WorldWideScience

Sample records for titanium multi-wall thermal

  1. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  2. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...

  3. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  4. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  5. Ballistic Limit Equation for Single Wall Titanium

    Science.gov (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  6. Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Szentes

    2012-06-01

    Full Text Available The electrical resistivity and thermal properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP composites have been investigated in the presence of coupling agents applied for improving the compatibility between the nanotubes and the polymer. A novel olefin-maleic-anhydride copolymer and an olefin-maleic-anhydride copolymer based derivative have been used as compatibilizers to achieve better dispersion of MWCNTs in the polymer matrix. The composites have been produced by extrusion followed by injection moulding. They contained different amounts of MWCNTs (0.5, 2, 3 and 5 wt% and coupling agent to enhance the interactions between the carbon nanotubes and the polymer. The electrical resistivity of the composites has been investigated by impedance spectroscopy, whereas their thermal properties have been determined using a thermal analyzer operating on the basis of the periodic thermal perturbation method. Rheological properties, BET-area and adsorption-desorption isotherms have been determined. Dispersion of MWCNTs in the polymer has been studied by scanning electron microscopy (SEM.

  7. Experimental Study of Multi-Walled Composite Shell Fragments under Thermal Force Effects

    Directory of Open Access Journals (Sweden)

    L. P. Tairova

    2015-01-01

    Full Text Available Multi-walled composite shells are a relatively new prospective type of load carrying structures for rocket and space engineering. These CFRP structures are produced by injection and infusion methods and have several advantages in comparison with common structures such as stringer-frame, grid and sandwich structures with a light core. In particular, those have more structural parameters, which enable one to control mechanical properties of the structure, and this is important in designing the load carrying structures of different purpose.Presently, there are few national and foreign publications on experimental investigations of mechanical properties of multi-walled shells. That is why the objective of the paper is to conduct the experimental study of deformation and failure processes of a multi-walled panel both under steady-state heating and under unsteady-state one.The paper presents the results of two tests: (1 the study of deformation and failure modes under compression and complete heating up to a specified temperature and (2 validation of working capability of multi-walled samples under single-side heating and compression simulating a start and flight version of the “ Proton” launch vehicle.Experimental results have shown that average elastic properties of multi-walled samples slightly depend on temperature for the studied range (from room temperature up to 195C while strength properties considerably decrease with increasing temperature, and this is typical for CFRP structures under compression. However, under unsteady-state short-term heating the structure has a strength that exceeds the minimal necessary strength of load carrying structures of the “Proton” launch vehicle (the samples satisfy simulated start conditions of the “Proton” launch vehicle. This is because of a low heat conductivity of the multi-walled core: an unheated sheet holds a low temperature and high load carrying capacity.Obtained results can be used in

  8. [Use and versatility of titanium for the reconstruction of the thoracic wall].

    Science.gov (United States)

    Córcoles Padilla, Juan Manuel; Bolufer Nadal, Sergio; Kurowski, Krzysztof; Gálvez Muñoz, Carlos; Rodriguez Paniagua, José Manuel

    2014-02-01

    Chest wall deformities/defects and chest wall resections, as well as complex rib fractures require reconstruction with various prosthetic materials to ensure the basic functions of the chest wall. Titanium provides many features that make it an ideal material for this surgery. The aim is to present our initial results with this material in several diseases. From 2008 to 2012, 14 patients were operated on and titanium was used for reconstruction of the chest wall. A total of 7 patients had chest wall tumors, 2 with sternal resection, 4 patients with chest wall deformities/defects and 3 patients with severe rib injury due to traffic accident. The reconstruction was successful in all cases, with early extubation without detecting problems in the functionality of the chest wall at a respiratory level. Patients with chest wall tumors including sternal resections were extubated in the operating room as well as the chest wall deformities. Chest trauma cases were extubated within 24h from internal rib fixation. There were no complications related to the material used and the method of implementation. Titanium is an ideal material for reconstruction of the chest wall in several clinical situations allowing for great versatility and adaptability in different chest wall reconstructions. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.

  9. On the characteristics and application of thin wall welded titanium tubes for heat transfer

    International Nuclear Information System (INIS)

    Nishimura, Takashi; Miyamoto, Yoshiyuki

    1985-01-01

    Because of the excellent corrosion resistance, thin wall welded titanium tubes have become to be used in large number as the heat transfer tubes of condensers and seawater desalting plants using seawater in place of conventional copper alloy tubes. Especially in nuclear power plants, the all titanium condensers using thin wall welded titanium tubes and titanium tube plates were adopted in the almost all plants under construction or expected to be constructed. In this report, the various characteristics of thin wall welded titanium tubes required for using them as heat transfer tubes, such as corrosion resistance, heat transfer characteristics, fatigue strength and expanding characteristics, are outlined, and the state of use is described. At first, relatively thick seamless titanium tubes were used for chemical industry, but thereafter, due to the advance of the mass production techniques, the welded titanium tubes of less than 0.7 mm thickness and high quality have become to be supplied at low cost. In 1969, titanium tubes were used for the first time in Japan for the air cooler in the condenser of Akita Power Station, Tohoku Electric Power Co., Inc. The features of titanium are small specific gravity, small linear expansion coefficient and small Young's modulus. (Kako, I.)

  10. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    Science.gov (United States)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  11. Reconstruction with a patient-specific titanium implant after a wide anterior chest wall resection

    Science.gov (United States)

    Turna, Akif; Kavakli, Kuthan; Sapmaz, Ersin; Arslan, Hakan; Caylak, Hasan; Gokce, Hasan Suat; Demirkaya, Ahmet

    2014-01-01

    The reconstruction of full-thickness chest wall defects is a challenging problem for thoracic surgeons, particularly after a wide resection of the chest wall that includes the sternum. The location and the size of the defect play a major role when selecting the method of reconstruction, while acceptable cosmetic and functional results remain the primary goal. Improvements in preoperative imaging techniques and reconstruction materials have an important role when planning and performing a wide chest wall resection with a low morbidity rate. In this report, we describe the reconstruction of a wide anterior chest wall defect with a patient-specific custom-made titanium implant. An infected mammary tumour recurrence in a 62-year old female, located at the anterior chest wall including the sternum, was resected, followed by a large custom-made titanium implant. Latissimus dorsi flap and split-thickness graft were also used for covering the implant successfully. A titanium custom-made chest wall implant could be a viable alternative for patients who had large chest wall tumours. PMID:24227881

  12. Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2018-04-01

    Full Text Available The aim of this study is to enhance the bioactivity of pure titanium using multiple surface treatments for the application of the implant. To form the biofunctional multilayer coating on pure titanium, anodization was conducted to make titanium dioxide nanotubes, then multi-walled carbon nanotubes were coated using a dipping method after an alkali treatment. The surface characteristics at each step were analyzed using a field emission scanning electron microscope and X-ray diffractometer. The effect of the multilayer coating on the biocompatibility was identified using immersion and cytotoxicity tests. Better hydroxyapatite formation was observed on the surface of multilayer-coated pure titanium compared to non-treated pure titanium after immersion in the simulated body fluid. Improvement of biocompatibility by multiple surface treatments was identified through various cytotoxicity tests using osteoblast cells.

  13. Consolidation of titanium hydride powders during the production of titanium PM parts: The effect of die wall lubricants

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2015-11-01

    Full Text Available The effects of die wall lubricants on the cold compaction of titanium hydride powder are studied. Three commonly-used die wall powder metallurgy lubricants – zinc stearate, Acrawax® C dispersion and Mirror Glaze® – are compared. The influence...

  14. Application of individually performed titanium mesh in infraorbital wall fracture reconstruction

    Directory of Open Access Journals (Sweden)

    Kai-Jian Sun

    2016-04-01

    Full Text Available AIM:To discuss the application effect of individually performed titanium mesh in infraorbital wall fracture reconstruction. METHODS:Sixty-seven patients(67 eyesdiagnosed as infraorbital fracture from January 2011 to February 2014 were performed reconstruction with individually performed titanium mesh. The recovery of incision, visual acuity, eyeball mobility, diplopia and proptosis were monitored by post-operation follow-up which lasted for 1a. RESULTS:No infection, titanium mesh transposition, prolapse, deformities, exclusion or ectropion were occurred in the follow-up period. The eyeball embole was less than 2mm by bilateral proptosis contrast. The diplopia in 5 eyes were disappeared in 4 and approved in one. The eyeball descent in 2 cases was disappeared. The visual acuity was the same compared with pre-operation. The rate of disappeared diplopia at primary position was 93% and improved significantly in the other 3 patients. The rate of disappeared diplopia at peripheral visual field was 86% and improved significantly in the other 2 patients.CONCLUSION:The reconstruction effect of individually performed titanium mesh in infraorbital wall fracture was satisfied and safe.

  15. THERMAL DECOMPOSITION AND FLAMMABILITY OF ACRYLONITRILE-BUTADIENE-STYRENE/MULTI-WALLED CARBON NANOTUBES COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li-fang Tong; Hai-yun Ma; Zheng-ping Fang

    2008-01-01

    Thermal and flammability properties of acrylonitrile-butadiene-styrene copolymer (ABS) with the addition of multi-walled carbon nanotubes (MWNTs) were studied. ABS/MWNTs composites were prepared via melt blending with the MWNTs content varied from 0.2% to 4.0% by mass. Thermogravimetry results showed that the addition of MWNTs accelerated the degradation of ABS during the whole process under air atmosphere, and both onset and maximum degradation temperature were lower than those of pure ABS. The destabilization effect of MWNTs on the thermal stability of the composites became unobvious under nitrogen, and the addition of MWNTs could improve the maximum degradation temperature. The heat release rate and time of ignition (tign) for the composites reduced greatly with the addition of MWNTs especially when the concentration of nanotubes was higher than 1.0%. The accumulation of carbon nanotubes with a network structure was observed and the char layer became thicker with increasing nanotubes concentration. Results from Raman spectra showed a higher degree of graphitization for the residues of ABS/MWNTs composites.

  16. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang; Gao, Yimin [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Xiao, Bing [Department of Physics and Quantum Theory Group, School of Science and Engineering, Tulane University, New Orleans, LA 70118 (United States); Li, Yefei, E-mail: yefeili@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Guoliang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-12-05

    Highlights: •Elastic properties of titanium borides are calculated by first principles calculation. •Thermodynamical stability of titanium borides is analyzed. •Heat capacity and thermal expansion coefficient for titanium borides are calculated and compared. •Grüneisen parameters of titanium borides are calculated. -- Abstract: The anisotropic elastic and thermal expansions of the titanium borides (TiB{sub 2}, Ti{sub 3}B{sub 4}, TiB{sub P}nma and TiB{sub F}m3{sup ¯}m) are calculated from first-principles using density functional theory. All borides show different anisotropic elastic properties; the bulk, shear and Young’s moduli are consistent with those determined experimentally. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to phonon excitations at low temperature. When the temperature is higher than 500 K, the volumetric coefficient is increased linearly by increasing temperature. Meanwhile, the heat capacities of titanium borides are obtained based on the knowledge of thermal expansion coefficient and the elasticity, the calculations are in good agreement with the experiments.

  17. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  18. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed; Mansour, Morkous S.; Memon, Nasir K.; Anjum, Dalaver H.; Chung, Suk-Ho

    2016-01-01

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide

  19. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2012-08-15

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are {approx}6%-8% for titanium, {approx}2% for copper, and {approx}0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  20. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    International Nuclear Information System (INIS)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.

    2012-01-01

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ∼6%-8% for titanium, ∼2% for copper, and ∼0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  1. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    Science.gov (United States)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.

    2012-08-01

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ˜6%-8% for titanium, ˜2% for copper, and ˜0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  2. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers

    International Nuclear Information System (INIS)

    Esthappan, Saisy Kudilil; Kuttappan, Suma Kumbamala; Joseph, Rani

    2012-01-01

    Highlights: ► Wet synthesis method was used for the synthesis of TiO 2 nano particles. ► Mechanical properties of polypropylene fibers were increased by the addition of TiO 2 nanoparticles. ► Thermal stability of polypropylene fiber was improved significantly by the addition of TiO 2 nano particles. ► TiO 2 nanoparticles dispersed well in polypropylene fibers. -- Abstract: Titanium dioxide nanoparticles were prepared by wet synthesis method and characterized by transmission electron microscopy and X-ray diffraction studies. The nanotitanium dioxide then used to prepare polypropylene/titanium dioxide composites by melt mixing method. It was then made into fibers by melt spinning and subsequent drawing. Mechanical properties of the fibers were studied using Favimat tensile testing machine with a load cell of 1200 cN capacity. Thermal behavior of the fibers was studied using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscope studies were used to investigate the titanium dioxide surface morphology and crosssection of the fiber. Mechanical properties of the polypropylene fiber was improved by the addition of titanium dioxide nanoparticles. Incorporation of nanoparticles improves the thermal stability of polypropylene. Differential scanning calorimetric studies revealed an improvement in crystallinity was observed by the addition of titanium dioxide nanoparticles.

  3. Evaluation of Three Cases Using a Novel Titanium Mesh System-Skull-Fit with Orbital Wall (Skull-Fit WOW)-For Cranial Base Reconstructions.

    Science.gov (United States)

    Hattori, Noriko; Nakajima, Hideo; Tamada, Ikkei; Sakamoto, Yoshiaki; Ohira, Takayuki; Yoshida, Kazunari; Kawase, Takeshi; Kishi, Kazuo

    2011-09-01

    Cranial base reconstructions associated with tumor resections around the orbital wall often require that both the upper and lateral orbital walls be reconstructed during a single procedure. Previously, we used titanium mesh plates that were preoperatively fabricated based on three-dimensional models. Although these plates are precise and do not increase the probability of infection, we still had to use autologous bones to reconstruct the orbital walls. Recently, we developed a new titanium mesh plate-called Skull-Fit(®)-with orbital wall (Skull-Fit WOW(®)), enabling us to reconstruct the cranial base and orbital walls without bone grafts. Here, we report on three reconstruction cases in which the novel titanium mesh-orbital wall system was used. In all three cases, the customized titanium mesh system performed satisfactorily with little, if any, complications.

  4. Titanium Heat Pipe Thermal Plane, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  5. STUDY OF THERMAL BEHAVIOUR ON TITANIUM ALLOYS (TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    VASUDEVAN D

    2017-08-01

    Full Text Available Titanium is recognized for its strategic importance as a unique lightweight, high strength alloyed structurally efficient metal for critical, high-performance aircraft, such as jet engine and airframe components. Titanium is called as the "space age metal" and is recognized for its high strength-to-weight ratio. Today, titanium alloys are common, readily available engineered metals that compete directly with stainless steel and Specialty steels, copper alloys, nickel based alloys and composites. Titanium alloys are needed to be heat treated in order to reduce residual stress developed during fabrication and to increase the strength. Titanium (Ti-6Al-4V alloy is an alpha, beta alloy which is solution treated at a temperature of 950 ºC to attain beta phase. This beta phase is maintained by quenching and subsequent aging to increase strength. Thermal cycling process was carried out for Ti-6Al-4V specimens using forced air cooling. Heat treated titanium alloy specimen was used to carry out various tests before and after thermal cycling, The test, like tensile properties, co-efficient of thermal expansion, Microstructure, Compression test, Vickers Hardness was examined by the following test. Coefficient of Thermal expansion was measured using Dilatometer. Tensile test was carried out at room temperature using an Instron type machine. Vickers's hardness measurement was done on the same specimen as used for the microstructural observation from near the surface to the inside specimen. Compression test was carried out at room temperature using an Instron type machine. Ti‐6Al‐4V alloy is a workhorse of titanium industry; it accounts for about 60 percent of the total titanium alloy production. The high cost of titanium makes net shape manufacturing routes very attractive. Casting is a near net shape manufacturing route that offers significant cost advantages over forgings or complicated machined parts.

  6. Reinforcement mechanism of multi-anchor wall with double wall facing

    Science.gov (United States)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  7. Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ci Lijie

    2009-01-01

    Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

  8. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    Science.gov (United States)

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  9. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    Science.gov (United States)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  10. Evaluation of Three Cases Using a Novel Titanium Mesh System—Skull-Fit® with Orbital Wall (Skull-Fit WOW®)—For Cranial Base Reconstructions

    Science.gov (United States)

    Hattori, Noriko; Nakajima, Hideo; Tamada, Ikkei; Sakamoto, Yoshiaki; Ohira, Takayuki; Yoshida, Kazunari; Kawase, Takeshi; Kishi, Kazuo

    2011-01-01

    Cranial base reconstructions associated with tumor resections around the orbital wall often require that both the upper and lateral orbital walls be reconstructed during a single procedure. Previously, we used titanium mesh plates that were preoperatively fabricated based on three-dimensional models. Although these plates are precise and do not increase the probability of infection, we still had to use autologous bones to reconstruct the orbital walls. Recently, we developed a new titanium mesh plate—called Skull-Fit®—with orbital wall (Skull-Fit WOW®), enabling us to reconstruct the cranial base and orbital walls without bone grafts. Here, we report on three reconstruction cases in which the novel titanium mesh-orbital wall system was used. In all three cases, the customized titanium mesh system performed satisfactorily with little, if any, complications. PMID:22451827

  11. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  12. Hot wire production of single-wall and multi-wall carbon nanotubes

    Science.gov (United States)

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  13. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    Science.gov (United States)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  14. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping.

    Science.gov (United States)

    Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian

    2018-01-08

    As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.

  15. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  16. Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM

    International Nuclear Information System (INIS)

    Coz Diaz, J.J. del; Garcia Nieto, P.J.; Suarez Sierra, J.L.; Penuelas Sanchez, I.

    2008-01-01

    The aim of this work was carried out the optimization and numerical study by the finite element method of internal hollow bricks walls in order to determine the best candidate brick from the thermal point of view. With respect to the energy saving for housing and industrial structures, there is also a great interest in light building materials with good physical and thermal behaviors, which fulfills all thermal requirements of the new CTE Spanish rule. The conduction, convection and radiation phenomena are taking into account in this study for six different types of bricks varying the material conductivity obtained from five experimental tests. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. Optimization of the walls is carried out from the finite element analysis of the new hollow brick geometries by means of the average mass overall thermal efficiency and the equivalent thermal conductivity. Based on the previous thermal analysis and the optimization procedure described in this paper, the best candidate was chosen and then a full 1.22 x 0.23 x 1.05 m wall made of these bricks was simulated for fifteen different compositions. The main variables influencing the thermal conductivity of these walls are illustrated for different concrete and mortar properties and the temperature distribution is shown for some typical configurations. Finally, in order to select the appropriate wall satisfying the CTE requirements, detailed instructions are given and conclusions of this work are exposed

  17. Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM

    Energy Technology Data Exchange (ETDEWEB)

    Coz Diaz, J.J. del [Edificio Departamental Viesques, No. 7-33204 Gijon, Asturias (Spain)], E-mail: juanjo@constru.uniovi.es; Garcia Nieto, P.J. [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Suarez Sierra, J.L.; Penuelas Sanchez, I. [Edificio Departamental Viesques, No. 7-33204 Gijon, Asturias (Spain)

    2008-06-15

    The aim of this work was carried out the optimization and numerical study by the finite element method of internal hollow bricks walls in order to determine the best candidate brick from the thermal point of view. With respect to the energy saving for housing and industrial structures, there is also a great interest in light building materials with good physical and thermal behaviors, which fulfills all thermal requirements of the new CTE Spanish rule. The conduction, convection and radiation phenomena are taking into account in this study for six different types of bricks varying the material conductivity obtained from five experimental tests. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. Optimization of the walls is carried out from the finite element analysis of the new hollow brick geometries by means of the average mass overall thermal efficiency and the equivalent thermal conductivity. Based on the previous thermal analysis and the optimization procedure described in this paper, the best candidate was chosen and then a full 1.22 x 0.23 x 1.05 m wall made of these bricks was simulated for fifteen different compositions. The main variables influencing the thermal conductivity of these walls are illustrated for different concrete and mortar properties and the temperature distribution is shown for some typical configurations. Finally, in order to select the appropriate wall satisfying the CTE requirements, detailed instructions are given and conclusions of this work are exposed.

  18. Experimental test of 200 W Hall thruster with titanium wall

    Science.gov (United States)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  19. Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM

    Energy Technology Data Exchange (ETDEWEB)

    Del Coz Diaz, J.J.; Suarez Sierra, J.L.; Penuelas Sanchez, I. [Edificio Departamental Viesques, No. 7-33204 Gijon, Asturias (Spain); Garcia Nieto, P.J. [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)

    2008-06-15

    The aim of this work was carried out the optimization and numerical study by the finite element method of internal hollow bricks walls in order to determine the best candidate brick from the thermal point of view. With respect to the energy saving for housing and industrial structures, there is also a great interest in light building materials with good physical and thermal behaviors, which fulfills all thermal requirements of the new CTE Spanish rule. The conduction, convection and radiation phenomena are taking into account in this study for six different types of bricks varying the material conductivity obtained from five experimental tests. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. Optimization of the walls is carried out from the finite element analysis of the new hollow brick geometries by means of the average mass overall thermal efficiency and the equivalent thermal conductivity. Based on the previous thermal analysis and the optimization procedure described in this paper, the best candidate was chosen and then a full 1.22 x 0.23 x 1.05 m wall made of these bricks was simulated for fifteen different compositions. The main variables influencing the thermal conductivity of these walls are illustrated for different concrete and mortar properties and the temperature distribution is shown for some typical configurations. Finally, in order to select the appropriate wall satisfying the CTE requirements, detailed instructions are given and conclusions of this work are exposed. (author)

  20. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2012-01-01

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM -1 cm -2 , a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  1. Chest-wall reconstruction in case of infection of the operative site: is there any interest in titanium rib osteosynthesis?

    Science.gov (United States)

    Berthet, Jean-Philippe; Solovei, Laurence; Tiffet, Olivier; Gomez-Caro, Abel; Bommart, Sébastien; Canaud, Ludovic; Alric, Pierre; Marty-Ané, Charles-Henri

    2013-11-01

    To describe the management of thoracic reconstructions in the presence of primary chest-wall infection (PCWI) or secondary deep chest-wall infection (SCWI), focussing on local tolerance of a titanium rib osteosynthesis system. PCWI included infected chest wall tumours (CWT), infected T3 non-small-cell lung carcinoma (NSCLC) and open flail chest. SCWI was defined by deep infection of previous thoracic-wall reconstructions. Infection was identified by preoperative bacterial analysis of the tumour or surgical site. In PCWI, a one-step procedure combined extensive resection of infected tissues and rigid reconstruction of the defect; skeletal rigidity was achieved using titanium implants. In SCWI, we removed all synthetic material except titanium implants. In both groups, the surgical field was thoroughly cleaned and implants were wrapped or covered by flaps. From January 2005 to December 2011, 11 patients (54 ± 10.2 years) with either PCWI (3 CWT, 3 T3 NSCLC, 1 open flail chest) or SCWI (3 CWT, 1 funnel chest) were treated. Infection was polymicrobial in all but 1 case. Bacteria observed in PCWI patients were multidrug resistant. In PCWI, we resected 4.2 ± 0.6 ribs en bloc with the lung (n = 5), the skin and the pectoralis major and then used mesh and 2.1 ± 1.2 titanium implants for reconstruction (n = 6). The mean defect was 1154.4 ± 318 cm(3). Surgical SCWI management removed polytetrafluoroethylene-mesh and preserved the titanium implants. A Vicryl mesh (n = 3) and greater omentum flap (n = 3) were added. One of the 2 postoperative deaths in the PCWI group was related to infection recurrence. No other patient had infection at the 6-month follow-up with leucocyte-labelled scintigraphy. Titanium rib osteosynthesis is reliable in two complex and life-threatening situations: PCWIs and SCWIs. In combination with a flap, this allows rapid, reliable, rigid reconstruction of infected full-thickness chest-wall defects in a single-step procedure.

  2. Thermal analysis of titanium drive-in target for D-D neutron generation.

    Science.gov (United States)

    Jung, N S; Kim, I J; Kim, S J; Choi, H D

    2010-01-01

    Thermal analysis was performed for a titanium drive-in target of a D-D neutron generator. Computational fluid dynamics code CFX-5 was used in this study. To define the heat flux term for the thermal analysis, beam current profile was measured. Temperature of the target was calculated at some of the operating conditions. The cooling performance of the target was evaluated by means of the comparison of the calculated maximum target temperature and the critical temperature of titanium. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  4. Determining experimentally the parameters of the unsteady thermal behaviour of homogeneously layered walls by the reference plates method

    International Nuclear Information System (INIS)

    Beron, Rodolphe

    1988-01-01

    In this work, we introduce an experimental determination method of parameters which are characteristics of the transfer functions of walls in buildings by the use of an easy equipment which use needs no significant constraint. This method called 'reference plates method' is based on the working out of the thermo-grams which result from any thermal perturbation. The first part of our work deals with the theoretical development of the methods of working out the measures used for both single-Iayered and multi-layered walls. The second part discusses the applying of the method on single-Iayered sample. The values of thermophysical characteristics of the wall is based on the working out of the heat equation written in terms an integral transformation which we take as Laplace's transformation. The case of multi-Iayered wall which we discuss in the third part, lead to the determination of 'z transforms coefficients' of the transfer functions of the studied wall. In addition to the theoretical study, we analyse the results of prospective experiments in the fourth part of our work and show the usefulness of such a measurement method. The last part is devoted to the presentation of the application of our work to the determination of thermal parameters of more general wall's configurations. (author) [fr

  5. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  6. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  7. [Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].

    Science.gov (United States)

    Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong

    2006-08-01

    To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P ProTaper group (P ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.

  8. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  9. Design method of high performance precast external walls for warm climate by multi-objective optimization analysis

    International Nuclear Information System (INIS)

    Baglivo, Cristina; Congedo, Paolo Maria

    2015-01-01

    Taking into account the global environmental problems, there is the urgent need to reduce energy consumption and the greenhouse gas emissions in the construction sector. Environmental awareness can be achieved through the extensive application of precast systems in buildings construction. A multi-criteria analysis has been used to obtain energy-efficient precast walls for Zero Energy Building in warm climate focusing on eco-friendly building materials. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. The optimization has been carried out in terms of steady thermal transmittance, periodic thermal transmittance, decrement factor, time shift, areal heat capacity, thermal admittance, surface mass, small thickness, eco sustainability score, light-weight and costs. The best sequences of layers show repetitive features: high surface mass for the first layer (internal side), followed by eco-friendly insulating materials for the middle layer and common insulating materials for the outer layer. The results illustrate that it is possible to obtain high performance precast multi-layered walls also with light and thin solutions; in particular, the superficial mass and the internal areal heat capacity have an important role to obtain the best performance in the warm climate. - Highlights: • Environmental awareness through the application of prefabrication systems. • The precast allows important benefits compared to traditional walls build in situ. • At the end of their useful life, the precast can be re-used. • Precast walls with very high efficiency for warm climates. • High internal areal heat capacity avoids events of overheating/cooling down.

  10. Thermal degradation of TiO2 nanotubes on titanium

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  11. The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix

    Science.gov (United States)

    Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel

    2018-05-01

    This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.

  12. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.K.M. Mahmudul [Department of Ocean System Engineering, Gyeongsang National University, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of); Oh, Geum Seok; Kim, Taeoh [Department of Energy and Mechanical Engineering, Gyeongsang National University, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of); Kim, Junhyo [Department of Marine Engineering, Mokpo National Maritime University Haeyangdaehang-Ro 91, Mokpo-si, Jeollanam-do (Korea, Republic of); Noh, Jungpil; Huh, Sunchul; Chung, Hanshik [Department of Energy and Mechanical Engineering, Gyeongsang National University, Institute of Marine Industry, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of); Jeong, Hyomin, E-mail: hmjeong@gnu.ac.kr [Department of Energy and Mechanical Engineering, Gyeongsang National University, Institute of Marine Industry, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of)

    2016-01-15

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs and microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.

  13. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh; Kim, Junhyo; Noh, Jungpil; Huh, Sunchul; Chung, Hanshik; Jeong, Hyomin

    2016-01-01

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs and microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.

  14. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    Science.gov (United States)

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on

  15. Analysis of wall-packed-bed thermal interactions

    International Nuclear Information System (INIS)

    Gorbis, Z.R.; Tillack, M.S.; Tehranian, F.; Abdou, M.A.

    1995-01-01

    One of the major issues remaining for ceramic breeder blankets involves uncertainties in heat transfer and thermomechanical interactions within the breeder and multiplier regions. Particle bed forms are considered in many reactor blanket designs for both the breeder and Be multiplier. The effective thermal conductivity of beds and the wall-bed thermal conductance are still not adequately characterized, particularly under the influence of mechanical stresses. The problem is particularly serious for the wall conductance between Be and its cladding, where the uncertainty can be greater than 50%. In this work, we describe a new model for the wall-bed conductance that treats the near-wall region as a finite-width zone. The model includes an estimate of the region porosity based on the number of contact points, and the contact area for smooth surfaces. It solves the heat conduction in a near-wall unit cell. The model is verified with existing data and used to predict the range of wall conductances expected in future simulation experiments and in reactor applications. (orig.)

  16. Thermal Bridge Effects in Walls Separating Rowhouses

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....

  17. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  18. Thermal convection of liquid metal in the titanium reduction reactor

    Science.gov (United States)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  19. Shape memory effects, thermal expansion and B19' martensite texture in titanium nickelide

    International Nuclear Information System (INIS)

    Zel'dovich, V.I.; Sobyanina, G.A.; Rinkevich, O.S.; Gundyrev, V.M.

    1996-01-01

    The influence of plastic deformation by tension and cold rolling on shape memory effect, reverse shape memory effect, thermal expansion and texture state of martensite in titanium nickelide is under study. The relationship of thermal expansion coefficient to the value of strain during direct and reverse shape memory effect is established

  20. Decomposition of thin titanium deuteride films: thermal desorption kinetics studies combined with microstructure analysis

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; Kaszkur, Zbigniew; Smithers, M.A.; Smithers, Mark A.

    2008-01-01

    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy

  1. Titanium oxynitrate (TiNxOy) coating for use in thermal solar energy converters

    International Nuclear Information System (INIS)

    Lasorsa, C; Dilalla, N; Perillo, P; Morando, P.J; Versaci, R; Lucio, R

    2008-01-01

    This work deals with the production of titanium oxynitrate (TiN x O y ) coatings on metallic substrates. Because of its high resistance to high temperatures, titanium oxynitrate (TiN xO y) is a good material for the production of thermal solar energy converters. The surfaces should possess such qualities as high absorbance (α) of solar radiation (range 0.3 μm ≤λ≤2 μm) and low thermal emittance (ε) in the range of λ≥ 2 μm. The coatings should retain optical qualities temperatures greater than 300 o C. These coatings were made using the PECVD (Plasma Enhanced Chemical Vapor Deposition) technique in a single layer coating, with a gaseous mixture using titanium isopropoxide with an air contribution of reactive gas. The process is developed in one stage, with the substrate thermalized at 750 o C and without y BIAS potential. The coatings were carried out on AISI 410 stainless steel and AISI M2 steel substrates. This work presents the preliminary results of the coating's chemical composition, structure and optical and mechanical properties. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS/ESCA) and scanning electron microscopy were used in these studies

  2. Elasticity moduli, thermal expansion coefficients and Debye temperature of titanium alloys

    International Nuclear Information System (INIS)

    Beletskij, V.M.; Glej, V.A.; Maksimyuk, P.A.; Tabachnik, V.I.; Opanasenko, V.F.

    1979-01-01

    Studied are the characteristics of titanium alloys which reflect best the bonding forces for atoms in a crystal lattice: elastic modules, their temperature dependences, thermal expansion coefficient and Debye temperatures. For the increase of the accuracy of measuring modules and especially their changes with temperature an ultrasonic echo-impulse method of superposition has been used. The temperature dependences of Young modulus of the VT1-0, VT16 and VT22 titanium alloys are plotted. The Young module and its change with temperature depend on the content of alloying elements. The Young module decrease with temperature may be explained within the framework of the inharmonic effect theory. The analysis of the results obtained permits to suppose that alloying of titanium alloys with aluminium results in an interatomic interaction increase that may be one of the reasons of their strength increase

  3. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lau, Cher Hon; Cervini, Raoul; Clarke, Stephen R.; Markovic, Milena Ginic; Matisons, Janis G.; Hawkins, Stephen C.; Huynh, Chi P.; Simon, George P.

    2008-01-01

    Carbon nanotubes (CNTs) are of interest in many areas of nanotechnology and used in a number of novel applications. However effective dispersion remains a problem and one solution is to functionalize the nanotubes. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity. In this work, multi-walled CNTs are functionalized for comparison, using a range of oxidative techniques, including thermal treatment, acid reflux, and dry UV-ozonolysis. The effects of these treatments on the multi-walled carbon nanotubes (MWCNTs) and their electrical properties were characterized using a range of surface and compositional techniques. The electrical conductivity of MWCNTs was found to increase with functionalization in all cases, and dry UV-ozonolysis was shown to be the treatment technique which best increased conductivity, whilst at the same time maintaining the structural integrity of the nanotubes, even though the level of modification was less than by the other treatment methods.

