocomposites is studied with a focus on growth kinetics and morphological evolution of PEO using differential scanning calorimetry and in-situ small angle x-ray scattering measurements respectively. The characteristic time for crystallization of PEO increases due to the presence of lithium dodecyl sulfate (LDS) stabilized carbon nanotubes. Further, analysis of crystallization data using the Lauritzen-Hoffman regime theory of crystal growth shows the PEO chains stiffen in presence of LDS with an increased energy barrier associated with the nucleation and crystal growth, and the nanotubes further act as a barrier to chain transport or enhance the efficacy of the LDS action. The energy penalty and diffusional barrier to chain transport in the nanocomposites disrupt the crystalline PEO helical conformation. This destabilization leads to preferential growth of local nuclei resulting in formation of thinner crystal lamellae and suggests that the crystallization kinetics is strongly affected by the nucleation and crystal growth events. This study is particularly interesting considering the suppression of the PEO crystallinity in presence of small fraction of Lithium ion based surfactant and carbon nanotubes.

  9. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  10. Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation.

    Science.gov (United States)

    Carmichael, Penelope; Hazafy, David; Bhachu, Davinder S; Mills, Andrew; Darr, Jawwad A; Parkin, Ivan P

    2013-10-21

    Boron-doped titanium dioxide (B-TiO2) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO2 at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm(-2). Hydrogen production rates of B-TiO2 at 24 μL cm(-2) h(-1) far exceeded undoped TiO2 at 2.6 μL cm(-2) h(-1). The B-TiO2 samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent.

  11. In-situ synthesis and performance of titanium oxide/poly(methyl methacrylate) nanocomposites.

    Science.gov (United States)

    Bandugula, Uttam C; Clayton, L M; Harmon, J P; Kumar, Ashok

    2005-05-01

    Polymer nanocomposites have elicited extensive research efforts due to their potential to exhibit spectacular properties. They have immense potential and are befitting materials to serve as an ideal and futuristic alternative for varied applications. Poly(methyl methacrylate) (PMMA) and titanium oxide (TiO2) nanocomposites used in this study were fabricated by an in-situ free radical polymerization process. Three point bend tests were conducted with a modified universal microtribometer to evaluate fracture toughness. The results indicated that the stress intensity values increase as the concentration of titanium oxide increases up to 1 vol% and subsequently decrease at higher concentrations. Scanning electron microscopy (SEM) images of fracture surfaces afforded clues as to the possible deformation mechanism. Ultraviolet-visible spectroscopy (UV-vis) evaluated the degree of transparency of the nanocomposites. It was observed that samples became opaque as the concentration was increased beyond 0.01% volume fraction. X-ray diffraction characterized the TiO2 crystalline phase and Scherrer's equation was used to calculate the crystallite size. Among the concentrations considered the 3% volume fraction sample had the largest crystallite size. Finally, microhardness measurements further characterized the mechanical properties of the composites.

  12. Preparation and Characterization of Ophthalmic Lens Materials Containing Titanium Silicon Oxide and Silver Nanoparticles.

    Science.gov (United States)

    No, Jung-Won; Kim, Dong-Hyun; Lee, Min-Jae; Kim, Duck-Hyun; Kim, Tae-Hun; Sung, A-Young

    2015-10-01

    Hydrogel ophthalmic lenses containing fluorine-substituted aniline group, titanium silicon oxide nartoparticles, and silver nanoparticles were copolymerized, and the physical and optical properties of the hydrogel lenses were measured. To produce the hydrophilic ophthalmic lenses, the additives were added to the mixture containing HEMA, NVP, MA, EGDMA, and AIBN. The cast mold method was used for the manufacture of the hydrogel ophthalmic lenses, and the produced lenses were completely soaked in a 0.9% NaCl normal saline solution for 24 hours for hydration. The physical properties of the produced macromolecule showed that the water content was 32.5-37.6%, the refractive index was 1.450-1.464, the UV-B transmittance was 0.5-35.2%, and the contact angle was between 56 and 69°. Also, the addition of aniline, titanium silicon oxide, and silver nanoparticles allowed the ophthalmic lenses to block UV. These results show that the produced macromolecule can be used as hydrophilic lenses for ophthalmologic purposes that can block UV.

  13. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  14. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H.

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  15. Sol-gel synthesis and characterization of mesoporous iron-titanium mixed oxide for catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Parida, K.M., E-mail: paridakulamani@yahoo.com [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India); Pradhan, Gajendra Kumar [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India)

    2010-10-01

    A mixed phase of mesoporous iron-titanium mixed oxide (ITMO) has been successfully synthesized by simple sol-gel technique by taking iron (II) sulphate and Ti-isopropoxide as the precursors and sodium dodecyl sulphate (SDS) as the surfactant. The prepared catalysts were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), N{sub 2} adsorption-desorptions isotherm, temperature programmed desorption (TPD) and gas chromatography (GC). Low-angle XRD (LAXRD) as well as surface area analysis confirms the mesoporosity nature of the catalysts. The phase and crystallinity were revealed by XRD study. The crystallinity of the catalysts increased with increase in calcinations temperature. Catalysts screening were performed for oxidation of cyclohexane to cyclohexanol and cyclohexanone.

  16. Synthesis of molybdenum oxide-titanium dioxide nanocomposites with ultrashort laser ablation in water.

    Science.gov (United States)

    Khan, Abdul Qayyum; Yuan, Shuai; Niu, Sheng; Zheng, Lijuan; Li, Wenxue; Zeng, Heping

    2017-06-12

    Nanocomposites of Molybdenum oxide (MoO 3 ) and Titanium dioxide (TiO 2 ) were synthesized with femtosecond laser ablation of the pelleted powder in water. The pressing with Cold Isostatic press (CIP) provides facile method for pelletization of the oxides mixture. With this method the nanocomposites can be synthesized without replacement of the target during laser ablation. After laser ablation in water the stable MoO 3 -TiO 2 nanocomposites were synthesized. The morphology of the synthesized nanocomposites was investigated with transmission electron microscopy. While the band gap modifications of the synthesized nanocomposites were witnessed with UV-Visible diffuse reflectance spectroscopy analysis. Besides, the generated nanocomposites were used for photovoltaic and photocatalytic applications. The nanocomposites exhibit significant improvement in the rate of photo conversion and photodegradation as well.

  17. Vanadium oxide nanotubes as cathode material for Mg-ion batteries

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Sørensen, Daniel Risskov; Bøjesen, Espen Drath

    synchrotron powder X-ray diffraction measured during battery operation. These results indicate Mg-intercalation in the multiwalled VOx-NTs occurs within the space between the individual vanadium oxide layers while the underlying VOx frameworks constructing the walls are affected only to a minor degree...... redox-active material for the electrochemical insertion og lithium. J. Electrochem. Soc. 146 (8) 2780-2783 (1999). 4.Reinoso, J. M. et al. Controlled uptake and release of metal cations by vanadium oxide nanotubes. Helvetica Chimica Acta 83 1724-1733 (2000)....

  18. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    Science.gov (United States)

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  19. Nanopore formation on the surface oxide of commercially pure titanium grade 4 using a pulsed anodization method in sulfuric acid.

    Science.gov (United States)

    Williamson, R S; Disegi, J; Griggs, J A; Roach, M D

    2013-10-01

    Titanium and its alloys form a thin amorphous protective surface oxide when exposed to an oxygen environment. The properties of this oxide layer are thought to be responsible for titanium and its alloys biocompatibility, chemical inertness, and corrosion resistance. Surface oxide crystallinity and pore size are regarded to be two of the more important properties in establishing successful osseointegration. Anodization is an electrochemical method of surface modification used for colorization marking and improved bioactivity on orthopedic and dental titanium implants. Research on titanium anodization using sulphuric acid has been reported in the literature as being primarily conducted in molarity levels 3 M and less using either galvanostatic or potentiostatic methods. A wide range of pore diameters ranging from a few nanometers up to 10 μm have been shown to form in sulfuric acid electrolytes using the potentiostatic and galvanostatic methods. Nano sized pores have been shown to be beneficial for bone cell attachment and proliferation. The purpose of the present research was to investigate oxide crystallinity and pore formation during titanium anodization using a pulsed DC waveform in a series of sulfuric acid electrolytes ranging from 0.5 to 12 M. Anodizing titanium in increasing sulfuric acid molarities showed a trend of increasing transformations of the amorphous natural forming oxide to the crystalline phases of anatase and rutile. The pulsed DC waveform was shown to produce pores with a size range from ≤0.01 to 1 μm(2). The pore size distributions produced may be beneficial for bone cell attachment and proliferation.

  20. Titanium oxide modeling and design for innovative biomedical surfaces: a concise review.

    Science.gov (United States)

    De Nardo, Luigi; Raffaini, Giuseppina; Ebramzadeh, Edward; Ganazzoli, Fabio

    2012-09-01

    The natural oxide layer on implantable alloys insulates the reactive underlying metal from the physiological environment, preventing substrate corrosion and device failure. This type of oxide film has had a major role in the minimization of functional failure and toxic response after implantation in the first generation biomaterials. Recent advances in theoretical, computational, and experimental surface engineering tools provide the foundation for the design of novel devices with improved performances in this regard based on conventional implantable metal alloys. An increasing number of technologies provide the possibility of tailoring chemico-physical and morphological parameters of the surface oxide layers. For some applications, such as dental implants, surface modifications result in substantial innovation and economic success. However, the selection of novel surfaces is in general based on experimental studies and has a limited theoretical and computational foundation. In this review, we offer a perspective analysis of the correlation between theoretical studies and chemical surface modification technologies, with a special emphasis on titanium oxide on Ti alloys. Theoretical approaches for the surface behavior at an atomistic level of description are presented, together with some adsorption studies on a rutile surface. The role of chemical and electrochemical surface modification technologies in modifying the TiO(2) structure, morphology, and chemistry to tailor in vivo biological response is then briefly reviewed. Finally, we discuss the role of surface modeling as a powerful design tool for a new generation of implantable devices in which metal oxide surface can be tuned to yield specific biological response.

  1. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes.

    Science.gov (United States)

    Liang, Yongye; Wang, Hailiang; Diao, Peng; Chang, Wesley; Hong, Guosong; Li, Yanguang; Gong, Ming; Xie, Liming; Zhou, Jigang; Wang, Jian; Regier, Tom Z; Wei, Fei; Dai, Hongjie

    2012-09-26

    Electrocatalyst for oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and energy-intensive industries. The design and synthesis of highly active ORR catalysts with strong durability at low cost is extremely desirable but remains challenging. Here, we used a simple two-step method to synthesize cobalt oxide/carbon nanotube (CNT) strongly coupled hybrid as efficient ORR catalyst by directly growing nanocrystals on oxidized multiwalled CNTs. The mildly oxidized CNTs provided functional groups on the outer walls to nucleate and anchor nanocrystals, while retaining intact inner walls for highly conducting network. Cobalt oxide was in the form of CoO due to a gas-phase annealing step in NH(3). The resulting CoO/nitrogen-doped CNT (NCNT) hybrid showed high ORR current density that outperformed Co(3)O(4)/graphene hybrid and commercial Pt/C catalyst at medium overpotential, mainly through a 4e reduction pathway. The metal oxide/carbon nanotube hybrid was found to be advantageous over the graphene counterpart in terms of active sites and charge transport. Last, the CoO/NCNT hybrid showed high ORR activity and stability under a highly corrosive condition of 10 M NaOH at 80 °C, demonstrating the potential of strongly coupled inorganic/nanocarbon hybrid as a novel catalyst system in oxygen depolarized cathode for chlor-alkali electrolysis.

  2. Enhancement photocatalytic activity of spinel oxide (Co, Ni3O4 by combination with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Kahdum Bashaer J.

    2017-09-01

    Full Text Available In this study, some types of composites consisting of multi-walled carbon nanotubes (MWCNTs and spinel oxide (Co, Ni3O4 were synthesized by simple evaporation method. These composites were characterized by UV–Vis diffuse reflectance spectroscopy, X-rays diffraction(XRD, Scanning electron microscopy (SEM and specific surface area(SBET. The photocatalytic activity of the prepared composites was investigated by the following removal of Bismarck brown G (BBG dye from its aqueous solutions. The obtained results showed that using MWCNTs in combination with spinel oxide to produced composites (spinel/MWCNTs which succeeded in increasing the activity of spinel oxide and exhibited higher photocatalytic activity than spinel oxide alone. Also it was found that, multiwalled carbon nanotubes were successful in increasing the adsorption and improving the activity of photocatalytic degradation of Bismarck brown G dye(BBG. The obtained results showed that spinel/MWCNTs was more active in dye removal in comparison with each of spinel oxide and MWCNTs alone under the same reaction conditions. Also band gap energies for the prepared composites showed lower values in comparison with neat spinel. This point represents a promising observation as these composites can be excited using a lower energy radiation sources.

  3. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl pyrrolidone Chains

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2007-01-01

    Full Text Available Quartz crystal microbalance (QCM was used to investigate the adsorption of acid-oxidized single-walled carbon nanotubes (Ox-SWNTs and poly(vinyl pyrrolidone, PVP. It was found for the first time that Ox-SWNTs adsorbed onto the QCM electrode can be effectively replaced by PVP chains in an aqueous solution. This replacement process was also investigated by atomic force miscroscopic (AFM imaging, which shows good agreement with the QCM measurements. This study provides powerful tools for fundamental investigation of polymer-nanotube interactions and for controlled design/fabrication of functional polymer-nanotube surfaces for potential applications.

  5. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  6. Biological consequences from interaction of nanosized titanium(iv) oxides with defined human blood components

    Science.gov (United States)

    Stella, Aaron

    The utility of engineered nanomaterials is growing, particularly the titanium(iv) oxide (titanium dioxide, TiO2) nanoparticles. TiO 2 is very useful for brightening paints, and coloring foods. Nano-sized TiO2 is also useful for sunscreens, cosmetics, and can be utilized as a photocatalyst. However, the nanometer size of the TiO2 nanoparticle is a characteristic that may contribute oxidative stress to red blood cells (RBCs) in humans. This study utilized screening methods to evaluate different forms of TiO2 nanoparticles which differ by primary particle size, specific surface area, crystalline phase, and surface polarity. RBCs are rich in the intracellular antioxidant glutathione (GSH). HPLC analysis revealed that some TiO2 nanoparticles caused oxidation of GSH to glutathione disulfide (GSSG). Vitamin E is a major membrane-bound antioxidant. Vitamin E levels were then determined by HPLC in the RBC membrane after exposure to TiO2 nanoparticles. The HPLC results showed that each nanoparticle oxidized RBC glutathione and membrane vitamin E at different rates. When hemoglobin was mixed with each TiO2 nanoparticle, hemoglobin was adsorbed at varying rates to the surface of the nanoparticles. Similarly, the aminothiol homocysteine was also adsorbed at different rates by the TiO2 nanoparticles. Using light microscopy, some TiO2 nanoparticles caused the formation of RBC aggregates which significantly changed the RBC morphology. The aggregation data was quantified using a hemacytometer. The TiO2 nanoparticles also caused hemolysis of RBCs. Hemolysis is considered to be a toxic endpoint for RBCs. Changes in the nucleated lymphocyte gene expression of certain oxidative stress genes were also observed using real-time polymerase chain reaction (qPCR). The data indicates that RBCs can ultimately be hemolyzed by biological oxidative damage resulting from a combination of oxidative mechanisms. Additionally, the TiO2 nanoparticles demonstrated the ability to adsorb biomolecules to

  7. ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2015-01-01

    Full Text Available A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times fall of magnitude of electrostatic potential of thin (200–300 nm titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks contact of samples with simulated body fluid (SBF promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3 > Ti–O–N (1/1, TiO2 > Steel. It may be explained by: 1 the corrosion-preventive properties of thin titanium oxide and oxynitride films;2 a store of surface negative charge for Ti–O–N (1/3 film; 3 minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.

  8. TiO2 Nanotubes on Ti Dental Implant. Part 1: Formation and Aging in Hank’s Solution

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2017-05-01

    Full Text Available Self-organized TiO2 nanotube layer has been formed on titanium screws with complex geometry, which are used as dental implants. TiO2 nanotubes film was grown by potentiostatic anodizing in H3PO4 and HF aqueous solution. During anodizing, the titanium screws were mounted on a rotating apparatus to produce a uniform structure both on the peaks and on the valleys of the threads. X-ray diffraction (XRD, Scanning electron microscopy (SEM, Energy dispersive X-ray (EDX and electrochemical characterization were used to evaluate the layer, chemical composition and electrochemical properties of the samples. Aging in Hank’s solution of both untreated and nanotubes covered screw, showed that: (i samples are covered by an amorphous oxide layer, (ii the nanotubes increases the corrosion resistance of the implant, and (iii the presence of the nanotubes catalyses the formation of chemical compounds containing Ca and P.

  9. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  10. Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite.

    Science.gov (United States)

    Siqueira, Idalia A W B; Oliveira, Ciliana A G S; Zanin, Hudson; Grinet, Marco A V M; Granato, Alessandro E C; Porcionatto, Marimelia A; Marciano, Fernanda R; Lobo, Anderson O

    2015-02-01

    Bioactive and low cytotoxic three dimensional nano-hydroxyapatite (nHAp) and aligned carbon nanotube oxide (a-CNTO) composite has been investigated. First, freestanding aligned carbon nanotubes porous scaffold was prepared by large-scale thermal chemical vapour deposition and functionalized by oxygen plasma treatment, forming a-CNTO. The a-CNTO was covered with plate-like nHAp crystals prepared by in situ electrodeposition techniques, forming nHAp/a-CNTO composite. After that nHAp/a-CNTO composite was immersed in simulated body fluid for composite consolidation. This novel nanobiomaterial promotes mesenchymal stem cell adhesion with the active formation of membrane projections, cell monolayer formation and high cell viability.