  4. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  5. Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Ghasemi

    2014-08-01

    Full Text Available The micromechanical models are used to investigate mechanical and thermal properties of a polymer matrix nanocomposite containing multi-walled carbon nanotubes (MWCNT in their effects to reduce residual stresses in nanocomposites. To do this, first nanotubes with different weights and volume fractions were dispersed in ML-506 epoxy resin. By using different micromechanical models, the effect additional nanotubes on elastic modulus and coefficient of thermal expansion (CTE of nanotubes/epoxy were studied as critical parameters. Comparing the model and available experimental results, the modified Halpin-Tsai model and the modified Schapery model were chosen to calculate the mechanical and thermal properties of the nanocomposites. Then, using the matrix reinforced with MWCNT and classical micromechanics models the elastic modulus and coefficients of thermal expansion of the nanocomposites were determined for a single orthotropic ply. The results showed that the rule of mixture (ROM and Hashin-Rosen model to determine the longitudinal and transverse elastic moduli and Van Fo Fy model to calculate the coefficient of thermal expansion were in good agreements with the experimental results of a single-layer nanocomposite. Finally, the classical laminated plate theory (CLPT was used to calculate the residual stresses of the CNT/carbon fiber/epoxy composites with different weights and volume fractions of MWCNT for angle-ply, cross-ply and quasi-isotropic laminated composite materials. The results showed that residual stresses were reduced using a maximum of 1% wt or 0.675% volume fraction of the MWCNT in polymer composites. Also, the highest reduction in residual stresses was observed in [02/902] cross-ply laminated composite materials.

  6. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  7. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  8. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  9. ANALYSIS OF THERMAL PROPERTIES AND HEAT LOSS IN CONSTRUCTION AND ISOTHERMAL MATERIALS OF MULTILAYER BUILDING WALLS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Urzędowski

    2017-06-01

    Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.

  10. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  11. Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain

    DEFF Research Database (Denmark)

    Dohn, Søren; Kjelstrup-Hansen, Jakob; Madsen, D.N.

    2005-01-01

    variations in the response. Using a simple resistor model we estimate the expected conductance-strain response for a multi-walled carbon nanotube, and compare to our results on multi-walled carbon nanotubes as well as measurements by others on single-walled carbon nanotubes. Integration of nanotubes...

  12. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  13. L-Arginine modified multi-walled carbon nanotube/sulfonated poly(ether ether ketone) nanocomposite films for biomedical applications

    Science.gov (United States)

    Kaya, Hatice; Bulut, Osman; Kamali, Ali Reza; Ege, Duygu

    2018-06-01

    Favorable implant-tissue interactions are crucial to achieve successful osseointegration of the implants. Poly(ether ether ketone) (PEEK) is an interesting alternative to titanium in orthopedics because of its low cost, high biocompatibility and comparable mechanical properties with cancellous bone. Despite these advantages; however, the untreated surface of PEEK fails to osseointegrate due to its bioinert and hydrophobic behavior. This paper deals with the surface modification of PEEK with a novel method. For this, PEEK was first treated with concentrated sulfuric acid to prepare sulfonated PEEK (SPEEK) films using a solvent casting method. Then, 1 and 2 wt% multi-walled carbon nanotube was incorporated into SPEEK to form nanocomposite films. The samples were characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. After successful preparation of the nanocomposite films, L-arginine was covalently conjugated on the nanocomposite films to further improve their surface properties. Subsequently, the samples were characterized using X-ray Photoemission Spectroscopy (XPS), water contact angle measurements and Atomic Force Microscopy (AFM) and Dynamic Mechanical Thermal Analysis (DMTA). Finally, cell culture studies were carried out by using Alamar Blue assay to evaluate the biocompatibility of the films. The results obtained indicate the successful preparation of L-arginine-conjugated MWCNT/SPEEK nanocomposite films. The modified surface shows potential to improve implants' mechanical and biological performances.

  14. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Transient heat conduction across microencapsulated PCM-concrete walls was simulated. • Equivalent homogeneous wall with effective thermal properties was rigorously derived. • Adding PCM to the wall increases daily energy savings and delays peak thermal load. • Energy savings is maximum when PCM melting temperature equals indoor temperature. • Energy savings are limited in extreme climates but time delay can be large. - Abstract: This paper examines the benefits of adding microencapsulated phase change material (PCM) to concrete used in building envelopes to reduce energy consumption and costs. First, it establishes that the time-dependent thermal behavior of microencapsulated PCM-concrete composite walls can be accurately predicted by an equivalent homogeneous wall with appropriate effective thermal properties. The results demonstrate that adding microencapsulated PCM to concrete resulted in a reduction and a time-shift in the maximum heat flux through the composite wall subjected to diurnal sinusoidal outdoor temperature and solar radiation heat flux. The effects of the PCM volume fraction, latent heat of fusion, phase change temperature and temperature window, and outdoor temperature were evaluated. Several design rules were established including (i) increasing the PCM volume fraction and/or enthalpy of phase change increased the energy flux reduction and the time delay, (ii) the energy flux reduction was maximized when the PCM phase change temperature was close to the desired indoor temperature, (iii) the optimum phase change temperature to maximize the time delay increased with increasing average outdoor temperature, (iv) in extremely hot or cold climates, the thermal load could be delayed even though the reduction in daily energy flux was small, and (v) the choice of phase change temperature window had little effect on the energy flux reduction and on the time delay. This analysis can serve as a framework to design PCM composite walls

  15. Experience gained in titanium uses for thermal and nuclear power plants of Electricite de France

    International Nuclear Information System (INIS)

    Boyer, R.

    1982-01-01

    Thermal and nuclear power plants are using titanium for tube bundles in steam turbine condensers and water-water heat exchangers, for electrodes in electrolysis cells used in cooling water treatment and for cathodic protection. Titanium is very satisfactory due to good mechanical properties, excellent corrosion resistance (chemicals, sea water and ammoniac) and erosion by sea water or steam. Unfortunately titanium is rare, expensive and France is strongly dependent of foreign countries. For some uses it could be replaced by ferritic stainless steels, testing will take several years before a definitive conclusion [fr

  16. Corrosion behaviour in saline environments of single-layer titanium and aluminium coatings, and of Ti/Al alternated multi-layers elaborated by a multi-beam PVD technique

    International Nuclear Information System (INIS)

    Merati, Abdenacer

    1994-01-01

    This research thesis reports the characterization of anti-corrosion titanium and aluminium coatings deposited on a 35CD4 steel under the form of mono-metallic layers or alternated Ti/Al multi-layers, and obtained by a multibeam PVD technique. The influence of different parameters is studied: single-layer thickness (5, 15 or 30 micro-metres), multi-layer distribution (5 to 6) and substrate (smooth or threaded). Layer nature and microstructure are studied by optical microscopy and scanning electron microscopy (SEM), as well as corrosion toughness in aqueous saline environments. Coated threaded samples have been studied after tightening tests. It appears that titanium layers are denser and more uniform than aluminium layers, and that multi-layer coatings provide a better protection than single-layer coatings. The best behaviour is obtained when titanium is in contact with steel, and aluminium is the outer layer in contact with the corroding environment [fr

  17. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  18. Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications

    Science.gov (United States)

    Hasan, Jafar; Jain, Shubham; Chatterjee, Kaushik

    2017-01-01

    We have developed a chlorine based reactive ion etching process to yield randomly oriented anisotropic nanostructures that render the titanium metal surface ‘black’ similar to that of black silicon. The surface appears black due to the nanostructures in contrast to the conventional shiny surface of titanium. The nanostructures were found to kill bacteria on contact by mechanically rupturing the cells as has been observed previously on wings of certain insects. The etching was optimized to yield nanostructures of ≈1 μm height for maximal bactericidal efficiency without compromising cytocompatibility. Within 4 hours of contact with the black titanium surface, 95% ± 5% of E. coli, 98% ± 2% of P. aeruginosa, 92% ± 5% of M. smegmatis and 22% ± 8% of S. aureus cells that had attached were killed. The killing efficiency for the S. aureus increased to 76% ± 4% when the cells were allowed to adhere up to 24 hours. The black titanium supported the attachment and proliferation of human mesenchymal stem cells and augmented osteogenic lineage commitment in vitro. Thus, the bioinspired nanostructures on black titanium impart multi-biofunctional properties toward engineering the next-generation biomaterials for orthopedic implants.

  19. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  20. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  1. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Choi, Chi-Jin [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2017-02-15

    Recently, high precision and high accuracy analysis on multi-dimensional thermal hydraulic phenomena in a nuclear power plant has been considered as state-of-the-art issues. System analysis code, MARS, also adopted a multi-dimensional module to simulate them more accurately. Even though it was applied to represent the multi-dimensional phenomena, but implemented models and correlations in that are one-dimensional empirical ones based on one-dimensional pipe experimental results. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models for a two-phase flow need to be carefully validated, such as the wall friction model. Especially, in a Direct Vessel Injection (DVI) system, the injected emergency core coolant (ECC) on the upper part of the downcomer interacts with the lateral steam flow during the reflood phase in the Large-Break Loss-Of-Coolant-Accident (LBLOCA). The interaction between the falling film and lateral steam flow induces a multi-dimensional two-phase flow. The prediction of ECC flow behavior plays a key role in determining the amount of coolant that can be used as core cooling. Therefore, the wall friction model which is implemented to simulate the multi-dimensional phenomena should be assessed by multidimensional experimental results. In this paper, the air–water cross film flow experiments simulating the multi-dimensional phenomenon in upper part of downcomer as a conceptual problem will be introduced. The two-dimensional local liquid film velocity and thickness data were used as benchmark data for code assessment. And then the previous wall friction model of the MARS-MultiD in the annular flow regime was modified. As a result, the modified MARS-MultiD produced improved calculation result than previous one.

  2. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  3. Effects of gas composition on the growth of multi-walled carbon nanotube

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lu, D.-M.; Lien, W.-C.

    2007-01-01

    This paper studies the effects of different gas compositions on the growth of multi-walled carbon nanotube (MWCNT) films by using an electron cyclotron resonance chemical vapor deposition (ECR-CVD) method. The Raman spectrum was employed to explore the composition of the MWCNT films grown under different mixtures of C 3 H 8 and H 2 . The results showed that the optimum relative intensity ratio of the D band to G band (i.e., I D /I G ) is 2 for the cases considered in this study. In addition, the morphology and microstructure of the MWCNTs were examined by field emission scanning electron microscopy (FE-SEM) and field emission gun transmission electron microscopy (FEG-TEM). Furthermore, atomic force microscopy (AFM) and scanning thermal microscopy (SThM) were used to study the surface topography and thermal properties of the MWCNTs

  4. Investigation of the Effective Thermal Conductivity in Containment Wall of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of)

    2016-05-15

    Many computational codes used for analyzing pressure of containment was developed such as CAP (Containment Analysis Package). These computational codes consider concrete conductivity instead of thermal conductivity of containment wall which have special geometry as heat sink. For precise analysis, effective thermal conductivity of containment wall has to be measured in individual NPPs. Thermal properties of concrete such as thermal conductivity have been investigated as function of chemical composition and temperature. Generally, containment of OPR1000 is constructed by Prestressed (PS) concrete-a composite material. Containment wall of OPR1000 is made up of steel liner, tendon, rebar and concrete as shown in Figure 1. Role of steel liner protects release of radioactive materials so called leak tightness. The effective thermal conductivity of containment wall in OPR1000 is analyzed by numerical tool (CFD) and compared with thermal conductivity models in composite solids. The effective thermal conductivity of containment wall of OPR1000 is investigated by numerical analysis (CFD). The thermal conductivity of reinforced concrete is 18.6% higher than that of concrete only. Several models were compared with CFD results. Rayleigh-Parallel liner model agrees well with CFD results. Experiment results will be compared with CFD result and models. CFD result was calculated in low steel volume fraction (0.0809) than that of OPR1000 (0.1043). The effective thermal conductivity in OPR1000 has slightly higher than CFD result because of different volume fraction.

  5. Soft purification of N-doped and undoped multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Alvizo-Paez, Edgar Rogelio; Ruiz-Garcia, Jaime; Hernandez-Lopez, Jose Luis; Romo-Herrera, Jose Manuel; Terrones, Humberto; Terrones, Mauricio

    2008-01-01

    A soft method for purifying multi-wall carbon nanotubes (N-doped and undoped) is presented. The technique includes a hydrothermal/ultrasonic treatment of the material in conjunction with other subsequent treatments, including the extraction of polyaromatic compounds, dissolution of metal particles, bundle exfoliation, and uniform dispersion. This method avoids harsh oxidation protocols that burn (via thermal treatments) or functionalize (by introducing chemical groups) the nanotubes. We show a careful analysis of each purification step and demonstrate that the technique is extremely efficient when characterizing the materials using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), scanning tuneling electron microscopy (STEM), x-ray powder diffraction (XRD), diffuse reflectance Fourier transform infrared (DRFTIR) spectroscopy and thermogravimetric analysis (TGA)

  6. First wall thermal--mechanical analyses of the reference theta-pinch reactor

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Cort, G.E.

    1977-01-01

    The thermal-mechanical response of the Reference Theta-Pinch Reactor (RTPR) first wall was analyzed. The first wall problems anticipated for a pulsed, high-β fusion power plant can be ameliorated by either alterations in the physics operating point, materials reengineering, or blanket/first wall reconfiguration. Within the latter ''configuration'' scenario, a two-fold approach has been adopted for the thermal-mechanical portion of the RTPR first wall technology assessment. First, a number of new first wall configurations (bonded or unbonded laminated composites, all-ceramic structures, protective and/or sacrificial ''bumpers'') were considered. Second, a more quantitative failure criterion, based on the developing theories of fracture mechanics, was identified. For each first wall configuration, transient heat transfer and thermoelastic stress calculations have been made. Two-dimensional finite element structural analyses have been made for a variety of mechanical boundary conditions. Only the Al 2 O 3 /Nb - 1 Zr system has been considered. The results of this study indicated a wide range of design solutions to the pulsed thermal stress problem anticipated for the RTPR

  7. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  8. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    International Nuclear Information System (INIS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-01-01

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  9. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  10. Thermal effect on transverse vibrations of double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y Q; Liu, X; Liu, G R

    2007-01-01

    Based on the theory of thermal elasticity mechanics, a double-elastic beam model is developed for transverse vibrations of double-walled carbon nanotubes with large aspect ratios. The thermal effect is incorporated in the formulation. With this double-elastic beam model, explicit expressions are derived for natural frequencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported double-walled carbon nanotubes. The influence of temperature change on the properties of transverse vibrations is discussed. It is demonstrated that some properties of transverse vibrations of double-walled carbon nanotubes are dependent on the change of temperature

  11. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  12. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes

    KAUST Repository

    Chen, Ye

    2015-12-08

    Polyetherimide (PEI) is a widely applied as engineering plastic in the electronics, aerospace, and automotive industries but the disadvantages of extremely low conductivity, atmospheric moisture absorption, and poor fluidity at high temperature limits its application. Herein, commercial multi-walled carbon nanotubes (MWCNTs) were modified with a long alkyl chain molecule, octadecylamine (ODA), to produce a uniform dispersion in commercial PEI matrices. Both covalent and noncovalent modification of MWCNTs with ODA, were prepared and compared. Modified MWCNTs were incorporated in PEI matrices to fabricate nanocomposite membranes by a simple casting method. Investigating mechanical properties, thermal stability, and conductivity of the polyetherimide (PEI)/MWCNT composites showed a unique combination of properties, such as high electrical conductivity, high mechanical properties, and high thermal stability at a low content of 1.0 wt % loading of ODA modified MWCNTs. Moreover, electrical resistivity decreased around 10 orders of magnitude with only 0.5 wt % of modified MWCNTs.

  13. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes

    KAUST Repository

    Chen, Ye; Tao, Jing; Ezzeddine, Alaa; Mahfouz, Remi; Al-Shahrani, Abdullah; Alabedi, Gasan; Khashab, Niveen M.

    2015-01-01

    Polyetherimide (PEI) is a widely applied as engineering plastic in the electronics, aerospace, and automotive industries but the disadvantages of extremely low conductivity, atmospheric moisture absorption, and poor fluidity at high temperature limits its application. Herein, commercial multi-walled carbon nanotubes (MWCNTs) were modified with a long alkyl chain molecule, octadecylamine (ODA), to produce a uniform dispersion in commercial PEI matrices. Both covalent and noncovalent modification of MWCNTs with ODA, were prepared and compared. Modified MWCNTs were incorporated in PEI matrices to fabricate nanocomposite membranes by a simple casting method. Investigating mechanical properties, thermal stability, and conductivity of the polyetherimide (PEI)/MWCNT composites showed a unique combination of properties, such as high electrical conductivity, high mechanical properties, and high thermal stability at a low content of 1.0 wt % loading of ODA modified MWCNTs. Moreover, electrical resistivity decreased around 10 orders of magnitude with only 0.5 wt % of modified MWCNTs.

  14. Reactor scale modeling of multi-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Chiu, Wilson K.S.

    2011-01-01

    As the mechanisms of carbon nanotube (CNT) growth becomes known, it becomes important to understand how to implement this knowledge into reactor scale models to optimize CNT growth. In past work, we have reported fundamental mechanisms and competing deposition regimes that dictate single wall carbon nanotube growth. In this study, we will further explore the growth of carbon nanotubes with multiple walls. A tube flow chemical vapor deposition reactor is simulated using the commercial software package COMSOL, and considered the growth of single- and multi-walled carbon nanotubes. It was found that the limiting reaction processes for multi-walled carbon nanotubes change at different temperatures than the single walled carbon nanotubes and it was shown that the reactions directly governing CNT growth are a limiting process over certain parameters. This work shows that the optimum conditions for CNT growth are dependent on temperature, chemical concentration, and the number of nanotube walls. Optimal reactor conditions have been identified as defined by (1) a critical inlet methane concentration that results in hydrogen abstraction limited versus hydrocarbon adsorption limited reaction kinetic regime, and (2) activation energy of reaction for a given reactor temperature and inlet methane concentration. Successful optimization of a CNT growth processes requires taking all of those variables into account.

  15. Climate Chamber Experiment-Based Thermal Analysis and Design Improvement of Traditional Huizhou Masonry Walls

    Directory of Open Access Journals (Sweden)

    Ling Dong

    2018-03-01

    Full Text Available Supported by thousands of years of history, traditional Huizhou buildings have played a vital role, both functionally and culturally, as residential buildings in China. Masonry walls are one of the key building components of a Huizhou building; however, the traditional Huizhou masonry wall structure, predominantly a hollow brick structure, cannot meet the local building energy code requirements, and thus needs to be improved. Within this context, the present research measures the actual thermal performance of traditional Huizhou masonry walls for historical buildings and new-built buildings, which results in mean thermal transmittances of 1.892 W/m2·K and 2.821 W/m2·K, respectively, while the local building energy code requires a minimum thermal transmittance of 1.500 W/m2·K. In order to improve the thermal performance of traditional Huizhou masonry walls, four design scenarios for wall insulation are proposed and tested in a climate chamber: (1 hollow brick wall with inorganic interior insulation mortar, (2 solid brick wall with inorganic interior insulation mortar, (3 hollow brick wall with foamed concrete, and (4 hollow brick wall with foamed concrete plus inorganic interior insulation mortar. The experiment results indicate that, among the four proposed design scenarios, only scenario 4 can significantly improve the thermal performance of Huizhou masonry walls and meet the building energy code requirements, with a mean thermal transmittance of 1.175 W/m2·K. This research lays the foundation for improving the thermal performance of Huizhou masonry walls with new insulation and construction technology, thereby helping to improve the quality of life of Huizhou residents while respecting the cultural significance of the traditional Huizhou building.

  16. Multi-wall carbon nanotubes/epoxy resin composites characterization of the starting materials and evaluation of thermal and electrical conductivity

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos da

    2009-01-01

    In this study we investigate the electrical and thermal properties of I) composite materials fabricated with O, I, 0,5 and I wt% of concentric multi-wall carbon nanotubes/epoxy resin (MWNT) dispersed randomly in the resin; 2) MWNT buckypaper/resin composite materials; 3) and neat MWNT buckypaper. Initially, we use the techniques of thermogravimetry, infrared spectroscopy, nuclear magnetic resonance, energy dispersive spectroscopy, x-ray fluorescence, scanning and transmission electron microscopy for a broadening characterization of the starting materials, to evaluate its morphology, purity, chemical composition and structure, in order to optimize the properties of crosslinked resin and, consequently, of the composite systems. Important parameters such as the average molecular mass and the equivalent weight of epoxy resin (DGEBA) were determined by 1 H-NMR analysis and, after that, resin/curing agent relations with Phr 10, 15, 20 and 53,2 were elaborated and investigated by thermogravimetry, the resin/curing agent relation with Phr 10 showed to be the most thermally stable. This stoichiometric relation was used to elaborate the composites. We have evaluated that the effect of adding 10 wt% of the solvent acetone to the epoxy resin preparation does not alter its properties so we have adopted two routes to fabricate the composites. In the first route we used 10 wt% of acetone and, in the second the MWNT were dispersed in the matrix without using the solvent. However, no significant difference was observed for the dispersion of the bundle tubes in both systems. The electrical conductivity of the composites and buckypapers was evaluated by impedance spectroscopy and the thermal conductivity by the flash laser flash method. Only the buckypapers presented high values for electrical conductivity (10 3 S.m -1 ). The composite systems presented values of 10 -3 S.m -1 , only a bit different from the value of the crosslinked resin. For thermal conductivity, the values for the

  17. Ag-catalysed cutting of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    La Torre, A; Rance, G A; Miners, S A; Lucas, C Herreros; Smith, E F; Giménez-López, M C; Khlobystov, A N; Fay, M W; Brown, P D; Zoberbier, T; Kaiser, U

    2016-01-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon–carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes. (paper)

  18. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  19. Retrofitted green roofs and walls and improvements in thermal comfort

    Science.gov (United States)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  20. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  1. Investigation of the thermal decomposition of a new titanium dioxide material

    Czech Academy of Sciences Publication Activity Database

    Palkovská, Monika; Slovák, V.; Šubrt, Jan; Boháček, Jaroslav; Barbieriková, Z.; Brezová, V.; Fajgar, Radek

    2016-01-01

    Roč. 125, č. 3 (2016), s. 1071-1078 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Titanium dioxide * Rod-shaped structure * Thermal analysis * Evolved gas analysis * EPR spectroscopy Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UCHP-M) Impact factor: 1.953, year: 2016

  2. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1978-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer code has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  3. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1977-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  4. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  5. Poly(ethylene-co-butylene) functionalized multi walled carbon nanotubes applied in polypropylene nanocomposites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Marín, Jose Manuel Roman

    2012-01-01

    A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient...

  6. Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes

    Science.gov (United States)

    Boncel, Sławomir; Zniszczoł, Aurelia; Pawlyta, Mirosława; Labisz, Krzysztof; Dzido, Grzegorz

    2018-02-01

    The main challenge in the use of multi-wall carbon nanotube (MWCNT) as key components of nanofluids is to transfer excellent thermal properties from individual nanotubes into the bulk systems. We present studies on the performance of heat transfer nanofluids based on ultra-long ( 2 mm), curly MWCNTs - in the background of various other nanoC-sp2, i.e. oxidized MWCNTs, commercially available Nanocyl™ MWCNTs and spherical carbon nanoparticles (SCNs). The nanofluids prepared via ultrasonication from water and propylene glycol were studied in terms of heat conductivity and heat transfer in a scaled up thermal circuit containing a copper helical heat exchanger. Ultra-long curly MWCNT (1 wt.%) nanofluids (stabilized with Gum Arabic in water) emerged as the most thermally conducting ones with a 23-30%- and 39%-enhancement as compared to the base-fluids for water and propylene glycol, respectively. For turbulent flows ( Re = 8000-11,000), the increase of heat transfer coefficient for the over-months stable 1 wt.% ultra-long MWCNT nanofluid was found as high as >100%. The findings allow to confirm that longer MWCNTs are promising solid components in nanofluids and hence to predict their broader application in heat transfer media.

  7. Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis

    Science.gov (United States)

    Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya

    2018-03-01

    In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.

  8. Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Dhiman, Rajnish

    2015-01-01

    A non-covalent functionalization for multi-walled carbon nanotubes has been used as an alternative to the damaging acid treatment. Platinum nanoparticles with similar particle size distribution have been deposited on the surface modified multi-walled carbon nanotubes. The interaction between...

  9. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    Science.gov (United States)

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  10. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    Directory of Open Access Journals (Sweden)

    Shiping Huang

    2018-04-01

    Full Text Available The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  11. Thermal energy storage and losses in a room-Trombe wall system located in Mexico

    International Nuclear Information System (INIS)

    Hernández-López, I.; Xamán, J.; Chávez, Y.; Hernández-Pérez, I.; Alvarado-Juárez, R.

    2016-01-01

    A thermal evaluation of a R-TW system (room with a Trombe wall) is presented. Hourly climatic data of the coldest and the warmest days of 2014 was used to assess the behavior of the R-TW in two cities of Mexico with cold climate (Huitzilac and Toluca). The simulations were done with an in-house code based on the Finite Volume Method. It was found that thermal energy losses through the semitransparent wall are about 60% of the solar radiation incident on the system (G_s_o_l). Despite of the thermal losses, the system gets enough energy to keep the air inside the room with a temperature above 35 °C. For both cities during the coldest day, the maximum energy stored is about 109 MJ and during the warmest day is about 70 MJ. This energy is supplied from the storage wall to the air inside the room during periods without insolation. - Highlights: • Thermal performance of a Room-Trombe Wall system was evaluated under two cold cities. • Thermal energy losses through the semitransparent wall were about 60% of the solar radiation incident of the system. • The maximum energy stored by the Trombe Wall was 109 MJ during the coldest day. • The maximum energy stored by the Trombe Wall was 70 MJ during the warmest day.

  12. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    Science.gov (United States)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  13. Fabrication and Characterization of Waterborne Multi-wall Carbon Nanotube Paints

    Science.gov (United States)

    Dowty, Heather; Wang, Chyi-Shan

    2005-04-01

    The fabrication of water-borne polyurethane nanocomposites containing multi-wall nanotubes has presented a significant technological challenge to those in the polymer community. Such conductive polyurethanes are of great interest to the paint and coatings industry for use in electrical grounding and shielding. Currently, these materials are formed by strong acidic reflux of the nanotubes and subsequent dispersal in the polymer matrix. This treatment can result in significant shortening of the tubes and degradation of the resulting mechanical and electrical transport properties. Here we present an alternate technique in which various conductive and non-conductive water-soluble polymers are physi-adsorbed to the surface of the nanotube. These interactions with the nanotubes result in highly uniform suspensions of water-based urethane coatings and bulk materials. We will examine the polymer chemistry and morphologies of these nanostructured materials and the resulting thermal, electrical and mechanical properties.

  14. Neutral particle balance in GDT with fast titanium coating of the first wall

    International Nuclear Information System (INIS)

    Bagryansky, P.A.; Bender, E.D.; Ivanov, A.A.; Krahl, S.; Noack, K.; Karpushov, A.N.; Murakhtin, S.V.; Shikhovtsev, I.V.

    1995-01-01

    The GDT is an axisymmetric open trap with a high mirror ratio for confinement of a collisional plasma. The experimental program of the GDT was focused on the generation of plasma physics database necessary for a GDT-based neutron source. A distinct feature of both GDT and the GDT-based neutron source is that the Larmor radius of the fast sloshing ions is comparable to plasma radius. In this case, the sloshing ions can not be well shielded by the plasma halo from penetration of the neutral gas from periphery that results in high charge exchange losses. The plasma parameters are then very sensitive to gas pressure near the plasma boundary. To reduce the gas pressure to desured value during the beam heating, the authors have used arc-type evaporators developed at the Budker INP for fast titanium coating of the GDT first wall. If needed, the coating can be done a few seconds before each shot. They investigated the neutral particle balance in presence of NB-heating. The inverted magnetron gauges were used to study the temporal dependence of gas pressure inside the central cell. Pyroelectric bolometers were employed to measure the flux of charge exchange neutrals. Neutral particle balance has also been studied numerically by using a gas-transport code. The results of the investigations are the following: (1) sloshing ion lifetime was increased about 10 times compared to that without the coating of the first wall; and (2) wall recycling coefficient of the Ti-coated wall does not exceed 1 for 8 keV mean energy of the neutral hydrogen atoms striking the wall

  15. Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ridouane, E. H.; Bianchi, M.

    2011-11-01

    This study describes a detailed three-dimensional computational fluid dynamics modeling to evaluate the thermal performance of uninsulated wall assemblies accounting for conduction through framing, convection, and radiation. The model allows for material properties variations with temperature. Parameters that were varied in the study include ambient outdoor temperature and cavity surface emissivity. Understanding the thermal performance of uninsulated wall cavities is essential for accurate prediction of energy use in residential buildings. The results can serve as input for building energy simulation tools for modeling the temperature dependent energy performance of homes with uninsulated walls.

  16. Multi-Detector CT Findings of Palpable Chest Wall Masses in Children: A Pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Ho; Kim, Young Tong [Dept. of Radiology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan (Korea, Republic of); Hong, Hyun Sook [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon (Korea, Republic of)

    2013-03-15

    A wide variety of diseases manifest as palpable chest wall masses in children. These include normal variation, congenital anomalies, trauma, infection, axillary lymphadenopathies, soft tissue tumors and bone tumors. Given that most of these diseases are associated with chest wall deformity, diagnosis is difficult by physical examination or ultrasonography alone. However, multi-detector CT with three dimensional reconstruction is useful in the characterization and differential diagnosis of palpable chest wall lesions. In this article, we review the spectrum of palpable chest wall diseases and illustrate their multi-detector CT presentation.

  17. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Key words: Multi-walled carbon nanotubes, microbial fuel cell, Enterobacter cloacae, ... Aldrich) was prepared in absolute ethanol (Hu et al., 2006; Tkac .... incorporated Eu3+ by voltammetry and electrochemical impedance.

  18. A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Kazunori Fujisawa

    2016-04-01

    Full Text Available Double- and triple-walled carbon nanotubes (DWNTs and TWNTs consist of coaxially-nested two and three single-walled carbon nanotubes (SWNTs. They act as the geometrical bridge between SWNTs and multi-walled carbon nanotubes (MWNTs, providing an ideal model for studying the coupling interactions between different shells in MWNTs. Within this context, this article comprehensively reviews various synthetic routes of DWNTs’ and TWNTs’ production, such as arc discharge, catalytic chemical vapor deposition and thermal annealing of pea pods (i.e., SWNTs encapsulating fullerenes. Their structural features, as well as promising applications and future perspectives are also discussed.

  19. Improved field emission from indium decorated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, M.; Ghosh, S., E-mail: santanu1@physics.iitd.ernet.in; Biswas, P.; Kumar, S.; Srivastava, P.

    2016-10-15

    Graphical abstract: Improved field emission properties have been achieved for Indium (In) decorated MWCNTs and are shown using the schematic of field emission set up with In/CNT cathode, and a plot of J-E characteristics for pristine and In decorated CNTs. - Highlights: • Field emission (FE) properties have been studied for the first time from Indium (In) decorated MWCNT films. • Observed increased density of states near the Fermi level for In decorated films. • Superior field emission properties have been achieved for In decorated CNT films. - Abstract: Multi-walled carbon nanotube (MWCNT) films were grown using thermal chemical vapor deposition (T-CVD) process and were decorated with indium metal particles by thermal evaporation technique. The In metal particles are found to get oxidized. The In decorated films show 250% enhancement in the FE current density, lower turn-on and threshold fields, and better temporal stability as compared to their undecorated counterpart. This improvement in field emission properties is primarily attributed to increased density of states near the Fermi level. The presence of O 2p states along with a small contribution from In 5s states results in the enhancement of density of states in the vicinity of the Fermi level.

  20. Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes.

    Science.gov (United States)

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Lai, Mei-Chun; Hwang, Shyh-Shin; Lin, Hong-Ru; Liou, Shir-Joe

    2011-08-01

    In this study, PMMA/CNTs composite materials with carboxyl-multi walled carbon nanotubes (c-MWNTs) or untreated MWNTs were prepared via in-situ bulk polymerization. The as-prepared PMMA/CNTs composite materials were then characterized by Fourier-Transformation infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The molecular weights of PMMA extracted from PMMA/CNTs composite materials and bulk PMMA were determined by gel permeation chromatography (GPC) with THF used as the eluant. The PMMA/CNTs composite materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The cellular microstructure, insulation and compressive mechanical properties of PMMA/CNTs composite foams were also investigated in detail. Compared to neat PMMA foam, the presence of CNTs increases in cell density and reduces cell size. The insulation and compressive mechanical properties of PMMA/CNTs composite foams were found to improve substantially those of neat PMMA foam. In particular, 22.6% decrease in thermal conductivity, 19.7% decrease in dielectric constant and 160% increase in compressive modulus were observed with the addition of 0.3 wt% carboxyl-multi walled carbon nanotubes (c-MWNTs).

  1. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  2. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  3. Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)

    2017-04-15

    The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  4. Evaluation of Strategies to Improve the Thermal Performance of Steel Frames in Curtain Wall Systems

    Directory of Open Access Journals (Sweden)

    Ji Hyun Oh

    2016-12-01

    Full Text Available Recently, metal curtain wall systems have been widely used in high-rise buildings due to many advantages, including being lightweight, rapid construction, and aesthetic features. Since the metal frame may lead to lower energy performance, thermal discomfort, and condensation risk due to the high thermal conductivity, its thermal performance can be important for the improvement of the overall thermal performance of the curtain wall system, as well as the energy efficiency of the building envelope. This study aims to evaluate variety of design strategies to improve the thermal performance of steel curtain wall frames. Five base cases and three further steps were selected for two different head profile shapes based on a state-of-the art technology review, and their thermal transmittances were calculated through simulations according to the ISO 12631 standard which is an international standard for calculating thermal transmittance of curtain wall system. Measured results that were obtained from hot-box tests were compared with the calculated results to validate the simulation method of this study. The shape of the head profile did not strongly influence the overall thermal transmittance, and the choice of strategies for the rabbet space was more important. More effective strategies could be decided according to the steps for variation development. This result can serve as a guideline for the design of high-performance curtain wall frames.

  5. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)

    2000-10-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  6. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu

    2000-01-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  7. DNS, LES and RANS of turbulent heat transfer in boundary layer with suddenly changing wall thermal conditions

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka

    2013-01-01

    Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are

  8. Preparation of Hydroxypropyl-β-cyclodextrin Cross-linked Multi-walled Carbon Nanotubes and Their Application in Enantioseparation of Clenbuterol

    Institute of Scientific and Technical Information of China (English)

    Yu Jingang; Huang Dushu; Huang Kelong; Hong Yong

    2011-01-01

    A method of cross-linking multi-walled carbon nanotubes by a nucleophilic substitution of brominated multi-walled carbon nanotubes using hydroxypropyl-β-cyclodextrin anions was studied. The modified multi-walled carbon nanotube samples were characterized using thermogravimetric analysis, energy-dispersive X-ray spectros-copy, transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The hydroxypropyi-β-cyclodextrin modified multi-walled carbon nanotubes were used as a chiral stationary phase additive for thin-layer chromatography to separate clenbuterol enantiomers, and the chiral separation factor was increased.

  9. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    Science.gov (United States)

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  10. On Young's modulus of multi-walled carbon nanotubes

    Indian Academy of Sciences (India)

    WINTEC

    load transfer in nanocomposites. In the present work, CNT/Al ... calculations. The theoretical modulus of the graphene sheet is supposed to be 1060 GPa (Harris 2004). The reason why multi-walled nanotubes have a modulus > 1060 GPa (that of graphene sheet) is currently not understood. However, in the present paper, ...

  11. Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Li Bin; Caceres, Santiago; Zhong Weihong; Maguire, Russ G

    2009-01-01

    Polyetherimide (PEI) has excellent mechanical and thermal properties, and exceptional fire resistance. Developing even broader multi-functionality in PEI/carbon nanotube (CNT) composites for industrial applications is an alluring but challenging goal, due to processing difficulties related to the high pressure and temperature needed to achieve effective flow for this polymer, and costly and complex treatments of the CNTs. Here we report the fabrication of PEI nanocomposite films using low-cost commercially functionalized multi-walled carbon nanotubes (MWNTs), and a simple and innovative process, achieving exceptional properties with only 0.5 wt% of MWNTs, including an increase in electrical conductivity of 12 orders of magnitude, accompanied by an unprecedented increase of 86 0 C in thermal decomposition temperature (higher service temperature). Field emission scanning electron microscopy revealed a high degree of uniform dispersion among the MWNTs, superb polymer-MWNT interaction and formation of a spatially homogeneous nanotube network within the matrix. The enhancement in these properties suggests great potential use for this developed processing approach and the resulting nanocomposites for multi-functional coating or interfacing materials in aerospace and electronic industries.

  12. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  13. Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

    Directory of Open Access Journals (Sweden)

    Hyung Gyun Noh

    2017-04-01

    Full Text Available The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  14. Novel fabrication of silica nanotubes using multi-walled carbon ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Silica nanotubes were synthesized using multi-walled carbon nanotubes (MWCNTs) as template. The as-obtained samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE–SEM) and photo-.

  15. Multi-wall carbon nanotubes investigated by positron annihilation techniques and microscopies for further production handling

    Energy Technology Data Exchange (ETDEWEB)

    Luu, A.T.; Thanh, N.D.; Dung, T.Q.; Son, L.T.; Phuc, P.T. [Center for Nuclear Techniques, Vietnam Atomic Energy Commission, Ho Chi Minh City (Viet Nam); Kajcsos, Zs. [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary); Nhon, M.V.; Tap, T.D. [Department of Nuclear Physics, Faculty of Physics, University of Natural Sciences, Ho Chi Minh City (Viet Nam); Lazar, K. [Institute of Isotopes HAS, Budapest (Hungary); Havancsak, K.; Huhn, G. [Department of Materials Physics, Budapest Univ. (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Sciences, Budapest (Hungary)

    2009-11-15

    Multi-wall carbon nanotube samples with various tube diameters produced by Thermal Chemical Vapor Deposition technique using various catalysts were studied by various microscopic methods and positron annihilation spectroscopy (PAS) with the aim of assessing the applicability of these methods for structural studies in these novel materials. Specifically, positron lifetime (LT) and Doppler broadening (DB) techniques, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed, on iron-containing samples Moessbauer spectroscopy was also utilized. The PAS measurements were carried out on densely packed powder samples and on samples pressed into pills in atmospheric pressure and in vacuum as well. The lifetime values could be interpreted by assuming trapping of positrons, the low contribution from longer-living trapped positronium can be probably related to defects on walls of the tubes. Possibility of correlation of LT and DB data with the nanotube sizes and sample composition was also considered. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  17. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    Science.gov (United States)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  18. Xenon thermal behavior in sintered titanium nitride, foreseen inert matrix for GFR

    International Nuclear Information System (INIS)

    Bes, R.

    2010-11-01

    This work concerns the generation IV future nuclear reactors such as gas-cooled fast reactor (GFR) for which refractory materials as titanium nitride (TiN) are needed to surround fuel and act as a fission product diffusion barrier. This study is about Xe thermal behavior in sintered titanium nitride. Microstructure effects on Xe behavior have been studied. In this purpose, several syntheses have been performed using different sintering temperatures and initial powder compositions. Xenon species have been introduced into samples by ionic implantation. Then, samples were annealed in temperature range from 1300 C to 1600 C, these temperatures being the accidental awaited temperature. A transport of xenon towards sample surface has been observed. Transport rate seems to be slow down when increasing sintering temperature. The composition of initial powder and the crystallographic orientation of each considered grain also influence xenon thermal behavior. Xenon release has been correlated with material oxidation during annealing. Xenon bubbles were observed. Their size is proportional with xenon concentration and increases with annealing temperature. Several mechanisms which could explain Xe intragranular mobility in TiN are proposed. In addition with experiments, very low Xe solubility in TiN has been confirmed by ab initio calculations. So, bi-vacancies were found to be the most favoured Xe incorporation sites in this material. (author)

  19. Identification of thermal properties distribution in building wall using infrared thermography

    Science.gov (United States)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    In the construction sector, most of the measurements carried out from IR camera devices are exploited in a qualitative way (e.g. observation of thermal bridges). However, unless a quantitative analysis is realized, it is not possible to assess the impact of the observed phenomena. Most of research efforts and proposed solutions to identify quantified thermal properties (e.g. U-values) have to be completed, adapted to the built environment and validated in experimental and real conditions to allow quantified assessment of materials thermal properties thanks to IR camera devices [1]. We still need several steps in terms of scientific and technical developments for such technological progress. The H2020 European Built2Spec research project (http://built2spec-project.eu/) aims at giving highlights on that. Heat transfer through the walls are generally model by 1D heat equation in the wall depth. The built is composed by a multilayer domain representing the construction process. In this context, the thermal parameters of the wall are piecewise constant space functions. We propose a methodology to recover the vector of the wall thermal properties (conductivity and capacity) from boundary measurements obtained from an IR camera. It formulates as an inverse problem where the unknown are sought as minimizers of a cost function evaluating the gap between the measures and the model response. This optimization problem is non linear, and we solve it with the Levenberg-Marquardt algorithm coupled with the conjugate gradient method [2-3]. To shorten the time of the identification process, we use the adjoint method coming from the control theory [4]. This method fasten the gradient computation by solving an associated model, named the adjoint model. We study the ability of the procedure to reconstruct internal wall constitution from different environmental conditions. Furthermore, we propose a controlled experimental test to evaluate the method in laboratory conditions. References

  20. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.

    Science.gov (United States)

    Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah

    2016-10-01

    In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.

  1. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    The powder patterns of the as-prepared and acid treated MWCNTs are shown by the XRD spectra. The TEM results show the microstructure of the multi-walled carbon nanotubes well decorated with metal nanoparticles (Cu, Fe, Ni) and metal oxides (CuO, Fe2O3, NiO), while the SEM show the surface morphology.

  2. Effect of amino acid-functionalized multi-walled carbon nanotubes ...

    Indian Academy of Sciences (India)

    In a single-step, rapid microwave-assisted process, multi-walled carbon nanotubes were functionalized by -valine amino acid. Formation of amino acid on nanotube surface was confirmed by Fourier transform-infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, field emission scanning and transmission ...

  3. Nano-QSAR: Genotoxicity of Multi-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Toropova, A. P.; Toropov, A. A.; Rallo, R.; Leszczynska, D.; Leszczynski, J.

    2016-01-01

    The study was carried out to develop an efficient approach for prediction the genotoxicity of carbon nano tubes. The experimental data on the bacterial reverse mutation test (TA100) on multi-walled carbon nano tubes was collected from the literature and examined as an endpoint. By means of the optimal descriptors calculated with the Monte Carlo method a mathematical model of the endpoint was built up. The model is represented by a function of: (i) dose (μg/plate); (ii) metabolic activation (i.e. with S9 mix or without S9 mix); and (iii) two types of multi-walled carbon nano tubes. The above listed conditions were represented by so-called quasi-SMILES. Simplified molecular input-line entry system (SMILES) is a tool for representation of molecular structure. The quasi-SMILES is a tool to represent physicochemical and / or biochemical conditions for building up a predictive model. Thus, instead of well-known paradigm of predictive modeling “endpoint is a mathematical function of molecular structure” a fresh paradigm “endpoint is a mathematical function of available eclectic data (conditions) is suggested.

  4. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    EB

    Methods: The pristine multi-walled carbon nanotubes (p-MWCNTs) were ... characterize the MWCNTs. ..... South Africa and NRF Focus Area, Nanotechnology ... of carbon nanotubes in drug delivery. Current. Opinion in Chemical Biology, 2005 ...

  5. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne

  6. Collapse and stability of single- and multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Xiao, J; Liu, B; Huang, Y; Zuo, J; Hwang, K-C; Yu, M-F

    2007-01-01

    The collapse and stability of carbon nanotubes (CNTs) have important implications for their synthesis and applications. While nanotube collapse has been observed experimentally, the conditions for the collapse, especially its dependence on tube structures, are not clear. We have studied the energetics of the collapse of single- and multi-wall CNTs via atomistic simulations. The collapse is governed by the number of walls and the radius of the inner-most wall. The collapsed structure is energetically favored about a certain diameter, which is 4.12, 4.96 and 5.76 nm for single-, double- and triple-wall CNTs, respectively. The CNT chirality also has a strong influence on the collapsed structure, leading to flat, warped and twisted CNTs, depending on the chiral angle

  7. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  8. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  9. Radial force on the vacuum chamber wall during thermal quench in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2015-12-15

    The radial force balance during a thermal quench in tokamaks is analyzed. As a rule, the duration τ{sub tp} of such events is much shorter than the resistive time τ{sub w} of the vacuum chamber wall. Therefore, the perturbations of the magnetic field B produced by the evolving plasma cannot penetrate the wall, which makes different the magnetic pressures on its inner and outer sides. The goal of this work is the analytical estimation of the resulting integral radial force on the wall. The plasma is considered axially symmetric; for the description of radial forces on the wall, the results of V.D. Shafranov’s classical work [J. Nucl. Energy C 5, 251 (1963)] are used. Developed for tokamaks, the standard equilibrium theory considers three interacting systems: plasma, poloidal field coils, and toroidal field coils. Here, the wall is additionally incorporated with currents driven by ∂B/∂t≠0 accompanying the fast loss of the plasma thermal energy. It is shown that they essentially affect the force redistribution, thereby leading to large loads on the wall. The estimates prove that these loads have to be accounted for in the disruptive scenarios in large tokamaks.

  10. Infrared and microwave properties of polypyrrole/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Wang, Yongsheng, E-mail: yshwang@bjtu.edu.cn; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Gao, Lei; Zhou, Yikang; Fu, Ming

    2014-08-01

    This study analyses the formation of polypyrrole/multi-walled carbon nanotube (PPy/MWCNT) composite materials using chemical oxidation with varying amounts of MWCNTs added. The samples are characterized by scanning electron microscopy, Fourier transform infrared emission spectroscopy, a four-probe method, and infrared thermal imaging using electromagnetic parameters. According to the test results, it is seen that the formation of PPy with the addition of MWCNTs can affect the material’s infrared properties and increase the material’s microwave return losses (up to −19 dB). This production procedure can also make the peak frequency of the microwave return losses adjustable, and the composite’s infrared and microwave performance becomes compatible and adjustable. - Highlights: • A one step in-situ synthesis method of PPy/MWCNT polymerization is proposed. • The composites were used for infrared camouflage and for their microwave properties. • The microwave return losses and infrared emissivity of the composites are adjustable. • The mechanism relies on changes in the composites’ conductivity.

  11. Infrared and microwave properties of polypyrrole/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Gao, Qi; Wang, Yongsheng; He, Dawei; Gao, Lei; Zhou, Yikang; Fu, Ming

    2014-01-01

    This study analyses the formation of polypyrrole/multi-walled carbon nanotube (PPy/MWCNT) composite materials using chemical oxidation with varying amounts of MWCNTs added. The samples are characterized by scanning electron microscopy, Fourier transform infrared emission spectroscopy, a four-probe method, and infrared thermal imaging using electromagnetic parameters. According to the test results, it is seen that the formation of PPy with the addition of MWCNTs can affect the material’s infrared properties and increase the material’s microwave return losses (up to −19 dB). This production procedure can also make the peak frequency of the microwave return losses adjustable, and the composite’s infrared and microwave performance becomes compatible and adjustable. - Highlights: • A one step in-situ synthesis method of PPy/MWCNT polymerization is proposed. • The composites were used for infrared camouflage and for their microwave properties. • The microwave return losses and infrared emissivity of the composites are adjustable. • The mechanism relies on changes in the composites’ conductivity

  12. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  13. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  14. Influence of PCMs on thermal behavior of building walls: experimental study using the walls of a reduced scale room

    Directory of Open Access Journals (Sweden)

    Gounni Ayoub

    2017-01-01

    Full Text Available Using Phase-Change Materials (PCM for lightweight building applications can increase equivalent thermal mass and provide energy savings. In the present experimental work, the heat transfer performance testing of some building walls, with or without PCM, is carried out using a reduced-scale cubic room (the test-cell. The cubic cell is heated by an incandescent bulb placed on its centre, and it is housed in an air-conditioned large-scale room that allows to control the ambient air temperature. The effect of the double PCM layer and of its location relatively to the outside surface of the wall is tested and discussed in terms of overall transmitted heat flux and in terms of reduction of the inside and outside surface temperatures. Findings shows that the additional inertia introduced by the PCM leads to a reduced overall heat flux transmission by the wall and to a lesser daily temperature amplitude on the surface of the wall that enhances the thermal comfort inside the building. In the next step of this work, the case of sandwich walls with air gap, and with wood and PCM layers will be considered.

  15. Influence of PCMs on thermal behavior of building walls: experimental study using the walls of a reduced scale room

    Science.gov (United States)

    Gounni, Ayoub; Tahar Mabrouk, Mohamed; Kheiri, Abdelhamid; El alami, Mustapha

    2017-11-01

    Using Phase-Change Materials (PCM) for lightweight building applications can increase equivalent thermal mass and provide energy savings. In the present experimental work, the heat transfer performance testing of some building walls, with or without PCM, is carried out using a reduced-scale cubic room (the test-cell). The cubic cell is heated by an incandescent bulb placed on its centre, and it is housed in an air-conditioned large-scale room that allows to control the ambient air temperature. The effect of the double PCM layer and of its location relatively to the outside surface of the wall is tested and discussed in terms of overall transmitted heat flux and in terms of reduction of the inside and outside surface temperatures. Findings shows that the additional inertia introduced by the PCM leads to a reduced overall heat flux transmission by the wall and to a lesser daily temperature amplitude on the surface of the wall that enhances the thermal comfort inside the building. In the next step of this work, the case of sandwich walls with air gap, and with wood and PCM layers will be considered.

  16. Damage of first wall materials in fusion reactors under nonstationary thermal effects

    International Nuclear Information System (INIS)

    Maslaev, S.A.; Platonov, Yu.M.; Pimenov, V.N.

    1991-01-01

    The temperature distribution in the first wall of a fusion reactor was calculated for nonstationary thermal effects of the type of plasma destruction or the flow of 'running electrons' taking into account the melting of the surface layer of the material. The thickness of the resultant damaged layer in which thermal stresses were higher than the tensile strength of the material is estimated. The results were obtained for corrosion-resisting steel, aluminium and vanadium. Flowing down of the molten layer of the material of the first wall is calculated. (author)

  17. Inelastic x-ray study of plasmons in oriented single and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Casa, D.M.; Upton, M.H.; Gog, T.; Misewich, J.; Hill, J.P.; Lowndes, D.; Eres, G.

    2006-01-01

    Carbon nanotubes (CNT) have a wide variety of interesting properties and a large number of potential aplications in electronic and optical devices. In this study we concentrate on one important aspect of their electronic stucture: the plasmon dispersions in both single- and multi-wall CNTs and their relation to those in graphite. For the first time inelastic X-ray scattering is used to study these collective electronic excitations in oriented CNT samples. The experiments were performed on the IXS instrument at beamline 9ID CMC-XOR, APS, ANL. The incident energy was defined by a Si(333) monochromator, a spherically bent Ge(733) diced analyzer at the end of a 1-m arm focused the incident radiation onto a solid-state detector. The overall resolution was ∼300 meV FWHM. The incident photons were linearly polarized perpendicular to the scattering plane. Energy loss scans were taken by varying the incident energy while keeping the exit energy fixed at 8.9805 keV. The momentum transfer was kept along the nanotubes axis. Spectra were taken at room temperature. The samples were oriented CNTs (both single- and multi-wall) grown on a Si substrate. The samples referred to as 'single-wall' were in fact a few walls at most (1-5) while the multi-walled ones had ∼12 walls. Fig. 1. shows the inelastic spectra for the single-, multi-wall, and highly oriented pyrolithic graphite (HOPG) from top to bottom. Momentum transfer was Q = 0.79 (angstrom) -1 in all cases, its direction was along the tubes for the first two samples or parallel to the sheets for graphite. The peaks at ∼10 and ∼30 eV are known as the π and σ + π plasmons respectively. Fig. 2. shows the complete dispersion curves for both plasmon modes as a function of momentum transfer for all three samples.

  18. Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide

    Science.gov (United States)

    Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika

    2018-02-01

    A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).

  19. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  20. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    International Nuclear Information System (INIS)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-01-01

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO_3 vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  1. Thermal decomposition of titanium deuteride thin films

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1983-01-01

    The thermal desorption spectra of deuterium from essentially clean titanium deuteride thin films were measured by ramp heating the films in vacuum; the film thicknesses ranged from 20 to 220 nm and the ramp rates varied from 0.5 to about 3 0 C s - 1 . Each desorption spectrum consisted of a low nearly constant rate at low temperatures followed by a highly peaked rate at higher temperatures. The cleanliness and thinness of the films permitted a description of desorption rates in terms of a simple phenomenological model based on detailed balancing in which the low temperature pressure-composition characteristics of the two-phase (α-(α+#betta#)-#betta#) region of the Ti-D system were used as input data. At temperatures below 340 0 C the model predictions were in excellent agreement with the experimentally measured desorption spectra. Interpretations of the spectra in terms of 'decomposition trajectories'' are possible using this model, and this approach is also used to explain deviations of the spectra from the model at temperatures of 340 0 C and above. (Auth.)

  2. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  3. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    Science.gov (United States)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  4. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold.

    Science.gov (United States)

    Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei

    2011-07-08

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2+, Sr2+ and PO4(3-) ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2+, Sr2+ and PO4(3-) ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  5. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  6. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    Science.gov (United States)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (Paligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  7. Respiratory toxicity of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Muller, Julie; Huaux, Francois; Moreau, Nicolas; Misson, Pierre; Heilier, Jean-Francois; Delos, Monique; Arras, Mohammed; Fonseca, Antonio; Nagy, Janos B.; Lison, Dominique

    2005-01-01

    Carbon nanotubes focus the attention of many scientists because of their huge potential of industrial applications, but there is a paucity of information on the toxicological properties of this material. The aim of this experimental study was to characterize the biological reactivity of purified multi-wall carbon nanotubes in the rat lung and in vitro. Multi-wall carbon nanotubes (CNT) or ground CNT were administered intratracheally (0.5, 2 or 5 mg) to Sprague-Dawley rats and we estimated lung persistence, inflammation and fibrosis biochemically and histologically. CNT and ground CNT were still present in the lung after 60 days (80% and 40% of the lowest dose) and both induced inflammatory and fibrotic reactions. At 2 months, pulmonary lesions induced by CNT were characterized by the formation of collagen-rich granulomas protruding in the bronchial lumen, in association with alveolitis in the surrounding tissues. These lesions were caused by the accumulation of large CNT agglomerates in the airways. Ground CNT were better dispersed in the lung parenchyma and also induced inflammatory and fibrotic responses. Both CNT and ground CNT stimulated the production of TNF-α in the lung of treated animals. In vitro, ground CNT induced the overproduction of TNF-α by macrophages. These results suggest that carbon nanotubes are potentially toxic to humans and that strict industrial hygiene measures should to be taken to limit exposure during their manipulation

  8. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  9. Dividing wall column: Improving thermal efficiency, energy savings and economic performance

    International Nuclear Information System (INIS)

    Aurangzeb, Md; Jana, Amiya K.

    2016-01-01

    Highlights: • A rigorous model is developed for a dividing wall column. • Heat transfer model for metal wall is proposed. • Performance improvement is quantified for a ternary system. • Thermal efficiency, energy savings and cost are three used indices. - Abstract: This work aims at investigating the performance improvement of a dividing wall column (DWC) for the separation of a ternary system. It is true that for fractionating a ternary mixture, at least a sequence of two conventional distillation columns is required. To improve energetic and economic potential, and reduce space requirement, two columns are proposed to merge into one shell with a dividing wall. For developing the mathematical model of a distillation column, we consider the effect of heat transfer through the metal wall placed at an intermediated position inside the cylindrical column. The simulated DWC model is verified using the Aspen Plus flowsheet simulator with a wide variety of phase equilibrium models. The superiority of this proposed heat integrated configuration is shown for a ternary hydrocarbon system over a conventional distillation sequence (CDS) in terms of mainly three performance indexes, namely thermal efficiency, energy savings and total annual cost (TAC). It is investigated that the dividing wall distillation scheme can secure a 37.5% energy efficiency, and a 22.6% savings in energy consumption and 23.23% in TAC. The promising performance can also be quantified in terms of a reasonably low payback period of 2.11 years.

  10. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    Science.gov (United States)

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  11. Chest wall stabilization and reconstruction: short and long-term results 5 years after the introduction of a new titanium plates system.

    Science.gov (United States)

    De Palma, Angela; Sollitto, Francesco; Loizzi, Domenico; Di Gennaro, Francesco; Scarascia, Daniele; Carlucci, Annalisa; Giudice, Giuseppe; Armenio, Andrea; Ludovico, Rossana; Loizzi, Michele

    2016-03-01

    We report short and long-term results with the dedicated Synthes(®) titanium plates system, introduced 5 years ago, for chest wall stabilization and reconstruction. We retrospectively analyzed (January 2010 to December 2014) 27 consecutive patients (22 males, 5 females; range 16-83 years, median age 60 years), treated with this system: primary [3] and secondary [8] chest wall tumor; flail chest [5]; multiple ribs fractures [5]; sternal dehiscence-diastasis [3]; sternal fracture [1]; sternoclavicular joint dislocation [1]; Poland syndrome [1]. Short-term results were evaluated as: operating time, post-operative morbidity, mortality, hospital stay; long-term results as: survival, plates-related morbidity, spirometric values, chest pain [measured with Verbal Rating Scale (VRS) and SF12 standard V1 questionnaire]. Each patient received from 1 to 10 (median 2) titanium plates/splints; median operating time was 150 min (range: 115-430 min). Post-operative course: 15 patients (55.6%) uneventful, 10 (37%) minor complications, 2 (7.4%) major complications; no post-operative mortality. Median post-operative hospital stay was 13 days (range: 5-129 days). At a median follow-up of 20 months (range: 1-59 months), 21 patients (78%) were alive, 6 (22%) died. Three patients presented long-term plates-related morbidity: plates rupture [2], pin plate dislodgment [1]; two required a second surgical look. One-year from surgery median spirometric values were: FVC 3.31 L (90%), FEV1 2.46 L (78%), DLCO 20.9 mL/mmHg/min (76%). On 21 alive patients, 7 (33.3%) reported no pain (VRS score 0), 10 (47.6%) mild (score 2), 4 (19.1%) moderate (score 4), no-one severe (score >4); 15 (71.5%) reported none or mild, 6 (28.5%) moderate pain influencing quality of life. An optimal chest wall stabilization and reconstruction was achieved with the Synthes(®) titanium plates system, with minimal morbidity, no post-operative mortality, acceptable operating time and post-operative hospital stay. Long

  12. Formation of TiO/Al2O3/C Composite in Thermal Co-decomposition of Aluminium(III) Acetylacetonate and Titanium(IV) Oxyacetylacetonate.

    Czech Academy of Sciences Publication Activity Database

    Kovářík, T.; Pokorná, Dana; Urbanová, Markéta; Bezdička, Petr; Bastl, Zdeněk; Kupčík, Jaroslav; Křenek, T.; Pola, M.; Kullová, L.; Pola, Josef

    2016-01-01

    Roč. 117, JAN 2016 (2016), s. 182-190 ISSN 0165-2370 R&D Projects: GA TA ČR TA04020860 Institutional support: RVO:67985858 ; RVO:61388980 ; RVO:61388955 Keywords : thermal co-decomposition * aluminium(III) acetylacetonate * titanium(IV) oxyacetylacetonate * titanium monoxide * alumina * Carbona Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.471, year: 2016

  13. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    The effect of multi-walled carbon nanotube (MWCNT) modification of anodes and the optimisation of relevant parameters thereof for application in an Enterobacter cloacae microbial fuel cell were examined. The H – type microbial fuel cells were used for the fundamental studies, with a carbon sheet as a control anode and ...

  14. Effect of wall thermal conductivity on the heat transfer process in annular turbulent gas flow for constant wall temperature

    International Nuclear Information System (INIS)

    Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.

    1987-01-01

    The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section

  15. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  16. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    Directory of Open Access Journals (Sweden)

    Chenglong Luo

    2018-01-01

    Full Text Available This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot summer and cold winter. The present work experimentally analyzes thermal feature of the system working in summer and winter modes, respectively.

  17. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  18. Thermal characterization of commercially pure titanium for dental applications

    Directory of Open Access Journals (Sweden)

    Enori Gemelli

    2007-09-01

    Full Text Available Thermal characterization of commercially pure titanium was carried out in dry air to investigate the oxidation kinetics, the oxide structures and their properties. Oxidation kinetics were performed by thermogravimetry in isothermal conditions between 300 and 750 °C for 48 hours and the oxide structures were studied by differential thermal analyses and X ray diffraction between room temperature and 1000 °C. The oxidation kinetic increases with temperature and is very fast in the initial period of oxidation, decreasing rapidly with time, especially up to 600 °C. Kinetic laws varied between the inverse logarithmic for the lower temperatures (300 and 400 °C and the parabolic for the higher temperatures (650, 700 and 750 °C. Evidences from X ray diffraction and differential thermal analyses showed that crystallization of the passive oxide film, formed at room temperature, into anatase occurs at about 276 °C. The crystallized oxide structure is composed of anatase between 276 and 457 °C, anatase and rutile sublayers between 457 and 718 °C, and a pure layer of rutile after 718 °C. Rockwell-C adhesion tests reveled that the oxide films formed up to 600 °C have a good adhesion. Vickers indentations on the oxidized surfaces showed that the hardness of the oxide film, measured at 600 and 650 °C, is approximately 9500 MPa. At these temperatures the surface roughness varied between 0.90 and 1.30 mm.

  19. Water-Dispersible Multi-Walled Carbon Nanotubes and Novel Hybrid Nanostructures

    NARCIS (Netherlands)

    Pham, Tuan Anh; Son, Se Mo; Jeong, Yeon Tae

    2010-01-01

    Water-dispersible multi-walled carbon nanotubes (MWNTs) were successfully prepared by the chemical grafting of acylated MWNTs with adenosine. The MWNTs were first purified and oxidized in order to obtain carboxylic acid funcionalized MWNTs, which was further acylated with thionyl chloride to give

  20. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    Science.gov (United States)

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  1. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    Science.gov (United States)

    Major, Maciej; Kosiń, Mariusz

    2017-12-01

    The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  2. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-12-01

    Full Text Available The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study. Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  3. Lifetime evaluation for thermal fatigue: application at the first wall of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Merola, M.; Biggio, M.

    1989-01-01

    Thermal fatigue seems to be the most lifetime limiting phenomenon for the first wall of the next generation Tokamak fusion reactors. This work deals with the problem of the thermal fatigue in relation to the lifetime prediction of the fusion reactor first wall. The aim is to compare different lifetime methodologies among them and with experimental results. To fulfil this purpose, it has been necessary to develop a new numerical methodology, called reduced-3D, especially suitable for thermal fatigue problems

  4. Kinetic study of synthesis of Titanium carbide by methano thermal reduction of Titanium dioxide

    International Nuclear Information System (INIS)

    Alizadeh, R.; Ostrovski, O.

    2011-01-01

    Reduction of the Titanium dioxide, TiO 2 , by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150 d egree C to 1450 d egree C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method was used for determination of the extent of reduction rate. The gas products of the reaction are mostly CO and trace amount of CO 2 and H 2 O. The synthesized product powder was characterized by X-ray diffraction for elucidating solid phase compositions. The effect of varying temperature was studied during the reduction. The conversion-time data have been interpreted by using the grain model. For first order reaction with respect to methane concentration, the activation energy of titanium dioxide reduction by methane is found to be 51.4 kcal/g mole. No detailed investigation of kinetic and mechanism of the reaction was reported in literatures.

  5. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  6. Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility

    International Nuclear Information System (INIS)

    He, Yi; Xu, Zhonghao; Yang, Qiangbin; Wu, Feng; Liang, Lv

    2015-01-01

    A novel hybrid material based on multi-walled carbon nanotubes was synthesized using organic synthesis, and the structures of multi-walled carbon nanotube derivatives were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, 1 H NMR spectroscopy, transmission electron microscopy, and scanning electron microscope. The analytical results indicated that β-cyclodextrin (β-CD) was anchored to the surface of Multi-walled carbon nanotubes (MWCNTs, OD: 10–20 nm, length: 10–30 μm) and dispersion experiments exhibited that the introduction of β-CD onto the MWCNTs would dramatically enhance the dispersion of MWCNTs in both ethanol and water media; the suspensions were found to be very stable for 2 months, and the results of this technique confirmed the experimental results. This novel technique would provide a new, simple, and facile route to prepare the modified nanomaterials based on silane-coupling agent and β-CD, and the obtained modified nanomaterials have great potential practical significance and theoretical value to develop the novel organic–inorganic hybrid material, which was very useful for water treatment and biological medicine

  7. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  8. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    Science.gov (United States)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  9. In situ polyphenyl derivatisation and the effect of thermal decomposition of adsorbed and chemisorbed polyphenyls on the structure of multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, Andras, E-mail: doohan11@chemres.hu [Department of Surface Modification and Nanostructures, Institute of Nanochemistry and Catalysis, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri ut 59-67, Budapest 1025 (Hungary); Ujszaszy, Kalman [Mass Spectrometry Department, Institute of Structural Chemistry, Pusztaszeri ut 59-67, Chemical Research Center of the Hungarian Academy of Sciences, Budapest 1025 (Hungary); Peltz, Csaba [EGIS Pharmaceuticals PLC, Kereszturi ut 30-38, Budapest 1106 (Hungary); Kiraly, Peter; Tarkanyi, Gabor [NMR Spectroscopy Department, Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri ut 59-67, Budapest 1025 (Hungary); Mihaly, Judith [Department of Biological Nanochemistry, Institute of Nanochemistry and Catalysis, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri ut 59-67, Budapest 1025 (Hungary); Kalman, Erika [Department of Surface Modification and Nanostructures, Institute of Nanochemistry and Catalysis, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri ut 59-67, Budapest 1025 (Hungary)

    2011-05-01

    This study presents the exploitation of an alternative reaction route of deamination of arylamines to perform in situ derivatisation of multi-walled carbon nanotubes (MWCNTs) with polyphenyl (PPh) species of various masses. As a result of consecutive derivatisation, high conversion of PPh grafting of the MWCNTs was realised with the collateral outgrowth of physical modification with adsorbed additional PPhs. Applied derivatisation process exceeds the monolayer coverage related superficial saturation limitations in the overall grafting yield of the nanotubes. Thus, a linear relationship was recognized between the overall quantities of chemisorbed PPhs composed of D{sub 5}-phenylene oligomers and the applied excess of diazonium activated reagents, corresponding to {sup 2}H MAS NMR spectroscopy results. According to mass spectrometry (MS) investigations, uniform thermal decomposition of the chemisorbed PPhs modified MWCNTs was found besides the more intense and altered decomposition characteristic-featured adsorbate-chemisorbate PPhs contained MWCNTs during sequential pyrolysis under inert atmosphere. This is attributed to the pyrolysis provoked isomerisation, decomposition and the formation of adsorbed and chemisorbed PPh moieties. As a result, a mediated and an even more pronounced degradation in the order of graphitic lattice of the MWCNTs were evidenced in the adsorbate-chemisorbate and the chemisorbate PPhs contained samples by FT-Raman spectroscopy and transmission electron microscopy (TEM), respectively. {sup 2}H MAS NMR supplied results of relevant amount of deuterium in the chemisorbate PPh contained sample without traces of aromatic related MS detected volatile products, these allow us to conclude about a thermally stable derivatisation that is interpreted as an endohedral modification of the nanotubes.