  11. Effects of different electrolytes for micro-arc oxidation on the bond strength between titanium and porcelain.

    Science.gov (United States)

    Yuan, Xiaohui; Tan, Fei; Xu, Haitao; Zhang, Shaojun; Qu, Fuzhen; Liu, Jie

    2017-07-01

    The aim of this study is to investigate the effects of different electrolytes on the titanium-porcelain bond strength after micro-arc oxidation (MAO) treatment. Three electrolytes at the same concentration were used as MAO reaction solutions: Na 2 SiO 3 , KF, and MgSiF 6 . Blasting treatment was chosen as a control. After MAO treatment in each electrolyte, the titanium-porcelain bond strengths were measured by the three-point bending test, as described in ISO 9693. The morphologies and elemental compositions of the MAO coating on the titanium substrate were evaluated by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The interface between the titanium and porcelain was also observed by SEM and EDS. The MAO coatings created in different electrolytes exhibited completely different morphologies and compositions. The bond strengths of the Na 2 SiO 3 and MgSiF 6 groups were significantly higher than those of the other groups (ptitanium-porcelain interfaces were compact in the former two groups, whereas pores and cracks were visible at the interfaces in the other groups. These results indicate that MAO treatment with an appropriate electrolyte could be an effective method to increase the titanium-porcelain bonding strength. According to ISO 9693, titanium-porcelain restorations subjected to MAO treatment with an appropriate electrolyte could be appropriate for clinical use. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  13. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  14. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  15. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  16. Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo, E-mail: jinwoo@knu.ac.kr [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Kim, Youn-Jeong; Jang, Je-Hee [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of)

    2011-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 {mu}m thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.

  17. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Fray, Derek J.

    2003-01-01

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  18. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei

    2013-09-11

    Two times higher activity and three times higher stability in methanol oxidation reaction, a 0.12 V negative shift of the CO oxidation peak potential, and a 0.07 V positive shift of the oxygen reaction potential compared to Pt nanoparticles on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context of an electronic structure model, showing an improvement in electrochemical activity when the Fermi level of the support material in Pt/TiOx systems is close to the Pt Fermi level and the redox potential of the reaction. The present approach provides guidance for the selection of the support material of Pt/TiOx systems and may be applied to other metal-oxide support materials, thus having direct implications in the design and optimization of fuel cell catalyst supports. © 2013 American Chemical Society.

  19. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    Science.gov (United States)

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  20. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.

    Science.gov (United States)

    Dickey, Michael D; Weiss, Emily A; Smythe, Elizabeth J; Chiechi, Ryan C; Capasso, Federico; Whitesides, George M

    2008-04-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.

  1. Use of ion-assisted techniques for determining the structure of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Renz, Renata P.; Vargas, André L.M.; Hübler, Roberto, E-mail: hubler@pucrs.br

    2015-12-15

    In recent years, several researchers have reported obtaining titanium dioxide nanotubes presenting a variety of advanced and functional properties for high-performance applications, e.g., for solar and fuel cells, gas sensor, self-cleaning and biomedical devices. Electrochemical oxidation of titanium has been widely used as a method for fabrication of self-organized titanium oxide nanotubes (TiO{sub 2} NTs), since it is a simple and inexpensive process, which allows a great control over the size and configuration of the formed structure. Normally, the morphological and structural characterizations are based on images from scanning or transmission electron microscopy. The use of characterization techniques assisted by energetic ion beams, such as RBS or MEIS, can simultaneously evaluate the composition and structural properties of the nanotubes. In this work, titanium oxide nanotubes were obtained by electrochemical oxidation of commercially pure titanium via constant-voltage experiments varying the growth time and the potential applied in order to access the formation dynamics of the NTs, including inner and outer diameters as function of the length, and the formation of the end lace type porous layer. The characterizations made by RBS were compared by analysis of top and cross-sectional FEG-SEM images demonstrating a good compromise between them.

  2. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Michael Hu

    2012-10-01

    Full Text Available Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs and bulk heterojuntion solar cells (BHJs]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  3. Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, S. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany); Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Specht, U., E-mail: uwe.specht@ifam.fraunhofer.de [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany); Spiess, L.; Romanus, H.; Krischok, S.; Himmerlich, M. [Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Ihde, J. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany)

    2012-12-15

    Commercial titanium was treated in ambient atmosphere using pulsed Nd:YAG ({lambda}=1064nm) laser irradiation. Repeated laser treatments induce a removal of surface contaminants as well as the formation of a nanostructured top layer exhibiting a large effective surface and nanometer roughness. The laser induced oxidation leads to the presence of a surface layer with strongly improved, hydrothermally stable adhesion when joined to a one-component, hot-curing epoxy-based adhesive. Changes in the material properties have been characterized with respect to the topography, the chemical composition and the crystal structure using SEM, cross-beam FIB, XPS and XRD analyses in order to correlate the adhesion behavior with the structural and chemical characteristics of the surface.

  4. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Directory of Open Access Journals (Sweden)

    Jacqueline Costa Marrero

    2017-09-01

    Full Text Available Abstract Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone polymer matrix, containing titanium oxide (TiO2 (incorporated by sol-gel method. SPEEK with different sulfonation degrees (SD: 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA and X-ray diffraction (XRD were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm-1. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C.

  5. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    International Nuclear Information System (INIS)

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive

  6. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  7. Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface

    Directory of Open Access Journals (Sweden)

    Pei-Yu Li

    2016-05-01

    Full Text Available The photocatalytic activity of an amorphous titanium oxide (a-TiOx film was modified using a two-step deposition. The fluorinated base layer with a nano-textured surface prepared by a selective fluorination etching process acted as growth seeds in the subsequent a-TiOx deposition. A nanorod-like microstructure was achievable from the resulting a-TiOx film due to the self-assembled deposition. Compared to the a-TiOx film directly deposited onto the untreated base layer, the rate constant of this fluorinate-free a-TiOx film surface for decomposing methylene blue (MB solution that was employed to assess the film’s photocatalytic activity was markedly increased from 0.0076 min−1 to 0.0267 min−1 as a mechanism for the marked increase in the specific surface area.

  8. Enhancement of electrochemical properties of micro/nano electrodes based on TiO2 nanotube arrays

    Science.gov (United States)

    Khudhair, D.; Gaburro, J.; Shafei, S.; Barlow, A.; Nahavandi, S.; Bhatti, A.

    2017-04-01

    Titanium oxide nanotube (TiO2 nanotube) arrays were produced by anodizing titanium foils in two different electrolytes. The first electrolyte consisted of ethylene glycol containing 0.5 wt% NH4F and 4 vol% of distilled water to produce pure TiO2 nanotube arrays and the second consisted of HF aqueous solution (0.5 wt%) containing 0.5% polyvinylalcohol to produce carbon doped TiO2 nanotube arrays. The fabricated TiO2 nanotube arrays were subsequently annealed in the atmosphere of nitrogen. The morphology and crystal structure of fabricated arrays were characterized by means of scanning electron microscopy and X-ray diffraction. The electrical conductivity and capacitance of TiO2 nanotube arrays were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Water contact angle and biocompatibility of fabricated nanotube arrays were investigated. The results showed that carbon doped TiO2 nanotube arrays annealed in the atmosphere of nitrogen have higher conductivity and capacitance than those of pure arrays annealed in the same atmosphere. Doping with carbon enhances the biocompatibility and wettability of TiO2 nanotube arrays. It has also noted that electrical conductivity and capacitance of TiO2 nanotube arrays were directly proportional to the tube wall thickness.

  9. Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts

    International Nuclear Information System (INIS)

    Dong, Z.J.; Li, X.K.; Yuan, G.M.; Cong, Y.; Li, N.; Jiang, Z.Y.; Hu, Z.J.

    2009-01-01

    Using carbon fibres and titanium hydride as a reactive carbon source and a metal source, respectively, a protective titanium carbide (TiC) coating was formed on carbon fibres in molten salts, composed of LiCl-KCl-KF, at 750-950 o C. The structure and morphology of the TiC coatings were characterised by X-ray diffraction and scanning electron microscopy, respectively. The oxidation resistance of the TiC-coated carbon fibres was measured by thermogravimetric analysis. The results reveal that control of the coating thickness is very important for improvement of the oxidation resistance of TiC-coated carbon fibres. The oxidative weight loss initiation temperature for the TiC-coated carbon fibres increases significantly when an appropriate coating thickness is used. However, thicker coatings lead to a decrease of the carbon fibres' weight loss initiation temperature due to the formation of cracks in the coating. The TiC coating thickness on carbon fibres can be controlled by adjusting the reaction temperature and time of the molten salt synthesis.

  10. Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Aguirre, Robinson; Robledo, Sara; Castaño, Juan Guillermo; Echeverría, Félix

    2017-09-27

    Surface characteristics can mediate biological interaction improving or affecting the tissue integration after implantation of a biomaterial. Features such as topography, wettability, surface energy and chemistry can be key determinants for interactions between cells and materials. Plasma electrolytic oxidation (PEO) is a technique used to control this kind of parameters by the addition of chemical species and the production of different morphologies on the surfaces of titanium and its alloys. With the purpose to improve the biological response, surfaces of c.p titanium and Ti6Al4V were modified by using PEO. Different electrolytes, voltages, current densities and anodizing times were tested in order to obtain surfaces with different characteristics. The obtained materials were characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectroscopy (GDOES). Wettability of the obtained surfaces were measured and the corresponding surface energies were calculated. Superhydrophilic surfaces with contact angles of about 0 degrees were obtained without any other treatment but PEO and this condition in some cases remains stable after several weeks of anodizing; crystal phase composition (anatase-rutile) of the anodic surface appears to be critical for obtaining this property. Finally, in order to verify the biological effect of these surfaces, osteoblast were seeded on the samples. It was found that cell behavior improves as SFE (surface free energy) and coating porosity increases whereas it is affected negatively by roughness. Techniques for surface modification allow changes in the coatings such as surface energy, roughness and porosity. As a consequence of this, biological response can be altered. In this paper, surfaces of c.p Ti and Ti6Al4V were modified by using plasma electrolytic oxidation (PEO) in order to accelerate the cell adhesion process.

  11. Cobalt oxide nanoparticle-modified carbon nanotubes as an ...

    Indian Academy of Sciences (India)

    of 60 mV were observed at. 100 mV s. −1 for CoOx−MWNT/GCE. An anodic peak at. 100 mV attributed to Co(II)/Co(III) redox transition associated with the electrode surface. The cathodic peak at 20 mV corre- spond to the reduction of various cobalt oxide species formed during the anodic sweep. The stability of the modified ...

  12. Structural and electrical characterization of bamboo-shaped C-N nanotubes-poly ethylene oxide (PEO) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ram Manohar, E-mail: rmanohar28@yahoo.co.in; Dobal, Pramod S. [VSSD College, Department of Physics (India)

    2012-10-15

    We have prepared bamboo-shaped C-N nanotubes-polyethylene oxide (PEO) composite films by solution cast technique and investigated their structural/microstructural and electrical properties and developed a correlation between them. The formation of clean compartmentalized bamboo-shaped C-N nanotubes was confirmed by TEM. SEM investigations revealed a homogeneous dispersion of nanotubes in PEO matrix. Enhanced electrical conductivity was observed for the C-N nanotubes-PEO composites than bare PEO. The conductivity measurements on the C-N nanotubes-PEO composite films with {approx}20 wt % concentration of C-N nanotubes showed an increase of eight orders ({approx}7.5 Multiplication-Sign 10{sup -8} to 6.2 S cm{sup -1}) of magnitude in conductivity from bare PEO film. Raman spectra showed the stress-free nature of the composites and established the bonding of nanotubes with PEO, which resulted in the variation of Raman parameters. The Raman data of composites corroborate the findings of variation in electrical conductivity.

  13. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    Directory of Open Access Journals (Sweden)

    Hadi Nur

    2007-01-01

    Full Text Available Stannic oxide-titanium dioxide (SnO2–TiO2 coupled semiconductor photocatalyst loaded with polyaniline (PANI, a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic activity was observed in the case of PANI-SnO2–TiO2 compared to PANI-TiO2, SnO2–TiO2, and TiO2. A higher photocatalytic activity in the oxidation of 1-octene on PANI-SnO2–TiO2 than SnO2–TiO2, PANI-TiO2, and TiO2 can be considered as an evidence of enhanced charge separation of PANI-SnO2–TiO2 photocatalyst as confirmed by photoluminescence spectroscopy. It suggests that photoinjected electrons are tunneled from TiO2 to SnO2 and then to PANI in order to allow wider separation of excited carriers.

  14. Density control and wettability enhancement by functionalizing carbon nanotubes with nickel oxide in aluminum-carbon nanotube system.

    Science.gov (United States)

    Kim, Tae-Hoon; Park, Min-Ho; Song, Kwan-Woo; Bae, Jee-Hwan; Lee, Jae-Wook; Lee, Choong Do; Yang, Cheol-Woong

    2013-11-01

    Excellent mechanical properties of carbon nanotubes (CNTs) make them ideal reinforcements for synthesizing light weight, high strength metal matrix composite. Aluminum is attractive matrix due to its light weight and Al/CNT composites are promising materials for various industrial applications. Powder metallurgy and casting techniques are normally used for bulk fabrications of composites. Casting process which can mass-produce delicate product is more suitable than existing powder metallurgy in view point of application in industries. In CNT-metal matrix composites, however, composite bulk fabrication has been limited because of the large density gap and poor wettability between the metal and CNTs. This study suggests a method for alleviating such problems. It was found that the wettability between aluminum and CNT could be enhanced by functionalizing the CNTs with nickel oxide. This functionalization of CNTs with heavier element also reduces the density gap between the matrix and reinforcements. It is suggested that this method could possibly be used in a casting process to enable mass fabrication of CNT-metal matrix composites.

  15. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in heat transfer nanofluids

    International Nuclear Information System (INIS)

    Hong, Haiping; Luan, Xinning; Horton, Mark; Li, Chen; Peterson, G.P.

    2011-01-01

    Highlights: → High speed microscopy was utilized to allow real time visualization of the movement of nanoparticles including SWNT and Fe 2 O 3 . → This electrostatic force induced alignment could maintain nanotube perfect conjugate structures which result in excellent thermal, electrical, and mechanical properties. → The alignment of the carbon nanotubes in nanosuspensions may offer new opportunities for the development of nanofluids. → These nanosuspensions also could be used in films, polymer composites, transparent electrodes, electromagnetic interference shielding, new sensors, etc. - Abstract: High speed microscopy was utilized to allow real time visualization of the movement of single walled carbon nanotubes (SWNT) with magnetically sensitive nanoparticles (Fe 2 O 3 ) and a chemical surfactant (NaDSSB) in water. Initially, entangled SWNT, Fe 2 O 3 and NaDSSB mixtures were randomly dispersed in the fluid. Upon extended exposure to the magnetic field, the mixture slowly vibrated, the nanoparticles straightened and aligned with respect to the magnetic field. The aligned nanoparticle chains appeared to be continuous and unbroken, forming a combination of aligned particles and clusters. Because of the semi-continuous nature of these nanosuspensions and the inherent viscosity of the fluid, some minutes are required for the mixtures to respond to the applied magnetic field and align. Time dependent thermal conductivity experiments indicate that the alignment process dominates the thermal conductivity enhancement as opposed to micro convection. Scanning Electron Microscopy (SEM) images also show that the SWNT and Fe 2 O 3 particles are well aligned under the influence of the magnetic field. Verification of the assumption that electrostatic attraction between nanotube/surfactant and metal oxides makes aggregation happen was obtained, by changing the nature of the charge of the surfactant from a negative charge (NaSDDB) to a positive charge (CTAB). Compared

  16. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in heat transfer nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Haiping, E-mail: Haiping.Hong@sdsmt.edu [Department of Material and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Luan, Xinning; Horton, Mark [Department of Material and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Li, Chen [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Peterson, G.P. [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-10-20

    Highlights: {yields} High speed microscopy was utilized to allow real time visualization of the movement of nanoparticles including SWNT and Fe{sub 2}O{sub 3}. {yields} This electrostatic force induced alignment could maintain nanotube perfect conjugate structures which result in excellent thermal, electrical, and mechanical properties. {yields} The alignment of the carbon nanotubes in nanosuspensions may offer new opportunities for the development of nanofluids. {yields} These nanosuspensions also could be used in films, polymer composites, transparent electrodes, electromagnetic interference shielding, new sensors, etc. - Abstract: High speed microscopy was utilized to allow real time visualization of the movement of single walled carbon nanotubes (SWNT) with magnetically sensitive nanoparticles (Fe{sub 2}O{sub 3}) and a chemical surfactant (NaDSSB) in water. Initially, entangled SWNT, Fe{sub 2}O{sub 3} and NaDSSB mixtures were randomly dispersed in the fluid. Upon extended exposure to the magnetic field, the mixture slowly vibrated, the nanoparticles straightened and aligned with respect to the magnetic field. The aligned nanoparticle chains appeared to be continuous and unbroken, forming a combination of aligned particles and clusters. Because of the semi-continuous nature of these nanosuspensions and the inherent viscosity of the fluid, some minutes are required for the mixtures to respond to the applied magnetic field and align. Time dependent thermal conductivity experiments indicate that the alignment process dominates the thermal conductivity enhancement as opposed to micro convection. Scanning Electron Microscopy (SEM) images also show that the SWNT and Fe{sub 2}O{sub 3} particles are well aligned under the influence of the magnetic field. Verification of the assumption that electrostatic attraction between nanotube/surfactant and metal oxides makes aggregation happen was obtained, by changing the nature of the charge of the surfactant from a negative

  17. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  18. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    International Nuclear Information System (INIS)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Bhatia, Charanjit S.; Chi, Dongzhi

    2014-01-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO x ) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO x films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO x films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO x films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO x has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO x in the field of high-efficiency silicon wafer solar cells.