  10. A comparative study of the mechanical behaviour of thermally oxidised commercially pure titanium and zirconium.

    Science.gov (United States)

    Alansari, A; Sun, Y

    2017-10-01

    The objective of this study is to compare the mechanical behaviour of thermally oxidised commercially pure titanium (CP-Ti) and commercially pure zirconium (CP-Zr). For this purpose, these two bio-metals were thermally oxidised under the same condition (650°C for 6h) and the oxidised specimens were characterised using various analytical and experimental techniques, including oxygen uptake analysis, layer thickness and hardness measurements, scratch tests, dry sliding friction and wear tests and tribocorrosion tests in Ringer's solution. The results show that under the present thermal oxidation condition, 4 times more oxygen is introduced into CP-Zr than into CP-Ti and the oxide layer produced on CP-Zr is nearly 6 times thicker than that on CP-Ti. Thermally oxidised CP-Zr possesses a higher hardness, a deeper hardening depth and better scratch resistance than thermally oxidised CP-Ti. Under dry sliding and tribocorrosion conditions, thermally oxidised CP-Zr also possesses much better resistance to material removal and a higher load bearing capacity than thermally oxidised CP-Ti. Thus, thermally oxidised Zr possesses much better mechanical behaviour than thermally oxidised Ti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Thermal shock considerations for the TFCX limiter and first wall

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Resistance to thermal shock fracture of limiter and first wall surface material candidates during plasma disruption heating conditions is evaluated. A simple, figure-of-merit type thermal shock parameter which provides a mechanism to rank material candidates is derived. Combining this figure-of-merit parameter with the parameters defining specific heating conditions yields a non-dimensional thermal shock parameter. For values of this parameter below a critical value, a given material is expected to undergo thermal shock damage. Prediction of thermal shock damage with this parameter is shown to exhibit good agreement with test data. Applying this critical parameter value approach, all materials examined in this study are expected to experience thermal shock damage for nominal TFCX plasma disruption conditions. Since the extent of this damage is not clear, tests which explore the range of expected conditions for TFCX are recommended

  12. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Han Yong; Zhou Jianhong; Zhang Lan; Xu Kewei, E-mail: yonghan@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-07-08

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca{sup 2+}, Sr{sup 2+} and PO{sub 4}{sup 3-} ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca{sub 0.5}Sr{sub 0.5}TiO{sub 3} pre-formed on the TiO{sub 2} and grow in length to nanofibers at the expense of Ca{sup 2+}, Sr{sup 2+} and PO{sub 4}{sup 3-} ions that migrate from the TiO{sub 2}. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  13. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    Science.gov (United States)

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  14. Numerical thermal analysis of the vertical external partition made as the frame thin-walled steel structure

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-01-01

    Full Text Available The article presents numerical thermal analysis of the vertical external partitions made in the lightweight steel framing technology. Steel posts that perform the structural role lead to the formation of linear thermal bridges and have a negative effect on the level of thermal transmittance U. Therefore, optimal solutions are being explored for such technologies. One of the solutions is to use perforated Thermo sections. The effect of perforated Thermo sections on energy loss was verified through comparison to the wall made of solid sections. Furthermore, the calculations analysed the effect of linear thermal bridges that are formed on wall connections in the corner. Computer simulation was employed to emphasize the significant differences in the temperature distribution in both analysed wall structures that resulted from constructional solutions.

  15. Block survey of wall covered with plant in the city of Tokyo [Japan] and evaluation of thermal environment of wall greening system

    International Nuclear Information System (INIS)

    Shibuya, K.; Soh, Y.; Satoh, S.

    2007-01-01

    There were 384 (8877 square m) walls which covered with plant on 10 square km in the city of Tokyo, and the green wall rate in the city of Tokyo was 0.88%. Vines, for example Parthenocissus tricuspidata and Hedera helix, were widely used. The factor of thinking better of the landscape in urban area was one of the easily management of plants. The three wall greening systems, a wall covered with hanging climbers and two types of self-contained living wall, mitigated the thermal environment. However its degree can be depended on the greening method and the greenery occupancy rate of wall

  16. Experimental and numerical study of heat transfer across insulation wall of a refrigerated integral panel van

    International Nuclear Information System (INIS)

    Glouannec, Patrick; Michel, Benoit; Delamarre, Guillaume; Grohens, Yves

    2014-01-01

    This paper presents an experimental and numerical design study of an insulation wall for refrigerated vans. The thermophysical properties of the insulating multilayer panel, the external environment impact (solar irradiation, temperature, etc.) and durability are taken into account. Different tools are used to characterize the thermal performances of the insulation walls and the thermal properties of the insulation materials are measured. In addition, an experiment at the wall scale is carried out and a 2D FEM model of heat and mass transfer within the wall is formulated. Three configurations are studied with this design approach. Multilayer insulation walls containing reflective multi-foil insulation, aerogel and phase change materials (PCM) are tested. Promising results are obtained with these materials, especially the reduction of peak heat transfer and energy consumption during the daytime period. Furthermore, the major influence of solar irradiation is highlighted as it can increase the peak heat transfer crossing the insulation wall by up to 43%. Nevertheless, we showed that the use of reflective multi-foil insulation and aerogel layers allowed decreasing this impact by 27%. - Highlights: • A design study of an insulation wall for a refrigerated van is carried out. • Experimental and numerical studies of multilayer insulation walls are performed. • The major influence of solar irradiation is highlighted. • New insulation materials (reflective multi-foil, aerogel and PCM) are tested

  17. Deposition and Characterization of the Titanium-Based Coating by a Multi-Chamber Detonation Sprayer

    Directory of Open Access Journals (Sweden)

    Arseenko M.Yu.

    2015-01-01

    Full Text Available This work introduces some of the aspects of the deposition of titanium-based coating (80-120 μm thick on aluminium samples using a multi-chamber detonation sprayer (MCDS. The characteristic feature of MCDS is that the powder is accelerated by using combustion products that are formed in MCDS chambers and are converged before entering the nozzle, where they interact with the two-phase gas-powder cloud. The microstructures and properties of the coating were characterized with the use of scanning electronic microscopes (SEM, optical microscope (OM, X-ray Diffraction (XRD techniques, and Vickers hardness tester with a 50 g test load. Wear tests were carried out using a computer controlled pin-on-disc type tribometer. It was established that MCDS has provided the conditions for formation of a dense titanium-based coating with a porosity of less than 1.0%, microhardness 810±250 HV0.05 and a specific wear rate of 2.077∙10-4 mm3(m∙N-1.

  18. Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, X J; Zhang, Z M; Flicker, J D; Ready, W J; Lee, B J

    2009-01-01

    This work investigates the reflection and scattering from vertically aligned carbon nanotubes, fabricated on silicon substrate using thermally enhanced chemical vapor deposition with both tip-growth and base-growth mechanisms. The directional-hemispherical reflectance in the visible and near-infrared wavelengths was measured with an integrating sphere. The polarization-dependent bidirectional reflectance distribution function was characterized with a laser scatterometer at the wavelength of 635 nm. The effective medium theory was used to elucidate the mechanism of high absorptance (greater than 0.97 in the spectral region from 400 to 1800 nm) of the multi-walled carbon nanotube samples. It is observed that scattering by impurities on the top of the nanotubes, by the nanotube tips, and by defects and misalignment can significantly increase the reflectance and introduce retroreflection. This study may facilitate application of carbon nanotubes in pyroelectric detectors as well as thermophotovoltaic emitters and absorbers.

  19. Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Moench, I [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Leonhardt, A [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Meye, A [Department of Urology, Technical University Dresden, Fetscherstrasse 74, D-01062 Dresden (Germany); Hampel, S [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Kozhuharova-Koseva, R [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Elefant, D [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Wirth, M P [Department of Urology, Technical University Dresden, Fetscherstrasse 74, D-01062 Dresden (Germany); Buechner, B [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2007-04-15

    Multifunctional nanocontainers can be produced based on partially filled Fe-multi walled carbon nanotubes (MWCNTs). Using thermal decomposition ferrocene filled nanotubes can be grown aligned on substrates. The encapsulated metal nanowires have diameters of 5-30 nm and a length up to few microns. They consist of single-crystalline of {alpha} and {gamma}-Fe- phases. Using heat treatment, it is possible to transform {gamma}-Fe into {alpha}-Fe. With the aid of wet chemical methods the nanotubes can be opened and additionally filled with an agent, e.g., therapeutic agents (carboplatin) or other metals (copper). Initial studies do not show a high toxicity over a period of 440 days. These materials can be used for drug delivery and hyperthermia. The specific absorption rate (SAR) is greater than 100W/(g-{alpha}-Fe) in a magnetic field of 18kA/m (f = 250kHz)

  20. Synthesis and CO2 adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    International Nuclear Information System (INIS)

    Ullah, Sami; Bustam, M. A.; Shariff, A. M.; Elkhalifah, Ali E. I.; Murshid, G.; Riaz, Nadia

    2014-01-01

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO 2 adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO 2 adsorption. The result had showed that the modified MOF-5 enhanced the CO 2 adsorption compared to the pure MOF-5. The increment in the CO 2 uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO 2 sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO 2 adsorption followed by the modified MOF-5@ EG and lastly, MOF-5

  1. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  2. Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal

    2007-07-01

    The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE

  3. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  4. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant

    International Nuclear Information System (INIS)

    Begum, Parvin; Fugetsu, Bunshi

    2012-01-01

    Highlights: ► MWNTs are selected for study of the systemic toxicity and the potential influence on red spinach. ► Microscopic observation revealed some adverse effects on root and leaf. ► Cell damage were detected on 15 days after the exposure to MWNTs. ► ROS increase ceased once ascorbic acid was added into media. ► Oxidative stress seems to be the key element responsible for causing the toxicity. - Abstract: Carbon nanotubes (CNTs) are a novel nanomaterial with wide potential applications; however the adverse effects of CNTs following environmental exposure have recently received significant attention. Herein, we explore the systemic toxicity and potential influence of 0–1000 mg L −1 the multi-walled CNTs on red spinach. The multi-walled CNTs exposed plants exhibited growth inhibition and cell death after 15 days of hydroponic culture. The multi-walled CNTs had adverse effects on root and leaf morphology, as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Raman spectroscopy detected the multi-walled CNTs in leaves. Biomarkers of nanoparticle toxicity, reactive oxygen species (ROS), and cell damage in the red spinach were greatly increased 15 days post-exposure to the multi-walled CNTs. These effects were reversed when the multi-walled CNTs were supplemented with ascorbic acid (AsA), suggesting a role of ROS in the multl-walled CNT-induced toxicity and that the primary mechanism of the multi-walled CNTs’ toxicity is oxidative stress.

  5. A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures

    Directory of Open Access Journals (Sweden)

    Tae Joon Choi

    2016-01-01

    Full Text Available Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic.

  6. Lubrication for hot working of titanium alloys

    International Nuclear Information System (INIS)

    Gotlib, B.M.

    1980-01-01

    The isothermal lubrication of the following composition is suggested, wt. %: aluminium powder 4-6, iron scale 15-25, vitreous enamel up to 100. The lubricant improves forming and decreases the danger of the metal fracture when titanium alloys working. It is advisable to use the suggested lubrication when stamping thin-walled products of titanium alloys at the blank temperature from 700 to 1000 deg C [ru

  7. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.

    Science.gov (United States)

    Yan, Leiming; Wu, Jisi; Zhang, Lei; Liu, Xinli; Zhou, Kechao; Su, Bo

    2017-06-01

    Porous titanium scaffolds with long-range lamellar structure were fabricated using a novel bidirectional freeze casting method. Compared with the ordinarily porous titanium materials made by traditional freeze casting, the titanium walls can offer the structure of ordered arrays with parallel to each other in the transverse cross-sections. And titanium scaffolds with different pore width, wall size and porosity can be synthesized in terms of adjusting the fabrication parameters. As the titanium content was increased from 15vol.% to 25vol.%, the porosity and pore width decreased from 67±3% to 50±2% and 80±10μm to 67±7μm, respectively. On the contrary, as the wall size was increased from 18±2μm to 30±3μm, the compressive strength and stiffness were increased from 58±8MPa to 162±10MPa and from 2.5±0.7GPa to 6.5±0.9GPa, respectively. The porous titanium scaffolds with long-range lamellar structure and controllable pore structure produced in present work will be capable of having potential application as bone tissue scaffold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate

    Science.gov (United States)

    Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur

    2017-12-01

    The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.

  9. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.

    Science.gov (United States)

    Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V

    2008-10-01

    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.

  10. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Parvin [Laboratory of Environmental Medical Chemistry, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Laboratory of Environmental Medical Chemistry, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer MWNTs are selected for study of the systemic toxicity and the potential influence on red spinach. Black-Right-Pointing-Pointer Microscopic observation revealed some adverse effects on root and leaf. Black-Right-Pointing-Pointer Cell damage were detected on 15 days after the exposure to MWNTs. Black-Right-Pointing-Pointer ROS increase ceased once ascorbic acid was added into media. Black-Right-Pointing-Pointer Oxidative stress seems to be the key element responsible for causing the toxicity. - Abstract: Carbon nanotubes (CNTs) are a novel nanomaterial with wide potential applications; however the adverse effects of CNTs following environmental exposure have recently received significant attention. Herein, we explore the systemic toxicity and potential influence of 0-1000 mg L{sup -1} the multi-walled CNTs on red spinach. The multi-walled CNTs exposed plants exhibited growth inhibition and cell death after 15 days of hydroponic culture. The multi-walled CNTs had adverse effects on root and leaf morphology, as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Raman spectroscopy detected the multi-walled CNTs in leaves. Biomarkers of nanoparticle toxicity, reactive oxygen species (ROS), and cell damage in the red spinach were greatly increased 15 days post-exposure to the multi-walled CNTs. These effects were reversed when the multi-walled CNTs were supplemented with ascorbic acid (AsA), suggesting a role of ROS in the multl-walled CNT-induced toxicity and that the primary mechanism of the multi-walled CNTs' toxicity is oxidative stress.

  11. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes.

    Science.gov (United States)

    Hussain, Abid; Farrukh, Sarah; Hussain, Arshad; Ayoub, Muhammad

    2017-12-05

    Most of the polymers and their blends, utilized in carbon capture membranes, are costly, but cellulose acetate (CA) being inexpensive is a lucrative choice. In this research, pure and mixed matrix membranes (MMMs) have been fabricated to capture carbon from natural gas. Polyethylene glycol (PEG) has been utilized in the fabrication of membranes to modify the chain flexibility of polymers. Multi-walled carbon nanotubes (MWCNTs) provide mechanical strength, thermal stability, an extra free path for CO 2 molecules and augment CO 2 /CH 4 selectivity. Membranes of pure CA, CA/PEG blend of different PEG concentrations (5%, 10%, 15%) and CA/PEG/MWCNTs blend of 10% PEG with different MWCNTs concentrations (5%, 10%, 15%) were prepared in acetone using solution casting techniques. Fabricated membranes were characterized using SEM, TGA and tensile testing. Permeation results revealed remarkable improvement in CO 2 /CH 4 selectivity. In single gas experiments, CO 2 /CH 4 selectivity is enhanced 8 times for pure membranes containing 10% PEG and 14 times for MMMs containing 10% MWCNTs. In mix gas experiments, the CO 2 /CH 4 selectivity is increased 13 times for 10% PEG and 18 times for MMMs with 10% MWCNTs. Fabricated MMMs have a tensile strength of 13 MPa and are more thermally stable than CA membranes.

  12. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  13. Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel

    International Nuclear Information System (INIS)

    Vu, Thu Ha Thi; Nguyen, Thu Trang Thi; Nguyen, Phuong Hoa Thi; Do, Manh Hung; Au, Hang Thi; Nguyen, Thanh Binh; Nguyen, Dinh Lam; Park, Jun Seo

    2012-01-01

    Highlights: ► MWNTs and TiO 2 were mixed well, forming uniform microstructure in MWNTs/TiO 2 composites. ► The combination of MWNTs and TiO 2 contribute to improving photocatalytic activity of TiO 2 . ► MWNTs/TiO 2 composite is an effective photo-catalyst for the removal of sulfur from commercial diesel. -- Abstract: Composite of multi-walled carbon nanotubes (MWNTs) and titanium (IV) oxide (TiO 2 ) were prepared by a heterogeneous gelation method. The activities of the MWNTs/TiO 2 composites were evaluated by photocatalytic oxidative desulfurization using dibenzothiophene (DBT), 4,6-dimethyl dibenzothiophene (4,6-DMDBT), n-tetradecane, and commercial diesel under irradiation using a high-pressure Hg lamp. The microstructures of MWNTs/TiO 2 composites were characterized by N 2 adsorption, scanning electron microscopy, transmission electron microscope, and X-ray diffraction. It was found that more than 98% of sulfur compounds in commercial diesel were oxidized and removed by the use of the MWNTs/TiO 2 composite as a photocatalyst.

  14. Evaluation of Cardiopulmonary Toxicity Following Oral Administration of Multi-walled Carbon Nanotubes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ehsan Zayerzadeh

    2016-07-01

    Full Text Available Objective(s: Carbon nanotubes have unique mechanical, electrical, and thermal properties, with potential different applications in nanomedicine, electronics, and other industries. These new applications of carbon nanotubes in different industries lead to the increased exposure risk of nanomaterials to human. Up to now, all aspects of carbon nanotubes toxicity are not completely clear following human and animal exposures with these novel compounds. The aim of this study was to assess cardiopulmonary toxicity of multi-walled carbon nanotubes following oral administration in rats with respect to the histopathological and biochemical evaluation. Methods: In the present investigation, we studied cardiorespiratory toxicity of multi-wall carbon nanotubes (MWCNT with regard to histopathological changes and some biomarkers including TnT, CK-MB and LDH in experimental rats following oral administration. One dose per 24 h of MWCNT suspension was administered orally (gavage technique to animals at the doses of 500, 1000 and 2000 mg/kg/day BW for 5 days. Results: The results of these study showed oral administration of MWCNT induces histopathological complications such as severe alveolar edema and hemorrhage in lungs and myocytolysis in heart of all experimental groups of animals. In all of the groups, troponin T level showed no changes when compared to baseline. Lactate dehydrogenase and CK-MB activity showed significant increment in all of animal groups following oral administration of carbon nanotubes. Conclusions: It can be concluded that oral exposure of MWCNT may be toxic for cardiovascular and respiratory systems, because MWCNT induced biochemical alterations and histopathological abnormalities in these vital systems.

  15. Dynamic thermal reaction analysis of wall structures in various cooling operation conditions

    International Nuclear Information System (INIS)

    Yan, Biao; Long, Enshen; Meng, Xi

    2015-01-01

    Highlights: • Four different envelop structures are separately built in the same test building. • Cooling temperature and operation time were chosen as perturbations. • State Space Method is used to analyze the influence of wall sequence order. • The numerical models are validated by the comparisons of theory and test results. • The contrast of temperature change of different envelop structures was stark. - Abstract: This paper proposes a methodology of performance assessing of envelops under different cooling operation conditions, by focusing on indoor temperature change and dynamic thermal behavior performance of walls. To obtain a general relationship between the thermal environment change and the reaction of envelop, variously insulated walls made with the same insulation material are separately built in the same wall of a testing building with the four different structures, namely self-heat insulation (full insulation material), exterior insulation, internal insulation and intermediate insulation. The advantage of this setting is that the test targets are exposed to the same environmental variables, and the tests results are thus comparable. The target responses to two types of perturbations, cooling temperature and operation time were chosen as the important variations in the tests. Parameters of cooling set temperature of 22 °C and 18 °C, operation and restoring time 10 min and 15 min are set in the test models, and discussed with simulation results respectively. The results reveal that the exterior insulation and internal insulation are more sensitive to thermal environment change than self-heat insulation and intermediate insulation.

  16. Nanotechnology And Examination Of Multi Walled Carbon Nanotubes

    OpenAIRE

    Kutucu, Burcu

    2010-01-01

    The main subject of this study is the definition of nanotechnology, benefits of nanotechnology, nanotechnology applications in Turkey and world and the history of nanotechnology. Also single and multi walled carbon nanotubes and Van der Waals bands are examined in this study. At first a fixed end frame loaded with a load P is studied and governing equations solved in MATHEMATICA. Secontly the same procedure is repeated for a fixed and frame loaded with moment M is studied and governing equati...

  17. Development of TiC coated wall materials for JT-60

    International Nuclear Information System (INIS)

    Abe, T.; Murakami, Y.; Obara, K.; Hiroki, S.; Nakamura, K.; Inagawa, K.

    1985-01-01

    Development of titanium carbide (TiC, 20 μm thick) coated wall materials has been carried out for JT-60. Application of TiC coatings onto molybdenum and Inconel 625 substrates requires a deposition temperature below 950 0 C and 600 0 C respectively, because recrystallization of molybdenum and age hardening of Inconel 625 occur above these temperatures. Through this process of coating we develop a new type plasma CVD(TP-CVD method) for molybdenum and a new type PVD(HCD-ARE method) for Inconel 625 which could successfully reduce the deposition temperature to 900 0 C and 500 0 C, respectively. The TiC coated wall samples were characterized by AES, ESCA, X-ray diffractometer, EPMA, SEM, metalography, tensile tests, thermal shock tests, and other techniques. As a result of the above measurements, it was demonstrated that the characteristics of those TiC coated walls satisfy the requirements arising from JT-60 operation conditions. (orig.)

  18. EVALUATION OF THERMAL INSULATION FOR THREE DIFFERENT MATERIALS USED IN CONSTRUCTION AND COMPLETION OF EXTERNAL WALLS

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2010-05-01

    Full Text Available Summers increasingly hot are bringing large thermal problems within homes and businesses, leading to increased demand for installation of air conditioners and the consequent high energy consumption. Constructions with thermal insulation on its external walls thatcould reduce energy use or even supply the use of such equipment. Due to these factors the present study was to evaluate the insulation in three boxes built with different materials, one made of wooden boards with plain walls, and two built with plywood, wall insulation andinterior walls filled with rice husk and Styrofoam®. The boxes were built after placed in drying oven at 40 °C, then noted the temperature inside the same interval every five minutes using a digital thermometer. The box with inner Styrofoam® showed the lowest variation among the three evaluated, followed by the box of rice husk. These two materials also showed good thermal initial, unlike the box built only with wood, which showed a large interiorheating, lay in a drying oven.

  19. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    Science.gov (United States)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  20. Synthesis and CO{sub 2} adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sami, E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Bustam, M. A., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Shariff, A. M., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Elkhalifah, Ali E. I., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Murshid, G., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Riaz, Nadia, E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com [Research Center for Carbon Dioxide Capture, Dept. of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, Tronoh 31750 Perak (Malaysia)

    2014-10-24

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO{sub 2} adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO{sub 2} adsorption. The result had showed that the modified MOF-5 enhanced the CO{sub 2} adsorption compared to the pure MOF-5. The increment in the CO{sub 2} uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO{sub 2} sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO{sub 2} adsorption followed by the modified MOF-5@ EG and lastly, MOF-5.

  1. Polyaniline–multi-wall-carbon nanotube nanocomposites as a dopamine sensor

    Directory of Open Access Journals (Sweden)

    REZA EMAMALI SABZI

    2010-04-01

    Full Text Available A composite of polyaniline with multi-wall-carbon nanotubes (PANi/ /MWCNTs was synthesized by an in situ chemical oxidative polymerization method. The PANi nanoparticles were synthesized chemically using aniline as the monomer and ammonium peroxydisulfate as the oxidant. The nanocomposites were prepared as a carbon paste using functionalized MWCNTs and PANi nanoparticles. The PANi–MWCNTs were characterized physically using scanning electron microscopy (SEM and the electrochemical behavior of the composites in acidic solution (HCl was investigated using cyclic voltammetry. The PANi/MWCNT composite electrode was used for studying dopamine (DA as an electroactive material. The cyclic voltammetric results indicated that multi-wall carbon nanotubes (MWCNTs significantly enhanced the electrocatalytic activity in favor of the oxidation of DA. The kinetics of the catalytic reaction was investigated using the chronoamperometry technique whereby the average va¬lue of the diffusion coefficient (D and the catalytic rate constant (k for DA were determined to be (7.98±0.8×10-7 cm2 s-1 and (8.33±0.072×104 dm3 mol-1 s-1, respectively.

  2. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    International Nuclear Information System (INIS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-01-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E i I i , d, and γ, where E i I i and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates

  3. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    Kostyuk, K.O.; Kostyuk, V.O.

    2015-01-01

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T 2 B, TiB, TiB 2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  4. Multi-wall carbon nanotubes with nitrogen-containing carbon coating

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava; Šálek, Petr; Kovářová, Jana; Zemek, Josef; Cieslar, M.; Prokeš, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1054-1065 ISSN 0366-6352 R&D Projects: GA ČR GPP108/11/P763; GA ČR GAP205/12/0911; GA ČR GA202/09/0428 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline coating * carbon ization * multi-wall carbon nanotubes Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.193, year: 2013

  5. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  6. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    Science.gov (United States)

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  7. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    Science.gov (United States)

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  8. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Science.gov (United States)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  9. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites

    International Nuclear Information System (INIS)

    Kumar Barick, Aruna; Kumar Tripathy, Deba

    2011-01-01

    Graphical abstract: Highlights: → Preparation and characterization of TPU nanocomposite for tailor made applications. → The structural analyses were carried out by FTIR, WAXD, FESEM and HRTEM. → The thermal and dynamic mechanical properties were evaluated by TGA, DSC and DMA. → The dynamic rheological behavior was investigated by RPA in frequency sweep. → The frequency dependence of electrical properties was studied by LCR meter. - Abstract: The multi-walled carbon nanotube (MWNT) reinforced thermoplastic polyurethane (TPU) nanocomposites were prepared through melt compounding method followed by compression molding. The spectroscopic study indicated that a strong interfacial interaction was developed between carbon nanotube (CNT) and the TPU matrix in the nanocomposites. The microscopic observation showed that the CNTs were homogeneously dispersed throughout the TPU matrix well apart from a few clusters. The results from thermal analysis indicated that the glass transition temperature (T g ) and storage modulus (E') of the nanocomposites were increased with increase in CNTs content and their thermal stability were also improved in comparison with pure TPU matrix. The rheological analysis showed the low frequency plateau of shear modulus and the shear thinning behavior of the nanocomposites. The electrical behaviors of the nanocomposites are increased with increase in weight percent (wt%) of CNT loading. The mechanical properties of nanocomposites were substantially improved by the incorporation of CNTs into the TPU matrix.

  10. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  11. Multi-bunch effect of resistive wall in the Beam Delivery System of the Compact Linear Collider

    CERN Document Server

    Mutzner, R; Rumolo, G; Tomas, R; Pieloni, T

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present work focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Our simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. The two cases of 3 TeV and 500 GeV have been examined.

  12. Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1977-01-01

    A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated

  13. Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1978-01-01

    A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated

  14. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    OpenAIRE

    Luo, Chenglong; Xu, Lijie; Ji, Jie; Liao, Mengyin; Sun, Dan

    2018-01-01

    This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW) system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot sum...

  15. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  16. Robust multi-model predictive control of multi-zone thermal plate system

    Directory of Open Access Journals (Sweden)

    Poom Jatunitanon

    2018-02-01

    Full Text Available A modern controller was designed by using the mathematical model of a multi–zone thermal plate system. An important requirement for this type of controller is that it must be able to keep the temperature set-point of each thermal zone. The mathematical model used in the design was determined through a system identification process. The results showed that when the operating condition is changed, the performance of the controller may be reduced as a result of the system parameter uncertainties. This paper proposes a weighting technique of combining the robust model predictive controller for each operating condition into a single robust multi-model predictive control. Simulation and experimental results showed that the proposed method performed better than the conventional multi-model predictive control in rise time of transient response, when used in a system designed to work over a wide range of operating conditions.

  17. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Jin-woo Lee

    2018-06-01

    Full Text Available The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper. Keywords: Carbon Nanotube (CNT, Carbon Fiber Reinforcement Plastic (CFRP, Heater, Exothermic characteristics

  18. Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes.

    Science.gov (United States)

    Wan, Hong; Zhang, Bo; Bai, Xiao-Lin; Zhao, Yan; Xiao, Meng-Wei; Liao, Xun

    2017-10-01

    A new, rapid, green, and cost-effective magnetic solid-phase extraction of ochratoxin A from red wine samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes as the absorbent. The polydopamine-coated magnetic multi-walled carbon nanotubes were fabricated with magnetic multi-walled carbon nanotubes and dopamine by an in situ oxidative self-polymerization approach. Transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high-performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid-phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8-104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1-2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine-coated magnetic multi-walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  20. Application of Multi-Layered Polyurethane Foams for Flat-Walled Anechoic Linings

    DEFF Research Database (Denmark)

    Xu, J. F.; Buchholz, Jörg; Fricke, Fergus R.

    2006-01-01

    of the application of multi-layered polyurethane foams as the flat-walled anechoic lining. The investigation includes aspects such as the efficacy of a single layer of material, the minimum number of layers of linings to achieve the minimum overall thickness for low (100Hz), mid (250Hz) and high (500Hz) cut...

  1. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading

    NARCIS (Netherlands)

    Ccahuana Vasqueza, Vanessa Zulema; Ozcan, Mutlu; Kimpara, Estevao Tomomitsu

    Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy. Methods. Metallic frameworks

  2. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  3. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  4. Electronic structure of multi-walled carbon fullerenes

    International Nuclear Information System (INIS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  5. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  6. A new method for production of titanium vapor and synthesis of titanium nitride coatings

    Science.gov (United States)

    Grigoriev, Sergey N.; Melnik, Yury A.; Metel, Alexander S.; Volosova, Marina A.

    2018-03-01

    It is proposed to synthesize on machine parts and cutting tools wear-resistant titanium nitride coatings with the help of the hollow-cathode glow discharge, a molybdenum crucible for titanium evaporation being used as the anode of the discharge and a process vacuum chamber being used as the hollow cathode. The research revealed that at the anode surface area less than a critical value S* = (2m/M)1/2S, where S is the area of the chamber walls, m is the mass of electrons and M is the mass of ions, the anode fall of potential is positive and grows from ˜50 V at argon pressure p = 0.2 Pa to ˜2 kV at p = 0.02 Pa. At the discharge current I = 0.6 A electrons accelerated by the anode fall of 0.9 kV transport into the crucible with the inner diameter of 12 mm the power of ˜0.54 kW, which allows the titanium evaporation and the coating deposition rate of 5 µm·h-1 on a substrate distanced from the crucible at 100 mm. After the argon is replaced with the nitrogen, titanium nitride coating without titanium droplets is synthesized the deposition rate amounting to about the same value.

  7. Chemical composition of dome-shaped structures grown on titanium by multi-pulse Nd:YAG laser irradiation

    International Nuclear Information System (INIS)

    Gyoergy, E.; Perez del Pino, A.; Serra, P.; Morenza, J.L.

    2004-01-01

    The specific dome-shaped structures were grown by multi-pulse Nd:YAG (λ=1.064 μm, τ=∼300 ns, and ν=30 kHz) laser irradiation of titanium targets in air at atmospheric pressure. The laser intensity values were chosen below the single-laser-pulse melting threshold of titanium. The chemical composition of the structures was studied as a function of laser pulse number as well as laser intensity, both at the outer surface layer and in depth. Micro-Raman spectroscopy, Auger electron spectroscopy (AES), and wavelength dispersive X-ray spectroscopy (WDX) were used as diagnostic techniques. Morphological investigations were performed by scanning electron microscopy. The obtained results revealed a lower oxygen concentration in the centre of the structures as compared to the borders and a lower concentration on the surface than in the depth. Moreover, it was found that the stoichiometry of the formed TiO 2-x oxides increases from the structures centre towards the border and from the surface towards the depth

  8. Multi-Bunch effect of resistive wall in the beam delivery system of the Compact Linear Collider

    CERN Document Server

    Mutzner, Raphael; Pieloni, Tatiana; Rivkin, Leonid

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present master thesis focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. We examine the two cases of 3 TeV and 500 GeV in this work, for stainless steel and copper pipes.

  9. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  10. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    Science.gov (United States)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  11. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  12. Quantitative Analysis of Memristance Defined Exponential Model for Multi-bits Titanium Dioxide Memristor Memory Cell

    Directory of Open Access Journals (Sweden)

    DAOUD, A. A. D.

    2016-05-01

    Full Text Available The ability to store multiple bits in a single memristor based memory cell is a key feature for high-capacity memory packages. Studying multi-bit memristor circuits requires high accuracy in modelling the memristance change. A memristor model based on a novel definition of memristance is proposed. A design of a single memristor memory cell using the proposed model for the platinum electrodes titanium dioxide memristor is illustrated. A specific voltage pulse is used with varying its parameters (amplitude or pulse width to store different number of states in a single memristor. New state variation parameters associated with the utilized model are provided and their effects on write and read processes of memristive multi-states are analysed. PSPICE simulations are also held, and they show a good agreement with the data obtained from the analysis.

  13. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  14. Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors

    International Nuclear Information System (INIS)

    Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.

    2010-01-01

    A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)

  15. Internal Insulation of Masonry Walls with Wooden Floor Beams in Northern Humid Climate

    DEFF Research Database (Denmark)

    Morelli, Martin; Scheffler, Gregor Albrecht; Nielsen, Toke Rammer

    2010-01-01

    Multi-story buildings in Denmark from 1850–1950 are built with masonry walls and wooden floor beams. Large energy savings can be achieved by insulating the facades. Often interior insulation is the only possibility in order to keep the appearance of the external facade. The internal insulation...... reduces the drying potential of the wall, which might lead to moisture problems in the beam ends embedded in the masonry due to absorption of driving rain. This paper describes a solution to avoid the moisture problems and still achieve large energy savings. The thermal analyses are made in thermal...

  16. Radiographic testing methods for welds of thin titanium plates and thin wall tubes

    International Nuclear Information System (INIS)

    1984-01-01

    This standard stipulates the testing method by X-ray radiography for the welded parts of titanium plates and titanium tubes with thickness not exceeding 8 mm. The other items than those stipulated here shall be in accordance with JIS Z 3107-1973 ''Testing method by radiography for the welded part of titanium and method of grade classification of radiographs''. As the photographing method of radiographs, the performance of the equipment and materials for testing, the direction of X-ray irradiation, the thickness of parent materials and welds, the use of penetrameters, the arrangement for photographing, the requirement for radiographs and the observation of radiographs are specified. The X-ray apparatuses, photo-sensitive materials and the tools for photographing and observation must be such that the radiographs clearly showing the defects in the welds being tested can be taken or observed. The JIS Z 3107 is insufficient for the test of thin materials like titanium, therefore, this standard was set down. As the thickness of welds, the thickness of parent materials was taken. In this standard, the titanium penetrameters were adopted because they can be made and they conform to practical state. If magnified photographing is carried out with microfocus X-ray apparatuses, precise photographing can be made. (Kako, I.)

  17. The Impedance of Multi-layer Vacuum Chambers

    CERN Document Server

    Vos, L

    2003-01-01

    Many components of the LHC vacuum chamber have multi-layered walls : the copper coated cold beam screen, the titanium coated ceramic chamber of the dump kickers, the ceramic chamber of the injection kickers coated with copper stripes, only to name a few. Theories and computer programs are available for some time already to evaluate the impedance of these elements. Nevertheless, the algorithm developed in this paper is more convenient in its application and has been used extensively in the design phase of multi-layer LHC vacuum chamber elements. It is based on classical transmission line theory. Closed expressions are derived for simple layer configurations, while beam pipes involving many layers demand a chain calculation. The algorithm has been tested with a number of published examples and was verified with experimental data as well.

  18. The effect of thermal conductance of vertical walls on natural convection in a rectangular enclosure

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Yoshino, A.; Taii, K.

    2004-01-01

    This paper deals with the experimental results of natural convective heat transfer in a rectangular water layer bounded by vertical walls of different thermal conductance. The vertical walls were made of copper or stainless steel. A minimum was observed in the horizontal distribution of temperature near the heating wall since a secondary reverse flow occurred outside the boundary layer. For copper case the experimental results of Nusselt number agreed well with calculations under an isothermal wall condition. For stainless steel case, however, the measured values were lower than the calculations since a three-dimensional effect appeared in convection due to non-uniformity in wall temperature. (author)

  19. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  20. Proximity and physical navigation in collaborative work with a multi-touch wall-display

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    Multi-touch, wall-sized displays afford new forms of collaboration. Yet, most data on collaboration with multi-touch displays come from tabletop settings, where users often sit and where space is a limited resource. We study how two-person groups navigate in relation to a 2.8m!1.2m multi-touch di......-touch display with 24.8 megapixels and to each other when solving a sensemaking task on a document collection. The results show that users physically navigate to shift fluently among different parts of the display and between parallel and joint group work....

  1. On reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1986-01-01

    The reaction between titanium polonides and carbon dioxide has been studied by comparing titanium polonide thermal resistance in vacuum and in carbon dioxide. The investigation has shown that titanium mono- and semipolonides fail at temperatures below 350 deg C. Temperature dependence of polonium vapor pressure prepared at failure of the given polonides is determined by the radiotensiometry in carbon dioxide. Enthalpy calculated for this dependence is close to the enthalpy of elementary polonium evaporation in vacuum

  2. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  3. Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack

    International Nuclear Information System (INIS)

    Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.

    2001-01-01

    In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)

  4. Failure mechanism of shear-wall dominant multi-story buildings

    Science.gov (United States)

    Yuksel, S.B.; Kalkan, E.

    2008-01-01

    The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.

  5. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  6. Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K

    International Nuclear Information System (INIS)

    Wang, Xinwei; Wang, Jianmei; Huang, Xiaopeng; Eres, Gyula

    2011-01-01

    In this paper we discuss the results of thermal transport measurements in multi-wall carbon nanotube (MWCNT) bundles at elevated temperatures. A novel generalized electrothermal technique (GET) was developed for measuring the thermal diffusivity ( ) and conductivity (k) of MWCNT bundles. The results show that the feeding current has a negligible effect on the thermal properties. The measured k is larger than the reported values for unaligned bundles, and is comparable to that of typical aligned arrays. Compared with experimental and theoretical data for individual CNTs, k of the MWCNT bundles is two to three orders of magnitude lower, suggesting that the thermal transport in CNT bundles is dominated by the thermal contact resistance of tube-to-tube junctions. The effective density for the two MWCNT bundles, which is difficult to measure using other techniques, was determined to be 116 kg/m3 and 234 kg/m3, respectively. The temperature dependences of and k at temperatures up to 830 K was obtained. slightly decreases with temperature while k exhibits a small increase with temperature up to 500 K and then decreases. For the first time, the behavior of specific heat cp(T) for CNTs above room temperature was determined. The specific heat is close to graphite at 300-400 K but is lower than that for graphite above 400 K, indicating that the behavior of phonons in MWCNT bundles is dominated by boundary scattering rather than by the three-phonon Umklapp process. The length of the mean curvature between two adjacent tube contact points in these bundles is estimated to be on the order of micrometer to millimeter. The analysis of the radiation heat loss suggests that it needs to be considered when measuring the thermophysical properties of micro/nano wires of high aspect ratios at elevated temperatures, especially for individual CNTs due to their extremely small diameter.

  7. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  8. A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS/multi-walled carbon nanotube (MWCNT nanocomposites: Effect of modified MWCNT content

    Directory of Open Access Journals (Sweden)

    Payel Sen

    2016-09-01

    Full Text Available The influence of carboxylic acid functionalized multi-walled carbon nanotubes (cMWCNTs content on the properties of polystyrene (PS nanocomposite (NC films was investigated. The NC films were produced by a simple sonication assisted solvent blending technique. The interaction between the matrix (PS and well dispersed filler (cMWCNT was evaluated by different techniques involving Fourier transform infrared spectroscopy, Raman spectroscopy and X-Ray diffraction. Morphological images of the NCs were collected from Transmission electron microscopy. The thermal characteristics of the PS were found to be improved by the incorporation of the cMWCNTs, which was evident from the Thermogravimetric analysis (TGA data. The thermal degradation activation energy evaluated by Coats-Redfern method and integral procedural decomposition temperature determined by Doyle's method supported the thermal stability proposed by TGA of the NCs. The reaction mechanism of thermal degradation of neat PS and respective NCs was successfully predicted using Criado method. The rheological properties and hardness were found to be upgraded by the inclusion of nanotubes to the PS matrix.

  9. Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Architecture, Tianjin University, Tianjin 300072 (China); Hurt, R.; Correia, D.; Boehm, R. [Center for Energy Research, University of Nevada, Las Vegas, NV 89154 (United States)

    2009-03-15

    An insulated concrete wall system{sup 1}1 was used on exterior walls of a zero energy house. Its thermal functions were investigated using actual data in comparison to a conventional wood frame system. The internal wall temperature of massive systems changes more slowly than the conventional wall constructions, leading to a more stable indoor temperature. The Energy10 simulated equivalent R-value and DBMS of the mass walls under actual climate conditions are, respectively, 6.98 (m{sup 2} C)/W and 3.39. However, the simulated heating energy use was much lower for the massive walls while the cooling load was a little higher. Further investigation on the heat flux indicates that the heat actually is transferred inside all day and night, which results in a higher cooling energy consumption. A one-dimensional model further verified these analyses, and the calculated results are in good agreement with the actual data. We conclude that the thermal mass wall does have the ability to store heat during the daytime and release it back at night, but in desert climates with high 24-h ambient temperature and intense sunlight, more heat will be stored than can be transferred back outside at night. As a result, an increased cooling energy will be required. (author)

  10. First wall thermal stress analysis for suddenly applied heat fluxes

    International Nuclear Information System (INIS)

    Dalessandro, J.A.

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) β-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ν) sigma/E α kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably

  11. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: mikepolymer@126.com [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China)

    2014-06-01

    Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)

  12. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  13. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  14. Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ridouane, El Hassan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. This research was presented at the ASME 2011 International Mechanical Engineering Congress and Exhibition; Denver, Colorado; November 11-17, 2011

  15. Titanium application to power plant condensers

    International Nuclear Information System (INIS)

    Itoh, H.

    1987-01-01

    Recently, the growth of operating performance and construction plan of titanium-tubed condensers in thermal and unclear power plants has been very impressive. High-quality, thinner welded titanium tubes used for cooling tubes, matching design specifications of condensers, have been stably supplied through mass production. It now can be said that various technical problems for titanium-tubed condensers have been solved, but data on operating performance in large-scale commercial plants are still scarce, and site-by-site information needs be exchanged more frequently and on a larger scale. Projects to replace existing condenser cooling tubes with those of corrosion-resistant titanium have been actively furthered, with the only remaining barrier to full employment being cost effectiveness. It is hoped that condenser and tube manufacturers will conduct more joint value analyses

  16. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    Science.gov (United States)

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  17. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  18. A predictive model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Trachtenberg, I.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1994-06-01

    The chemical vapor deposition of polysilicon from thermally activated silane in a cold wall, single-wafer rapid thermal system was studied by experimentation at a variety of low pressure conditions, including very high temperatures. The effect of diluent gas on polysilicon deposition rates was examined using hydrogen, helium, and krypton. A mass-transfer model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system was developed. This model was used to produce an empirical rate expression for silicon deposition from silane by regressing kinetic parameters to fit experimental data. The resulting model provided accurate predictions over widely varying conditions in the experimental data.

  19. Platelet-Rich Plasma in Reconstruction of Posterior Meatal Wall after Canal Wall Down Mastoidectomy.

    Science.gov (United States)

    Elbary, Mohammad El-Sayed Abd; Nasr, Wail Fayez; Sorour, Samir Sorour

    2018-04-01

    Introduction  Canal wall down (CWD) mastoidectomy has many drawbacks, including chronic otorrhea not responding to medications, granulations, dizziness on exposure to cold or hot water, and tendency of debris accumulation in the mastoid cavity, demanding periodic cleaning. Many of these problems can be solved by reconstruction of the posterior meatal wall (PMW). Objectives  To assess the results of PMW reconstruction after CWD mastoidectomy for cholesteatoma using titanium mesh and platelet-rich plasma (PRP) mixed with bone pate. Methods  This study was conducted with 20 patients that have atticoantral chronic suppurative otitis media. All cases were subjected to CWD mastoid surgery with complete elimination of the disease and reconstruction of the PMW by titanium mesh and the mixture of PRP with bone pate. All patients were exposed to a full preoperative evaluation and full postoperative assessment of the complications, the appearance of the external auditory canal contour, and the hearing gain expressed by the change of the air bone gap postoperatively. Results  The PMW reconstructed by titanium mesh and the mixture of PRP with bone pate showed a smooth contour. During the follow-up of 12 to 36 months, the postoperative appearance of the external auditory canal contour was found to be smooth without hidden pouches, irregularities or stenosis in all cases. No granulation, foreign body reaction, or extrusion and/or displacement of the titanium mesh were registered. No facial palsy or recurrent cholesteatoma was reported. Conclusion  The surgical reconstruction of the PMW using PRP, bone pate and titanium mesh after CWD mastoidectomy appears to be reliable without considerable complications, giving a smooth appearance to the PMW.

  20. Turning refuse plastic into multi-walled carbon nanotube forest

    Directory of Open Access Journals (Sweden)

    Eugene Oh, Jaegeun Lee, Seung-Ho Jung, Seungho Cho, Hye-Jin Kim, Sung-Hyun Lee, Kun-Hong Lee, Kyong-Hwa Song, Chi-Hoon Choi and Do Suck Han

    2012-01-01

    Full Text Available A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ~2.5 μm min−1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20–30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs. We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries.

  1. Turning refuse plastic into multi-walled carbon nanotube forest

    Science.gov (United States)

    Oh, Eugene; Lee, Jaegeun; Jung, Seung-Ho; Cho, Seungho; Kim, Hye-Jin; Lee, Sung-Hyun; Lee, Kun-Hong; Song, Kyong-Hwa; Choi, Chi-Hoon; Han, Do Suck

    2012-01-01

    A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ∼2.5 μm min−1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20–30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs). We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries. PMID:27877482

  2. The preparation of highly water-soluble multi-walled carbon nanotubes by irreversible noncovalent functionalization with a pyrene-carrying polymer

    International Nuclear Information System (INIS)

    Xue Chaohua; Zhou Renjia; Shi Minmin; Gao Yan; Wu Gang; Chen Hongzheng; Wang Mang; Zhang Xiaobin

    2008-01-01

    Multi-walled carbon nanotubes (MWNTs) have been solubilized in water via a noncovalent method of exfoliation and centrifugation cycles with the assistance of hydrolyzed poly(styrene-co-maleic anhydride) carrying pyrene (HPSMAP). After the obtained solution was micro-filtered and dried, a water-soluble complex of HPSMAP-MWNTs was obtained. The solubility of HPSMAP-MWNTs was measured to be 46.2 mg ml -1 with a net MWNT concentration of 7.4 mg ml -1 in water. Thermal gravimetric analyses showed that there was a large amount of polymer remaining on the surface of MWNTs irreversibly after thoroughly removing the free polymer. Other characterizations using transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence spectra, and fluorescence decay were conducted

  3. Toxicological effects of multi-wall carbon nanotubes in rats

    International Nuclear Information System (INIS)

    Liu Aihong; Sun Kangning; Yang, Jiafeng; Zhao Dongmei

    2008-01-01

    The aim of this study was to evaluate the lung toxicity of multi-wall carbon nanotubes (MWCNTs). The present work exposed MWCNTs into the rats in intratracheal instillation administration modes. We systematically studied the distribution of nanoparticles in vivo, target organs and time-effects of nanotoxicity, dose-effects of nanotoxicity, etc. These results indicate that under the conditions of this test, pulmonary exposures to MWCNTs in rats by intratracheal instillation produced a series of multiple lesions in a dose-dependent and time-dependent manner, evidence of a foreign tissue body reaction.

  4. Toxicological effects of multi-wall carbon nanotubes in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihong; Sun Kangning, E-mail: Sunkangning@sdu.edu.cn; Yang, Jiafeng [Engineering Ceramics Key Laboratory of Shandong Province, Material Science and Engineering Institute, Shandong University, Key Laboratory of Liquid Structure and Heredity of Materials ministry of Education (China); Zhao Dongmei [The Second Hospital of Shandong University (China)

    2008-12-15

    The aim of this study was to evaluate the lung toxicity of multi-wall carbon nanotubes (MWCNTs). The present work exposed MWCNTs into the rats in intratracheal instillation administration modes. We systematically studied the distribution of nanoparticles in vivo, target organs and time-effects of nanotoxicity, dose-effects of nanotoxicity, etc. These results indicate that under the conditions of this test, pulmonary exposures to MWCNTs in rats by intratracheal instillation produced a series of multiple lesions in a dose-dependent and time-dependent manner, evidence of a foreign tissue body reaction.

  5. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes

    International Nuclear Information System (INIS)

    Jia Nengqin; Lian Qiong; Tian Zhong; Yin Min; Che, Shouhui; Shen Hebai; Duan Xin; Jing Lihong; Gao Mingyuan

    2010-01-01

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  6. Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO{sub 2} and its application for desulfurization of diesel

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr [Vietnam Institute of Industrial Chemistry, Hanoi (Viet Nam); Nguyen, Thu Trang Thi; Nguyen, Phuong Hoa Thi; Do, Manh Hung; Au, Hang Thi [Vietnam Institute of Industrial Chemistry, Hanoi (Viet Nam); Nguyen, Thanh Binh [Faculty of Chemistry, Hanoi University of Science, Vietnam National University, Hanoi (Viet Nam); Nguyen, Dinh Lam [Faculty of Chemical Engineering, Danang University of Technology, University of Danang (Viet Nam); Park, Jun Seo [Division of Chemical Engineering, Hankyong National University, Ansung 456-749 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer MWNTs and TiO{sub 2} were mixed well, forming uniform microstructure in MWNTs/TiO{sub 2} composites. Black-Right-Pointing-Pointer The combination of MWNTs and TiO{sub 2} contribute to improving photocatalytic activity of TiO{sub 2}. Black-Right-Pointing-Pointer MWNTs/TiO{sub 2} composite is an effective photo-catalyst for the removal of sulfur from commercial diesel. -- Abstract: Composite of multi-walled carbon nanotubes (MWNTs) and titanium (IV) oxide (TiO{sub 2}) were prepared by a heterogeneous gelation method. The activities of the MWNTs/TiO{sub 2} composites were evaluated by photocatalytic oxidative desulfurization using dibenzothiophene (DBT), 4,6-dimethyl dibenzothiophene (4,6-DMDBT), n-tetradecane, and commercial diesel under irradiation using a high-pressure Hg lamp. The microstructures of MWNTs/TiO{sub 2} composites were characterized by N{sub 2} adsorption, scanning electron microscopy, transmission electron microscope, and X-ray diffraction. It was found that more than 98% of sulfur compounds in commercial diesel were oxidized and removed by the use of the MWNTs/TiO{sub 2} composite as a photocatalyst.

  7. Centralized coordinated control to protect the JET ITER-like wall

    International Nuclear Information System (INIS)

    Stephen, A.V.; Arnoux, G.; Budd, T.; Card, P.; Felton, R.; Goodyear, A.; Harling, J.; Kinna, D.; Lomas, P.; McCullen, P.; Thomas, P.; Young, I.; Zastrow, K.D.; Neto, A.; Alves, D.; Valcarcel, D.F.; Jachmich, S.; Devaux, S.

    2012-01-01

    The JET ITER-like wall project (ILW) replaces the first wall carbon fibre composite tiles with beryllium and tungsten tiles which should have improved fuel retention characteristics but are less thermally robust. An enhanced protection system using new control and diagnostic systems has been designed which can modify the pre-planned experimental control to protect the new wall. Key design challenges were to extend the Level-1 supervisory control system to allow configurable responses to thermal problems to be defined without introducing excessive complexity, and to integrate the new functionality with existing control and protection systems efficiently and reliably. Alarms are generated by the vessel thermal map (VTM) system if infra-red camera measurements of tile temperatures are too high and by the plasma wall load system (WALLS) if component power limits are exceeded. The design introduces two new concepts: local protection, which inhibits individual heating components but allows the discharge to proceed, and stop responses, which allow highly configurable early termination of the pulse in the safest way for the plasma conditions and type of alarm. These are implemented via the new real-time protection system (RTPS), a centralized controller which responds to the VTM and WALLS alarms by providing override commands to the plasma shape, current, density and heating controllers. This paper describes the design and implementation of the RTPS system which is built with the Multi-threaded Application Real-Time executor (MARTe) and will present results from initial operations. (authors)

  8. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    Science.gov (United States)

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  9. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    International Nuclear Information System (INIS)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in x 1.2 m x 17.1 cm thick [4 ft x 4 ft x 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the open-quotes mirrorclose quotes insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in x 2.1 in [10 ft x 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28 degrees C/hr [12.5, 25, and 50 degrees F/hr] as measured on the heated face. A peak temperature of 454 degrees C [850 degrees F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing

  10. The impact of thermal bridges on the energy demand of buildings with double brick wall constructions

    Energy Technology Data Exchange (ETDEWEB)

    Theodosiou, T.G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, GR-50100 Kozani (Greece); Papadopoulos, A.M. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, GR-54124 Thessaloniki (Greece)

    2008-07-01

    The implementation of the European Directive on the Energy Performance of Buildings (EPBD) is a milestone towards the improvement of energy efficiency in the building sector. However, even in cases where impressive measures can be implemented in the densely built urban environment, the less glamorous measure of building's envelope thermal insulation remains a prerequisite towards the improvement of the building's energy efficiency. Despite the insulation requirements specified by national regulations, thermal bridges in the building's envelope remain a weak spot in the constructions. Moreover, in many countries construction practices tend to implement only partially the insulation measures foreseen by regulations. As a result, thermal losses are in practice greater than those predicted during the design stage. This paper presents a study on representative wall thermal insulation configurations used in Greek buildings, in order to investigate the impact of the thermal bridges on the energy consumption. The double wall construction, used widely in Greece and not only there, is rather susceptible to the occurrence of thermal bridges, in contrast to a typical thermal insulating facade, like the one applied in Central Europe. The analysis of the thermal bridges' impact will in that sense also highlight the potential for energy renovation measures in older buildings. (author)

  11. Multi-modal RGB–Depth–Thermal Human Body Segmentation

    DEFF Research Database (Denmark)

    Palmero, Cristina; Clapés, Albert; Bahnsen, Chris

    2016-01-01

    This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB-Depth-Thermal dataset along with a multi-modal seg- mentation baseline. The several modalities are registered us- ing a calibration...... to other state-of-the-art meth- ods, obtaining an overlap above 75% on the novel dataset when compared to the manually annotated ground-truth of human segmentations....

  12. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Science.gov (United States)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  13. Thermal and radiation loads on the first wall and divertor plates in the KTM tokamak

    International Nuclear Information System (INIS)

    Azizov, Eh.A.; Buzhinskij, O.I.; Gladush, G.G.; Darmagraj, V.V.; Priyampol'skij, I.R.; Dvorkin, N.Ya.; Lejkin, I.N.; Tazhibaeva, I.L.; Shestakov, V.P.

    2001-01-01

    The constructing of the KTM tokamak is intended for wide scale studies of behavior both inner-chamber element materials and structures (first wall, limiters, divertor, hf-antennas, etc.) under conditions approaching to the ITER-FEAT and a future thermonuclear reactors. The KTM tokamak is designed for maintain of interaction conditions of plasma-wall, plasma flows and divertor field, stimulating conditions of ITER-FEAT; and for examination of a future tokamaks' materials. In the work the thermal loads on the first wall, divertor plates are presented

  14. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, Mark A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)], E-mail: mark.a.chappell@usace.army.mil; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E. [SpecPro, Inc., 4815 Bradford Drive, Suite 201, Huntsville, AL 35805 (United States); Price, Cynthia L. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States); Zhou Pingheng; Morikawa, Eizi [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Kennedy, Alan J.; Steevens, Jeffery A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)

    2009-04-15

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L{sup -1} added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms.

  15. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    International Nuclear Information System (INIS)

    Chappell, Mark A.; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E.; Price, Cynthia L.; Zhou Pingheng; Morikawa, Eizi; Kennedy, Alan J.; Steevens, Jeffery A.

    2009-01-01

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L -1 added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms

  16. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    Science.gov (United States)

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  17. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  18. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    Science.gov (United States)

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  19. Conceptual thermal-mechanical design of the TFTR first wall armor against neutral beam impingement

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Flaherty, R.

    1976-01-01

    The Tokamak Fusion Test Reactor (TFTR) is designed to operate in a pulsed mode with relatively low duty cycles. Each pulse consists of a short plasma heat-up period, a reaction period, followed by a relatively long cooldown period. Plasma heating is accomplished by ohmic heating by a current induced change in the magnetically linked ohmic heating coils, followed by neutral beam injection for further preheat and the initiation of fusion reactions. During normal operation, the bulk of the neutral beam energy will be absorbed by the plasma, while the remainder will impinge on the vacuum vessel wall. The amount of thermal energy deposited on an unprotected wall is expected to be excessive, limiting the frequency of pulses and requiring frequent wall replacement. A faulted condition would cause penetration of an unprotected wall. As a consequence, a wall armoring (or liner) concept was developed to protect the vacuum vessel wall and to permit ease of liner replacement

  20. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  1. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors

    International Nuclear Information System (INIS)

    Zhao Xin; Chu, Bryan T T; Johnston, Colin; Sykes, John M; Grant, Patrick S; Ballesteros, Belen; Wang Weiliang

    2009-01-01

    Steam purified, carboxylic and ester functionalized single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) films with homogeneous distribution and flexible control of thickness and area were fabricated on polymeric and metallic substrates using a modified spray deposition technique. By employing a pre-sprayed polyelectrolyte, the adhesion of the carbon nanotube (CNT) films to the substrates was significantly enhanced by electrostatic interaction. Carboxylic and ester functionalization improved electrochemical performance when immersed in 0.1 M H 2 SO 4 and the specific capacitance reached 155 and 77 F g -1 for carboxylic functionalized SWNT and MWNT films respectively. Compared with existing techniques such as hot pressing, vacuum filtration and dip coating, the ambient pressure spray deposition technique is suggested as particularly well suited for preparing CNT films at large scale for applications including providing electrodes for electrochemical supercapacitors and paper batteries.

  2. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  3. The effect of adiabatic and conducting wall boundary conditions on LES of a thermal mixing tee

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Pasutto, Thomas

    2009-01-01

    In this paper preliminary LES simulations are carried out of the FATHERINO mixing T junction experiment. In this experiment 80degC hot water enters a lateral steel pipe which has a diameter of D=0.054m, at a speed of 1.04m/s and meets 5degC cold water which enters a perpendicular steel pipe branch that also has a diameter D=0.054m but this time at a lower speed of 0.26m/s. The modelling of the steel pipe walls is tested by comparing adiabatic and 1D conducting wall boundary conditions. The numerical grid used contains approximately 440,000 hexahedral elements. The near wall refinement is not sufficient to resolve the near wall boundary layer (y + approx. = 32) and a standard logarithmic boundary condition is used. A method known as the synthetic eddy method is used to generate the turbulent flow at the pipe inlets. Three different LES models are used (Smagorinsky, dynamic Smagorinsky and wale) to resolve the subgrid turbulent motion beyond the wall grid. An additional test is carried out where no subgrid model is used with only the wall modelling being applied. The results show that the wale model generates much less resolved turbulence than the other cases and this model shows virtually no difference between the two methods of wall thermal modelling. The dynamic Smagorinsky model shows that, downstream of the mixing T, the lower wall remains at a lower temperature for longer when the adiabatic boundary condition is applied. The Smagorinsky model is found to produce the highest level of resolved temperature fluctuation. For this model the 1D thermal modelling approach increases the unsteadiness of both the velocity and temperature fields at the onset of the mixing and in the middle of the pipe downstream of the T junction. However near the lower wall the 1D thermal modelling approach tends to reduce the unsteadiness. The case with no subgrid modelling shows higher levels of turbulence kinetic energy but lower levels of temperature fluctuation than the cases with

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Multi-walled carbon nanotubes (MWCNTs)/TiO2 composites were synthesized by sol–gel technique using titanium (IV) -butoxide (TNB), titanium (IV) isopropoxide (TIP) and titanium (IV) propoxide (TPP) as different titanium alkoxide precursors. The as-prepared composites were comprehensively characterized by BET ...

  5. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    International Nuclear Information System (INIS)

    Ting, T.H.; Jau, Y.N.; Yu, R.P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  6. One half of a prototype titanium vacuum chamber

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Designed and constructed in the ISR Department, it could be for general use at intersection regions. The use of titanium instead of stainless steel increases the "transparency" to particles by a factor of about two for the same wall thickness.

  7. Deuterium implantation in first wall candidate materials by exposure in the Princeton large torus

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center); Manos, D. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    Titanium alloys are of interest as a first wall material in fusion reactors because of their excellent thermophysical and thermomechanical properties. A major concern with their application to the first wall is associated with the known affinity of titanium for hydrogen and the related consequences for fuel recycling, tritium inventory, and hydrogen embrittlement. Little information exists on trapping and release of hydrogen isotopes implanted at energies below 500 eV. This work was undertaken to measure hydrogen isotope trapping and release at the first wall of the Princeton Large Torus Tokamak (PLT).

  8. Potentiometric urea biosensor based on multi-walled carbon nanotubes (MWCNTs)/silica composite material

    International Nuclear Information System (INIS)

    Ahuja, Tarushee; Kumar, D.; Singh, Nahar; Biradar, A.M.; Rajesh

    2011-01-01

    A novel potentiometric urea biosensor has been fabricated with urease (Urs) immobilized multi-walled carbon nanotubes (MWCNTs) embedded in silica matrix deposited on the surface of indium tin oxide (ITO) coated glass plate. The enzyme Urs was covalently linked with the exposed free -COOH groups of functionalized MWCNTs (F-MWCNTs), which are subsequently incorporated within the silica matrix by sol-gel method. The Urs/MWCNTs/SiO 2 /ITO composite modified electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and UV-visible spectroscopy. The morphologies and electrochemical performance of the modified Urs/MWCNTs/SiO 2 /ITO electrode have been investigated by scanning electron microscopy (SEM) and potentiometric method, respectively. The synergistic effect of silica matrix, F-MWCNTs and biocompatibility of Urs/MWCNTs/SiO 2 made the biosensor to have the excellent electro catalytic activity and high stability. The resulting biosensor exhibits a good response performance to urea detection with a wide linear range from 2.18 x 10 -5 to 1.07 x 10 -3 M urea. The biosensor shows a short response time of 10-25 s and a high sensitivity of 23 mV/decade/cm 2 .

  9. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter

    International Nuclear Information System (INIS)

    Bifano, Michael F P; Kaul, Pankaj B; Prakash, Vikas

    2010-01-01

    This paper reports dependency of specific heat and ballistic thermal conductance on cross-sectional geometry (tube versus rod) and size (i.e., diameter and wall thickness), in free-standing isotropic non-metallic crystalline nanostructures. The analysis is performed using dispersion relations found by numerically solving the Pochhammer-Chree frequency equation for a tube. Estimates for the allowable phonon dispersion relations within the crystal lattice are obtained by modifying the elastic acoustic dispersion relations so as to account for the discrete nature of the material's crystal lattice. These phonon dispersion relations are then used to evaluate the specific heat and ballistic thermal conductance in the nanostructures as a function of the nanostructure geometry and size. Two major results are revealed in the analysis: increasing the outer diameter of a nanotube while keeping the ratio of the inner to outer tube radius (γ) fixed increases the total number of available phonon modes capable of thermal population. Secondly, decreasing the wall thickness of a nanotube (i.e., increasing γ) while keeping its outer diameter fixed, results in a drastic decrease in the available phonon mode density and a reduction in the frequency of the longitudinal and flexural acoustic phonon modes in the nanostructure. The dependency of the nanostructure's specific heat on temperature indicates 1D, 2D, and 3D geometric phonon confinement regimes. Transition temperatures for each phonon confinement regime are shown to depend on both the nanostructure's wall thickness and outer radius. Compared to nanowires (γ = 0), the frequency reduction of acoustic phonon modes in thinner walled nanotubes (γ = 0.96) is shown to elevate the ballistic thermal conductance of the thin-walled nanotube between 0.2 and 150 K. At 20 K, the ballistic thermal conductance of the thin-walled nanotube (γ = 0.96) becomes 300% greater than that of a solid nanowire. For temperatures above 150 K, the trend

  10. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    Science.gov (United States)

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.