  19. Detection of titanium oxide in the atmosphere of a hot Jupiter

    Science.gov (United States)

    Sedaghati, Elyar; Boffin, Henri M. J.; MacDonald, Ryan J.; Gandhi, Siddharth; Madhusudhan, Nikku; Gibson, Neale P.; Oshagh, Mahmoudreza; Claret, Antonio; Rauer, Heike

    2017-09-01

    As an exoplanet transits its host star, some of the light from the star is absorbed by the atoms and molecules in the planet’s atmosphere, causing the planet to seem bigger; plotting the planet’s observed size as a function of the wavelength of the light produces a transmission spectrum. Measuring the tiny variations in the transmission spectrum, together with atmospheric modelling, then gives clues to the properties of the exoplanet’s atmosphere. Chemical species composed of light elements—such as hydrogen, oxygen, carbon, sodium and potassium—have in this way been detected in the atmospheres of several hot giant exoplanets, but molecules composed of heavier elements have thus far proved elusive. Nonetheless, it has been predicted that metal oxides such as titanium oxide (TiO) and vanadium oxide occur in the observable regions of the very hottest exoplanetary atmospheres, causing thermal inversions on the dayside. Here we report the detection of TiO in the atmosphere of the hot-Jupiter planet WASP-19b. Our combined spectrum, with its wide spectral coverage, reveals the presence of TiO (to a confidence level of 7.7σ), a strongly scattering haze (7.4σ) and sodium (3.4σ), and confirms the presence of water (7.9σ) in the atmosphere.

  20. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    Science.gov (United States)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Chi, Dongzhi; Bhatia, Charanjit S.

    2014-06-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.

  1. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  2. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  3. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Marín, E. [Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07300 (Mexico); Villalpando, I. [Centro de Investigación para los Recursos Naturales, Salaices, Chihuahua 33941 (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, México, Ciudad de México 07738 (Mexico); Cervantes-Sodi, F. [Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219 (Mexico); Vargas-García, J.R. [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico); Torres-Torres, C., E-mail: ctorrest@ipn.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico)

    2017-06-15

    Highlights: • Nickel oxide decorated carbon nanotubes were prepared by chemical vapor deposition. • Contrast in photoconductivity phenomena in the nanohybrid was analyzed. • Electrical and nonlinear optical properties were evaluated. • A Wheatstone bridge sensor based metal/carbon nanostructures was proposed. - Abstract: Within this work was explored the influence of nickel oxide decoration on the photoconductive effects exhibited by multiwall carbon nanotubes. Samples in thin film form were prepared by a chemical vapor deposition method. Experiments for evaluating the photo-response of the nanomaterials at 532 nanometers wavelength were undertaken. A contrasting behavior in the photoelectrical characteristics of the decorated nanostructures was analyzed. The decoration technique allowed us to control a decrease in photoconduction of the sample from approximately 100 μmhos/cm to −600 μmhos/cm. Two-wave mixing experiments confirmed an enhancement in nanosecond nonlinearities derived by nickel oxide contributions. It was considered that metallic nanoparticles present a strong responsibility for the evolution of the optoelectronic phenomena in metal/carbon nanohybrids. Impedance spectroscopy explorations indicated that a capacitive behavior correspond to the samples. A potential development of high-sensitive Wheatstone bridge sensors based on the optoelectrical performance of the studied samples was proposed.

  4. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Jiménez-Marín, E.; Villalpando, I.; Trejo-Valdez, M.; Cervantes-Sodi, F.; Vargas-García, J.R.; Torres-Torres, C.

    2017-01-01

    Highlights: • Nickel oxide decorated carbon nanotubes were prepared by chemical vapor deposition. • Contrast in photoconductivity phenomena in the nanohybrid was analyzed. • Electrical and nonlinear optical properties were evaluated. • A Wheatstone bridge sensor based metal/carbon nanostructures was proposed. - Abstract: Within this work was explored the influence of nickel oxide decoration on the photoconductive effects exhibited by multiwall carbon nanotubes. Samples in thin film form were prepared by a chemical vapor deposition method. Experiments for evaluating the photo-response of the nanomaterials at 532 nanometers wavelength were undertaken. A contrasting behavior in the photoelectrical characteristics of the decorated nanostructures was analyzed. The decoration technique allowed us to control a decrease in photoconduction of the sample from approximately 100 μmhos/cm to −600 μmhos/cm. Two-wave mixing experiments confirmed an enhancement in nanosecond nonlinearities derived by nickel oxide contributions. It was considered that metallic nanoparticles present a strong responsibility for the evolution of the optoelectronic phenomena in metal/carbon nanohybrids. Impedance spectroscopy explorations indicated that a capacitive behavior correspond to the samples. A potential development of high-sensitive Wheatstone bridge sensors based on the optoelectrical performance of the studied samples was proposed.

  5. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  6. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film.

    Science.gov (United States)

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-02

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe 3 O 4 -polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (< -10 dB) are achieved, surpassing most recently reported CNT- and graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  7. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  8. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film

    Science.gov (United States)

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-01

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (< -10 dB) are achieved, surpassing most recently reported CNT- and graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  9. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Science.gov (United States)

    Yoosefian, Mehdi

    2017-01-01

    Density functional studies on the adsorption behavior of nitrous oxide (N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N2O onto CNT, the horizontal adsorption with Eads = -0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N2O were investigated. Adsorption of N2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N2O sensors.

  10. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  11. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  12. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    Science.gov (United States)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  13. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  14. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation.

    Science.gov (United States)

    Yamada, Masahiro; Ueno, Takeshi; Minamikawa, Hajime; Ikeda, Takayuki; Nakagawa, Kaori; Ogawa, Takahiro

    2013-09-01

    The role of nanoscale/submicron morphological features in the process of osseointegration is largely unknown. This study reports the creation of a unique submicrofeatured titanium surface by a combination of anodic oxidation and sandblasting and determines how the addition of this submicrofeature to a microroughened surface affects the early-stage process of osseointegration. Nonmicroroughened implants were prepared by machining Ti-6Al-4V alloy in a cylindrical form (1 mm diameter and 2 mm long). Microroughened implants were prepared by sandblasting machined implants, while submicrofeatured implants were created by anodic oxidation of the sandblasted implants. Implants were placed into rat femurs and subjected to biomechanical, interfacial, and histological analyses at 1 and 2 weeks post-implantation (n = 6). The submicrotopography was characterized by 50-300 nm nodules and pits in addition to other submicron-level irregularities formed entirely within the sandblast-created microstructures. The biomechanical strength of osseointegration increased continuously from week 1 to 2 for the submicrofeatured implants but not for the microroughened implants. A significant increase in bone-implant contact and bone volume, as well as a reduction in soft tissue intervention, were commonly found for the microroughened surface and the submicrofeatured surface compared with the nonmicroroughened surface. However, there were no differences in these parameters between the microroughened surface and the submicrofeatured surface. An extensive area of bone tissue at the submicrofeatured implant interface was retained intact after biomechanical shear testing, while the microroughened implant-tissue interface showed a gap along the entire axis of the implant, leading to clear separation of the tissue during the shear procedure. This study demonstrates that a submicrofeatured titanium surface created by a combination of sandblasting and anodic oxidation enhances the strength of

  15. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    Science.gov (United States)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  16. In vivo assessment of impact of titanium oxide nanoparticle on zebrafish embryo

    Science.gov (United States)

    Verma, Suresh K.; Mishra, Anurag K.; Suar, M.; Parashar, S. K. S.

    2017-05-01

    Technologies and innovations have attended a new height with recent development in nanotechnology in last few decades. With these developments there has a great raise in demand of metal oxides like TiO2, ZnO having versatile physical, chemical and biological application. However the great rise has raised concern over the effect of these nanoparticles in biological system. In this study, we have assessed the impact of titanium oxide nanoparticles synthesized by high energy ball milling (HEBM) by milling bulk TiO2 particles for 15h. The synthesized particles were characterized with XRD, UV-Visible spectroscopy and DLS for their physiochemical properties. Biological impact of these nanoparticles was then studied on zebrafish embryo as invivo model. Mortality and hatching rate were calculated for 48hpf and 96hpf treatment. To determine the mechanism of mortality effect, Reactive oxygen species (ROS) was determined with the help of flow cytometry. 15h nanoparticles were found to have a LC50 of ( ) for zebrafish embryo. However TiO2 nanoparticles were found to be a ROS scavenger for the treated Zebrafish cells.

  17. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Taeksoo Ji

    2011-05-01

    Full Text Available The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a fabrication of biomaterials into nanostructures, (b alignment of the nanostructures and (c immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  18. Platinized titanium dioxide electrodes for methanol oxidation and photo-oxidation

    Directory of Open Access Journals (Sweden)

    IOANNIS POULIOS

    2012-11-01

    Full Text Available Platinized deposits have been formed on TiO2 particulate films supported on Ti substrates, by means of galvanic replacement of pre-deposited metallic Cu and subsequent immersion of the Cu/TiO2 coatings into a chloroplatinic acid solution. The spontaneous replacement of Cu by Pt results in Pt(Cu/TiO2/Ti electrodes. Both the platinized and the precursor TiO2/Ti electrodes have been characterized by SEM micro­scopy/EDS spectroscopy, their surface electrochemistry has been assessed by cyclic voltammetry in the dark and their photoelectrochemical properties by photovolta­m­metry under UV illumination. It has been found that, although platinized rutile-rich electrodes exhibit typical Pt surface electrochemistry, the anatase-rich electrodes show only traces of oxide formation and stripping. The latter has been translated to a suppression of methanol oxidation at anatase-rich electrodes. On the contrary, methanol oxidation at platinized rutile-rich electrodes occurs at significant rates and can be further enhanced upon UV illumination, as a result of Pt and TiO2 synergism in the photoelectrochemical oxidation of methanol.

  19. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    spectra indicate that the red characteristic emission of TiO{sub 2}: Eu{sup 3+} due to electric dipole {sup 5}D{sub 0} {yields}{sup 7} F{sub 2} transition occurring after ultraviolet excitation is the strongest. The decay time of the phosphorescence after UV excitation with a Nd:YAG laser (355 nm, f=10Hz) is temperature dependent in the range from 200 C up to 400 C. Finally, it has been found that the lifetime show a significant dependency on europium concentration. The development of rutile phase of titanium dioxide films on stainless steel substrates as protective coatings were investigated. Generally the rutile phases of TiO{sub 2} thin films do not adhere well on stainless steel substrates. In order to improve the adhesion, stainless steel substrates were first coated with titanium films using cathodic vacuum arc deposition. Then these titanium coatings were partially transformed to the rutile phase of titanium dioxide by thermal oxidation. The presence of the rutile phase of titanium dioxide and metallic titanium were confirmed by XRD. Cavitation erosion was used for the first time to investigate the adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile films with a Ti inter layer are well adherent to stainless steel substrates and protect the substrate from erosion. The total mass loss of the thermally oxidized samples of Ti coated stainless steel was found around 3.5 times lower than of the uncoated samples. (orig.)

  1. Bimetallic electrocatalysts on titanium dioxide-based supports for methanol oxidation and oxygen evolution

    Science.gov (United States)

    Fuentes, Roderick Eliel

    Electrocatalysts are essential for the development of active and durable fuel cells and hydrogen production technologies. Generally, electrochemical processes of energy conversion and hydrogen generation in a Proton Exchange Membrane (PEM) utilize precious metals, such as platinum, iridium and ruthenium, as electrocatalysts. For the methanol oxidation and oxygen evolution reaction, a bimetallic structure can be used to enhance kinetics and increase stability. It is desired to support electrocatalysts to disperse nanoparticles on the surface and promote better catalyst utilization. Traditionally, carbon has been used as an electrochemical support because it has a high surface area and high electrical conductivity. The problem with carbon is that it is not a very stable material and can corrode at voltages more than 0.9 V, affecting performance of the electrochemical reaction. Therefore, it would be useful to support electrocatalysts in a stable material with suitable conductivity. Using titanium dioxide as a support can be advantageous due to its corrosion-resistant capability. TiO2 exhibit different crystalline structures, such as anatase and rutile, which can have an effect on catalytic activity. Unfortunately, it is not conductive; hence, it is not used in electrochemical applications. However, it can be doped with niobium to increase electronic conductivity; but, it usually come at the expense of surface area. In this work, TiO 2 and Nb-TiO2 were studied as platinum/ruthenium and iridium/ruthenium nanoparticles supports for the electrochemical oxidation of methanol and oxygen evolution, respectively. Even though the conductivity of our supports was very low, adding a considerable loading of nanoparticles increased conductivity of the composite material (support + catalyst) to acceptable levels. Using cyclic voltammetry (CV) and direct methanol fuel cell tests creating a membrane electrode assembly (MEA), Pt-Ru supported on Nb-TiO2 and TiO 2 showed superior

  2. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyungah; Park, Sangsu; Lee, Kwanghee; Lee, Byounghun; Hwang, Hyunsang [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Insung; Jung, Seungjae; Jo, Minseok; Park, Jubong; Shin, Jungho; Biju, Kuyyadi P; Kong, Jaemin, E-mail: kyseo@gist.ac.kr, E-mail: hwanghs@gist.ac.kr [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2011-06-24

    We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices. By developing a simple resistive switching device that can emulate a synaptic function, the unique characteristics of synapses in the brain, e.g. combined memory and computing in one synapse and adaptation to the outside environment, were successfully demonstrated in a solid state device.

  3. Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Khan

    2015-01-01

    Full Text Available Nanoparticles (NPs of zinc oxide (ZnO and titanium dioxide (TiO2 are receiving increasing attention due to their widespread applications. The aim of this study was to evaluate the toxic effect of ZnO and TiO2 NPs at different concentrations (50, 100, 250 and 500 ppm and compare them with their respective salts using a battery of cytotoxicity, and genotoxicity parameters. To evaluate cytotoxicity, we have used human erythrocytes and for genotoxic studies human lymphocytes have been used as in vitro model species. Concentration dependent hemolytic activity to RBC's was obtained for both NPs. ZnO and TiO2 NPs resulted in 65.2% and 52.5% hemolysis at 250 ppm respectively indicating that both are cytotoxic to human RBCs. Antioxidant enzymes assays were also carried out in their respective hemolysates. Both nanoparticles were found to generate reactive oxygen species (ROS concomitant with depletion of glutathione and GST levels and increased SOD, CAT and lipid peroxidation in dose dependent manner. ZnO and TiO2 NPs exerted roughly equal oxidative stress in terms of aforementioned stress markers. Genotoxic potential of both the NPs was investigated by in vitro alkaline comet assay. DNA damage induced by the NPs was concentration dependent and was significantly greater than their ionic forms at 250 and 500 ppm concentrations. Moreover, the nanoparticles of ZnO were significantly more genotoxic than those of TiO2 at higher concentrations. The toxicity of these NPs is due to the generation of ROS thereby causing oxidative stress.

  4. Bismuth–titanium oxide nanopowders prepared by sol–gel method for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Solís-Casados, D.A. [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca 50200, Estado de México, México (Mexico); Escobar-Alarcón, L., E-mail: luis.escobar@inin.gob.mx [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801, México (Mexico); Arrieta-Castañeda, A.; Haro-Poniatowski, E. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, México DF, México (Mexico)

    2016-04-01

    TiO{sub 2} has been widely studied for photocatalytic applications; however, its band gap is so large (Eg = 3.2 eV for anatase) that it can only be excited by ultraviolet light which accounts for only 5% of the incoming solar energy. Thus, it is important to develop a visible light driven photocatalyst with a lower band gap value. For this purpose, different TiO{sub 2}–Bi{sub 2}O{sub 3} binary compounds were prepared by the sol–gel technique. The obtained materials were characterized by Energy Dispersed Spectroscopy, X Ray Diffraction, Transmission Electron Microscopy, Raman Spectroscopy and Diffuse Reflectance Spectroscopy, in order to obtain information on their chemical composition, crystalline structure, vibrational features and optical properties. Compositional characterization reveal that the Bi content can be varied from 0.3 to 43.6 at.% in an easy way in the binary compounds. Structural characterization shows that the starting material corresponds to the crystalline anatase phase of TiO{sub 2} and upon Bi addition a phase transition to bismuth titanates and finally to bismuth oxide occurs. Raman results suggest the formation of titanates for compounds with a low content of Bi whilst for higher metal contents a mixture of oxides is obtained. HRTEM results demonstrated that the prepared nanopowders are quite crystalline. Optical measurements reveal that the band gap narrows from 3.2 eV to values as low as 1.4 eV. The photocatalytic activity was tested in the degradation of Malachite Green dye under illumination using a solar simulator with good results. - Highlights: • Bismuth–Titanium oxide nanopowders were synthesized by the sol–gel technique. • The evolution of the different crystalline phases was determined. • Materials with band gap as low as 1.4 eV were obtained. • Good photocatalytic activity using visible light was observed.

  5. Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction

    CSIR Research Space (South Africa)

    Zheng, Y

    2017-09-01

    Full Text Available . Later experiments data demonstrate that the activity and stability of the catalyst can be further enhanced via copper doping, which results from the modified electronic structure of the Pt atoms and the synergistic effects of the core-shell structure....