  11. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  12. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  13. Influence of light-weight masonry mortar on the thermal insulation of walling made from hollow blocks

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C; Schuele, M

    1984-10-01

    The thermal conductivity equivalent of hollow-block masonry with different types of mortar is calculated for ten different types of blocks as a function of the thermal conductivity of the brick material. A measure is derived for determining the improved thermal conductivity of hollow-block masonry with light mortar as compared to walls with normal mortar. The findings supplement the findings already obtained for solid bricks.

  14. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol

  15. Development of thermal actuators with multi-locking positions

    Science.gov (United States)

    Luo, J. K.; Zhu, Y.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Miao, J. M.; Milne, W. I.

    2006-04-01

    To reduce power consumption and operation temperature for micro-thermal actuators, metal-based micro-mechanical locks with multi-locking positions were analyzed and fabricated. The micro-locks consist of two or three U-shaped thermal actuators. The devices were made by a single mask process using electroplated Ni as the active material. Tests showed that the metal based thermal actuators deliver a maximum displacement of ~20µm at a much lower temperature than that of Si-based actuators. However Ni-actuators showed a severe back bending, which increases with increasing applied power. The temperature to initiate the back bending is as low as ~240°C. Back bending increases the distance between the two actuators, and leads to locking function failure. For practical application, Ni-based thermal actuators must be operated below 200°C.

  16. Flow induced vibration and stability analysis of multi wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)

    2012-12-15

    The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.

  17. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  18. Titanium-based spectrally selective surfaces for solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A D; Holmes, J P

    1983-10-01

    A study of spectrally selective surfaces based on anodic oxide films on titanium is presented. These surfaces have low values of solar absorptance, 0.77, due to the nonideal optical properties of the anodic TiO2 for antireflection of titanium. A simple chemical etching process is described which gives a textured surface with dimensions similar to the wavelengths of solar radiation, leading to spectral selectivity. The performance of this dark-etched surface can be further improved by anodising, and optimum absorbers have been produced with alpha(s) 0.935 and hemispherical emittances (400 K) 0.23. The surface texturing effects a significant improvement in alpha(s) at oblique incidence.

  19. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  20. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-01-01

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H 2 = 1/1, 100 cm 3 /min, at 620 o C under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H 2 = 1/1, total gas flow rate 100 cm 3 /min, at 620 o C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  1. Comparative Study of Single- and Multi-Wall Carbon Nanotubes with Application in Cerebral Aneurysm

    Directory of Open Access Journals (Sweden)

    Rodica-Mariana Ion

    2011-01-01

    Full Text Available Helping improve humanity is one of the promises of nanotech-
    nology and nanomedicine. This paper will highlight some of the research findings in the nanomedicine area by testing some single- and multi-walls carbon nanotubues in rats cerebral aneurisms.

  2. The Interaction Features of the Multi-Level Retaining Walls with Soil Mass

    Science.gov (United States)

    Boyko, Igor; Skochko, Liudmyla; Zhuk, Veronica

    2017-09-01

    The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.

  3. Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    2018-05-01

    Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.

  4. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Jackson, Petra; Kling, Kirsten

    2016-01-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commerci...... diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects....

  5. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  6. Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Jirka, Ivan; Novotná, Katarína; Lisá, Věra; Frank, Otakar; Kolská, Z.; Starý, V.; Bačáková, Lucie

    2014-01-01

    Roč. 9, č. 6 (2014), e100475 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP108/10/1858; GA ČR(CZ) GAP107/12/1025; GA MPO FR-TI3/088 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : thermally oxidized surface * titanium-niobium * TiO2 * osteoblast * macrophage Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.234, year: 2014

  7. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  8. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Science.gov (United States)

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  9. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    International Nuclear Information System (INIS)

    Boncel, Slawomir; Koziol, Krzysztof K.K.

    2014-01-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I D /I G ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs

  10. Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater

    Energy Technology Data Exchange (ETDEWEB)

    Brunelli, Andrea; Zabeo, Alex; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio, E-mail: marcom@unive.it [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy)

    2016-05-15

    Long-term stability of two engineered nanomaterials (ENMs), i.e., the inorganic n-TiO{sub 2} and the organic Multi-Walled Carbon Nanotubes (MWCNTs), dispersed in artificial freshwater (5–100 mg l{sup −1}), was investigated from short-term settling velocity, particle size distribution, and surface charge. Hydrodynamic diameter and ζ-pot, calculated by means of dynamic and electrophoretic light scattering, respectively, qualitatively indicated a general ENMs dispersion instability over 1 h time. Sedimentation results, obtained by centrifugal separation analysis using the LUMiSizer over approx. 30 min analysis time, allowed to estimate the quantitative long-term (over 30 days) stability of ENMs. Settling data fitted satisfactorily with a first-order kinetic equation (R{sup 2} in the range of 0.918–0.989). The settling rate constant k values extrapolated at gravity spanned one order of magnitude, i.e., from 7.21 × 10{sup −5} to 4.12 × 10{sup −4} s{sup −1}, and with the increasing of initial ENMs concentration. Sedimentation velocities were in good agreement with short- to long-term literature data (7.8 × 10{sup −2}–1.7 × 10{sup −}1 m day{sup −1} vs. 5 × 10{sup −4}–3 × 10{sup −1} m day{sup −1} for n-TiO{sub 2} and 5.9 × 10{sup −2}–3.4 × 10{sup −1} m day{sup −1} vs. 2 × 10{sup −1}–1.2 m day{sup −1} for MWCNTs). n-TiO{sub 2} showed a higher long-term stability with respect to MWCNTs (average: 1 × 10{sup −1} ± 3.4 × 10{sup −2} m day{sup −1} instead of 1.7 × 10{sup −1} ± 1.1 × 10{sup −1} m day{sup −1}, respectively).

  11. Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level

    International Nuclear Information System (INIS)

    Gu, Yingying; Liu, Yicheng; Yang, Haihong; Li, Benqiang; An, Yarui

    2015-01-01

    Highlights: • Multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles, Ni(OH) 2 /TNTs, was prepared and investigated as anode electro-catalysts for glucose oxidation. • Ni(OH) 2 -24.2%/TNTs obtains the best catalytic activity. • Compared with Ni(OH) 2, the current density of Ni(OH) 2 -24.2%/TNTs increased 5.9 times in 0.1 M NaOH solution. - Abstract: The novel hybrid nanomaterial catalyst of multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles (Ni(OH) 2 /TNTs) was prepared through hydrothermal method and investigated as anode electro-catalysts for glucose oxidation. The nanostructure was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetry-differential thermal analysis (TGA) and nitrogen adsorption-desorption (BET-BJH). The electrochemical performance was measured by a range of electrochemical measurements. Compared with Ni(OH) 2 , the current density of Ni(OH) 2 /TNTs modified GC electrode increased 5.9 times in 0.1 M NaOH solution. The results indicated that the synthesized nanoparticles exhibited good electro-catalytic activity and stability for glucose oxidation. Meanwhile, the hybrid nanomaterial of Ni(OH) 2 /TNTs may be a potential candidate catalyst for direct glucose fuel cell

  12. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  13. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  14. Thermal energy and charge currents in multi-terminal nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Tobias [Novel Materials Group, Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin (Germany); Kreisbeck, Christoph; Riha, Christian, E-mail: riha@physik.hu-berlin.de; Chiatti, Olivio; Buchholz, Sven S.; Fischer, Saskia F. [Novel Materials Group, Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Wieck, Andreas D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum (Germany); Reuter, Dirk [Optoelektronische Materialien und Bauelemente, Universität Paderborn, 33098 Paderborn (Germany)

    2016-06-15

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  15. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.

  16. Numerical analysis of a PCM thermal storage system with varying wall temperature

    International Nuclear Information System (INIS)

    Halawa, E.; Bruno, F.; Saman, W.

    2005-01-01

    Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given

  17. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

    Science.gov (United States)

    Hasnahena, S. T.; Roy, M.

    2018-01-01

    A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

  18. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    An optimization analysis of a continuous TREC (thermally regenerative electrochemical cycle) was conducted with maximum power output and exergy efficiency as the objective functions simultaneously. For comparison, the power output, exergy efficiency, and thermal efficiency under the corresponding single-objective optimization schematics were also calculated. Under different optimization methods it was observed that the power output and the thermal efficiency increase with increasing inlet temperature of the heat source, whereas the exergy efficiency increases with increasing inlet temperature, reaches a maximum value, and then decreases. Results revealed that the optimal power output under the multi-objective optimization turned out to be slightly less than that obtained under the single-objective optimization for power output. However, the exergy and thermal efficiencies were much greater. Furthermore, the thermal exergy and exergy efficiency by single-objective optimization for energy efficiency shows no dominant advantage than that obtained under multi-objective optimization, comparing with the increase amplitude of the power output. This suggests that the multi-objective optimization could coordinate well both the power output and the exergy efficiency of the TREC system, and may serve as a more promising guide for operating and designing TREC systems. - Highlights: • An optimal analysis of a continuous TREC is conducted based on multi-objective optimization. • Performance under corresponding single-objective optimizations has also been calculated and compared. • Power under multi-objective optimization is slightly less than the maximum power. • Exergy and thermal efficiencies are much larger than that under the single-objective optimization.

  19. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    Science.gov (United States)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  20. Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    International Nuclear Information System (INIS)

    Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar

    2009-01-01

    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length

  1. Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2010-01-01

    In recent years, carbon nanotubes (CNTs) have been considered potential biomedical materials because of their unique character. The aim of this study was to investigate the response of a human osteoblast-like cell line - Saos-2 - on single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The surface of a culture dish was coated with CNTs, and Saos-2 cells were cultured for three days. Cell morphology, viability, alkaline phosphatase (ALP) activity, adhesion, and vinculin expression were evaluated. The result showed high cell viability and strong adhesion to MWCNTs. Saos-2 cultured on MWCNTs exhibited vinculin expression throughout the cell body, while the cells attached to SWCNTs and glass were mostly limited to their periphery. Our results suggest that CNT coatings promote cell activity and adhesiveness. These findings indicate that MWCNTs could be used as surface coating materials to promote cell adhesion.

  2. Thermal-structural analysis for ITER in-wall shielding block

    International Nuclear Information System (INIS)

    Hao Junchuan; Song Yuntao; Wu Weiyue; Du Shuangsong; Wang, X.; Ioki, K.

    2012-01-01

    Highlights: ► IWS blocks shall withstand various types of mechanical loads including EM loads, inertial loads and thermal loads. ► Due to the complicated geometry, the finite element method is the suitable tool to solve the problem. ► Contact element has been selected to simulate the friction between the different components. ► At baking phase, secondary stresses due to preloading and temperature difference predominate in the total stress. ► At plasma operation phase, secondary stresses due to preloading and thermal loads were deducted from the total stresses. - Abstract: In order to verify the design strength of the in-wall shielding (IWS) blocks of the ITER, thermal-structural analyses of one IWS block under vacuum vessel (VV) baking and plasma operation conditions have been respectively performed with finite element (FE) method. Among the complicated operation scenarios of the ITER, two critical types of combined loads required by the load specification of IWS were applied on the shielding block. The stress of the block is judged by American Society of Mechanical Engineers (ASME) criterion. Results show that the structure of this block has enough safety margin, and it also supplies detailed information of the stress distribution in concerned region under certain loads.

  3. Behavior of nickel-titanium instruments manufactured with different thermal treatments.

    Science.gov (United States)

    Pereira, Érika Sales Joviano; Viana, Ana Cecília Diniz; Buono, Vicente Tadeu Lopes; Peters, Ove A; Bahia, Maria Guiomar de Azevedo

    2015-01-01

    The purpose of this study was to investigate if nickel-titanium instruments with similar designs manufactured by different thermal treatments would exhibit significantly different in vitro behavior. Thirty-six instruments each of ProTaper Universal (PTU F1; Dentsply Maillefer, Ballaigues, Switzerland), ProFile Vortex (PV; Dentsply Tulsa Dental Specialties, Tulsa, OK), Vortex Blue (VB, Dentsply Tulsa Dental Specialties), and TYPHOON Infinite Flex NiTi (TYP; Clinician's Choice Dental Products, New Milford, CT) (all size 25/.06) were evaluated. Bending resistance, torsion at failure, and dynamic torsional tests were performed with the instruments (n = 12). Analysis of variance and Tukey post hoc tests were applied. Flexibility was significantly higher for TYP compared with the other 3 groups (P .05). The highest mean forces were recorded with PTU (7.02 ± 2.36 N) and the lowest with TYP (1.22 ± 0.40 N). TYP instruments were significantly more flexible than the other instruments tested. The PV group had the highest torsional strength and TYP, despite being the most flexible, showed similar torsional moments to the other instruments, whereas its angular deflection was the highest among the groups. Copyright © 2015 American Association of Endodontists. All rights reserved.

  4. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mehrizad Ali

    2012-09-01

    Full Text Available Abstract The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K.

  5. The Interaction Features of the Multi-Level Retaining Walls with Soil Mass

    Directory of Open Access Journals (Sweden)

    Boyko Igor

    2017-09-01

    Full Text Available The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.

  6. Thermal modeling and analysis of thin-walled structures in micro milling

    Science.gov (United States)

    Zhang, J. F.; Ma, Y. H.; Feng, C.; Tang, W.; Wang, S.

    2017-11-01

    The numerical analytical model has been developed to predict the thermal effect with respect to thin walled structures by micro-milling. In order to investigate the temperature distribution around micro-edge of cutter, it is necessary to considering the friction power, the shearing power, the shear area between the tool micro-edge and materials. Due to the micro-cutting area is more difficult to be measured accurately, the minimum chip thickness as one of critical factors is also introduced. Finite element-based simulation was employed by the Advantedge, which was determined from the machining of Ti-6Al-4V over a range of the uncut chip thicknesses. Results from the proposed model have been successfully accounted for the effects of thermal softening for material.

  7. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  8. Chemical and Electrochemical Synthesis of Polypyrrole Using Carrageenan as a Dopant: Polypyrrole/Multi-Walled Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mostafizur Rahaman

    2018-06-01

    Full Text Available In this article, iota-carrageenan (IC and kappa-carrageenan (KC are used as dopants for the chemical and electrochemical synthesis of polypyrrole (PPy. The composites of chemically synthesized PPy with multi-walled carbon nanotubes (MWNTs were prepared using an in situ technique. Both the dialyzed and non-dialyzed IC and KC were used as dopants for electrochemical polymerization of pyrrole. Chemically synthesized PPy and PPy/MWNTs composites were studied by ultraviolet visible (UV-vis absorption spectra to investigate the effect of the concentration and the incorporation of MWNTs. In addition, the electrical, thermal, mechanical, and microscopic characterizations of these films were performed to examine the effect of the dopants and MWNTs on these properties, along with their surface morphology. The films of electrochemically polymerized PPy were characterized using UV-vis absorption spectra, scanning electron microscopy, and cyclic voltammetry (CV. The results were then compared with the chemical polymerized PPy.

  9. Clinical use of AO three-dimensionally preformed titanium mesh plates for orbital fractures

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2015-01-01

    Full Text Available AIM:To evaluate the accuracy and practicability of three-dimensionally preformed Arbeitsgemeinschaft Osteosynthese AO titanium mesh plates for orbital fractures.METHODS:Forty-seven patients with isolated blow-out orbital fractures were included in this study. Fracture locations were as follows: floor/medial wall(n=26, 55%, medial wall(n=12, 26%, and floor(n=9, 19%. The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures with temporary dissection of inferior oblique muscle. A three-dimensionally preformed AO titanium mesh plate was selected according to the size of the defect previously measured on the preoperative computed tomographic scan examination and fixed at the inferior orbital rim with 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative computed tomography(CTscan. The practicability of clinical use of AO three-dimensionally preformed titanium mesh plates was assessed on the preoperative and postoperative clinical data.RESULTS: Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. All patients had a successful treatment outcome without clinical complications. 40 patients(87%had a successful enophthalmos correction. 25 patients(86%had a successful recovery from diplopia.CONCLUSION: Three-dimensionally preformed AO titanium mesh plates for orbital fracture reconstruction results in an accurate anatomic restoration of the bony orbital contour with a high rate of success to correctenophthalmos and diplopia.

  10. Freestanding bucky paper with high strength from multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Li, Zhonglai; Xu, Ju; O'Byrne, Justin P.; Chen, Lan; Wang, Kaixue; Morris, Michael A.; Holmes, Justin D.

    2012-01-01

    Bucky papers have been investigated by some research groups, however, due to different qualities of carbon nanotubes used, various results of strength and electronic properties were reported in the literatures. In this article, the effects of carbon nanotubes synthesized over different catalysts on the qualities of bucky papers were systemically investigated. Multi-wall carbon nanotubes were synthesized over a series of MgO supported catalysts with different weight ratios of Mo and Co. As the ratios of Mo/Co in the catalysts were increased from 0 to 3, the yields of carbon nanotubes were enhanced from 7 wt% to 400 wt%. However, the yield enhancement of carbon nanotubes was achieved at the expense of higher proportion of structural defects within carbon nanotubes, which has been proved by Raman spectroscopy and thermogravimetry analysis. It was demonstrated that the tensile strength of bucky paper composed of numerous MCNTs bundles strongly depends on the structure of carbon nanotubes used. By optimizing reaction conditions, a bucky paper with high strain up to 15.36 MPa and electrical conductivity of 61.17 S cm −1 was obtained by Supercritical Fluid (SCF) drying technique. -- Highlights: ► Multi-wall carbon nanotube bucky paper. ► Structural defects of carbon nanotubes. ► CoMo catalyst. ► Tensile strength of bucky paper.

  11. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    Science.gov (United States)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength

    Directory of Open Access Journals (Sweden)

    Feihu Li

    2016-04-01

    Full Text Available Low color visibility and poor mechanical strength of polystyrene (PS photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  13. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  14. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    Energy Technology Data Exchange (ETDEWEB)

    Boncel, Slawomir, E-mail: slawomir.boncel@polsl.pl [Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice (Poland); Koziol, Krzysztof K.K., E-mail: kk292@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge (United Kingdom)

    2014-05-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I{sub D}/I{sub G} ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs.

  15. Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Kazantseva, N. E.; Stejskal, Jaroslav; Trchová, Miroslava; Kovářová, Jana; Sapurina, I.; Tomishko, M. M.

    2008-01-01

    Roč. 320, 3-4 (2008), s. 231-240 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504; GA MŠk ME 847; GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : multi-wall carbon nanotube * conducting polymer * polyaniline coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2008

  16. Equilibrium and Thermodynamic Studies of Methane Adsorption on Multi-Walled Carbon Nanotube

    OpenAIRE

    Sanaz. Monemtabary; Mojtaba Shariati Niasar; Mohsen Jahanshahi; Ali Asghar Ghoreyshi

    2013-01-01

    In this work, The adsorption of methane onto multi-walled carbon nanotubes (MWCNTs) was studied, in which the influences of temperatureand pressure were investigated. The physical properties of the MWCNT were systematically characterised by Scanning Electron Microscopy (SEM) and Brunauere-Emmette-Teller (BET) surface area measurements. The equilibrium adsorption data were analyzed using threecommon adsorption models: Langmuir, Freundlich and Sips. All of the models fit the experimental result...

  17. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  18. Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings

    Science.gov (United States)

    Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.

    2018-05-01

    Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.

  19. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    Science.gov (United States)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  20. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, B., E-mail: b.spilker@fz-juelich.de; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-11-01

    Highlights: • Different surface qualities of S-65 beryllium are tested under high heat flux conditions. • After 1000 thermal shocks, the loaded area exhibits a crucial destruction. • Stress accelerated grain boundary oxidation/dynamic embrittlement effects are linked to the thermal shock performance of beryllium. • Thermally induced cracks form between 1 and 10 pulses and grow wider and deeper between 10 and 100 pulses. • Thermally induced cracks form and propagate independently from surface grooves and the surface quality. - Abstract: Beryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m{sup −2} with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.

  1. Multi-scale full-field measurements and near-wall modeling of turbulent subcooled boiling flow using innovative experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-04-01

    Highlights: • Near wall full-field velocity components under subcooled boiling were measured. • Simultaneous shadowgraphy, infrared thermometry wall temperature and particle-tracking velocimetry techniques were combined. • Near wall velocity modifications under subcooling boiling were observed. - Abstract: Multi-phase flows are one of the challenges on which the CFD simulation community has been working extensively with a relatively low success. The phenomena associated behind the momentum and heat transfer mechanisms associated to multi-phase flows are highly complex requiring resolving simultaneously for multiple scales on time and space. Part of the reasons behind the low predictive capability of CFD when studying multi-phase flows, is the scarcity of CFD-grade experimental data for validation. The complexity of the phenomena and its sensitivity to small sources of perturbations makes its measurements a difficult task. Non-intrusive and innovative measuring techniques are required to accurately measure multi-phase flow parameters while at the same time satisfying the high resolution required to validate CFD simulations. In this context, this work explores the feasible implementation of innovative measuring techniques that can provide whole-field and multi-scale measurements of two-phase flow turbulence, heat transfer, and boiling parameters. To this end, three visualization techniques are simultaneously implemented to study subcooled boiling flow through a vertical rectangular channel with a single heated wall. These techniques are listed next and are used as follow: (1) High-speed infrared thermometry (IR-T) is used to study the impact of the boiling level on the heat transfer coefficients at the heated wall, (2) Particle Tracking Velocimetry (PTV) is used to analyze the influence that boiling parameters have on the liquid phase turbulence statistics, (3) High-speed shadowgraphy with LED illumination is used to obtain the gas phase dynamics. To account

  2. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals

    International Nuclear Information System (INIS)

    Ermakov, Victor A; Alaferdov, Andrei V; Vaz, Alfredo R; Moshkalev, Stanislav A; Baranov, Alexander V

    2013-01-01

    The accuracy of thermal conductivity measurements by the micro-Raman technique for suspended multi-layer graphene flakes has been shown to depend critically on the quality of the thermal contacts between the flakes and the metal electrodes used as the heat sink. The quality of the contacts can be improved by nonlocal laser annealing at increased power. The improvement of the thermal contacts to initially rough metal electrodes is attributed to local melting of the metal surface under laser heating, and increased area of real metal–graphene contact. Improvement of the thermal contacts between multi-layer graphene and a silicon oxide surface was also observed, with more efficient heat transfer from graphene as compared with the graphene–metal case. (paper)

  4. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings

    Science.gov (United States)

    Ma, Peifeng; Lin, Hui; Lan, Hengxing; Chen, Fulong

    2015-08-01

    Deformation often occurs in buildings at early ages, and the constant inspection of deformation is of significant importance to discover possible cracking and avoid wall failure. This paper exploits the multi-dimensional SAR tomography technique to monitor the deformation performances of two newly built buildings (B1 and B2) with a special focus on the effects of concrete creep and shrinkage. To separate the nonlinear thermal expansion from total deformations, the extended 4-D SAR technique is exploited. The thermal map estimated from 44 TerraSAR-X images demonstrates that the derived thermal amplitude is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that B1 is subject to settlement during the construction period, in addition, the creep and shrinkage of B1 lead to wall shortening that is a height-dependent movement in the downward direction, and the asymmetrical creep of B2 triggers wall deflection that is a height-dependent movement in the deflection direction. It is also validated that the extended 4-D SAR can rectify the bias of estimated wall shortening and wall deflection by 4-D SAR.

  5. The thermal response of the first wall of a fusion reactor blanket to plasma disruptions

    International Nuclear Information System (INIS)

    Klippel, H.Th.

    1983-09-01

    Major plasma disruptions in Tokamak power reactors are potentially dangerous because high thermal overloading of the first wall may occur, resulting in melting and evaporation. The present uncertainties of the disruption characteristics, in particular the space and time dependence of the energy deposition, lead to a wide variation in the prospective surface energy loads. The thermal response of a first wall of aluminium, stainless steel and of graphite subjected to disruption energy loads up to 1000 J cm -2 has been analysed including the effects of melting and surface evaporation, vapour recondensation, vapour shielding, and the moving of the surface boundary caused by the evaporation. A special calculation model has been developed for this purpose. The main results are the following: by values of local transient energy depositions over 1500 J cm -2 bare stainless steel walls are damaged severely. Further calculations are needed to estimate the endurance limit of several candidate first wall materials. Applications of coatings on surfaces need special attention. For the reference INTOR disruption (approx. 100 J cm -2 ) evaporation is not significant. The effect of vapour shielding on evaporation has been found to be significant. The effect on melting is less pronounced. In a complete analysis the stability and dynamic behaviour of the melted layer under electromagnetic forces should be included. Also a reliable set of plasma disruption characteristics should be gathered

  6. Thermalization of a two-dimensional photonic gas in a `white wall' photon box

    Science.gov (United States)

    Klaers, Jan; Vewinger, Frank; Weitz, Martin

    2010-07-01

    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

  7. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Motoiu, P.; Rosso, M.

    2001-01-01

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  8. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder

    NARCIS (Netherlands)

    Marinho, B.; Gomes Ghislandi, M.; Tkalya, E.; Koning, C.E.; With, de G.

    2012-01-01

    The electrical conductivity of different carbon materials (multi-walled carbon nanotubes, graphene, carbon black and graphite), widely used as fillers in polymeric matrices, was studied using compacts produced by a paper preparation process and by powder compression. Powder pressing assays show that

  9. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    International Nuclear Information System (INIS)

    Kasel, Daniela; Bradford, Scott A.; Šimůnek, Jiří; Pütz, Thomas; Vereecken, Harry; Klumpp, Erwin

    2013-01-01

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14 C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils. -- Highlights: •Investigation of undisturbed soil columns and lysimeter. •Transport experiments under water-unsaturated conditions. •Retention profiles were measured and numerically modeled. •Complete retention of MWCNT in undisturbed and repacked soil columns. -- In undisturbed columns and a lysimeter study, complete retention of functionalized multi-walled carbon nanotubes was found in two soils at environmentally relevant conditions

  10. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  11. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    Science.gov (United States)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  12. Thermal resistance of buffer layer in a ceramic wall of MHD generation channel

    International Nuclear Information System (INIS)

    Nomura, Osami; Ebata, Yoshihiro; Hijikata, Kenichi.

    1982-01-01

    A wal l model is composed for obtaining the thermal resistance of the buffer layer. A buffer layer of the model is consisted to an adhesive layer and a buffer body. The adhesive layer is made of a copper plate, which is 0.3 mm thick, and adhered to the element by Refractory Method. The adhesive layer is consisted to three layers, i.e., Cu, Cu 2 O and CuO. These three layers seems to give rise to the thermal resistance. The buffer body is made of nickel wires of which radious is 0.4 mm and purity is 99.7%. All of the nickel wires are assembled in one direction which is parallel to a center line of the element, and bundled all together. Occupation ratio of nickel is about 78% in a sectional area of the buffer body. One end of the buffer body is soldered to adhesive layer by silver solder and opposite and is soldered to holder by lead solder. An element of the model is made of magnesia ceramics of which purity is about 99.9% and porosity is about 3%. A holder of the model is made of copper block. Results are as follows: (1) Thermal resistance of the buffer layer is from 1.9 to 2.5K/(W/cm 2 ). (2) Thermal resistance of the adhesive layer is from 0.43 to 0.87K/(W/cm 2 ). (3) Thermal resistance of the buffer body is calculated to about 0.7K/(W/cm 2 ) under the estimation at which the heat flows in the nickel wires only. (4) From above results, thermal resistance of silver soldering layer seems to be same as that of the adhesive layers. The buffer layer needs more value of the thermal resistance in order to apply to the MHD generation channel. Value of the thermal resistance is easily satisfied by changing of material of the buffer body, increase of thickness of the buffer layer and etc. Then this wall appears to be useful to an MHD generation channel wall. (author)

  13. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  14. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  15. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Dirscherl, Kai; Jørgensen, Bodil

    2017-01-01

    that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell...... wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96....... The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more...

  16. The Properties of Titanium and Its Alloys

    OpenAIRE

    BIŠĆAN, VLATKA; LUETIĆ, VIKTORIJA

    2012-01-01

    Titanium metal is silver-grey color and high gloss, the ninth element of the abundance in the Earth’s crust, and can be found in meteorites. It has a low electrical conductivity and low coefficient of thermal expansion. Since titanium has a great passivity, its physical property is a high level of corrosion resistance to most mineral acids and chlorides. It has mechanical properties such as steel, has a high melting temperature and is light. Since it is highly resistant to corrosion it is app...

  17. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions

    Science.gov (United States)

    Litunovsky, N.; Gervash, A.; Lorenzetto, P.; Mazul, I.; Melder, R.

    2009-04-01

    The paper describes the experimental technique and preliminary results of thermal fatigue testing of ITER first wall (FW) water-cooled mock-ups inside the core of the RBT-6 experimental fission reactor (RIAR, Dimitrovgrad, Russia). This experiment has provided simultaneous effect of neutron fluence and thermal cycling damages on the mock-ups. A PC-controlled high-temperature graphite ohmic heater was applied to provide cyclic thermal load onto the mock-ups surface. This experiment lasted for 309 effective irradiation days with a final damage level (CuCrZr) of 1 dpa in the mock-ups. About 3700 thermal cycles with a heat flux of 0.4-0.5 MW/m 2 onto the mock-ups were realized before the heater fails. Then, irradiation was continued in a non-cycling mode.

  18. Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements

    KAUST Repository

    Iglesias, Marco; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul; Wood, Christopher

    2017-01-01

    and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal

  19. Development and Characterization of Titanium Compound N anostructures

    Science.gov (United States)

    Zhou, Zhou

    The development and characterization of titanium compound nanostructures have been achieved, for potential applications in energy industry. Oil and gas, one of the traditional industry fields, observes accumulating demands on active implementations of nanotechnology, for the numerous advantages that nanomaterials can introduce to both product performances and field operations. By using chemical vapor deposition and liquid exfoliation, various titanium compound nanostructures have been synthesized through this project. Attractively, these two material fabrication methods have been recognized to be industrial friendly in terms of cost efficiency and productivity. The development of nanostructures, aiming at oil and gas field applications, presents novel solutions for existing issues, such as low durability of drilling tools, high friction in mechanical operations and ineffective heat dissipation. Titanium compound nanostructures, including titanium borides, nitrides and sulfides are therefore investigated for such applications as protective coating, lubrication and thermal management.

  20. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  1. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    Science.gov (United States)

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites

    Directory of Open Access Journals (Sweden)

    Tai Jin-hua

    2012-12-01

    Full Text Available Multi-walled carbon nanotubes (MWNTs were incorporated into a linear low-density polyethylene (LLDPE matrix through using screw extrusion and injection technique. The effect of different weight percent loadings of MWNTs on the morphology, mechanical, and thermal of LLDPE/MWNTs nanocomposite had been investigated. It was found that, at low concentration of MWNTs, it could uniformly disperse into a linear low-density polyethylene matrix and provide LLDPE/MWNTs nanocomposites much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for LLDPE/MWNTs nanocomposites increased with increasing MWNTs content.

  3. Microstructural and Topochemical Characterization of Thermally Modified Poplar (Populus cathayaha Cell Wall

    Directory of Open Access Journals (Sweden)

    Zhe Ling

    2015-11-01

    Full Text Available Although many studies have been conducted on the wood property and chemical changes caused by thermal modification, little has been reported on the microstructural and topochemical changes occurring in the cell wall during heat treatment. In this study, poplar (Populus cathayaha was treated within a temperature range from 180 to 220 °C for 4 h. Chemical analyses by Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance (NMR indicated that heat treatment resulted in deacetylation of hemicelluloses and cleavage of lignin chains, thus generating new carbonyl and phenolic linkages. Transformation of matrix substances contributed to microstructural changes that appeared in clearly distorted and collapsed fiber and vessel walls along with the delamination of compound middle lamella (CML and secondary walls (S, which showed a reduced capability to resist deformation. It was also observed by fluorescence microscopy (FM and scanning electron microscope coupled with energy dispersive X-ray analysis (SEM-EDXA that the concentration of lignin increased, probably because of the degradation of hemicelluloses and the generation of new carbonyl groups. These results on cell wall microstructure and topochemistry can help explain the altered wood properties revealed by dynamic mechanical analysis (DMA and equilibrium moisture content (EMC testing after heat treatment.

  4. Environmental effects in titanium aluminide alloys

    International Nuclear Information System (INIS)

    Thompson, A.W.

    1991-01-01

    Environmental effects on titanium aluminide alloys are potentially of great importance for engineering applications of these materials, although little has been published to date on such effects. The primary emphasis in this paper is on hydrogen effects, with a brief reference to oxygen effects. Hydrogen is readily absorbed at elevated temperature into all the titanium aluminide compositions studied to date, in amounts as large as 10 at.%, and on cooling virtually all this hydrogen is precipitated as a hydride phase or phases. The presence of these precipitated hydride plates affects mechanical properties in ways similar to what is observed in other hydride forming materials, although effects per unit volume of hydride are not particularly severe in the titanium aluminides. Microstructure, and thus thermal and mechanical history, plays a major role in controlling the severity of hydrogen effects

  5. Study on the Properties of Ionized Metal Plasma Methodology on Titanium

    International Nuclear Information System (INIS)

    Leow, M. T.; Hassan, Z.; Lee, K. E.; Omar, G.; Lim, S. P.; Chan, C. F.; Siew, E. T.; Chuah, Z. M.

    2010-01-01

    Ionized Metal Plasma (IMP) deposition was used in depositing metal interconnection of titanium metal film. Inductively coupled plasma (ICP) was attached to chamber wall where it creates an electromagnetic field, thus, ionizing the sputtered metal atoms from target. The film morphology was observed by scanning electron microscope (SEM). Acoustic measurement of titanium film thickness showed that there was a comparable result with film resistance measured by 4-point probe. Results show that higher plasma density would cause tensile properties on the film stress.

  6. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    Science.gov (United States)

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  7. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Elisa Borowski

    2015-06-01

    Full Text Available Carbon fiber reinforced polymer (CFRP laminates exhibit limited fracture toughness due to characteristic interlaminar fiber-matrix cracking and delamination. In this article, we demonstrate that the fracture toughness of CFRP laminates can be improved by the addition of multi-walled carbon nanotubes (MWCNTs. Experimental investigations and numerical modeling were performed to determine the effects of using MWCNTs in CFRP laminates. The CFRP specimens were produced using an epoxy nanocomposite matrix reinforced with carboxyl functionalized multi-walled carbon nanotubes (COOH–MWCNTs. Four MWCNTs contents of 0.0%, 0.5%, 1.0%, and 1.5% per weight of the epoxy resin/hardener mixture were examined. Double cantilever beam (DCB tests were performed to determine the mode I interlaminar fracture toughness of the unidirectional CFRP composites. This composite material property was quantified using the critical energy release rate, GIC. The experimental results show a 25%, 20%, and 17% increase in the maximum interlaminar fracture toughness of the CFRP composites with the addition of 0.5, 1.0, and 1.5 wt% MWCNTs, respectively. Microstructural investigations using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS verify that chemical reactions took place between the COOH–MWCNTs and the epoxy resin, supporting the improvements experimentally observed in the interlaminar fracture toughness of the CFRP specimens containing MWCNTs. Finite element (FE simulations show good agreement with the experimental results and confirm the significant effect of MWCNTs on the interlaminar fracture toughness of CFRP.

  8. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Jiang, Jin-Wu; Wei, Ning; Zhang, Yong-Wei

    2016-01-07

    As a new two-dimensional (2D) material, phosphorene has drawn growing attention owing to its novel electronic properties, such as layer-dependent direct bandgaps and high carrier mobility. Herein we investigate the in-plane and cross-plane thermal conductivities of single- and multi-layer phosphorene, focusing on geometrical (sample size, orientation and layer number) and strain (compression and tension) effects. A strong anisotropy is found in the in-plane thermal conductivity with its value along the zigzag direction being much higher than that along the armchair direction. Interestingly, the in-plane thermal conductivity of multi-layer phosphorene is insensitive to the layer number, which is in strong contrast to that of graphene where the interlayer interactions strongly influence the thermal transport. Surprisingly, tensile strain leads to an anomalous increase in the in-plane thermal conductivity of phosphorene, in particular in the armchair direction. Both the in-plane and cross-plane thermal conductivities can be modulated by external strain; however, the strain modulation along the cross-plane direction is more effective and thus more tunable than that along the in-plane direction. Our findings here are of great importance for the thermal management in phosphorene-based nanoelectronic devices and for thermoelectric applications of phosphorene.

  9. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  10. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  11. Preparation of graphene oxide/polypyrrole/multi-walled carbon nanotube composite and its application in supercapacitors

    International Nuclear Information System (INIS)

    Wang, Bin; Qiu, Jianhui; Feng, Huixia; Sakai, Eiichi

    2015-01-01

    Highlights: • A novel method for synthesizing graphene oxide/polypyrrole/multi-walled nanotube composites. • Investigation of the effects of the mass ratio of GO, CM and Py on the capacitance of prepared composites. • Excellent electrochemical performance of PCMG composites. - Abstract: We report a novel method for preparing graphene oxide/polypyrrole/multi-walled carbon nanotubes (MWCNTs) composites (PCMG). The MWCNTs are treated by sulfuric acid, nitric acid and thionyl chloride, and then composite with graphene oxide and PPy by in suit polymerization. Transition electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results show that in 3-D structure of PCMG composites, PPy chains act as the “bridge” between graphene oxide and chlorinated-MWCNTs. Electrochemical tests reveal that the PCMG1-1 composite has high capacitance of 406.7 F g −1 at current density of 0.5 A g −1 , and the capacitance retention of PCMG1-1 composite is 92% after 1000 cycles

  12. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  13. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  14. Measurement of thermal transmittance of opaque facade wall relationship with meteorological conditions

    Directory of Open Access Journals (Sweden)

    Antunović Biljana S.

    2015-01-01

    Full Text Available This paper presents the results of measurements of thermal transmittance or as otherwise called U-value [W/m2⋅K] of opaque facade wall of preschool institution built in 1977. The building has an incomplete technical documentation according to which considered wall was built of brick and masonry mortar. Thermal characteristics of the incorporated materials have not been specified. Considering that in the period of building construction JUS standards was used, a possible range of calculated U-vales was obtained (1,241-1,404 W/m2·K. Measurements were performed in accordance with ISO 9869 during three time periods with the resulting U-values (1,269±0,276 W/m2·K; 1,025±0,175 W/m2·K; 1,200±0,212 W/m2·K that do not differ from each other within experimental uncertainty. Furthermore, the correlation of the measured U-values and meteorological conditions that prevailed during the measurements was analyzed. In the second measurement period, the average values of the total cloud cover and low cloud cover were less, and the average duration of sunshine was longer than in the other two measurement periods.

  15. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Hsieh, T.-H.; Tai, N.-H.

    2008-01-01

    Carbon nanotubes have better physical and mechanical behavior than the traditional materials. In this study, the multi-walled carbon nanotubes (MWNTs) were added to the epoxy resin as a reinforcement to fabricate MWNTs/epoxy nanocomposites. The pressure and temperature were applied to cure the MWNTs/epoxy compound by hot press method. Mechanical properties such as tensile strength, Young's modulus, and Poisson's ratio were measured. The effect of weight percentages of the MWNTs was investigated. Morphologies of the fracture surface of MWNTs/epoxy nanocomposites were observed by scanning electron microscope

  16. Precipitated nanosized titanium dioxide for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, S.A. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine); Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Lisnycha, T.V. [Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Chernukhin, S.I. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine)

    2011-02-15

    Two types of titanium dioxide samples precipitated from aqueous solutions of titanium tetrachloride are investigated. Crystalline materials are obtained by means of neutralization of TiCl{sub 4} with the solution of an alkali metal hydroxide. The change of the order of mixing leads to amorphous materials. The evolution of the samples upon the thermal treatment is characterized using XRD, SEM, TEM and porosity studies. The application of crystalline TiO{sub 2} as an electrode material in lithium-ion 2016 sample cells enable one to yield specific currents up to 3350 mA g{sup -1}. On the other hand, the thermal treatment of initially amorphous materials does not lead to complete crystallization, and the presence of amorphous TiO{sub 2} is well seen as the so-called capacity behavior of cyclic voltammetry curves. (author)

  17. Implication of multi-walled carbon nanotubes on polymer/graphene composites

    International Nuclear Information System (INIS)

    Araby, Sherif; Saber, Nasser; Ma, Xing; Kawashima, Nobuyuki; Kang, Hailan; Shen, Heng; Zhang, Liqun; Xu, Jian; Majewski, Peter; Ma, Jun

    2015-01-01

    Highlights: • Influence of adding carbon nanotubes (CNTs) into elastomer/graphene composites. • Multi-walled CNTs work supplementally to GnPs by forming conductive networks. • The findings illuminate marked synergistic effect between MWCNTs and graphene sheets. - Abstract: Graphene sheets stack in polymer matrices while multi-walled carbon nanotubes (MWCNTs) entangle themselves, forming two daunting challenges in the design and fabrication of polymer composites. Both challenges have been simultaneously addressed in this study by hybridizing the two nanomaterials through melt compounding to develop elastomer/graphene platelet/MWCNT (3-phase) composites, where MWCNTs were fixed at 2.8 vol% (5 wt%) for all fractions. We investigated the composites’ structure and properties, and compared the 3-phase composites with elastomer/graphene platelet (2-phase) composites. MWCNTs may bridge graphene platelets (GnPs) and promote their dispersion in the matrix, which would provide more interface area between the matrix and the fillers. MWCNTs worked supplementally to GnPs by forming conductive networks, where MWCNTs acted as long nanocables to transport electrons and stress while GnPs served as interconnection sites between the tubes forming local conductive paths. This produced a percolation threshold of electrical conductivity at 2.3 vol% for 3-phase composites, 88% lower than that of 2-phase composites. At 26.7 vol% of total filler content (MWCNTs + GnPs), tensile strength, Young’s modulus and tear strength showed respectively 303%, 115%, 155% further improvements over those of 2-phase composites. These improvements are originated from the synergistic effect between GnPs and MWCNTs. The conducting elastomeric composites developed would potentially open the door for applications in automotive and aerospace industries

  18. Positron annihilation characteristics in multi-wall carbon nanotubes with different average diameters

    International Nuclear Information System (INIS)

    Tuyen, L A; Khiem, D D; Phuc, P T; Kajcsos, Zs; Lázár, K; Tap, T D

    2013-01-01

    Positron lifetime spectroscopy was used to study multi-wall carbon nanotubes. The measurements were performed in vacuum on the samples having different average diameters. The positron lifetime values depend on the nanotube diameter. The results also show an influence of the nanotube diameter on the positron annihilation intensity on the nanotube surface. The change in the annihilation probability is described and interpreted by the modified diffusion model introducing the positron escape rate from the nanotubes to their external surface.

  19. An investigation of wall temperature characteristics to evaluate thermal fatigue at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi; Takenaka, Nobuyuki

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids mix. In this study, wall temperature characteristics at a T-junction pipe were investigated to improve the evaluation method for thermal fatigue. The stainless steel test section consisted of a horizontal main pipe (diameter, 150 mm) and a T-junction connected to a vertical branch pipe (diameter, 50 mm). The inlet flow velocities in the main and branch pipes were set to 0.99 m/s and 0.66 m/s respectively to produce a wall jet pattern in which the jet from the branch pipe was bent by the main pipe flow and made to flow along the pipe wall. The temperature difference was 34.1 K. A total of 148 thermocouples were installed to measure the wall temperature on the pipe inner surface in the downstream region. The maximum of temperature fluctuation intensity on the pipe inner surface was measured as 5% of the fluid temperature difference at the inlets. The dominant frequency of the large temperature fluctuations in the region downstream from z = 0.5D m was equal to 0.2 of the Strouhal number, which was equal to the frequency caused by the vortex streets generated around the jet flow. The large temperature fluctuation was also observed with the period of about 10 s. The fluctuation was caused by spreading of the heated region in the circumferential direction. (author)

  20. Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites

    International Nuclear Information System (INIS)

    Kim, Ki-Seok; Park, Soo-Jin

    2011-01-01

    In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N 1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: → Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). → Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. → Grafting of carbon nanotubes and polymer provide enhanced physical properties. → It was due to the strong interaction between carbon nanotubes and polymer matrix.

  1. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  2. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Likozar, Blaz, E-mail: blaz.likozar@fkkt.uni-lj.si [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria); Major, Zoltan, E-mail: zoltan.major@jku.at [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria)

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10{sup 28} m{sup -3}), density (maximally 1.16 g cm{sup -3}), and tear strength (11.2 kN m{sup -1}), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  3. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Science.gov (United States)

    Likozar, Blaž; Major, Zoltan

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m-3), density (maximally 1.16 g cm-3), and tear strength (11.2 kN m-1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  4. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    International Nuclear Information System (INIS)

    Likozar, Blaz; Major, Zoltan

    2010-01-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10 28 m -3 ), density (maximally 1.16 g cm -3 ), and tear strength (11.2 kN m -1 ), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  5. Fluids in micropores. V. Effects of thermal motion in the walls of a slit-micropore

    International Nuclear Information System (INIS)

    Diestler, D.J.; Schoen, M.

    1996-01-01

    Previous articles in this series have concerned the prototypal slit-pore with rigid walls, in which a Lennard-Jones (12,6) monatomic film is constrained between two plane-parallel walls comprising like atoms fixed in the face-centered-cubic (fcc) (100) configuration. The behavior of molecularly thin films in the rigid-wall prototype is governed by the template effect, whereby solid films can form epitaxially when the walls are properly aligned in the lateral directions. In this article the influence of thermal motion of the wall atoms on the template effect is investigated. The walls are treated as Einstein solids, the atoms moving independently in harmonic potentials centered on rigidly fixed equilibrium positions in the fcc (100) configuration. The force constant f c is a measure of the stiffness of the walls, the rigid-wall limit being f c =∞. Formal thermodynamic and statistical mechanical analyses of the system are carried out. The results of grand canonical ensemble Monte Carlo simulations indicate that for values of f c characteristic of a soft (e.g., noble-gas) crystal dynamic coupling between wall and film has a substantial influence on such equilibrium properties as normal stress (load) and interfacial tensions. In general, the softer the walls (i.e., the smaller the value of f c ), the weaker the template effect and hence the softer and more disordered the confined film. copyright 1996 American Institute of Physics

  6. Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach

    Science.gov (United States)

    Draebing, D.; Krautblatter, M.; Dikau, R.

    2014-12-01

    Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.

  7. Performance test of twised-wired titanium evaporators for in-situ Tic deposition

    International Nuclear Information System (INIS)

    Inagawa, Konosuke; Abe, Tetsuya; Hiroki, Seiji; Obara, Kenjiro; Murakami, Yoshio

    1984-06-01

    In order to establish the titanium evaporation source for in-situ TiC deposition, performance test has been made for several types of twisted-wired, ohmic-heating titanium evaporators. The evaporator which exhibited the best performance consists of three tungsten wires twisted as the core of the composite, three titanium wires and a molybdenum wire densely wound around the core, and a thin tungsten wire coarsely wound at the outermost side of the composite. The molybdenum wire around the core plays an important role in wetting the core surface uniformly with the melt of titanium. The tungsten wire at the outermost side prevents the molten titanium from dropping to the inside wall of the vacuum vessel. A typical size of the evaporator is 4 mm in diameter and 140 mm in length. In this case 2--2.5g of titanium, which corresponds to 70 - 80 % of charged amount (3.2g), can be evaporated at a rate of about 0.14 g/min. On the basis of the experimental results, the applicability of the evaporator to JT-60 is discussed. (author)

  8. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Hernández, José Manuel [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Escobar-García, Diana María [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Escalante, Alfredo [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Flores, Hector [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); González, Francisco Javier [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Gatenholm, Paul [Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden); Toriz, Guillermo, E-mail: gtoriz@dmcyp.cucei.udg.mx [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden)

    2017-06-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  9. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Gutiérrez-Hernández, José Manuel; Escobar-García, Diana María; Escalante, Alfredo; Flores, Hector; González, Francisco Javier; Gatenholm, Paul; Toriz, Guillermo

    2017-01-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  10. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    2012-12-01

    Full Text Available Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90 interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red, but not osmotic stress (NaCl. We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling.

  11. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  12. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  13. A new hybrid target concept for multi-keV X-ray sources

    International Nuclear Information System (INIS)

    Primout, M.; Babonneau, D.; Jacquet, L.; Villette, B.; Girard, F.; Brebion, D.; Stemmler, P.; Fournier, K.B.; Marrs, R.; May, M.J.; Heeter, R.F.; Wallace, R.J.; Nishimura, H.; Fujioka, S.; Tanabe, M.; Nagai, H.

    2013-01-01

    A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the Osaka University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm 3 ) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm 3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm 3 for some target diameter and length. (authors)

  14. Effect of Minor Titanium Addition on Copper/Diamond Composites Prepared by Hot Forging

    Science.gov (United States)

    Yang, Fei; Sun, Wei; Singh, Ajit; Bolzoni, Leandro

    2018-03-01

    Copper/diamond composites have great potential to lead the next generation of advanced heat sink materials for use in high-power electronic devices and high-density integrated circuits because of their potential excellent properties of high thermal conductivity and close thermal expansion to the chip materials (e.g., Si, InP, GaAs). However, the poor wettability between copper and diamond presents a challenge for synthesizing copper/diamond composites with effective metallurgical bonding and satisfied thermal performance. In this article, copper/diamond composites were successfully prepared by hot forging of elemental copper and artificial diamond powders with small amounts (0 vol.%, 3 vol.% and 5 vol.%) of titanium additives. Microstructure observation and mechanical tests showed that adding minor titanium additions in the copper/diamond composite resulted in fewer cracks in the composites' microstructure and significantly improved the bonding between the copper and diamond. The strongest bonding strength was achieved for the copper/diamond composite with 3 vol.% titanium addition, and the possible reasons were discussed.

  15. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  16. Influence of mechanical and thermal treatments on microstructure and mechanical properties of titanium stabilized austenitic stainless steels

    International Nuclear Information System (INIS)

    Sidhom, H.

    1983-12-01

    Thermal and mechanical treatments for microstructure optimization in titanium stabilized austenitic stainless steels used in nuclear industry are examined. The steels studied Z10CNDT15-15B and Z6CNDT17-13 are of the type 15-15 Ti and 316 Ti. These treatments allow the elimination of casting heterogeneity produced by dendritic solidification, improve mechanical properties particularly creep and the best compromise between grain size solid solution of metal additions is obtained. Secondary precipitation of (TiMo)C on dislocations is improved by a previous strain hardening. The precipitation reinforce the good effect of strain hardening by stabilization of the microstructure producing a better resistance to recrystallization [fr

  17. Titanium Metal Powder Production by the Plasma Quench Process

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  18. Comparison of Interfacial and Wall Friction Models in Thermal-Hydraulic System Analysis Codes (Rev1.0)

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Soo Hyung; Kim, Byung Jae; Chung, Bub Dong; Kim, Hee Cheol

    2010-04-01

    This reports is a literature survey on models and correlations for interfacial and wall friction models that are used to simulate thermal-hydraulics in nuclear reactors. The interfacial and wall frictions are needed to solve the momentum equations of gas, continuous liquid and droplet. Not only existing system codes, such as RELAP5-3D, TRAC-M, MARS, TRACE, CATHARE) but also up-to-date researches were reviewed. This report is a revised version of the previous technical report(KAERI/TR-3437/2007)

  19. Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The improvement of the efficiency of vehicle energy systems promotes an active search to find innovative solutions during the design process. This requires more accurate modeling of complex systems, which offers new ways to improve the design efficiency of energy systems. The vehicle is a highly dynamic system. The size and the efficiency of the convertors are dependent on the dynamic driving profile. In order to increase the energy efficiency, using energy integration techniques, an adapted methodology is required to choose the best points for the integrated system design. The idea is to clusterize the dynamic profile on typical multi-periods of the vehicle use. The energy system design is then optimized for these typical multi-periods. In this article a new methodology is applied on hybrid electric vehicles, in order to define the energy integrated powertrain configuration of the vehicle. The energy recovery potential of a single stage Organic Rankine Cycle for a thermal engine in combination with a hybrid electric powertrain is assessed for different drive cycles profiles and comfort situations. After the energy integration, a multi-objective optimization is applied to define the optimal design of a hybrid electric vehicle with a waste heat recovery system. - Highlights: • K-means algorithm transforms the dynamic driving profile on static multi-periods. • The clusters represent the typical powertrain use and size the heat recovery utility. • The maximal heat recovery potential on thermal powertrains is 11% for urban driving. • The maximal heat recovery potential on hybrid electric powertrains is 5%. • Engine downsizing increases heat recovery potential on hybrid electric powertrains

  20. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    Science.gov (United States)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  1. Removal of virus and toxin using heatable multi-walled carbon nanotube web filters

    Directory of Open Access Journals (Sweden)

    Hoon-Sik Jang

    2016-02-01

    Full Text Available Many studies have used a carbon nanotube (CNT filter for pathogen removal and/or inactivation by means of electrochemical or electrochlorination. The large surface area, fine pore size and high electrical and thermal conductivity of CNTs make them suitable and distinct to use for the filtering and removal of pathogens. Here, we grew spin-capable multi-walled CNTs (MWCNTs and manufactured a web filter using the spun MWCNTs. Botulinum toxin type E light chain (BoT/E-LC and vaccinia virus (VV were filtered using the MWCNT web filters and were evaporated and removed by applying direct current (DC voltage to both sides of the MWCNT webs, excluding electrochemical or electrochlorination. The filtering and removal of BoT/E-LC and VV were performed after seven layers of the MWCNT sheets were coated onto a silicon oxide porous plate. The electrical resistance of the webs in the seven layer sheet was 293 Ω. The temperature of MWCNTs webs was linearly increased to ∼300 °C at 210 V of DC voltage. This temperature was enough to remove BoT/E-LC and VV. From the SEM and XPS results, we confirmed that BoT/E-LC and VV on the MWCNT webs were almost removed by applying a DC voltage and that some element (N, Na, Cl, etc. as residues on the MWCNT webs remained.

  2. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  3. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    Science.gov (United States)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  4. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    Science.gov (United States)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Thermomechanical interactions of particle bed-structural wall in a layered configuration. Pt. 1. Effect of particle bed thermal expansions

    International Nuclear Information System (INIS)

    Tehranian, F.

    1995-01-01

    Materials in the form of particle beds have been considered for shielding and tritium breeding as well as neutron multiplication in many of the conceptual reactor design studies. As the level of effort of the fusion blanket community in the area of out-of-pile and in-pile (ITER) testing of integrated test modules increases, so does the need for modelling capability for predicting the thermomechanical responses of the test modules under reactor environment.In this study, the thermomechanical responses of a particle bed-structural wall system in a layered configuration, subjected to bed temperature rise and/or external coolant pressure, were considered. Equations were derived which represent the dependence of the particle-to-particle and particle-to-wall contact forces and areas on the structural wall deformations and in turn on the thermomechanical loads. Using the derived equations, parametric analyses were performed to study the variations in the thermomechanical response quantities of a beryllium particle bed-stainless steel structural wall when subjected to thermomechanical loads. The results are presented in two parts. In Part I, presented in this paper, the derivation of the analytical equations and the effects of bed temperature rise are discussed. In Part II of this study, also presented in this symposium, the effects of external coolant pressure as well as the combined effects of bed temperature rise and coolant pressure on the thermomechanical responses are given.It is shown that, depending on the stiffness of the structural walls, uniform bed temperature rises in the range 100-400 C result in non-uniform effective thermal properties through the prticle bed and could increase the bed effective thermal conductivity by a factor of 2-5 and the bed-wall interface thermal conductance by even a larger factor. (orig.)

  6. Quantitative consideration for the tempering effect during multi-pass thermal cycle in HAZ of low-alloy steel

    International Nuclear Information System (INIS)

    Yu, Lina; Nakabayashi, Yuma; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi; Kameyama, Masashi; Hirano, Shinro; Chigusa, Naoki

    2011-01-01

    A new Thermal Cycle Tempering Parameter (TCTP) to deal with the tempering effect during multi-pass thermal cycles has been proposed by extending Larson-Miller parameter (LMP). Experimental result revealed that the hardness in synthetic HAZ of the low alloy steel subjected to multi tempering thermal cycles has a good linear relationship with TCTP. By using this relationship, the hardness of the low-alloy steel reheated with tempering thermal cycles can be predicted when the original hardness is known. (author)

  7. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

    Science.gov (United States)

    Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan

    2018-01-01

    In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

  8. Enhanced ultrasonically assisted turning of a β-titanium alloy.

    Science.gov (United States)

    Maurotto, Agostino; Muhammad, Riaz; Roy, Anish; Silberschmidt, Vadim V

    2013-09-01

    Although titanium alloys have outstanding mechanical properties such as high hot hardness, a good strength-to-weight ratio and high corrosion resistance; their low thermal conductivity, high chemical affinity to tool materials severely impair their machinability. Ultrasonically assisted machining (UAM) is an advanced machining technique, which has been shown to improve machinability of a β-titanium alloy, namely, Ti-15-3-3-3, when compared to conventional turning processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  10. Feasibility of multi-walled carbon nanotube probes in AFM anodization lithography

    International Nuclear Information System (INIS)

    Choi, Ji Sun; Bae, Sukjong; Ahn, Sang Jung; Kim, Dal Hyun; Jung, Ki Young; Han, Cheolsu; Chung, Chung Choo; Lee, Haiwon

    2007-01-01

    Multi-walled carbon nanotube (CNT) tips were used in atomic force microscope (AFM) anodization lithography to investigate their advantages over conventional tips. The CNT tip required a larger threshold voltage than the mother silicon tip due to the Schottky barrier at the CNT-Si interface. Current-to-voltage curves distinguished the junction property between CNTs and mother tips. The CNT-platinum tip, which is more conductive than the CNT-silicon tip, showed promising results for AFM anodization lithography. Finally, the nanostructures with high aspect ratio were fabricated using a pulsed bias voltage technique as well as the CNT tip

  11. Interaction of titanium beryllide with steam at high temperatures

    International Nuclear Information System (INIS)

    Munakata, Kenzo; Wada, Kohei; Akimoto, Yusuke; Takeda, Haruki; Nakamura, Ayano; Kim, Jae-Hwan; Nakamichi, Masaru

    2014-01-01

    Highlights: • Some central and peripheral parts of a plasma sintered titanium beryllide disk were exposed to water vapor at 1273 K. • H 2 gas generation rate of the central part was found to be lower than that of the peripheral part. • Central parts of a plasma sintered titanium beryllide disk were exposed to water vapor at 1273 K with different temperature controls. • H 2 gas generation was found to be affected by thermal treatment. - Abstract: Some central and peripheral parts of a plasma sintered titanium beryllide disk were exposed to water vapor at temperatures raised up to 1273 K. Hydrogen generation and oxidation properties of the titanium beryllide were investigated. The amount of H 2 generation of the central part was found to be smaller than that of the peripheral part, and this can be attributed to difference in the larger fractions of the Be phase on their surface. Thus, different temperature programed experiments were performed using samples cut out from the central part. In an experiment, the temperature of the sample was raised stepwise and behavior of hydrogen generation was investigated. It was found that hydrogen generation does not take place at the temperatures below 1273 K and the amount of hydrogen generated is far smaller. Another experiment was carried out after a sample had been annealed under a dry Ar gas at 1273 K. In this case, the amount of hydrogen generated from the surface decreased. These results indicate the thermal treatment of the titanium beryllide samples affects their reactivity with water vapor

  12. Multi-parameter optimization design of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Huai, Xiulan

    2016-01-01

    Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.

  13. Optical and thermal response of single-walled carbon nanotube–copper sulfide nanoparticle hybrid nanomaterials

    International Nuclear Information System (INIS)

    Tseng, Yi-Hsuan; He Yuan; Que Long; Lakshmanan, Santana; Yang Chang; Chen Wei

    2012-01-01

    This paper reports the optical and thermal response of a single-walled carbon nanotube–copper sulfide nanoparticle (SWNT–CuS NP) hybrid nanomaterial and its application as a thermoelectric generator. The hybrid nanomaterial was synthesized using oleylamine molecules as the linker molecules between SWNTs and CuS NPs. Measurements found that the hybrid nanomaterial has significantly increased light absorption (up to 80%) compared to the pure SWNT. Measurements also found that the hybrid nanomaterial thin-film devices exhibit a clear optical and thermal switching effect, which can be further enhanced up to 10 × by asymmetric illumination of light and thermal radiation on the thin-film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials is demonstrated, indicating a new route for achieving thermoelectricity. (paper)

  14. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  15. Thermal Diffusivity in Bone and Hydroxyapatite

    Science.gov (United States)

    Calderón, A.; Peña Rodríguez, G.; Muñoz Hernández, R. A.; Díaz Gongora, J. A. I.; Mejia Barradas, C. M.

    2004-09-01

    We report thermal diffusivity measurements in bull bone and commercial hydroxyapatite (HA), both in powder form, in order to determinate the thermal compatibility between these materials. Besides this, we report a comparison between these measured values and those of metallic samples frequently used in implants, as high purity titanium and stainless steel. Our results show a good thermal compatibility (74%) between HA and bone, both in powder form. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications.

  16. A new approach combining analytical methods for workplace exposure assessment of inhalable multi-walled carbon nanotubes

    NARCIS (Netherlands)

    Tromp, P.C.; Kuijpers, E.; Bekker, C.; Godderis, L.; Lan, Q.; Jedynska, A.D.; Vermeulen, R.; Pronk, A.

    2017-01-01

    To date there is no consensus about the most appropriate analytical method for measuring carbon nanotubes (CNTs), hampering the assessment and limiting the comparison of data. The goal of this study is to develop an approach for the assessment of the level and nature of inhalable multi-wall CNTs

  17. Minimization of thermal insulation thickness taking into account condensation on external walls

    Directory of Open Access Journals (Sweden)

    Nurettin Yamankaradeniz

    2015-09-01

    Full Text Available Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calculations of heat and mass transfers in the structure elements are expressed in a graphical form. While there was an increase in the required thermal insulation thickness subsequent to an increase in the internal environment’s temperature, relative humidity, and the external environment’s relative humidity, the required thickness decreased with an increase in the external environment’s temperature. The amount of water vapor transferred varied with internal or external conditions and the thickness of the insulation. A change in the vapor diffusion resistance of the insulation material can increase the risk of condensation on the internal or external surfaces of the insulation.

  18. Characterization of electron beam evaporated carbon films and compound formation on titanium and silicon

    International Nuclear Information System (INIS)

    Luthin, J.; Linsmeier, C.

    2001-01-01

    The formation of carbon-based mixed materials is unavoidable on the plasma-facing components (e.g. first wall and divertor) of fusion devices when carbon is used together with other materials. On the surfaces of these components very different conditions with respect to particle and energy impact occur. To predict the mixed material formation under these conditions the precise knowledge of the fundamental mechanisms governing these interactions is essential. In this paper we present the results of carbon interaction with titanium and silicon, as model substances for metallic and covalent carbides, during thermal treatment. To perform basic studies of the reactions of carbon with different elements, thin carbon films are produced by electron beam evaporation on the different substrates under UHV conditions. All measurements for chemical analysis are performed using X-ray photoelectron spectroscopy (XPS). We discuss first the properties of the deposited carbon films. The carbon films are characterized on inert gold surfaces and are compared to bulk graphite. Annealing of the carbon films up to 970 K leads to a transition from a disordered carbon network into a graphitic structure. Preparation of carbon films at room temperature on titanium or silicon leads to a limited carbide formation at the carbon/substrate interface. Carbon deposited in excess of several monolayers is present in elementary form. Annealing of the samples leads to complete carbidization consuming the available carbon in both cases. Titanium reacts to TiC and additional substoichiometric carbide, silicon forms SiC with exact stoichiometry. (orig.)

  19. Removal of oxidative fragments from chemically functionalized multi-walled carbon nanotubes (MWCNTs)

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Whitby, Raymond; Khairul Zaman Dahlan; Nik Ghazali Nik Salleh; Mohd Sofian Alias; Mahathir Mohamed; Mohd Yusof Hamzah; Mohd Faizal Abdul Rahman

    2010-01-01

    Acid oxidized multi-walled carbon nano tubes (MWCNTs) were prepared by refluxing MWCNTs with nitric acid (70 %). To remove the oxidative fragment/ debris, in which partially attached onto the carbon nano tubes lattice, the functionalized MWCNTs (f-MWCNTs) then were refluxed with NaOH (1M) and followed with HCl (1M) wash. The presence of carboxylic group that covalently attached onto the MWCNTs lattice are confirmed with acid-base titration. The TEM image shows the comparison of pure MWCNTs, f-MWCNTs and base-acid wash of f-MWCNTs. (author)

  20. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    Science.gov (United States)

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  1. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  2. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiyong [College of Science, Shenyang Agricultural University, Shenyang 110866 (China); Wang, Ning, E-mail: ning_wang@outlook.com [School of Electrical and Electronic and Engineering, Nanyang Technological University 639798 (Singapore); Fu, Yan, E-mail: 1060945062@qq.com [College of Science, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-12-15

    Highlights: • The TIPD layer as electron extraction layer and instead of Ca or LiF. • Impact of the work function of TIPD layer by thermal annealing treatment. • Importance of TIPD layer as electron extraction layer for work function and potential barrier. - Abstract: The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO{sub 3}/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO{sub 2} as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Ti=O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  3. Synthesis of multi-layer graphene and multi-wall carbon nanotubes from direct decomposition of ethanol by microwave plasma without using metal catalysts

    International Nuclear Information System (INIS)

    Rincón, R; Melero, C; Jiménez, M; Calzada, M D

    2015-01-01

    The synthesis of nanostructured carbon materials by using microwave plasmas at atmospheric pressure is presented. This technique involves only one step and without any other supplementary chemical process or metal catalyst. Multi-layer graphene, multi-wall carbon nananotubes and H 2 were obtained by the plasma after ethanol decomposition. Strong emissions of both C 2 molecular bands and C carbon were emitted by the plasma during the process. Futhermore, plasma parameters were studied. Our research shows that both C 2 radicals and high gas temperatures (>3000 K) are required for the synthesis of these materials, which contribute to the understanding of materials synthesis by plasma processes. (fast track communication)

  4. Elasto-plastic response of multi-story shear wall structures

    International Nuclear Information System (INIS)

    Mizutani, M.; Yamazaki, F.