  6. Gas transport properties of polybenzimidazole and poly(phenylene oxide) mixed matrix membranes incorporated with PDA-functionalised titanate nanotubes

    Czech Academy of Sciences Publication Activity Database

    Giel, Verena; Perchacz, Magdalena; Kredatusová, Jana; Pientka, Zbyněk

    2017-01-01

    Roč. 12, č. 1 (2017), s. 1-15, č. článku 3. ISSN 1931-7573 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polybenzimidazole * poly(phenylene oxide) * titanate nanotubes Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  7. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  8. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.

    Science.gov (United States)

    Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P

    2008-04-15

    As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.

  9. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    Science.gov (United States)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  10. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  11. Photocatalytic oxidation of VOC, nitrogen oxide and atrazine using titanium dioxide modified with perovskite materials

    Science.gov (United States)

    Vajifdar, Kayzad Jimmy

    Photocatalysis utilizes near-UV or visible light to break down organic pollutants into innocuous compounds at room temperatures and has gained much attention in air and water pollution control. Chapter 1 introduces the use of semiconducting optical crystals as an additive to a photocatalyst. The perovskite optical material BaTiO3 (band gap of 3.7-3.8 eV) is found to increase VOC destruction when black light is used. The best composition found is 0.1 wt% BaTiO3 with the balance being TiO2. This photocatalyst increases perchloroethylene (PCE) conversion by 12% to 32% for space times between 1.4 and 17.2 seconds and inlet concentrations of 40 to 130 ppm with a 4 W black light. The average enhancement is approximately 25%. For butyraldehyde conversion the maximum enhancement is 20% at 130 ppm in 3.6 seconds. The UV/Vis spectroscopy data indicate a lower absorbance with the additive. The reaction parameters studied are space velocity, inlet concentration and light source. Oxidation by-products are identified using a GCMS. Chapter 2 introduces photocatalysis as an emerging green technology for environmental protection to oxidize NOx. The experimental results indicate that the coating of photocatalytic materials on concrete pavements can harvest the light energy for NOx pollution control. The photocatalytic coating has the potential to reduce NOx concentration in the atmosphere economically, nearly maintenance-free. NOx will be oxidized to nitric acid, neutralized by the alkaline base materials in concrete, and washed away by rain. The reduction in the number of high ozone days can be significant to allow sustainable economic developments in the many ozone-non-attainment areas worldwide. One of the foci will be pavement coated with photocatalysts enhanced with perovskites/ferroelectric optical crystals such as BaTiO3 via increased transmission/scattering and electron-hole pair stabilization. The developed technology can be transferred to the cement and coating industries

  12. Formation of titanium oxide coatings on NiTi shape memory alloys by selective oxidation

    International Nuclear Information System (INIS)

    Pohl, M.; Glogowski, T.; Kuehn, S.; Hessing, C.; Unterumsberger, F.

    2008-01-01

    Materials used for medical devices that are in contact with human tissue must have good corrosion resistance and biocompatibility. NiTi shape memory alloys (SMAs) are often used in medical applications due to their special functional and mechanical properties (shape memory effect, pseudo elasticity). Because of the high Ni content in nearly stoichiometric NiTi SMAs, the possibility of Ni being released needs to be considered as Ni may cause problems in the human body. SMAs exhibit a high intrinsic corrosion resistance because of the thermodynamic stability of Ni (thermodynamic reason) and the low degree of disorder in a thin protective TiO 2 -layer (kinetic reason). While therefore there is no need to be concerned too much about a normal corrosive attack in the human body, it has to be kept in mind that in medical applications, these materials represent one part of a tribological system where wear processes need to be considered. The formation of a uniform TiO 2 -layer can be beneficial in this respect. The selective oxidation of Ti to TiO 2 on the surface is a promising method to decrease the Ni release significantly. This can be achieved by controlling the partial pressure of oxygen during a controlled oxidation process. The atmosphere must be adjusted so that TiO 2 is stable while NiO cannot yet form. The result of a selective oxidation is a TiO 2 -layer that has an excellent degree of purity and represents a safe barrier against Ni emission

  13. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    International Nuclear Information System (INIS)

    Onoda, Hiroaki; Matsukura, Aki

    2015-01-01

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin

  14. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp; Matsukura, Aki

    2015-06-15

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.

  15. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  16. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    International Nuclear Information System (INIS)

    Alanis O, R.; Jimenez B, J.

    2010-01-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO 2 , which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO 2 synthesized by the Degussa company (TiO 2 Degussa P25) with and oxide of mixed cobalt valence (Co 3 O 4 ) synthesized using the sol-gel method. The synthesized photo catalyst TiO 2 /Co 3 O 4 was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  17. Synthesis, characterization and photo catalytic activity of titanium oxide modified with nitrogen; Sintesis, caracterizacion y actividad fotocatalitica de oxido de titanio modificado con nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Enriquez, J. M.; Garcia Alamilla, R.; Garcia Serrano, L. A.; Cueto Hernandez, A.

    2011-07-01

    Titanium oxides (TiO{sub 2}) were synthesized by precipitation of titanium tetrachloride (TiCl{sub 4}) using ammonium hydroxide (NH{sub 4}OH). The synthesized materials were characterized by means of nitrogen physisorption, X-ray diffraction, infrared spectroscopy, U.V.-visible diffuse reflectance spectroscopy and the photo catalytic activity of the samples were measured by the degradation of the methyl orange. By means of this synthesis method we have doped the titanium oxide structure with nitrogen (N-TiO{sub 2}), stabilizing the anatase phase and obtaining meso porous and nanocrystalline materials. The titanium oxide with higher specific surface area (132 m{sup 2}/g) degraded the azo-compound to 100% in 180 min of reaction. (Author) 33 refs.

  18. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review

    Science.gov (United States)

    Bogdan, Janusz; Pławińska-Czarnak, Joanna; Zarzyńska, Joanna

    2017-03-01

    Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.

  20. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    Science.gov (United States)

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.

  1. Fabrication and characterization of transparent conducting titanium-zinc oxide nanostructured thin films

    Science.gov (United States)

    Lu, Zhou; Long, Lu; Zhong, Zhi-you; Hou, Jin; Yang, Chun-yong; Gu, Jin-hua; Long, Hao

    2016-03-01

    Nano transparent conducting titanium-zinc oxide (Ti-ZnO) thin films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technique. The deposited films are characterized by X-ray diffraction (XRD), four-probe meter and UV-visible spectrophotometer. The effects of Ti-doping content on the structural, optical and electrical properties of the films are investigated. The XRD results show that the obtained films are polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The structural and optoelectronic characteristics of the deposited films are subjected to the Ti-doping content. The Ti-ZnO sample fabricated with the Ti-doping content of 3% (weight percentage) possesses the best crystallinity and optoelectronic performance, with the highest degree of preferred (002) orientation of 99.87%, the largest crystallite size of 83.2 nm, the minimum lattice strain of 6.263×10-4, the highest average visible transmittance of 88.8%, the lowest resistivity of 1.18×10-3 Ω·cm and the maximum figure of merit ( FOM) of 7.08×103 Ω-1·cm-1. Furthermore, the optical bandgaps of the films are evaluated by extrapolation method and observed to be an increasing tendency with the increase of the Ti-doping content.

  2. Microporous Titanium through Metal Injection Moulding of Coarse Powder and Surface Modification by Plasma Oxidation

    Directory of Open Access Journals (Sweden)

    Mohammed Menhal Shbeh

    2017-01-01

    Full Text Available Titanium is one of the most attractive materials for biomedical applications due to having excellent biocompatibility accompanied by good corrosion resistance. One popular processing technique for Ti is Metal Injection Moulding (MIM. However, there are several issues associated with the use of this technique, such as the high cost of the fine powder used, the high level of contamination and consequent alteration to material properties, as well as the large volume shrinkage that occurs during sintering. In this study, the use of a relatively coarse Ti powder with a mean particle size of 75 μm to process Ti parts with the potential for biomedical applications by MIM will be examined, compared to a commercial Ti feedstock, and subsequently coated using Plasma Electrolytic Oxidation (PEO. The results show that samples produced with the coarse powder shrink 35% less and have a relative density 14% less with an average pore size three-times larger than that of the commercial feedstock. This helps increase the potential competitiveness of MIM in the production of biomedical parts, as it reduces cost, shrinkage and results in more intentionally-induced micropores, such as are desired for biomedical implants. PEO treatment of the samples yields a thick rough coating comprised of a mixture of rutile and anatase with interconnected microporous channels and openings resembling the mouth of a volcanic crater.

  3. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Valkonen, Minna; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2014-12-18

    The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  5. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  6. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  7. [In situ diffuse reflectance FTIR spectroscopy characterization of titanium silicalite-1 catalytic oxidization of styrene].

    Science.gov (United States)

    Zhang, Ping; Wang, Le-fu; Chen, Yong-heng

    2007-05-01

    The Stability of framework of titanium silicalite-1 (TS-1) was investigated by high temperature diffuse reflectance FT-IR spectroscopy (DRIFTS), and the results showed that the 960 cm(-1) peak belonging to Ti-framework was stabilized at 673 K, but the two peaks belonging to framework shifted to lower frequencies by about 13 cm(-1) at 673 K. The effect on the framework after H2O2 adsorption was discussed. The results showed that the 960 cm(-1) peak lowered and shifted to high frequencies by about 11 cm(-1), but it recovered with vacuum or heating up. It was suggested that the 960 cm(-1) peak characterizes Ti==O, and this explained why the 960 cm(-1) peak shifted to high frequencies well. TS-1 catalytic oxidization of styrene was investigated by in situ DRIFTS. The reaction process was detected and phenyl aldehyde was the main product. Based on in situ analysis, it was proposed that H2O2 was adsorbed on Ti in framework of TS-1 to form active center.

  8. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  9. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  10. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells.

    Science.gov (United States)

    Capasso, Andrea; Salamandra, Luigi; Di Carlo, Aldo; Bell, John Marcus; Motta, Nunzio

    2012-01-01

    The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  11. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

    Directory of Open Access Journals (Sweden)

    Andrea Capasso

    2012-07-01

    Full Text Available The electrical performance of indium tin oxide (ITO coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene (P3HT and phenyl-C61-butyric acid methyl ester (PCBM, the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  12. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  13. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudsonzanin@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Saito, E., E-mail: esaito135@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Ceragioli, H.J., E-mail: helderjc@gmail.com [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Baranauskas, V., E-mail: vitor@dsif.fee.unicamp.br [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Corat, E.J., E-mail: corat@las.inpe.br [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  14. Thermal Conductivity of Epoxy Resin Reinforced with Magnesium Oxide Coated Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Fei-Peng Du

    2013-01-01

    Full Text Available Magnesium oxide coated multiwalled carbon nanotubes (MgO@MWNT were fabricated and dispersed into epoxy matrix. The microstructures of MgO@MWNT and epoxy/MgO@MWNT nanocomposites were characterized by TEM and SEM. Electrical resistivity and thermal conductivity of epoxy nanocomposites were investigated with high resistance meter and thermal conductivity meter, respectively. MgO@MWNT has core-shell structure with MgO as shell and nanotube as core, and the thickness of MgO shell is ca. 15 nm. MgO@MWNT has been dispersed well in the epoxy matrix. MgO@MWNT loaded epoxy nanocomposites still retain electrical insulation inspite of the filler content increase. However, thermal conductivity of epoxy was increased with the MgO@MWNT content increasing. When MgO@MWNT content reached 2.0 wt.%, thermal conductivity was increased by 89% compared to neat epoxy, higher than that of unmodified MWNT nanocomposites with the same loading content.

  15. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    Energy Technology Data Exchange (ETDEWEB)

    Uudeküll, Peep, E-mail: peep.uudekull@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kozlova, Jekaterina; Mändar, Hugo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Link, Joosep [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Sihtmäe, Mariliis [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Käosaar, Sandra [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Faculty of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Blinova, Irina; Kasemets, Kaja; Kahru, Anne [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Stern, Raivo [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Tätte, Tanel [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia)

    2017-05-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  16. Genotoxic effects of zinc oxide nanoparticles in nasal mucosa cells are antagonized by titanium dioxide nanoparticles.

    Science.gov (United States)

    Hackenberg, Stephan; Scherzed, Agmal; Zapp, Angela; Radeloff, Katrin; Ginzkey, Christian; Gehrke, Thomas; Ickrath, Pascal; Kleinsasser, Norbert

    2017-04-01

    Titanium dioxide nanoparticles (TiO 2 -NPs) and zinc oxide nanoparticles (ZnO-NPs) are often used in sunscreens and other consumer products due to their photoprotective properties. However, concern exists regarding them possibly causing cyto- and genotoxic effects. The aim of this study was to assess cyto- and genotoxicity of these nanomaterials after single or combined exposure. For this purpose, a battery of cell culture test systems for human nasal mucosa (monolayer, air-liquid interface and mini organ culture) were exposed to 0.1-20μg/ml of TiO 2 - and ZnO-NPs alone and in combination. Cytotoxicity was measured by the MTT assay, and DNA damage and repair capacity were investigated using the comet assay. TiO 2 -NPs did not exhibit any cyto- or genotoxic potential within the tested concentrations. However, results of the study indicated cyto- and genotoxicity resulting from ZnO-NPs. The genotoxicity could be antagonized by TiO 2 -NPs. Furthermore, the DNA repair capacity after ZnO-NP-induced DNA damage was enhanced by TiO 2 -NPs. The adsorption of dissolved zinc ions onto TiO 2 -NPs is discussed as the major antagonistic mechanism. The combination of both metal oxide nanoparticles interferes with the genotoxicity of ZnO-NPs and should be discussed as a reasonable and safe alternative to the sole use of ZnO-NPs in consumer products. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Improved electrical conductivity of poly(ethylene oxide) nanofibers using multi-walled carbon nanotubes

    Science.gov (United States)

    Lee, J. Y.; Kang, T.-H.; Choi, J. H.; Choi, I.-S.; Yu, W.-R.

    2018-03-01

    Highly conductive nanofibers with 1570 S/m were obtained from an electrospun solution of polymer containing multiwalled carbon nanotubes (MWCNTs). Homogeneous dispersion of high concentrations of MWCNTs was achieved by attaching poly(styrenesulfonic acid graft aniline) (PSS-g-ANI), an amphiphilic surfactant, to the MWCNT surface. The hydrophilic sulfonic acid group facilitated the dissolution of PSS-g-ANI-grafted MWCNTs in a polyethylene oxide (PEO) solution up to 6.7 wt% MWCNT. To our knowledge, this is the highest level of MWCNT doping attained in a solution designed for electrospinning. With the incorporation of PSS-g-ANI, the concentration of MWCNTs embedded in the electrospun nanofibers increased. More importantly, the alignment of MWCNTs along the nanofiber axis increased significantly, as confirmed by observed birefringence under crossed polarizers. The combination of higher doping levels and better alignment afforded highly conductive nanofibers suitable for electronic nanodevices.

  18. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators.

    Science.gov (United States)

    Kim, Bongjun; Jang, Seonpil; Geier, Michael L; Prabhumirashi, Pradyumna L; Hersam, Mark C; Dodabalapur, Ananth

    2014-06-11

    The materials combination of inkjet-printed single-walled carbon nanotubes (SWCNTs) and zinc tin oxide (ZTO) is very promising for large-area thin-film electronics. We compare the characteristics of conventional complementary inverters and ring oscillators measured in air (with SWCNT p-channel field effect transistors (FETs) and ZTO n-channel FETs) with those of ambipolar inverters and ring oscillators comprised of bilayer SWCNT/ZTO FETs. This is the first such comparison between the performance characteristics of ambipolar and conventional inverters and ring oscillators. The measured signal delay per stage of 140 ns for complementary ring oscillators is the fastest for any ring oscillator circuit with printed semiconductors to date.

  19. Improved electrical conductivity of poly(ethylene oxide nanofibers using multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    J. Y. Lee

    2018-03-01

    Full Text Available Highly conductive nanofibers with 1570 S/m were obtained from an electrospun solution of polymer containing multiwalled carbon nanotubes (MWCNTs. Homogeneous dispersion of high concentrations of MWCNTs was achieved by attaching poly(styrenesulfonic acid graft aniline (PSS-g-ANI, an amphiphilic surfactant, to the MWCNT surface. The hydrophilic sulfonic acid group facilitated the dissolution of PSS-g-ANI-grafted MWCNTs in a polyethylene oxide (PEO solution up to 6.7 wt% MWCNT. To our knowledge, this is the highest level of MWCNT doping attained in a solution designed for electrospinning. With the incorporation of PSS-g-ANI, the concentration of MWCNTs embedded in the electrospun nanofibers increased. More importantly, the alignment of MWCNTs along the nanofiber axis increased significantly, as confirmed by observed birefringence under crossed polarizers. The combination of higher doping levels and better alignment afforded highly conductive nanofibers suitable for electronic nanodevices.

  20. Electrooxidation of catecholamines at carbon nanotube-modified indium tin oxide electrodes.

    Science.gov (United States)

    Lin, Kuan-Wen; Lin, Chang-Hao; Hsieh, You-Zung

    2008-06-30

    In this study, we prepared carbon nanotube (CNT)/Nafion-modified ITO electrodes and investigated their electrochemical behavior. The CNTs were dissolved in a solution of the ionic polymer Nafion and then CNT/Nafion composite films were deposited onto ITO electrodes through spin-coating of this homogeneous solution. We studied the effects of chemical pretreatment of the CNTs and the pH of the buffer on the electroanalytical behavior of the CNT/Nafion-modified ITO electrodes toward catecholamines. The modified electrodes enhanced the peak current and lowered the overpotentials. We observed high electrooxidative performance for the modified ITO electrodes: the oxidative currents of the catecholamines were up to 125-fold higher than those obtained using bare ITO electrodes.

  1. Crosslinked Carbon Nanotube Aerogel Films Decorated with Cobalt Oxides for Flexible Rechargeable Zn-Air Batteries.

    Science.gov (United States)

    Zeng, Sha; Chen, Hongyuan; Wang, Han; Tong, Xiao; Chen, Minghai; Di, Jiangtao; Li, Qingwen

    2017-08-01

    Air electrodes with high catalytic activity are of great importance for rechargeable zinc-air batteries. Herein, a flexible, binder-free composite air electrode for zinc-air batteries is reported, which utilizes a lightweight, conductive, and crosslinked aerogel film of carbon nanotubes (CNTs) functioned as a 3D catalyst-supporting scaffold for bifunctional cobalt (II/III) oxides and as a current collector. The composite electrode shows high catalytic activities for both oxygen reduction reaction and oxygen evolution reaction, resulting from the synergistic effect of nitrogen-doped CNTs and spinel Co 3 O 4 nanoparticles. Solid-state Zn-air batteries assembled using such free-standing air electrodes (without the need of additional current collectors) are bendable and show low resistances, low charge/discharge overpotentials, and a high cyclic stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  3. Synthesis, characterization and enhanced photocatalytic activity of iron oxide/carbon nanotube/Ag-doped TiO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Marques Neto, José O.; Bellato, Carlos R.; Souza, Carlos H.F. de; Silva, Renê C. da; Rocha, Pablo A., E-mail: bellato@ufv.br [Universidade Federal de Viçosa (UFV), MG (Brazil)

    2017-07-01

    A novel magnetically recoverable catalyst (Fe/MWCNT/TiO{sub 2}-Ag) was prepared in this study by a process that involves few steps. Titanium dioxide doped with silver and iron oxide was deposited on support of multi-walled carbon nanotubes (MWCNT). The synthesized catalysts were characterized by inductively coupled plasma mass spectrometry (ICP-MS), N{sub 2} adsorption/desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), infrared spectroscopy (IR) and UV-Vis diffuse reflectance spectra (DRS). Phenol in aqueous solution (50 mg L{sup -1}) was used as a model compound for evaluation of UV-Vis (filter cut off for λ > 300 nm) photocatalytic activity. The composite catalyst has a high photocatalytic activity, destroying ca. 100% of phenol and removing 85% of total organic carbon in an aqueous solution after 180 min. The Fe/MWCNT/TiO{sub 2}-Ag catalyst remained stable, presenting an 8% decrease in phenol degradation efficiency after ten consecutive photocatalytic cycles. (author)

  4. Effects of Surface Coating Preparation and Sliding Modes on Titanium Oxide Coated Titanium Alloy for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Bo Yuan Peng

    2014-01-01

    electrolytic oxidation (PEO. During the PEO procedure, a composition of silicate and phosphate was used as the electrolyte. In order to evaluate the coating, pin-on-disk (POD tribology tests and cyclic inclined sliding tests were used under dry room conditions. Furthermore, scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS were utilized to examine the morphology and composition of the coating surfaces. The results of the POD tests revealed that the PEO coating could have a low coefficient of friction and suggested that high silicon concentrations in the PEO coatings take away oxygen from stoichiometric Ti oxides to create lubricating oxides. In addition, cyclic inclined sliding tests showed that smaller pores on the surface of the coating could permit a higher coating cohesive strength and allow the coated Ti alloy surface to perform better under high inclined sliding forces.

  5. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Li, Gao-Ren; Wang, Zi-Long; Liu, Zhao-Qing; Liu, Hong; Tong, Ye-Xiang

    2012-07-02

    Bimetallic core-shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core-shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core-shell nanotube arrays were fabricated by ZnO nanorod-array template-assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m(2)  (g Pt)(-1), which is close to the value of 59.44 m(2)  (g Pt)(-1) for commercial Pt/C catalysts. The porous Ni@Pt core-shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core-shell nanotube arrays make them promising candidates as future high-performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large-scale, low-cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of carbon and zinc oxide nanotubes and their applications in electronic devices

    Science.gov (United States)

    Yang, Kaikun

    Nanostructured materials, including single and multiwalled carbon nanotubes (SWCNTs and MWCNTs), zinc oxide (ZnO) nanotubes (NTs) and graphene, have been successfully synthesized using chemical vapor deposition (CVD) or wet chemistry routines, and used to fabricate nanoelectronic and optoelectronic devices, including field effect transistors (FETs) and heterojunction solar cells. Both nanomaterials properties and devices performances have been characterized. Vertically aligned multiwalled carbon nanotubes (VACNTs) have been synthesized using both the pre-deposited iron films and the continuous supply of catalytic species via gas flow in pyrolytic decomposition of hydrocarbons by CVD. High quality VACNTs have been obtained after the optimization of synthesis parameters. Using metal nanoparticles as catalysts, centimeter-long SWCNTs have been synthesized on a silicon wafer with a thin thermal oxide layer. A series of FETs have been fabricated directly on a single SWCNT by inkjet printing of Pd nanoparticles to form both source and drain electrodes. The devices exhibit typical Schottky barrier p-type conductance characteristics. The line density and field mobility of charge carriers, as well as the effect of gate field modulation have been shown to strongly depend on thermal treatment of the SWCNT-FETs, implying the effect of carrier doping and interfacial reconstruction. ZnO NTs have been synthesized in an aqueous solution of zinc nitrate at 60ºC. A novel core-shell growth mechanism was hypothesized to explain the synthesis of ZnO NTs. The crystalline microstructures and optical properties of ZnO NTs upon thermal annealing in air at various temperatures have been examined. Ultraviolet-Visible (UV-Vis) absorption spectra reveal a slightly redshift of the direct band gap upon annealing. Solution structure of regioregular poly(3-hexylthiophene) (RR-P3HT) in toluene has been examined using optical spectroscopy in situ and atomic force microscopy upon casting films on a

  7. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    Science.gov (United States)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  8. Self-cleaning glass coating containing titanium oxide and silicon; Revestimentos autolimpantes para vidros contendo oxido de titanio e silicio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Lab. de Materiais Ceramicos

    2009-07-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  9. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  10. Specifically Grafting Hematin on MPTS-Coated Carbon Nanotubes for Catalyzing the Oxidation of Aniline

    Directory of Open Access Journals (Sweden)

    Kunkun Zheng

    2016-08-01

    Full Text Available Catalysts supported on nanomaterials have been widely investigated for the treatment of hazardous materials. This work has developed a novel method for grafting hematin on nanomaterials for catalyzing the oxidation of aniline in order to remove aniline from wastewater. Magnetic multi-walled carbon nanotubes (M-MWCNTs were coated with a layer formed through the hydrolysis and condensation of 3-mercaptopropyltriethoxysilane (MPTS. Hematin was specifically grafted on the MPTS-coated M-MWCNTs through thiol-alkene reaction. Hematin-MPTS-M-MWCNTs were used to catalyze the oxidation of aniline, and a high efficiency has been obtained. Consecutive use of the conjugate of hematin-MPTS-M-MWCNTs has been investigated, and the activity has been retained to a significant extent after five reaction/cleaning cycles. The result demonstrates that hematin-MPTS-M-MWCNTs are efficient for catalyzing the oxidation of aniline. The methodology for the specific grafting of hematin is of general utility, it is an easy-to-operate method and can be extended to other supports. Potentially, hematin-MPTS-based conjugates have a widespread application in catalyzing the removal of aniline from wastewater.

  11. Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Nadia F., E-mail: nadia@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Martinez, Diego Stefani T., E-mail: diegostefani.br@gmail.com; Paula, Amauri J., E-mail: amaurijp@gmail.com [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Silveira, Jose V. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil)

    2013-07-15

    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 Degree-Sign C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 {mu}m. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, {zeta}-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.

  12. Directed self-assembly of metal oxide quantum dots: Copper oxide on strontium titanium trioxide

    Science.gov (United States)

    Du, Yingge

    2007-12-01

    /reactivity changes appear unlikely to be primary motivators of directed self-assembly. Low dose implant patterning created local depressions on the surface. This pit shape topography appears to be a strong contributor to the preferred nucleation within the pits, as the sidewalls of those surface pits could contain a high density of surface steps, which are known to decrease the adatom diffusion length and act as sinks to absorb the diffusing species. To further interpret the low dose implant results, calculations of total free-energy changes have been performed to study the differences between nucleation on a flat substrate surface and nucleation within a surface pit. This analysis shows that nucleation within a pit is almost always energetically favorable. In some special cases, assuming the pits have an inverted pyramidal shape, calculations show that island formation within the pits lowers the system total free-energy from the beginning of growth, i.e. there is no critical radius or energy barrier before a stable nucleus can be formed. The major geometric difference between high and low dose implantation area was revealed by AFM studies, which showed that pits generated by high implantation dose were still rounded after annealing and before growth, while pits from lower doses patterning had developed square edges oriented along the directions of the substrate. These geometric differences suggest differences in crystalline or strain/stress states, either/both of which could have caused the subsequent different island growth characteristics. Continued study of directed self-assembly of metal oxide quantum dots should lead to better understanding of the creation of well ordered, precisely controlled, high density QD arrays, ultimately contributing to the development of next generation nanoelectronic, magnetic, and optical devices.

  13. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  14. One-step oxidation preparation of unfolded and good soluble graphene nanoribbons by longitudinal unzipping of carbon nanotubes

    Science.gov (United States)

    Hu, Xiaolin; Hu, Yizhen; Huang, Jindan; Zhou, Ning; Liu, Yuhan; Wei, Lin; Chen, Xin; Zhuang, Naifeng

    2018-04-01

    A simple one-step method to prepare graphene nanoribbon (GNR) is reported in this paper. Compared with water steam etching, the oxidation and co-etching of dilute sulfuric acid can result in the more complete longitudinal unzipping of carbon nanotube, although there is no other strong oxidant. As-prepared GNRs are more flat and have more oxygenated functional groups along the edge. Moreover, they can steadily disperse in a water system. These make them suitable as a carrier for supporting palladium (Pd) nanoparticles. The Pd/GNR composite exhibits a superior electrocatalytic activity for ethanol oxidation.

  15. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating

    Science.gov (United States)

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-01

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to

  16. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Science.gov (United States)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre; Rocha, Luís A.; Shokuhfar, Tolou

    2017-03-01

    The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO2) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO3, Ca3(PO4)2, CaHPO4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  17. Ultrathin-walled Co9S8 nanotube/reduced graphene oxide composite as an efficient electrocatalyst for the reduction of triiodide

    Science.gov (United States)

    Yuan, Hong; Jiao, Qingze; Liu, Jia; Liu, Xiufeng; Yang, Haoyi; Zhao, Yun; Wu, Qin; Shi, Daxin; Li, Hansheng

    2016-12-01

    A novel ultrathin-walled Co9S8 nanotube/reduced graphene oxide electrocatalyst, for the first time, is successfully prepared by a simple hydrothermal process coupling with an ion exchange process for the reduction of triiodide in dye-sensitized solar cells (DSSC). Ultrathin-walled Co9S8 nanotubes have an average diameter of 20-30 nm and a wall thickness of 3-4 nm, and the reduced graphene oxide possessing high conductivity is well dispersed in the Co9S8 nanotubes simultaneously, which contributed to the high specific surface area, well exposed active sites and excellent electric conductivity. The electrochemical performances of ultrathin-walled Co9S8 nanotube/reduced graphene oxide are evaluated by the EIS, Tafel polarization and CV measurements, exhibiting the significant improvement of electrocatalytic performance for the triiodide reduction. Optimizing the film thickness of Co9S8 nanotube/reduced graphene oxide counter electrode, the optimum photovoltaic conversion efficiency of 7.58% is obtained, which is even higher than that of the DSSC with Pt counter electrode (7.45%). In addition, the DSSC with Co9S8/reduced graphene oxide electrode exhibits a good repeatability and long-term electrochemical stability. Therefore, the ultrathin-walled Co9S8 nanotube/reduced graphene oxide is a reliable material to replace Pt.

  18. Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mund, R., E-mail: rachnamund@gmail.com; Panda, N., E-mail: niladri1panda@gmail.com [National Institute of Technology, Department of Biotechnology and Medical Engineering (India); Nimesh, S., E-mail: surendranimesh@curaj.ac.in [Central University of Rajasthan, Department of Biotechnology, School of Life Sciences (India); Biswas, A., E-mail: amitb79@gmail.com [National Institute of Technology, Department of Biotechnology and Medical Engineering (India)

    2014-12-15

    Novel titanium oxide (TiO{sub 2}) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO{sub 2} nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ∼30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ∼63.61 % while those prepared through propanol-induced drying step showed ∼69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO{sub 2} nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO{sub 2} nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.

  19. Characterization of ceramics of titanium oxide to treatment of effluents from nuclear area

    International Nuclear Information System (INIS)

    Silva, Milena Hudson da; Oliveira, Elizabeth E. de Mello

    2017-01-01

    Membrane separation processes (PSM) have become increasingly important technology, with application in several areas to separate, concentrate or purify solutions. PSM has been justified because it is an easy-to-operate separation technique and, in general, does not involve phase change. Ceramic membranes exhibit superior properties as polymeric, mainly about chemical resistance to solvents and extremes of temperature and pH. Ceramic membranes are composed of a porous support, responsible for the mechanical resistance and covered by a thin layer, responsible for selectivity. In this work were prepared supports based on titanium oxide (TiO 2 ), which features high stability, thermal, chemical resistance to organic solvents and application in a wide pH range (0-14). Three aqueous solutions were prepared containing TiO 2 and corn starch at concentrations of 0, 15 and 30%, acting as a pores former. The solutions were dried in Spray-Dryer, to obtain a homogeneous mixture and grainy. The support has been compressed to a pressure of 1.5 Kgfcm -2 in the form of cylindrical disks of 2.5 cm diameter sintered at temperatures of 1100 and and 1150° C. The discs were weighed and their dimensions measured for the determination of geometric density and porosity. Hydraulic permeability tests were performed at pressures of 1 to 4 bar. The conditions of 1100 ° C without addition of starch and 1150 ° C with 15% of starch had porosities of 42% and 44%, respectively, values close to that suggested in the literature, between 35-40%

  20. Crystal Structures and Electronic Properties of Oxygen-rich Titanium Oxides at High Pressure.

    Science.gov (United States)

    Zhong, Xin; Yang, Lihua; Qu, Xin; Wang, Yanchao; Yang, Jinghai; Ma, Yanming

    2018-03-02

    Pressure is well-known to significantly change the bonding patterns of materials and lift the reactivity of elements, leading to the synthesis of unconventional compounds with fascinating properties. Titanium-oxygen (Ti-O) compounds (e.g., TiO 2 ) are attracting increasing attention due to their attractive electronic properties and extensive industrial applications (e.g., photocatalysis and solar cells). Using the effective CALYPSO structure searching method combined with first-principles calculations, we theoretically explored various oxygen-rich Ti-O compounds at pressures ranging from 0 to 200 GPa. Our results revealed, unexpectedly, that pressure stabilizes two hitherto unknown stoichiometric oxygen-rich Ti 2 O 5 and TiO 3 compounds. Ti 2 O 5 crystallized in P-42 1 c structure, whose remarkable feature is that it contains a peroxide group (O2 2- ) with an O-O distance of 1.38 Å at 150 GPa. The trioxide TiO 3 is an ionic metal and is the oxygen-richest compound known thus far in the Ti-O system. It adopts a high symmetry (space group Pm-3n) structure consisting of a 12-fold coordinated face-sharing TiO 12 icosahedron, where Ti has the highest coordination number with O among all Ti-O structures. The underlying mechanisms for the stabilization of Ti 2 O 5 and TiO 3 lie in the higher coordination number and denser structure packing. Our current results unravel the unusual oxygen-rich stoichiometry of Ti-O compounds and provide further insight into the diverse electronic properties of Ti oxides under high pressure.

  1. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light.

    Science.gov (United States)

    Kühn, Klaus P; Chaberny, Iris F; Massholder, Karl; Stickler, Manfred; Benz, Volker W; Sonntag, Hans-Günther; Erdinger, Lothar

    2003-10-01

    Particularly in microbiological laboratories and areas in intensive medical use, regular and thorough disinfection of surfaces is required in order to reduce the numbers of bacteria and to prevent bacterial transmission. The conventional methods of disinfection with wiping are not effective in the longer term, cannot be standardized, are time- and staff-intensive and use aggressive chemicals. Disinfection with hard ultraviolet C (UVC) light is usually not satisfactory, as the depth of penetration is inadequate and there are occupational medicine risks. Photocatalytic oxidation on surfaces coated with titanium dioxide (TiO2) might offer a possible alternative. In the presence of water and oxygen, highly reactive OH-radicals are generated by TiO2 and mild ultraviolet A (UVA). These radicals are able to destroy bacteria, and may therefore be effective in reducing bacterial contamination. Direct irradiation with UVC however can produce areas of shadow in which bacteria are not inactivated. Using targeted light guidance and a light-guiding sheet (out of a UVA-transmittant, Plexiglas, for example), as in the method described in the present study, bacterial inactivation over the entire area is possible. The effectiveness of the method was demonstrated using bacteria relevant to hygiene such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium. For these bacteria, a reduction efficiency (RE) more than 6log10 steps in 60 min was observed. Using Candida albicans, a RE of 2log10 steps in 60 min was seen. Light and scanning electron microscopic examinations suggest that the germ destruction achieved takes place through direct damage to cell walls caused by OH-radicals.