    1987-01-01

    A Monte Carlo simulation study is carried out. The relationship between the elastoplastic and linear response for multi-DOF systems is developed based on the results of the simulation study. Several 6-story shear wall structures are considered as structural models which represent typical nuclear power plant buildings. A bilinear force-displacement relationship is assumed for each story. A number of artificial earthquakes based on the Kanai-Tajimi power spectrum and trapezoidal envelope function are used as the input ground motion. The least square method is introduced for the purpose of evaluating the median relationship between the ductility factor and linear response from the simulated data and also evaluating the deviation from this median relationship. This relationship derived for the 6-story buildings is compared with the currently used energy absorption factor and the simulation results for Zion auxiliary building model. (orig./HP)

  5. Thermal Shock Experiment (TSEX): a ''proof-of-principle'' evaluation of the use of electron beam heating to simulate the thermal mechanical environment anticipated for the first wall of the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Armstrong, P.E.; Krakowski, R.A.

    1977-06-01

    The results of a ''proof-of-principle'' Thermal Shock Experiment (TSEX), designed to simulate the thermal mechanical response of insulator-metal composite first walls anticipated for pulsed high-density fusion reactors, are given. A programmable 10-kV, 1.0-A electron beam was used to pulse repeatedly (0.30-mm)Al 2 O 3 /(1.0-mm) Nb-1Zr composite samples 200 to 300 K, relative to a base-line temperature of 1000 K. The experimental goals of TSEX were established relative to the first-wall environment anticipated for the Reference Theta-Pinch Reactor (RTPR). A detailed description of the TSEX ''proof-of-principle'' apparatus, experimental procedure, and diagnostics is given. The results of extensive thermal analyses are given, which are used to estimate the thermal stresses generated. Although little or no control was exercised over the sample fabrication and thermal history, one sample experienced in excess of 800 thermal cycles of approximately 250 K at approximately 1000 K, and the results of optical and SEM examination of this specimen are presented. The resistance of this sample to macroscopic failure was truly impressive. Recommendations for the construction of an apparatus dedicated to extensive testing of first-wall composites are given on the basis of these ''proof-of-principle'' TSEX results

  6. Chlorophenols Sorption on Multi-Walled Carbon Nanotubes: DFT Modeling and Structure-Property Relationship Analysis

    OpenAIRE

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-01-01

    Presence of chlorophenols in drinking water could be hazardous to human health. Optimization and computational modeling of experimental conditions of adsorption lead to understanding the mechanisms of this process and to creating the efficient experimental equipment. In the current study, we investigated multi-walled carbon nanotubes by means of density functional theory (DFT) approach. This is applied to study selected types of interactions between six solvents, five types of nanotubes, and ...

  7. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  8. Thermal cycling tests of 1st wall mock-ups with beryllium/CuCrZr bonding

    International Nuclear Information System (INIS)

    Uda, M.; Iwadachi, T.; Uchida, M.; Yamada, H.; Nakamichi, M.; Kawamura, H.

    2004-01-01

    The innovative bonding technology between beryllium and CuCrZr with Hot Isostatic Pressing (HIP) has been proposed for the manufacturing of the ITER first wall. In the next step, thermal cycling test of first wall mock-ups manufactured with the bonding technology, were carried out under the ITER heat load condition. The test condition is 1000 cycles of On and Off under 5 MW/m 2 , and two types of the mock-up were manufactured for evaluation of the effects on HIP temperature (520 degree C and 610 degree C). The tensile properties of the bonding were also evaluated in room temperature and 200 degree C. As for the results of the thermal cycling tests, the temperature near the bonding interface were scarcely any change up to 1000 cycles, and obvious damage of the mock-up was not detected under the tests. As for the results of the tensile tests in 200 degree C, the test pieces of the HIP bonding at 610 degree C were broken in parent CuCrZr material, not broken in the bonding interface. (author)

  9. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  10. Thermal Transmittance and the Embodied Energy of Timber Frame Lightweight Walls Insulated with Straw and Reed

    Science.gov (United States)

    Miljan, M.; Miljan, J.

    2015-11-01

    Sustainable energy use has become topical in the whole world. Energy gives us comfort we are used to. EU and national regulations determine energy efficiency of the buildings. This is one side of the problem - energy efficiency of houses during exploitation. But the other side is primary energy content of used materials and more rational use of resources during the whole life cycle of a building. The latter value constitutes about 8 - 20% from the whole energy content. Calculations of energy efficiency of materials lead us to energy efficiency of insulation materials and to comparison of natural and industrial materials taking into account their thermal conductivity as well as their primary energy content. Case study of the test house (built in 2012) insulated with straw bales gave the result that thermal transmittance of investigated straw bale walls was according to the minimum energy efficiency requirements set in Estonia U = 0.12 - 0.22 W/m2K (for walls).

  11. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    Science.gov (United States)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  12. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Hui; Yang Lu

    2012-01-01

    A thin layer of nanoparticle titanium dioxide was immobilized on polyamide 6 (PA6) fiber using titanium sulfate and urea at low temperature hydrothermal condition. The titanium dioxide loaded fabric was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermal gravimetry techniques. The optical and mechanical properties, water absorption and degradation of methylene blue dye under ultraviolet (UV) irradiation of the PA6 fabric before and after treatments were also examined. It was found that when PA6 fabric was treated in titanium sulfate and urea aqueous solution, anatase nanocrystalline titanium dioxide was synthesized and simultaneously adhered onto the fiber surface. The average crystal size of titanium dioxide nanoparticles was about 13.2 nm. The thermal behavior of PA6 fiber distinctly changed and the onset decomposition temperature decreased. As compared with the untreated fabric, the protection against UV radiation was improved. The water absorbency increased slightly. As the fabric dimensions were reduced in warp and weft directions, the breaking load and tensile strain increased to some extent. The titanium dioxide coated fabric could degradate methylene blue dye under UV irradiation. - Highlights: ► We employed a method to immobilize TiO 2 nanoparticle on polyamide fiber. ► We fabricated the TiO 2 -coated polyamide fabric with the photocatalytic activity. ► The modification method may be suitable for the potential applications.

  13. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  14. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  15. Study of the thermal oxidation of titanium and zirconium under argon ion irradiation in the low MeV range (E = 15 MeV)

    International Nuclear Information System (INIS)

    Do, N.-L.

    2012-01-01

    We have shown that argon ion irradiation between 1 and 15 MeV produces damage on both titanium and zirconium surfaces, taking the form of accelerated oxidation and/or craterization effects, varying as a function of the projectile energy and the annealing atmosphere (temperature and pressure) simulating the environmental conditions of the fuel/cladding interface of PWR fuel rods. Using AFM, we have shown that the titanium and zirconium surface is attacked under light argon ion bombardment at high temperature (up to 500 C) in weakly oxidizing medium (under rarefied dry air pressure ranging from 5,7 10 -5 Pa to 5 10 -3 Pa) for a fixed fluence of about 5 10 14 ions.cm -2 . We observed the formation of nano-metric craters over the whole titanium surface irradiated between 2 and 9 MeV and the whole zirconium surface irradiated at 4 MeV, the characteristics of which vary depending on the temperature and the pressure. In the case of the Ar/Ti couple, the superficial damage efficiency increases when the projectile energy decreases from 9 to 2 MeV. Moreover, whereas the titanium surface seems to be transparent under the 15-MeV ion beam, the zirconium surface exhibits numerous micrometric craters surrounded by a wide halo. The crater characteristics (size and superficial density) differ significantly from that observed both in the low energy range (keV) where the energy losses are controlled by ballistic collisions (Sn) and in the high energy range (MeV - GeV) where the energy losses are controlled by electronic excitations (Se), which was not completely unexpected in this intermediate energy range for which combined Sn - Se stopping power effects are possibly foreseen. Using XPS associated to ionic sputtering, we have shown that there is an irradiation effect on thermal oxidation of titanium, enhanced under the argon ion beam between 2 and 9 MeV, and that there is also an energy effect on the oxide thickness and stoichiometry. The study conducted using Spectroscopic

  16. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  17. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region

    Energy Technology Data Exchange (ETDEWEB)

    Kontoleon, K.J.; Eumorfopoulou, E.A. [Department of Civil Engineering, Laboratory of Building Construction and Physics, Aristotle University of Thessaloniki (A.U.Th.), Gr-541 24 Thessaloniki (Greece)

    2008-07-15

    The aim of this study is to determine how time lag and decrement factor are affected by wall orientation and exterior surface solar absorptivity, for specific climatic conditions. Their influence forms a non-sinusoidal periodical forcing function that simulates suitably the outdoor temperature fluctuations. This novel approach, allows the predictability of building's thermal response in an efficient way. The investigation is carried out for various insulated opaque wall formations comprising typical material elements, during the summer period in the mild Greek region. This study that allows proper building planning procedures, at the very early stages of the envelope design, presents great importance. The analysed configurations are assumed to have an orientation that corresponds to each compass point. In addition, the solar absorptivity of surface coatings is assumed to be varying from 0 to 1. The transient thermal analysis is obtained via a thermal circuit that models accurately the fundamental heat transfer mechanisms on both boundaries and through the multi-layered wall configurations. Moreover, the mathematical formulation and solution of this lumped model is achieved in discrete time steps by adopting the non-linear nodal method. The simulation results are focused on the single and combined effects of orientation and solar absorptivity on the dynamic thermal characteristics of various wall configurations. (author)

  18. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  19. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  20. Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China

    International Nuclear Information System (INIS)

    Chan, A.L.S.; Chow, T.T.

    2014-01-01

    Highlights: • A generic fully air-conditioned office building with inclined walls was modeled. • Simulations were run under climatic conditions in three modern cities in China. • Reduction in cooling load can outweigh the increase in heating load for Hong Kong. • Inclined angle of 30° is appropriate for inverted pyramidal building in Hong Kong. • Building constructed with inclined walls is not encouraged in Shanghai and Beijing. - Abstract: An inverted pyramidal building is built with inclined walls instead of the traditional vertical façades. In terms of thermal performance, an inverted pyramidal building can provide a self-shading effect against the beam solar radiation, leading to a reduction in solar heat gain as well as building cooling load. On the other hand, the heating requirement of an inverted pyramidal building will be increased in winter. There is a strong dependency of building performance on the climatic condition. In this study, a generic air-conditioned office building with inclined walls set at different inclination angles was modeled using a building energy simulation program. Computer simulations were run to assess the thermal performance of the building constructed with inclined walls under different climatic conditions in three modern cities in China–Hong Kong, Shanghai and Beijing. The results reveal that for the building cases with inclined walls set at different inclination angles in subtropical Hong Kong, the saving in annual cooling load ranges from 0.6% to 10.9% and can outweigh the increase in heating load. Moreover, an inclination angle of 30° was found as a better design option for an inverted pyramidal building with symmetrical layout design under the climatic condition in Hong Kong. For the other two cities: Shanghai and Beijing, the saving in cooling load due to self-shading effect cannot offset the increased heating requirement. Design and construction of an inverted pyramidal building is not encouraged in these two

  1. Automated coronal hole identification via multi-thermal intensity segmentation

    Science.gov (United States)

    Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.

    2018-01-01

    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.

  2. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  3. Application of inverse models and XRD analysis to the determination of Ti-17 {beta}-phase coefficients of thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Freour, S. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)]. E-mail: freour@crttsn.univ-nantes.fr; Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Guillen, R. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)

    2006-04-15

    scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 {beta}-phase. A rigorous inverse thermo-elastic self-consistent scale transition micro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied ({alpha} + {beta}) two-phase titanium alloy.

  4. Ultrasound-aided formation of gold nanoparticles on multi-walled carbon nanotubes functionalized with mercaptobenzene moieties.

    Science.gov (United States)

    Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun

    2011-07-01

    A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.

  5. Close-range geophotogrammetric mapping of trench walls using multi-model stereo restitution software

    Energy Technology Data Exchange (ETDEWEB)

    Coe, J.A.; Taylor, E.M.; Schilling, S.P.

    1991-06-01

    Methods for mapping geologic features exposed on trench walls have advanced from conventional gridding and sketch mapping to precise close-range photogrammetric mapping. In our study, two strips of small-format (60 {times} 60) stereo pairs, each containing 42 photos and covering approximately 60 m of nearly vertical trench wall (2-4 m high), were contact printed onto eight 205 {times} 255-mm transparent film sheets. Each strip was oriented in a Kern DSR15 analytical plotter using the bundle adjustment module of Multi-Model Stereo Restitution Software (MMSRS). We experimented with several systematic-control-point configurations to evaluate orientation accuracies as a function of the number and position of control points. We recommend establishing control-point columns (each containing 2-3 points) in every 5th photo to achieve the 7-mm Root Mean Square Error (RMSE) accuracy required by our trench-mapping project. 7 refs., 8 figs., 1 tab.

  6. Close-range geophotogrammetric mapping of trench walls using multi-model stereo restitution software

    International Nuclear Information System (INIS)

    Coe, J.A.; Taylor, E.M.; Schilling, S.P.

    1991-01-01

    Methods for mapping geologic features exposed on trench walls have advanced from conventional gridding and sketch mapping to precise close-range photogrammetric mapping. In our study, two strips of small-format (60 x 60) stereo pairs, each containing 42 photos and covering approximately 60 m of nearly vertical trench wall (2-4 m high), were contact printed onto eight 205 x 255-mm transparent film sheets. Each strip was oriented in a Kern DSR15 analytical plotter using the bundle adjustment module of Multi-Model Stereo Restitution Software (MMSRS). We experimented with several systematic-control-point configurations to evaluate orientation accuracies as a function of the number and position of control points. We recommend establishing control-point columns (each containing 2-3 points) in every 5th photo to achieve the 7-mm Root Mean Square Error (RMSE) accuracy required by our trench-mapping project. 7 refs., 8 figs., 1 tab

  7. Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements.

    Science.gov (United States)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2011-01-01

    Integrating the advantages of screen printing technology with the encouraging electroanalytical characteristic of metallic bismuth, we developed an ultrasensitive and disposable screen-printed bismuth electrode (SPBE) modified with multi-walled carbon nanotubes (MWCNTs) for electrochemical stripping measurements. Metallic bismuth powders and MWCNTs were homogeneously mixed with graphite-carbon ink to mass-prepare screen-printed bismuth electrode doped with multi-walled carbon nanotubes (SPBE/MWCNT). The electroanalytical performance of the prepared SPBE/MWCNT was intensively evaluated by measuring trace Hg(II) with square-wave anodic stripping voltammetry (SWASV). The results indicated that the SPBE modified with 2 wt% MWCNTs could offer a more sensitive response to trace Hg(II) than the bare SPBE. The stripping current obtained at SPBE/MWCNT was linear with Hg(II) concentration in the range from 0.2 to 40 µg/L (R(2) = 0.9976), with a detection limit of 0.09 µg/L (S/N = 3) under 180 s accumulation. The proposed "mercury-free" electrode, with extremely simple preparation and ultrahigh sensitivity, holds wide application prospects in both environmental and industrial monitoring. 2011 © The Japan Society for Analytical Chemistry

  8. Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements

    KAUST Repository

    Iglesias, Marco

    2017-09-20

    The assessment of the thermal properties of walls is essential for accurate building energy simulations that are needed to make effective energy-saving policies. These properties are usually investigated through in situ measurements of temperature and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal diffusivity parameter using different synthetic data sets. In this work, we adapt this methodology to an experimental study conducted in an environmental chamber, with measurements recorded every minute from temperature probes and heat flux sensors placed on both sides of a solid brick wall over a five-day period. The observed time series are locally averaged, according to a smoothing procedure determined by the solution of a criterion function optimization problem, to fit the required set of noise model assumptions. Therefore, after preprocessing, we can reasonably assume that the temperature and the heat flux measurements have stationary Gaussian noise and we can avoid working with full covariance matrices. The results show that our technique reduces the bias error of the estimated parameters when compared to other approaches. Finally, we compute the information gain under two experimental setups to recommend how the user can efficiently determine the duration of the measurement campaign and the range of the external temperature oscillation.

  9. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  10. Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Wichmann, Malte H G; Buschhorn, Samuel T; Boeger, Lars; Schulte, Karl; Adelung, Rainer

    2008-01-01

    In the present work, a direction sensitive bending strain sensor consisting of a single block of epoxy/multi-wall carbon nanotube composite was developed. Moreover, the manufacturing could be realized in a straightforward single-step processing route. The directional sensitivity to bending deformations is related to the change in electrical resistance, which becomes positive or negative, depending on the direction of bending deflection. This effect is achieved by generating a gradient in electrical conductivity throughout the material. The resistance versus strain behaviour of these devices is investigated in detail and related to the microstructure of the nanocomposites.

  11. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  12. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  13. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  14. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions in the LVR-15 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, Jan [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Entler, Slavomir, E-mail: slavomir.entler@cvrez.cz [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Vsolak, Rudolf; Klabik, Tomas [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Zlamal, Ondrej [CEZ, Duhova 2/1444, 140 53 Praha 4 (Czech Republic); Bellin, Boris; Zacchia, Francesco [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Irradiated thermal fatigue testing of the ITER primary first wall mock-ups. • Cyclic heat flux of 0.5 MW/m{sup 2} in the neutron field of the nuclear reactor core. • 17,040 thermal cycles. • Radiation damage in the range of 0.41–1.17 dpa depending on the material. - Abstract: The TW3 in-pile rig enabled the thermal fatigue testing of ITER primary first wall mock-ups in the core of the nuclear reactor. This experiment investigated the neutron irradiation influence on the design performance under high heat flux testing. A thermal flux of 0.5 MW/m{sup 2} in the neutron field of the core of the LVR-15 nuclear reactor was applied. Within the scope of the tests with simultaneous neutron irradiation, the TW3 rig reached a record of 17,040 thermal cycles with the radiation damage in the range of 0.41–1.17 dpa depending on the material. Even after a high number of thermal cycles, while being irradiated by neutrons, no damage of the tested mock-ups was visually observed. Further testing and analysis will follow in the Forschungszentrum Juelich.

  15. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dakin, Bill [National Renewable Energy Lab. (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  16. Quantifying the properties of low-cost powder metallurgy titanium alloys

    International Nuclear Information System (INIS)

    Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E.

    2017-01-01

    The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.

  17. Quantifying the properties of low-cost powder metallurgy titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: bolzoni.leandro@gmail.com [WaiCAM (Waikato Centre for Advanced Materials), The University of Waikato, Private Bag 3105, 3240 Hamilton (New Zealand); Ruiz-Navas, E.M.; Gordo, E. [Department of Materials Science and Engineering, University Carlos III of Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid (Spain)

    2017-02-27

    The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.

  18. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  19. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    International Nuclear Information System (INIS)

    Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Cao, C.L.; Tian, Y.S.; Pan, C.Y.

    2009-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nano tube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%-98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively. Moreover, the treated humidity sensors showed higher sensitivity and better stability. In addition, the response and recover properties, and stabilization of the humidity sensors are measured, and the humidity sensitive mechanisms of the sensors are analyzed. The humidity sensitivity of carbon nano tube thin films indicates it promise as a kind of humidity sensitive material

  20. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed; Memon, Nasir; Mansour, Morkous S.; Anjum, Dalaver H.; Chung, Suk-Ho

    2015-01-01

    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium

  1. Thermal reactions in mixtures of micron-sized silicon monoxide and titanium monoxide: redox paths overcoming passivation shells

    Czech Academy of Sciences Publication Activity Database

    Jandová, V.; Pokorná, D.; Kupčík, Jaroslav; Bezdička, Petr; Křenek, T.; Netrvalová, M.; Cuřínová, P.; Pola, J.

    2018-01-01

    Roč. 44, č. 1 (2018), s. 503-516 ISSN 0922-6168 Institutional support: RVO:61388980 Keywords : Silicon monoxide * Titanium monoxide * High-temperature * Oxygen-transfer reactions * Titanium suboxides * Titanium silicide * Methylene blue depletion Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.369, year: 2016

  2. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  3. Periodic thermal response of multi-layer walls in a building. Materials of different types used for insulation, both internal and external

    Energy Technology Data Exchange (ETDEWEB)

    Elchinger, M F; Martin, C; Fauchais, P [UER des Sciences, Limoges (France)

    1982-05-01

    The authors analyze the temperature distribution in a wall built of several layers, heated on the inside, and whose outside wall temperatures exhibit a sine distribution: development of a simulation program and validation by comparison with experimental results. They determine the influence of the positioning and thickness of the insulation, the heat flux required to keep the inside surface of a 3, 4 or 5-layer wall at a fixed temperature, and make a comparison between heavy walls and light-weight structure walls. Finally, the study concludes with the determination of the most interesting insulation (external) for slack periods, night and weekend.

  4. Adsorption of hydrogen in titanium

    International Nuclear Information System (INIS)

    Martinez R, T.

    1995-01-01

    In this work the absorption of hydrogen in titanium plates using a constant volume system has been realized. The changes of temperature and pressure were used to monitor the progress of the absorption. A stainless steel vacuum chamber with volume of 4,333 cm 3 was used. A titanium sample of 45 x 5.4 x 0.3 cm was located in the center of the chamber. The sample was heated by an electrical source connected to the system. The sample was preconditioned with a vacuum-thermal treatment at 10 -6 mbar and 800 Centigrade degrees for several days. Absorption was observed at room temperature and also at higher temperatures. The room temperature absorption was in the pressure range of 1.0 x 10 3 to 2.5 x 10 3 mbar, and other absorptions were from 180 to 630 Centigrade degrees at 3.5 x 10 -1 to 1.3 x 10 3 mbar. It was found that the gas absorbed was function of the vacuum-thermal pre-conditioned treatment, pressure and temperature. When the first absorption was developed, additional absorptions were realized in short time. We measured the electrical resistivity of the sample in the experiments but we could not see important changes due to the absorption. (Author)

  5. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  6. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  7. Coupled transient thermo-fluid/thermal-stress analysis approach in a VTBM setting

    International Nuclear Information System (INIS)

    Ying, A.; Narula, M.; Zhang, H.; Abdou, M.

    2008-01-01

    A virtual test blanket module (VTBM) has been envisioned as a utility to aid in streamlining and optimizing the US ITER TBM design effort by providing an integrated multi-code, multi-physics modeling environment. Within this effort, an integrated simulation approach is being developed for TBM design calculations and performance evaluation. Particularly, integrated thermo-fluid/thermal-stress analysis is important for enabling TBM design and performance calculations. In this paper, procedures involved in transient coupled thermo-fluid/thermal-stress analysis are investigated. The established procedure is applied to study the impact of pulsed operational phenomenon on the thermal-stress response of the TBM first wall. A two-way coupling between the thermal strain and temperature field is also studied, in the context of a change in thermal conductivity of the beryllium pebble bed in a solid breeder blanket TBM due to thermal strain. The temperature field determines the thermal strain in beryllium, which in turn changes the temperature field. Iterative thermo-fluid/thermal strain calculations have been applied to both steady-state and pulsed operation conditions. All calculations have been carried out in three dimensions with representative MCAD models, including all the TBM components in their entirety

  8. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    Science.gov (United States)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  9. Titanium ; dream new material

    International Nuclear Information System (INIS)

    Lee, Yong Tae; Kim Seung Eon; Heoon, Yong Taek; Jung, Hui Won

    2001-11-01

    The contents of this book are history of Titanium, present situation of Titanium industry, property of Titanium alloy, types of it, development of new alloy of Titanium smelting of Titanium, cast of Titanium and heat treatment of Titanium, Titanium alloy for plane, car parts, biological health care, and sport leisure and daily life, prospect, and Titanium industrial development of Titanium in China.

  10. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong; Chen, Tao; Lubineau, Gilles

    2017-01-01

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film's structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  11. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  12. Fabrication of Antibacterial Poly(Vinyl Alcohol Nanocomposite Films Containing Dendritic Polymer Functionalized Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Andreas Sapalidis

    2018-03-01

    Full Text Available A series of poly(vinyl alcohol (PVA nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI are prepared by solvent casting technique. The modified carbon-based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0% w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized CNTs into the PVA matrix.

  13. The certification of hydrogen in titanium. CRM No. 318

    International Nuclear Information System (INIS)

    Vandendriessche, S.; Marchandise, H.; Vandecasteele, C.

    1987-01-01

    This report describes the work done to certify the hydrogen content in a batch of 28 kg of commercial unalloyed titanium. The homogeneity of the three original sheets of metals was demonstrated. Samples were analysed by 10 laboratories using hydrogen extraction and thermal conductivity measurement and by 2 laboratories using a nuclear resonance reaction technique, but the accuracy of the latter was insufficient for a certification. On the basis of the measurements in 8 laboratories using extraction techniques, the hydrogen mass fraction in the titanium (CRM 318) is certified to be (12.2 +/- 0.8) ug/g

  14. SYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    N. Bahrami Panah

    2016-03-01

    Full Text Available The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy methods. The mean size of nanocomposite particles was 20-35 nm determined by scanning electron microscopy. The epoxy coatings containing the nanocomposites were applied over mild steel panels and their corrosion performance was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization measurements in a 3.5 % sodium chloride solution. The results showed that epoxy coatings consisting of nanocomposite with 1 wt.% multi-walled carbon nanotube exhibited higher anticorrosive properties than other prepared coatings of different carbon nanotube contents, which could be due to the strong interaction between the mild steel surface and the conjugated nanocomposite.

  15. Conducting polymer-coated, palladium-functionalized multi-walled carbon nanotubes for the electrochemical sensing of hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunhee; Ahmed, Mohammad Shamsuddin; You, Jung-Min; Kim, Seul Ki; Jeon, Seungwon, E-mail: swjeon@chonnam.ac.kr

    2012-08-31

    Electrochemical sensors of hydroxylamine were fabricated on glassy carbon electrodes (GCEs) by the electropolymerization of 3,4-ethylenedioxypyrrole (EDOP) and 3,4-ethylenedioxythiophene (EDOT) on palladium (Pd) nanoparticles attached to thiolated multi-walled carbon nanotubes (MWCNTs), denoted as PEDOP/MWCNT-Pd/GCE and PEDOT/MWCNT-Pd/GCE. The sensors were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy. They showed strong catalytic activity toward the oxidation of hydroxylamine. Cyclic voltammetry and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine by PEDOP/MWCNT-Pd/GCE and PEDOT/MWCNT-Pd/GCE were 0.22 and 0.24 {mu}M (S/N = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated. - Highlights: Black-Right-Pointing-Pointer Multi-wall carbon nanotubes-Pd nanoparticles (MWCNT-Pd) based electrodes. Black-Right-Pointing-Pointer Electropolymerized electrodes by poly3,4-ethylenedioxythiophene(PEDOT). Black-Right-Pointing-Pointer PEDOT/MWCNT-Pd has a low detection limit of 0.24 Micro-Sign M for hydroxylamine. Black-Right-Pointing-Pointer PEDOT/MWCNT-Pd exhibits a wide linear range from 1 Micro-Sign M to 6 mM hydroxylamine. Black-Right-Pointing-Pointer The resulting sensor shows fast response and good stability.

  16. Effect of an intermediate tungsten layer on thermal properties of TiC coatings ion plated onto molybdenum

    International Nuclear Information System (INIS)

    Fukutomi, M.; Fujitsuka, M.; Shikama, T.; Okada, M.

    1985-01-01

    Among the various low-Z coating-substrate systems proposed for fusion reactor first-wall applications, molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. The thermal stabilities of TiC layers ion plated onto the molybdenum substrate are discussed with particular reference to the interfacial reaction between the TiC coating and molybdenum. The deposition of an intermediate tungsten layer was found to be very effective in suppressing the formation of reaction layers, resulting in a marked improvement in thermal stabilities of TiC--Mo systems. Thermal shock test using a pulsed electron beam showed that the TiC coatings remained adherent to the molybdenum substrates during energy depositions high enough to melt the substrates within the area of beam deposition. The melt area of the TiC coatings apparently decreased when a tungsten intermediate layer was applied

  17. Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M. D. H., E-mail: dhbeg@yahoo.com; Moshiul Alam, A. K. M., E-mail: akmmalam@gmail.com; Yunus, R. M. [Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering (Malaysia); Mina, M. F. [Bangladesh University of Engineering and Technology, Department of Physics (Bangladesh)

    2015-01-15

    Efforts are being given to the development of well-dispersed nanoparticle-reinforced polymer nanocomposites in order to tailor the material properties. In this perspective, well dispersion of multi-walled carbon nanotubes (MWCNTs) in unsaturated polyester resin (UPR) was prepared using pre-dispersed MWCNTs in tetrahydrofuran solvent with ultrasonication method. Then the well-dispersed MWCNTs reinforced UPR nanocomposites were fabricated through solvent evaporation. Fourier-transform infrared spectroscopy indicates a good interaction between matrix and MWCNTs. This along with homogeneous dispersion of nanotubes in matrix has been confirmed by the field emission scanning electron microscopy. At low shear rate, the value of viscosity of UPR is 8,593 mPa s and that of pre-dispersed MWCNT–UPR suspension is 43,491 mPa s, showing implicitly a good dispersion of nanotubes. A notable improvement in the crystallinity of UPR from 14 to 21 % after MWCNTs inclusion was observed by X-ray diffractometry. The mechanical properties, such as tensile strength, tensile modulus, impact strength, and elongation-at-break, of nanocomposite were found to be increased to 22, 20, 28, and 87 %, respectively. The estimated melting enthalpy per gram for composites as analyzed by differential scanning calorimetry is higher than that of UPR. The onset temperature of thermal decomposition in the nanocomposites as monitored by thermogravimetric analysis is found higher than that of UPR. Correlations among MWCNTs dispersion, nucleation, fracture morphology, and various properties were measured and reported.

  18. Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity

    International Nuclear Information System (INIS)

    Choi, Hyun-Jung; Kang, Ji-Ye; Jeon, In-Yup; Eo, Soo-Mi; Tan, Loon-Seng; Baek, Jong-Beom

    2012-01-01

    Multi-walled carbon nanotubes (MWCNTs) are functionalized at the sp 2 C–H defect sites with 3,4-diaminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid/phosphorous pentoxide medium. Owing to enhanced surface polarity, the resulting 3,4-diaminobenzoyl-functionalized MWCNTs (DAB-MWCNT) are highly dispersible in polar solvents, such as ethanol, N-methyl-2-pyrrolidone, and methanesulfonic acid. The absorption and emission properties of DAB-MWCNT in solution state are qualitatively shown to be sensitive to the pH in the environment. The DAB-MWCNT is used as a stable platform on which to deposit platinum nanoparticles (PNP). The PNP/DAB-MWCNT hybrid displays high electrocatalytic activity with good electrochemical stability for an oxygen reduction reaction under an alkaline condition.Graphical AbstractMulti-walled carbon nanotubes (MWCNTs) were functionalized with 3,4-diaminobenzoic acid to produce 3,4-diaminobenzoyl-functionalized MWCNT (DAB-MWCNT). Platinum nanoparticles (PNP) were deposited to DAB-MWCNT. The resulting PNP/DAB-MWCNT hybrid displayed high electrocatalytic activity.

  19. Thermoplastic polyurethane and multi-walled carbon nanotubes nanocomposites for electrostatic dissipation

    International Nuclear Information System (INIS)

    Lavall, Rodrigo L.; Sales, Juliana A. de; Borges, Raquel S.; Calado, Hallen D. R.; Machado, Jose C.; Windmoeller, Dario; Silva, Glaura G.; Lacerda, Rodrigo G.; Ladeira, Luiz O.

    2010-01-01

    Polyurethane/multi-walled carbon nanotube (MWCNT) nanocomposites have been prepared with nanotube concentrations between 0.01 wt% and 1 wt%. MWCNT as-synthesized samples with ∼74 nm diameter and ∼7 mm length were introduced by solution processing in the polyurethane matrix. Scanning electron microscopy (SEM) images demonstrated good dispersion and adhesion of the CNTs to the polymeric matrix. The C=O stretching band showed evidence of perturbation of the hydrogen interaction between urethanic moieties in the nanocomposites as compared to pure TPU. Differential scanning calorimetry and positron annihilation lifetime spectroscopy measurements allowed the detection of glass transition displacement with carbon nanotube addition. Furthermore, the electrical conductivity of the nanocomposites was significantly increased with the addition of CNT. (author)

  20. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.