  2. Fretting Wear-Resistant, Micro-Arc Oxidation Coatings for Aluminum and Titanium Alloy Bearings (Preprint)

    National Research Council Canada - National Science Library

    Choppy, K. J; Kovar, R. F; Cushman, B. M

    2007-01-01

    .... Aluminum and titanium alloys are used as replacements for steel in gear boxes of aircraft and helicopters in both military and commercial air vehicles, due to their low density, mechanical strength...

  3. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance{sup †}

    Energy Technology Data Exchange (ETDEWEB)

    Govindaraj, Dharman [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Rajan, Mariappan, E-mail: rajanm153@gmail.com [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Munusamy, Murugan A.; Alarfaj, Abdullah A. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh (Saudi Arabia); Higuchi, Akon [Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001 Taiwan (China); Suresh Kumar, S. [Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang (Malaysia)

    2017-06-15

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO{sub 2}) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO{sub 2} implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO{sub 2} that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO{sub 2} by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO{sub 2} is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  4. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode.

    Science.gov (United States)

    García-Valverde, María Teresa; Rosende, María; Lucena, Rafael; Cárdenas, Soledad; Miró, Manuel

    2018-04-03

    Mesofluidic lab-on-a-valve (LOV) platforms have been proven suitable to accommodate automatic micro-solid-phase extraction (μSPE) approaches with on-chip handling of micrometer-bead materials in a fully disposable mode to prevent sample cross-contamination and pressure-drop effects. The efficiency of the extraction process notably depends upon the sorptive capacity of the material because the sorbent mass is usually down to 10 mg in LOV devices. Nanomaterials, capitalizing upon their enhanced surface-to-volume ratio and diversity of potential chemical moieties, are appealing alternatives to microbead sorbents. However, the handling and confinement of nanomaterials in fluidic chip structures have been challenging to date. This is most likely a consequence of the aggregation tendency of a number of nanomaterials, including carbon-based sorbents, that leads to excessive back-pressure in flowing systems along with irreproducible bead loading. This paper addresses these challenges by ad hoc synthesis of hybrid nanomaterials, such as porous carbon-coated titanium dioxide nanotubes (TiO 2 -NT@pC). Tailoring of the surface polarity of the carbon coating is proven to foster the dispersion of TiO 2 -NT@pC in LOV settings while affording superior extraction capability of moderately nonpolar species from aqueous matrices. The determination of trace-level concentrations of butylparaben (BPB) and triclosan (TCS) in seawater samples is herein selected as a proof-of-concept of the exploitation of disposable nanomaterials in LOV. The mesofluidic platform accommodating μSPE features online hyphenation to liquid chromatography/tandem mass spectrometry (LC/MS/MS) for reliable determination of the target analytes with excellent limits of detection (0.5 and 0.6 ng/L for BPB and TCS, respectively) and intermediate precision (relative standard deviation handling troublesome environmental samples.

  5. Assessment of antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of titanium oxide: An in-vitro study.

    Science.gov (United States)

    Baby, Roshen Daniel; Subramaniam, Siva; Arumugam, Ilakkiya; Padmanabhan, Sridevi

    2017-04-01

    Our objective was to assess the antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of photocatalytic titanium oxide. From a total sample of 115 brackets, 68 orthodontic stainless steel brackets were coated with titanium oxide using a radiofrequency magnetron sputtering machine. The coated brackets were then converted into 34 each of the anatase and rutile phases of titanium oxide. These brackets were subdivided into 4 groups for antibacterial study and 3 groups for cytotoxicity study. Brackets for the antibacterial study were assessed against the Streptococcus mutans species using microbiologic tests. Three groups for the cytotoxicity study were assessed using the thiazolyl tetrazolium bromide assay. The antibacterial study showed that both phases were effective, but the rutile phase of photocatalytic titanium oxide had a greater bactericidal effect than did the anatase phase. The cytotoxicity study showed that the rutile phase had a greater decrease in viability of cells compared with the anatase phase. It is recommended that orthodontic brackets be coated with the anatase phase of titanium oxide since they exhibited a significant antibacterial property and were only slightly cytotoxic. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. Application of photo-excitation reaction on titanium oxide thin film for control of wettability; Sanka chitann hakumakujo no hikari reiki hanno no nuresei seigyo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Nakajima, A.; Hashimoto, K. [The Univ. of Tokyo, Tokyo (Japan); Takada, Y. [Kyushu Univ., Fukuoka (Japan)

    2000-03-31

    It is clarified that the photo-excitation hydrophilic reaction increasing wettability remarkably is induced by changing surface structure of titanium oxide radiated light. There are already many examples being in practical use of coating products applied hydrophilic reaction of titanium oxide surface such as drip-proof side millers for automobiles, self-cleaning building materials, and the like. When surface of titanium oxide having high activities for oxidisation and decomposition is coated organic materials and radiated light, wettability of surface changes as organic materials are decomposed. If it is possible to change wettability shaping pattern drastically by radiating light, the possibility of application for printing materials will be developed. After increasing contact angle by coating water and oil repellent on the titanium oxide thin film, images can be shaped by radiating light into pattern for changing surface of titanium oxide to be ultra hydrophilicity as decomposition of repellent. At that time, contact angle is 150 degree in water, 80 degree in oil, for not radiated aria, and is 0 degree in water and oil for radiated aria. Application for control technology of wettability keeps possibility of broader development to itself, not staying ability of self-cleaning and drip-proof. (NEDO)

  7. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation

    Science.gov (United States)

    Raliya, Ramesh; Avery, Caroline; Chakrabarti, Sampa; Biswas, Pratim

    2017-06-01

    Discharge of azo dyes by textile and allied industries to the environment is a growing problem. Degradation of an azo dye, methyl orange (MO), was tested in simulated wastewater with different oxide nanomaterials acting as photocatalysts under visible light. Titanium dioxide (TiO2), zinc oxide (ZnO), and graphene oxide (GO) were synthesized, characterized, and applied for adsorptive and photocatalytic removal of the dye. Factors such as initial concentration of MO and size of nanoparticle photocatalyst were varied to determine the optimum conditions for dye removal. Finally, nanocomposites of the three materials (GO-TiO2-ZnO) were synthesized and tested for its photocatalytic performance. The composition of the individual oxide in the nanocomposite was then varied to achieve the best photocatalytic performance.

  8. Scandium and Titanium Containing Single-Walled Carbon Nanotubes for Hydrogen Storage: a Thermodynamic and First Principle Calculation.

    Science.gov (United States)

    Mananghaya, Michael; Yu, Dennis; Santos, Gil Nonato; Rodulfo, Emmanuel

    2016-06-15

    The generalized gradient approximation (GGA) to density functional theory (DFT) calculations indicate that the highly localized states derived from the defects of nitrogen doped carbon nanotube with divacancy (4ND-CNxNT) contribute to strong Sc and Ti bindings, which prevent metal aggregation. Comparison of the H2 adsorption capability of Sc over Ti-decorated 4ND-CNxNT shows that Ti cannot be used for reversible H2 storage due to its inherent high adsorption energy. The Sc/4ND-CNxNT possesses favorable adsorption and consecutive adsorption energy at the local-density approximation (LDA) and GGA level. Molecular dynamics (MD) study confirmed that the interaction between molecular hydrogen and 4ND-CNxNT decorated with scandium is indeed favorable. Simulations indicate that the total amount of adsorption is directly related to the operating temperature and pressure. The number of absorbed hydrogen molecules almost logarithmically increases as the pressure increases at a given temperature. The total excess adsorption of hydrogen on the (Sc/4ND)10-CNxNT arrays at 300 K is within the range set by the department of energy (DOE) with a value of at least 5.85 wt%.

  9. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds

    Science.gov (United States)

    Zanin, H.; Rosa, C. M. R.; Eliaz, N.; May, P. W.; Marciano, F. R.; Lobo, A. O.

    2015-05-01

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.

  10. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate.

    Science.gov (United States)

    Hsu, Chun-Wei; Lin, Zhong-Yi; Chan, Tzu-Yi; Chiu, Tai-Chia; Hu, Cho-Chun

    2017-06-01

    A novel method for the detection of dimethoate based on the peroxidase-like activity of silver-nanoparticles-modified oxidized multiwalled carbon nanotubes (AgNPs/oxMWCNTs) has been developed. The synthesized AgNPs/oxMWCNTs showed excellent peroxidease-like catalytic activity in hydrogen peroxide-Amplex red (AR) system (AR is oxidized to resorufinat, with the resorufin fluorescence at 584nm being used to monitor the catalytic activity). After dimethoate was added to AgNPs/oxMWCNTs, the interaction between dimethoate and the AgNPs inhibited the catalytic activity of AgNPs/oxMWCNTs. The decrease in fluorescence was used for the detection of dimethoate in the range of 0.01-0.35μgmL -1 (R 2 =0.998) with a detection limit of 0.003μgmL -1 (signal/noise=3). This method exhibited good selectivity for the detection of dimethoate even in the presence of high concentration of other pesticides. Consequently, the method was applied to measure the concentration of dimethoate residue in lake water and fruit, thus obtaining satisfactory results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Response of methane production via propionate oxidation to carboxylated multiwalled carbon nanotubes in paddy soil enrichments

    Directory of Open Access Journals (Sweden)

    Jianchao Zhang

    2018-01-01

    Full Text Available Carboxylated multiwalled carbon nanotubes (MWCNTs-COOH have become a growing concern in terms of their fate and toxicity in aqueous environments. Methane (CH4 is a major product of organic matter degradation in waterlogged environments. In this study, we determined the effect of MWCNTs-COOH on the production of CH4 from propionate oxidation in paddy soil enrichments. The results showed that the methanogenesis from propionate degradation was accelerated in the presence of MWCNTs-COOH. In addition, the rates of CH4 production and propionate degradation increased with increasing concentrations of MWCNTs-COOH. Scanning electron microscopy (SEM observations showed that the cells were intact and maintained their structure in the presence of MWCNTs-COOH. In addition, SEM and fluorescence in situ hybridization (FISH images revealed that the cells were in direct contact with the MWCNTs and formed cell-MWCNTs aggregates that contained both bacteria and archaea. On the other hand, nontoxic magnetite nanoparticles (Fe3O4 had similar effects on the CH4 production and cell integrity as the MWCNTs-COOH. Compared with no nanomaterial addition, the relative abundances of Geobacter and Methanosarcina species increased in the presence of MWCNTs-COOH. This study suggests that MWCNTs-COOH exerted positive rather than cytotoxic effects on the syntrophic oxidation of propionate in paddy soil enrichments and affected the bacterial and archaeal community structure at the test concentrations. These findings provide novel insight into the consequences of nanomaterial release into anoxic natural environments.

  12. Graphene oxide-multiwalled carbon nanotubes composite as an anode for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Majchrzycki Łukasz

    2016-09-01

    Full Text Available Nowadays reduced graphene oxide (rGO is regarded as a highly interesting material which is appropriate for possible applications in electrochemistry, especially in lithium-ion batteries (LIBs. Several methods were proposed for the preparation of rGO-based electrodes, resulting in high-capacity LIBs anodes. However, the mechanism of lithium storage in rGO and related materials is still not well understood. In this work we focused on the proposed mechanism of favorable bonding sites induced by additional functionalities attached to the graphene planes. This mechanism might increase the capacity of electrodes. In order to verify this hypothesis the composite of non-reduced graphene oxide (GO with multiwalled carbon nanotubes electrodes was fabricated. Electrochemical properties of GO composite anodes were studied in comparison with similarly prepared electrodes based on rGO. This allowed us to estimate the impact of functional groups on the reversible capacity changes. As a result, it was shown that oxygen containing functional groups of GO do not create, in noticeable way, additional active sites for the electrochemical reactions of lithium storage, contrary to what has been postulated previously.

  13. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  14. Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application.

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md Azahar; Srivastava, Saurabh; Agrawal, Ved Varun; Ansari, S G; Malhotra, Bansi D

    2013-12-15

    Nanostructured magnesium oxide (sizecarbon nanotubes (nMgO-cMWCNTs) deposited electrophoretically onto indium tin oxide (ITO) coated glass electrode and have been utilized for Vibrio cholerae detection. Aminated 23 bases single stranded DNA (NH2-ssDNA) probe sequence (O1 gene) of V. cholerae has been covalently functionalized onto nMgO-cMWCNTs/ITO electrode surface using EDC-NHS chemistry. This DNA functionalized MgO grafted cMWCNTs electrode has been characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical techniques. The results of XPS studies reveal that sufficient O-C=O groups present at the nMgO-cMWCNTs surface are utilized for DNA binding. The results of hybridization studies conducted with fragmented target DNA (ftDNA) of V. cholerae using electrochemical impedance spectroscopy (EIS) reveal sensitivity as 3.87 Ω ng(-1) cm(-2), detection limit of ~21.70 ng µL(-1) in the linear range of 100-500 ng µL(-1) and stability of about 120 days. The proposed DNA functionalized nMgO-cMWCNTs nanomatrix provides a novel impedimetric platform for the fabrication of a compact genosensor device for biomedical application. © 2013 Elsevier B.V. All rights reserved.

  15. Enhanced electrochemical performance of amorphous carbon nanotube-manganese-di-oxide-poly-pyrrole ternary nanohybrid

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Howli, P.; Chattopadhyay, K. K.; Banerjee, D.

    2017-12-01

    Amorphous carbon nanotubes (a-CNTs) manganese di oxide (MnO2)-poly pyrrole (PPy) ternary nanocomposites have been synthesized by a simple chemical route. The as prepared samples have been characterized with different characterization tools that include field emission scanning and high resolution transmission electron microscopy, Raman, Fourier transformed infrared as well as UV-Vis spectroscopy. The electrochemical performance of all the as prepared pure and hybrid samples have been studied in detail. It has been seen that the ternary hybrid shows efficient electrochemical performance with high value of specific capacitance with good stability even up to 2000 cycles. The superior performance of the hybrid samples can be attributed to the strong synergistic effect between the components resulting electron shuttling along PPy main chains and inter-chain raising built-in continuous conductive network. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. These studies can well speculate the existence of another supercapacitor hybrid for the use in environment friendly electrode and thus a pollution free nature.

  16. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy.

    Science.gov (United States)

    Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu

    2015-12-01

    Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. Copyright © 2015. Published by Elsevier Ltd.

  17. Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: silver, zinc oxide and titanium dioxide.

    Science.gov (United States)

    Liu, Huanliang; Yang, Danfeng; Yang, Honglian; Zhang, Huashan; Zhang, Wei; Fang, Yanjun; Lin, Zhiqing; Tian, Lei; Lin, Bencheng; Yan, Jun; Xi, Zhuge

    2013-03-15

    Silver, zinc oxide, and titanium dioxide nanoparticles are used as sterilisation materials to enhance the performance of disinfectants. We investigated the respiratory tract immune toxicity ("immunotoxicity") of these nanoparticles in vivo and in vitro, and we explored the relationships between particle size, particle shape, chemical composition, chemical stability and the toxicological effects of these typical nanoparticles in rats. In vivo, the rats were exposed to nanoparticles by intratracheal instillation. Exposure to nanoparticles caused an increase in oxidative injury to the lungs and disorders in regulating the cytokine network, which were detected in the bronchoalveolar lavage fluid, suggesting that oxidative stress might be important for inducing the respiratory immunotoxicity of nanoparticles. In vitro, the phagocytic function of alveolar macrophages (AMs) was dose-dependently reduced by nanoparticles, and ZnO nanoparticles induced greater cytotoxicity than the silver and titanium-dioxide nanoparticles, which were coincident with the results of multiple measurements, such as a cell viability assay by WST-8 and LDH measurements. Comparative analyses demonstrated that particle composition and chemical stability most likely had a primary role in the biological effects of different nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  19. Construct Scaffold-like delivery system with poly (lactic-co-glycolic) microspheres on micro-arc oxidation titanium

    Science.gov (United States)

    Wang, Lin; Zheng, Huade; Du, Chang; Shi, Zhifeng; Ren, Li; Wang, Yingjun

    2013-02-01

    In this paper, we present the first report about constructing a scaffold-like delivery system with poly (lactic-co-glycolic) (PLGA) microspheres on micro-arc oxidation titanium (MAO-Ti). The results show that this system could be stable on the porous MAO-Ti surface up for 6 weeks. Not only the system could control the release of model protein BSA, but also the MAO film could regulate the pH value of the solution which would decrease by the degradation of PLGA microspheres. In addition, compared to MAO-Ti, this system loaded with BSA could improve the proliferation of HBMSCs after 3 or 7 days culture.

  20. Surveying and Comparing Thermal Conductivity and Physical Properties of Oil Base NanoFluids Containing Carbon and Metal Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    H. Ahmadi

    2012-12-01

    Full Text Available In this research, nano materials with tubular structures are added to SAE 20W50 engine oil to study the rate of their effects on the properties of engine oil. Multi-walled carbon nanotubes (MWCNTs and vanadium oxide nanotubes (VONTs has been used as two different additive materials, one of them is carbonic and the other is metallic oxides and their effect on  different parameters containing viscosity, thermal conductivity coefficient, flash point and pour point of engine oil as the quality properties of engine oil has been studied and compared. The samples of two concentrations 0.1 and 0.2 wt% with using planetary ball mill were made. The obtained results show that MWCNTs in all cases, which  have been evaluated, had better functionality with respect to vanadium oxide nanotubes. In the 0.1 wt% concentration, flash point of MWCNTs/oil and VONTs/oil increased about 9.3% and 5.8% respectively. In addition, thermal conductivity of them increased 13.2% and 10.2% respectively.

  1. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.

    Science.gov (United States)

    Korhonen, Juuso T; Hiekkataipale, Panu; Malm, Jari; Karppinen, Maarit; Ikkala, Olli; Ras, Robin H A

    2011-03-22

    Hollow nano-objects have raised interest in applications such as sensing, encapsulation, and drug-release. Here we report on a new class of porous materials, namely inorganic nanotube aerogels that, unlike other aerogels, have a framework consisting of inorganic hollow nanotubes. First we show a preparation method for titanium dioxide, zinc oxide, and aluminum oxide nanotube aerogels based on atomic layer deposition (ALD) on biological nanofibrillar aerogel templates, that is, nanofibrillated cellulose (NFC), also called microfibrillated cellulose (MFC) or nanocellulose. The aerogel templates are prepared from nanocellulose hydrogels either by freeze-drying in liquid nitrogen or liquid propane or by supercritical drying, and they consist of a highly porous percolating network of cellulose nanofibrils. They can be prepared as films on substrates or as freestanding objects. We show that, in contrast to freeze-drying, supercritical drying produces nanocellulose aerogels without major interfibrillar aggregation even in thick films. Uniform oxide layers are readily deposited by ALD onto the fibrils leading to organic-inorganic core-shell nanofibers. We further demonstrate that calcination at 450 °C removes the organic core leading to purely inorganic self-supporting aerogels consisting of hollow nanotubular networks. They can also be dispersed by grinding, for example, in ethanol to create a slurry of inorganic hollow nanotubes, which in turn can be deposited to form a porous film. Finally we demonstrate the use of a titanium dioxide nanotube network as a resistive humidity sensor with a fast response.

  2. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition.

    Science.gov (United States)

    Sul, Young-Taeg; Johansson, Carina B; Petronis, Sarunas; Krozer, Anatol; Jeong, Yongsoo; Wennerberg, Ann; Albrektsson, Tomas

    2002-01-01

    Titanium implants have been used widely and successfully for various types of bone-anchored reconstructions. It is believed that properties of oxide films covering titanium implant surfaces are of crucial importance for a successful osseointegration, in particular at compromized bone sites. The aim of the present study is to investigate the surface properties of anodic oxides formed on commercially pure (c.p.) titanium screw implants as well as to study 'native' oxides on turned c.p. titanium implants. Anodic oxides were prepared by galvanostatic mode in CH3COOH up to the high forming voltage of dielectric breakdown and spark formation. The oxide thicknesses, measured with Auger electron spectroscopy (AES), were in the range of about 200-1000 nm. Barrier and porous structures dominated the surface morphology of the anodic film. Quantitative morphometric analyses of the micropore structures were performed using an image analysis system on scanning electron microscopy (SEM) negatives. The pore sizes were < or = 8 microm in diameter and had 1.27-2.1 microm2 opening area. The porosity was in the range of 12.7-24.4%. The surface roughness was in the range of 0.96-1.03 microm (Sa), measured with TopScan 3D. The crystal structures of the titanium oxide were amorphous, anatase, and a mixtures of anatase and rutile type, as analyzed with thin-film X-ray diffractometry (TF-XRD) and Raman spectroscopy. The chemical compositions consisted mainly of TiO2, characterized with X-ray photoelectron spectroscopy (XPS). The native (thermal) oxide on turned implants was 17.4 nm (+/- 6.2) thick and amorphous. Its chemical composition was TiO2. The surface roughness had an average height deviation of 0.83 microm (Sa). The present results are needed to elucidate the influence of the oxide properties on the biological reaction. The results of animal studies using the presently characterized surface oxides on titanium implants will be published separately.

  3. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  4. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta

    International Nuclear Information System (INIS)

    Wei Liping; Thakkar, Megha; Chen Yuhong; Ntim, Susana Addo; Mitra, Somenath; Zhang Xueyan

    2010-01-01

    The multiwalled carbon nanotubes (MWNTs) are novel materials with many potential applications. The ecotoxicity of these materials is not well studied, but it is essential for environmental impact assessments. In this study a commercially available MWNT material was carboxylated by microwave assisted acid oxidation. This functionalized MWNT (f-MWNT) material was examined for toxicity effects using unicellular marine green alga Dunaliella tertiolecta. D. tertiolecta was exposed to f-MWNT which had been pre-equilibrated with culture media for 24 h. Substantial growth lag phase was observed at 5 and 10 mg L -1 f-MWNT, and the resulting 50% effective concentration (EC50) on 96-h growth was 0.82 ± 0.08 mg L -1 . During mid-exponential growth phase cytotoxicity was evidenced at 10 mg L -1 f-MWNT in 36% reduction in exponential growth rate, 88 mV more positive glutathione redox potential (indicative of oxidative stress), 5% and 22% reduction in photosystem II (PSII) quantum yield and functional cross section respectively, all relative to the control cultures. However, when the large f-MWNT aggregates in the media with 10 mg L -1 f-MWNT were removed by 0.2 μm filtration, D. tertiolecta did not show significant cytotoxicity effects in any of the above parameters. This suggests that the cytotoxicity effects originated predominately from the large f-MWNT aggregates. Analysis of the f-MWNT aggregation dynamics suggests active interaction between f-MWNT and algal cells or cell metabolites that promoted f-MWNT aggregation formation. The f-MWNT particles were also found absorbed on algal cell surface. The direct contact between f-MWNT and cell surface was likely responsible for reduced PSII functional cross section and oxidative stress during exponential growth.

  5. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness

    Directory of Open Access Journals (Sweden)

    Smijs TG

    2011-10-01

    Full Text Available Threes G Smijs1–3, Stanislav Pavel4 1Faculty of Science, Open University in The Netherlands, Rotterdam, The Netherlands; 2University of Leiden, Leiden Amsterdam Center for Drug Research, Leiden, The Netherlands; 3Erasmus MC, Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands; 4Charles University, Faculty of Medicine, Department of Dermatology, Pilsen, Czech Republic Abstract: Sunscreens are used to provide protection against adverse effects of ultraviolet (UVB (290–320 nm and UVA (320–400 nm radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2 and zinc oxide (ZnO minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs (<100 nm. This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle–particle, particle–skin, and skin–particle–light physicochemical interactions. Both sunscreen NPs induce (photocyto- and genotoxicity and have been sporadically observed in viable

  6. Nanocomposites of zeolite-titanium(IV) oxides: Preparation, characterization, adsorption, photocatalytic and bactericidal properties

    Science.gov (United States)

    Domoroshchina, Elena; Kravchenko, Galina; Kuz'micheva, Galina

    2017-06-01

    NT/zeolite nanocomposites (NT - nanosized titanium(IV) oxides: η-phase and Hombifine N with anatase; zeolite: Beta(25), ZSM-5 with different modules Si/Al, MOR, or Y) have been obtained by two methods: modified cold-impregnation method (method 1) and in situ method of introduction of zeolites into the reaction mixture during the synthesis of NT by hydrolysis of TiOSO4×xH2SO4×yH2O or TiOSO4×2H2O aqueous solutions (method 2), performed for the first time. According to the X-ray data, the following differences in the NT:zeolite systems under investigation have been revealed: the mixture of zeolites and NT in nanocrystalline (Hombifine N/zeolite) or amorphous states (η-phase/zeolite, except for η-phase/MOR, where NT peaks are absent) (method 1), and the mixture of Y-zeolite and amorphous NT or only Y-zeolite without NT (method 2), which indicates the different levels of interaction between NT and zeolites in the systems studied. The best characteristics of properties (photocatalytic, adsorption, and antibacterial) have been revealed in the nanocomposites synthesized by the method 2. The correlation between the photoreaction rate constant (the k value) under UV irradiation in the presence of nanocomposites (kmax for NT/ZSM-5(12)) and the type of precursor, its pH, synthesis duration, NT:zeolite ratio, organic dye composition (methyl orange or Rhodamine G) has been established. The highest degree of extraction of P(V) ions from model aqueous systems has been observed in the presence of nanocomposites with the largest total surface area of all particles (Rmax = 99.48% for NT/MOR). The correlation between the sorption degree of P(V) ions and the modulus of zeolite is possible. Antibacterial activity in the dark towards Escherichia coli has been found for Y and Beta(25) zeolites and nanocomposites on their basis (methods 1 and 2) with the maximum diameter of bacterial growth inhibition (18 mm) obtained for NT/Beta(25) (method 2) synthesized only from TiOSO4×xH2SO4

  7. Uranyl ion sorption mechanisms on titanium oxide: a multi-scale approach

    International Nuclear Information System (INIS)

    Vandenborre, J.; Drot, R.; Simoni, E.; Dong, W.; Du, J.; Dossot, M.; Humbert, B.; Ehrhardt, J.J.

    2005-01-01

    Full text of publication follows: Radionuclides retention mechanisms onto mineral phases is of primary importance for nuclear waste management. The aim of the presented study is to demonstrate that it is possible to predict the retention properties of a methodological powdery substrate from the study of its natural crystallographic orientations. Among the radionuclides of interest, U(VI) can be seen as a model of the radionuclides oxo-cations. The substrate under study is the titanium oxide (TiO 2 ). In fact, rutile can be found as powder and also as manufactured single crystal which allows to study the retention processes on perfectly known crystallographic planes. Since the repartition of the different crystallographic orientations are known for the powder, the results obtained for the single crystals can directly be used to account for the powder retention properties. By using combined spectroscopic techniques such as TRLFS, XPS, DRIFT and SHG, it is possible to determine the nature of the reactive surface sites and also the surface species. XPS and TRLFS measurements allowed to determine that two same uranyl surface species were formed on titania (110) and (001). Only, the relative intensities of these species vary with the surface coverage. Atomic Force Microscopy was carried out to verify that no surface precipitation occurs for the higher surface coverages. Moreover, these analysis have also evidenced that the U(VI) sorption is homogeneous. These observations were corroborated by SHG experiments (mainly for (001)) which have also shown that the sorption occurs, in a first step, onto preferential surface symmetry axis. For rutile powder, the preferential crystallographic orientations are (110), (100) and (101) in the ratio 60/20/20. TRLFS and XPS experiments have shown that two uranyl surface species are formed whatever the pH value ranged from 1 to 5. The spectroscopic characteristics of these species are the same as the ones observed on (110) and (001

  8. Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater

    Energy Technology Data Exchange (ETDEWEB)

    Brunelli, Andrea; Zabeo, Alex; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio, E-mail: marcom@unive.it [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy)

    2016-05-15

    Long-term stability of two engineered nanomaterials (ENMs), i.e., the inorganic n-TiO{sub 2} and the organic Multi-Walled Carbon Nanotubes (MWCNTs), dispersed in artificial freshwater (5–100 mg l{sup −1}), was investigated from short-term settling velocity, particle size distribution, and surface charge. Hydrodynamic diameter and ζ-pot, calculated by means of dynamic and electrophoretic light scattering, respectively, qualitatively indicated a general ENMs dispersion instability over 1 h time. Sedimentation results, obtained by centrifugal separation analysis using the LUMiSizer over approx. 30 min analysis time, allowed to estimate the quantitative long-term (over 30 days) stability of ENMs. Settling data fitted satisfactorily with a first-order kinetic equation (R{sup 2} in the range of 0.918–0.989). The settling rate constant k values extrapolated at gravity spanned one order of magnitude, i.e., from 7.21 × 10{sup −5} to 4.12 × 10{sup −4} s{sup −1}, and with the increasing of initial ENMs concentration. Sedimentation velocities were in good agreement with short- to long-term literature data (7.8 × 10{sup −2}–1.7 × 10{sup −}1 m day{sup −1} vs. 5 × 10{sup −4}–3 × 10{sup −1} m day{sup −1} for n-TiO{sub 2} and 5.9 × 10{sup −2}–3.4 × 10{sup −1} m day{sup −1} vs. 2 × 10{sup −1}–1.2 m day{sup −1} for MWCNTs). n-TiO{sub 2} showed a higher long-term stability with respect to MWCNTs (average: 1 × 10{sup −1} ± 3.4 × 10{sup −2} m day{sup −1} instead of 1.7 × 10{sup −1} ± 1.1 × 10{sup −1} m day{sup −1}, respectively).

  9. Plasma-induced synthesis of Pt nanoparticles supported on TiO{sub 2} nanotubes for enhanced methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Hu, Xiulan, E-mail: whoxiulan@163.com [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China)

    2017-03-31

    Highlights: • Pt nanoparticles are synthesized by plasma sputtering in water. • Pt/C/TiO{sub 2} nanotubes shows better mass activity and CO-poisoning tolerance than Pt/C. • TiO{sub 2} nanotubes are more suitable for support materials than TiO{sub 2} small particles. • The metal-support interactions between Pt and TiO{sub 2} nanotubes are detected by XPS. - Abstract: A Pt/C/TiO{sub 2} nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO{sub 2} nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO{sub 2} synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO{sub 2} catalysts for methanol oxidation showed that TiO{sub 2} nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO{sub 2} short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO{sub 2} nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO{sub 2} nanotubes, which could mitigate the poisoning of the Pt catalyst by CO{sub ads}, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO{sub 2} nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  10. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aliasghari, S.; Skeldon, P., E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E.

    2014-10-15

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti{sub 3}O{sub 5}, and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti{sub 2}O{sub 5} and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short.

  11. Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts

    Science.gov (United States)

    Hu, Di; Xiao, Wei; Chen, George Z.

    2013-04-01

    Metal oxide precursors (ca. 90 wt pct Ti, 6 wt pct Al, and 4 wt pct V) were prepared with a hollow structure in various shapes such as a sphere, miniature golf club head, and cup using a one-step solid slip-casting process. The precursors were then electro-deoxidized in molten calcium chloride [3.2 V, 1173 K (900 °C)] against a graphite anode. After 24 hours of electrolysis, the near-net-shape Ti-6Al-4V product maintained its original shape with controlled shrinkage. Oxygen contents in the Ti-6Al-4V components were typically below 2000 ppm. The maximum compressive stress and modulus of electrolytic products obtained in this work were approximately 243 MPa and 14 GPa, respectively, matching with the requirement for medical implants. Further research directions are discussed for mechanical improvement of the products via densification during or after electrolysis. This simple, fast, and energy-efficient near-net-shape manufacturing method could allow titanium alloy components with desired geometries to be prepared directly from a mixture of metal oxides, promising an innovative technology for the low-cost production of titanium alloy components.

  12. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel

    International Nuclear Information System (INIS)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M.

    2009-01-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO 3 . With the first technique was used Co 3 O 4 obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO 3 , the obtained Co 3 O 4 was mixed with TiO 2 on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  13. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    International Nuclear Information System (INIS)

    Aliasghari, S.; Skeldon, P.; Thompson, G.E.

    2014-01-01

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti 3 O 5 , and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti 2 O 5 and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short

  14. Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge.

    Science.gov (United States)

    MacDonald, Daniel E; Rapuano, Bruce E; Schniepp, Hannes C

    2011-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy's surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy's surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. Published by Elsevier B.V.

  15. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle

    DEFF Research Database (Denmark)

    Salieri, Beatrice; Righi, Serena; Pasteris, Andrea

    2015-01-01

    when performing Life Cycle Impact Assessment, where characterization models and consequently characterization factors (CFs) for ENPs are missing. This paper aims to provide the freshwater ecotoxicity CF for titanium dioxide nanoparticles (nano-TiO2). The USEtox™ model has been selected...

  16. Dermal Absorption of Nanomaterials Titanium Dioxide and Zinc Oxide Based Sunscreen

    DEFF Research Database (Denmark)

    Beer, Christiane; Dokkedahl, Karin Stenderup; Wang, Jing

    of nanomaterials in products on the Danish market and their consequences on consumers and the environment. Furthermore, the aim is to clarify possible risks that might be associated with nanomaterials for consumers and the environment. The current project ’Dermal Absorption of Nanomaterials Titanium Dioxide...

  17. Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm.

    Science.gov (United States)

    Diggikar, Rahul S; Patil, Rajendra H; Kale, Sheetal B; Thombre, Dipalee K; Gade, Wasudeo N; Kulkarni, Milind V; Kale, Bharat B

    2013-09-01

    Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.

  18. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xin; Zhou Wei-Man; Liu Wei-Hua; Wang Xiao-Li

    2015-01-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. (paper)

  19. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites

    International Nuclear Information System (INIS)

    Song Ping’an; Liu Lina; Fu Shenyuan; Yu Youming; Jin Chunde; Wu Qiang; Zhang Yan; Li Qian

    2013-01-01

    The extraordinary properties of carbon nanotubes (CNTs) and graphene stimulate the development of advanced composites. Recently, several studies have reported significant synergies in the mechanical, electrical and thermal conductivity properties of polymer nanocomposites by incorporating their nanohybrids. In this work, we created polypropylene nanocomposites with homogeneous dispersion of CNTs and reduced graphene oxides via a facile polymer-latex-coating plus melt-mixing strategy, and investigated their synergistic effects in their viscoelastic, gas barrier, and flammability properties. Interestingly, the results show remarkable synergies, enhancing their melt modulus and viscosity, O 2 barrier, and flame retardancy properties and respectively exhibiting a synergy percentage of 15.9%, 45.3%, and 20.3%. As previously reported, we also observed remarkable synergistic effects in their tensile strength (14.3%) and Young’s modulus (27.1%), electrical conductivity (32.3%) and thermal conductivity (34.6%). These impressive results clearly point towards a new strategy to create advanced materials by adding binary combinations of different types of nanofillers. (paper)

  20. Thermal sensitivity of carbon nanotube and graphene oxide containing responsive hydrogels

    Directory of Open Access Journals (Sweden)

    E. Manek

    2016-08-01

    Full Text Available Comparative investigations are reported on poly(N-isopropylacrylamide (PNIPA gels of various carbon nanotube (CNT and graphene oxide (GO contents synthesized under identical conditions. The kind and concentration of the incorporated carbon nanoparticles (CNPs influence the swelling and stress-strain behaviour of the composites. Practically independently of the filler content, incorporation of CNPs appreciably improves the fracture stress properties of the gels. The time constant and the swelling ratio of the shrinkage following an abrupt increase in temperature of the swelling medium from 20 to 50 °C can be adjusted by selecting both the type and the amount of nanoparticle loading. This offers a means of accurately controlling the deswelling kinetics of drug release with PNIPA systems, and could be employed in sensor applications where fast and excessive shrinkage are a significant drawback. Both CNTs and GO enhance the infrared sensitivity of the PNIPA gel, thus opening a route for the design of novel drug transport and actuator systems. It is proposed that the influence of the CNPs depends more on their surface reactivity during the gel synthesis rather than on their morphology. One of the important findings of this study is the existence of a thermally conducting network in the GO filled gels.

  1. Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Rajesh Kr., E-mail: r05bhu@gmail.com [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Xingjue, Wang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Kumar, Vinod [Department of Zoology, Banaras Hindu University, Varanasi (India); Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi (India); Singh, Vidya Nand [CSIR-National Physical Laboratory, New Delhi (India)

    2014-11-05

    Highlights: • We are reporting supercapacitance performance of BI-GO/MWCNTs composite. • The specific capacitance of BI-GO/MWCNTs is 275 and 460 F/g at 200 and 5 mV/s scan rate. • This composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate. - Abstract: We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H{sub 2}SO{sub 4}. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability.

  2. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  3. Zinc Oxide-Multi Walled Carbon Nanotubes Nanocomposites for Carbon Monoxide Gas Sensor Application.

    Science.gov (United States)

    Alharbi, Najlaa D; Ansari, M Shahnawaze; Salah, Numan; Khayyat, Suzan A; Khan, Zishan H

    2016-01-01

    Zinc oxide (ZnO)/multi walled carbon nanotubes (MWCNTs) composites based sensors with different ZnO concentrations were fabricated to improve carbon monoxide (CO) gas sensing properties in comparison to the sensors based on bare MWCNTs. To study the structure, morphology and elemental composition of the resultant products, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDS) were carried out. It has been observed that as the concentration of ZnO is increased more and more ZnO nanoparticles in the form of nodes get attached to MWCNTs resulting the reduction in average diameter of MWCNTs. The typical response of ZnO/MWCNTs composites based gas sensors for different CO concentrations (40, 100, 140 and 200 ppm) was studied by using very advanced sensing setup attached to I-V measurement system. Different sensing parameters such as: resistive response, sensitivity and response time were estimated at room temperature for all the fabricated sensors. The results indicated that the sensor based on nanocomposite which has 30 mg ZnO dispersed on 20 mg MWCNTs showing highest sensitivity and fastest response. All the sensors showed response times ranging from 8 to 23 seconds. The sensing mechanism behind the sensors based on ZnO/MWCNTs nanocomposites for CO gas at room temperature is also discussed in the present report.

  4. Titanate Nanotubes Decorated Graphene Oxide Nanocomposites: Preparation, Flame Retardancy, and Photodegradation

    Science.gov (United States)

    Sang, Bin; Li, Zhi-wei; Li, Xiao-hong; Yu, Lai-gui; Zhang, Zhi-jun

    2017-07-01

    Most polymers exhibit high flammability and poor degradability, which restrict their applications and causes serious environmental problem like "white pollution." Thus, titanate nanotubes (TNTs) were adopted to decorate graphene oxide (GO) by a facile solution method to afford TNTs/GO nanocomposites with potential in improving the flame retardancy and photodegradability of flexible polyvinyl chloride (PVC). Results show that the as-prepared TNTs/GO can effectively improve the thermal stability and flame retardancy than TNTs and GO, especially, the peak heat release rate and total heat release were reduced by 20 and 29% with only 2.5 wt.% loading. And more, the TNTs/GO also improve the photodegradability of PVC compared with the neat PVC. The reasons can be attributed to synergistic flame-retardant and photocatalytic effects between TNTs and GO. The present research could contribute to paving a feasible pathway to constructing polymer-matrix composites with desired flame retardancy and photodegradability, thereby adding to the elimination of white pollution caused by polymers.

  5. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  6. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Moon il Kim

    2017-12-01

    Full Text Available Liquid epoxy resins have received much attention from both academia and the chemical industry as eco-friendly volatile organic compound (VOC-free alternatives for applications in coatings and adhesives, especially in those used in households. Epoxy resins show high chemical resistance and high creep resistance. However, due to their brittleness and lack of thermal stability, additional fillers are needed for improving the mechanical and thermal properties. Halloysite nanotubes (HNTs are naturally abundant, inexpensive, and eco-friendly clay minerals that are known to improve the mechanical and thermal properties of epoxy composites after suitable surface modification. Zirconium is well known for its high resistance to heat and wear. In this work, zirconium oxide-impregnated HNTs (Zr/HNTs were added to epoxy resins to obtain epoxy composites with improved mechanical and thermal properties. Zr/HNTs were characterized by field-emission transmission electron microscopy, transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Changes in the thermal properties of the epoxy composites were characterized by thermo mechanical analysis and differential scanning calorimetry. Furthermore, flexural properties of the composites were analyzed using a universal testing machine.

  7. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  8. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  9. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    Science.gov (United States)

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  10. Performance of a Scanning Mobility Particle Sizer in Measuring Diverse Types of Airborne Nanoparticles: Multi-Walled Carbon Nanotubes, Welding Fumes, and Titanium Dioxide Spray

    Science.gov (United States)

    Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-01-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in

  11. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    Science.gov (United States)

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  12. One‐dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting

    Science.gov (United States)

    Ge, Mingzheng; Li, Qingsong; Cao, Chunyan; Huang, Jianying; Li, Shuhui; Zhang, Songnan; Chen, Zhong; Zhang, Keqin; Al‐Deyab, Salem S.

    2016-01-01

    Hydrogen production from water splitting by photo/photoelectron‐catalytic process is a promising route to solve both fossil fuel depletion and environmental pollution at the same time. Titanium dioxide (TiO2) nanotubes have attracted much interest due to their large specific surface area and highly ordered structure, which has led to promising potential applications in photocatalytic degradation, photoreduction of CO2, water splitting, supercapacitors, dye‐sensitized solar cells, lithium‐ion batteries and biomedical devices. Nanotubes can be fabricated via facile hydrothermal method, solvothermal method, template technique and electrochemical anodic oxidation. In this report, we provide a comprehensive review on recent progress of the synthesis and modification of TiO2 nanotubes to be used for photo/photoelectro‐catalytic water splitting. The future development of TiO2 nanotubes is also discussed. PMID:28105391

  13. One-dimensional TiO2Nanotube Photocatalysts for Solar Water Splitting.

    Science.gov (United States)

    Ge, Mingzheng; Li, Qingsong; Cao, Chunyan; Huang, Jianying; Li, Shuhui; Zhang, Songnan; Chen, Zhong; Zhang, Keqin; Al-Deyab, Salem S; Lai, Yuekun

    2017-01-01

    Hydrogen production from water splitting by photo/photoelectron-catalytic process is a promising route to solve both fossil fuel depletion and environmental pollution at the same time. Titanium dioxide (TiO 2 ) nanotubes have attracted much interest due to their large specific surface area and highly ordered structure, which has led to promising potential applications in photocatalytic degradation, photoreduction of CO 2 , water splitting, supercapacitors, dye-sensitized solar cells, lithium-ion batteries and biomedical devices. Nanotubes can be fabricated via facile hydrothermal method, solvothermal method, template technique and electrochemical anodic oxidation. In this report, we provide a comprehensive review on recent progress of the synthesis and modification of TiO 2 nanotubes to be used for photo/photoelectro-catalytic water splitting. The future development of TiO 2 nanotubes is also discussed.

  14. A General Strategy for the Preparation of Carbon Nanotubes and Graphene Oxide Decorated with PdO Nanoparticles in Water

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2010-07-01

    Full Text Available The preparation of carbon nanotube (CNT/PdO nanoparticles and graphene oxide (GO/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step “green” synthetic approach in aqueous Pd(NO32 solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2–3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1 CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2 different types of CNTs, including single-walled carbon nanotubes (SWCNTs, double-walled carbon nanotubes (DWCNTs, and multiwalled carbon nanotubes (MWCNTs; and 3 different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH4, and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  15. A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules

    DEFF Research Database (Denmark)

    In, Su-Il; Vesborg, Peter Christian Kjærgaard; Abrams, Billie

    2011-01-01

    Nitrogen-doping (N-doping) is a popular strategy for promoting the absorption of visible light in TiO2 and other photocatalysts. We have grown TiO2 nanotubes onto non-conducting Pyrex in a one step process via single layer titanium films. In an attempt to improve the self-cleaning ability...... of vertically aligned TiO2 nanotube arrays under visible light irradiation we have doped them with nitrogen and tested the resulting nanotube films by two representative test methods. The first method is an established dye-test which is typically used as a “quick-and-dirty” screening for activity. The second...

  16. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    Science.gov (United States)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  17. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  18. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  19. Why nano-oxidation with carbon nanotube probes is so stable: II. Bending behaviour of CNT probes during nano-oxidation

    International Nuclear Information System (INIS)

    Kuramochi, H; Tokizaki, T; Ando, K; Yokoyama, H; Dagata, J A

    2007-01-01

    Part I demonstrated that nano-oxidation in the dynamic-force mode was enhanced by the use of conductive carbon nanotube (CNT) probes. Fabrication of oxide nanostructures using CNT probes benefited not only from the smaller tip apex compared to conventional probes but from improved operational stability over a wide range of exposure conditions primarily due to the hydrophobic nature of the CNT. Here we investigate the bending response of CNT probes to electrostatic and meniscus forces during nano-oxidation. We conclude that bending of the CNT introduces an additional cushion in the combined cantilever-probe deflection system, thus improving overall stability of the tip-sample junction during nano-oxidation

  20. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    Unknown

    nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have been obtained. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with.

  1. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide nanoparticles through our novel method. For this purpose, the surface of TiO2 nanoparticle was treated with 3-aminopropyl triethoxy silane, a silane coupling agent, and then these functionalized nanoparticles was reacted with ±-chloro phenyl acetyl chloride. The chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2, 2, 6, 6-tetramethyl piperidine. These modified TiO2 nanoparticles were then dispersed in styrene (St monomers to carry out the in situ free radical polymerization.

  2. Thickness determination of electrochemical titanium oxide (Ti/TiO2) formed in HClO4 solutions

    International Nuclear Information System (INIS)

    Filippin, F.A.; Linarez Pérez, O.E.; Teijelo, M. López; Bonetto, R.D.; Trincavelli, J.; Avalle, L.B.

    2014-01-01

    Highlights: • Ex situ ellipsometry provides high accuracy thickness values and is used as a reference technique. • The delay observed for the current onset by Cyclic Voltammetry indicates a thicker initial oxide. • After calibration, EPMA was applied as a method for thickness determination at potentials higher than 1 V. - Abstract: Anodic Titanium oxide films were potentiodinamically grown on Ti foil and glass/Ti in 0.010 M HClO 4 at 50 mVs −1 . The current density-potential curves (j − E) showed that the oxide grows according to the physical model for high-field conduction. However, for final potential (E f ) higher than 1.5 V vs. Ag/AgCl (sat. KCl) the oxygen evolution reaction becomes more significant, and the formation of bubbles prevented or made more difficult the application of in situ techniques for the simultaneous study of the thickness and optical properties of the anodic layer. We developed a method based on electron probe microanalysis (EPMA) to calculate oxide thickness using ex situ ellipsometry as a reference technique. The normalized intensity of the O Kα peaks was measured for anodic oxides corresponding to E f values from spontaneous oxide up to 50 V, where a linear relationship was observed for a narrower range of final potentials. This behaviour was studied with Monte Carlo simulations. After calibration with ellipsometric results, to take into account sample damage during the electron irradiation, EPMA was applied as a method for thickness determination at E f ≥ 1.0 V. Once the method was established, ex situ thickness determinations became independent of the preparation method of the oxide layer, which represents a comparative advantage against ex situ ellipsometry

  3. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode

    International Nuclear Information System (INIS)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-Francois

    2009-01-01

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO 2 ) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO 2 ) and five cathodes (stainless steel, 316L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm -2 was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na 2 SO 4 ) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na 2 SO 4 L -1 was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAH L -1 . Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C 10 -C 50 ) was removed, whereas removal yields of 69% and 62% have been measured for O and G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO 2 could be efficiently used to reduce more than 90% of the COS toxicity.

  4. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.

    Science.gov (United States)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity.

  5. Microporous Titanium through Metal Injection Moulding of Coarse Powder and Surface Modification by Plasma Oxidation

    OpenAIRE

    Shbeh, Mohammed; Yerokhin, Aleksey; Goodall, Russell

    2017-01-01

    Titanium is one of the most attractive materials for biomedical applications due to having excellent biocompatibility accompanied by good corrosion resistance. One popular processing technique for Ti is Metal Injection Moulding (MIM). However, there are several issues associated with the use of this technique, such as the high cost of the fine powder used, the high level of contamination and consequent alteration to material properties, as well as the large volume shrinkage that occurs during...

  6. IR Laser-Produced Carbon-Phase Shield to Oxidation of Nanosized Titanium Monoxide

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2011-01-01

    Roč. 92, č. 2 (2011), s. 287-291 ISSN 0165-2370 R&D Projects: GA AV ČR IAA400720619; GA MŠk LC523 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : titanium monoxide * nanoparticles * carbothermal reduction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.487, year: 2011

  7. Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Wang, Shixiong; Yang, Xiangjun; Wang, Yapeng; Liu, Lixiang; Guo, Yuanyuan; Guo, Hong

    2014-01-01

    Ti 3+ self-doped yolk–shell structure titanium oxide nanoparticle aggregates are fabricated through an environmental template-free route and the reduction reaction at low temperature subsequently. After the Ti 3+ doping, the reduced TiO 2 sample exhibits a wide visible-light absorption ranged from 400 nm to 800 nm. The intrinsic hollow core–shell microstructure can make multiple reflections of light within the chamber, and thus results in more efficient use of the light source compared with solid structure. Besides, the large surface area can render the sample with a high activity. Therefore, Ti 3+ self-doped yolk–shell structure titanium oxide exhibits a superior photocatalytic activity under visible light. This strategy is simple, cheap and mass-productive, which may shed light on a new avenue for large scale production of self-doped yolk–shell structural nano functional materials for catalyst, sensors, energy storage and other new applications. - Graphical abstract: A facile generic strategy is employed to prepare Ti 3+ self-doped yolk–shell structure titanium oxide nanoparticle aggregates with the superior photocatalytic activity under visible light. - Highlights: • Yolk–shell TiO 2 mesospheres are synthesized by solvothermal alcoholysis. • Ti 3+ self-doped yolk–shell structure titanium oxide is obtained at low temperature. • It exhibits a remarkable photocatalytic activity

  8. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Wils, Regitze Sølling

    2017-01-01

    Nanosized titanium dioxide (TiO2) has been investigated in numerous studies on genotoxicity, including comet assay endpoints and oxidatively damaged DNA in cell cultures and animal models. The results have been surprisingly mixed, which might be attributed to physico-chemical differences...

  9. Study of the rheological properties of casting slips obtained from titanium oxide and bariun titanate in order to obtain pieces by means of casting in plaster moulds

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1986-01-01

    The behaviour of titanium-oxide (TiO 2 ) and barium titanate used in slip casting with plaster moulds is studied. Some data in several tests, as well as materials and methods applied are presented. (M.J.C.) [pt

  10. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  11. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides

    International Nuclear Information System (INIS)

    Kamisaka, Hideyuki; Adachi, Takahisa; Yamashita, Koichi

    2005-01-01

    The structure and optical properties of carbon-doped titanium oxides, TiO 2 , in the rutile and anatase forms have been investigated theoretically from first principles. Two possible doping sites were studied, carbon at an oxygen site (anion doping) and carbon at a titanium site (cation doping). The calculated structures suggest that cation-doped carbon atoms form a carbonate-type structure, whereas anion-doped carbon atoms do not invoke any significant structural change. A density-of-states analysis revealed three in-gap impurity states for anion doping. The optical properties of anion-doped cells qualitatively agree with the experimentally reported visible-light absorbance values. We ascribe part of the absorption to transitions from the valence band to one of the impurity states. These transitions should be able to promote photocatalytic reactions, because electron holes in the valence band are considered to be crucial for this process. Neither in-gap impurity states nor visible-light absorbance were observed in the case of cation doping. The effect of oxygen vacancies was also investigated. Introduction of oxygen vacancies into anion-doped TiO 2 populates the impurity states and thus suppresses photocatalysis. The interaction of a doped carbon atom with an oxygen vacancy at a finite spatial separation was also carried out. The possibility of either a carbon-oxygen vacancy pair or higher carbon-oxygen vacancy complex existing is discussed

  12. Study for preparation of nanoporous titania on titanium by anodic oxidation; Estudo da preparacao de titania nanoporosa sobre titanio por oxidacao anodica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Alessandra Pires

    2014-07-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H{sub 3}PO{sub 4} and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO{sub 2}. The results obtained in this study

  13. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.

    Science.gov (United States)

    Ramesh, Palanisamy; Itkis, Mikhail E; Bekyarova, Elena; Wang, Feihu; Niyogi, Sandip; Chi, Xiaoliu; Berger, Claire; de Heer, Walt; Haddon, Robert C

    2010-10-20

    We report the effect of electroc