WorldWideScience

Sample records for titanium implant titanium

  1. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  2. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  3. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    Science.gov (United States)

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  4. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  5. Rough surfaces of titanium and titanium alloys for implants and prostheses

    International Nuclear Information System (INIS)

    Conforto, E.; Aronsson, B.-O.; Salito, A.; Crestou, C.; Caillard, D.

    2004-01-01

    Titanium and titanium alloys for dental implants and hip prostheses were surface-treated and/or covered by metallic or ceramic rough layers after being submitted to sand blasting. The goal of these treatments is to improve the surface roughness and consequently the osteointegration, the fixation, and the stability of the implant. The microstructure of titanium and titanium alloys submitted to these treatments has been studied and correlated to their mechanical behavior. As-treated/covered and mechanically tested surfaces were characterized by scanning electron microscopy (SEM). Structural analyses performed by transmission electron microscopy (TEM), mainly in cross-section, reveal the degree of adherence and cohesion between the surface layer and the substrate (implant). We observed that, although the same convenient surface roughness was obtained with the two types of process, many characteristics as structural properties and mechanical behavior are very different

  6. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  7. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  8. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  9. Custom-made laser-welded titanium implant prosthetic abutment.

    Science.gov (United States)

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  10. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.

    Science.gov (United States)

    Pienkowski, D; Stephens, G C; Doers, T M; Hamilton, D M

    1998-04-01

    This was a prospective in vitro study comparing titanium alloy and stainless steel alloy in transpedicular spine implants from two different manufactures. To compare the multicycle mechanical performance of these two alloys, used in each of two different implant designs. Transpedicular spine implants primarily have been manufactured from stainless steel, but titanium alloy offers imaging advantages. However, the notch sensitivity of titanium alloy has caused concern regarding how implants made from this material will compare in stiffness and fatigue life with implants made from stainless steel. Twenty-four implants (two alloys, two designs, six implants per group) were mounted in machined polyethylene wafers and repetitively loaded (up to 1 million cycles) from 80 N to 800 N using a 5-Hertz sinusoidal waveform. Load and displacement data were automatically and periodically sampled throughout the entire test. Implant stiffness increased with cycle load number, reached a steady state, then declined just before fatigue failure. Stiffness varied less in titanium transpedicular spine implants than in their stainless counterparts. All stainless steel implant types were stiffer (steady-state value, P titanium alloy counterparts. One titanium implant design failed with fewer (P stainless steel counterpart, whereas a stainless steel implant of another design failed with fewer (P titanium counterpart. Overall, fatigue life, i.e., the total number of load cycles until failure, was related to implant type (P implant material. A transpedicular spine implant's fatigue lifetime depends on both the design and the material and cannot be judged on material alone. Stainless steel implants are stiffer than titanium alloy implants of equal design and size; however, for those designs in which the fatigue life of the titanium alloy version is superior, enlargement of the implant's components can compensate for titanium's lower modulus of elasticity and result in an implant equally stiff

  11. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  12. Biocompatibility of titanium based implants treated with plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Maendl, S.; Sader, R.; Thorwarth, G.; Krause, D.; Zeilhofer, H.-F.; Horch, H.H.; Rauschenbach, B.

    2003-01-01

    In this work, the biocompatibility of titanium before and after oxygen PIII is investigated using a rat animal model. Pure titanium (grade 2) and pre-anodized titanium were implanted with oxygen at elevated temperatures between 200 and 550 deg. C and subsequently analyzed for oxygen content and phase composition. No deterioration of the tensile strength and the yield strength was detected after the implantation. The mechanical stability of the osseointegration was determined with a pull-out test, where an increased shear strength was measured after PIII treatment. Only a slight improvement of the bone contact area, from an already excellent starting value, was observed for pure titanium. In contrast, a significant improvement was found for anodized titanium after PIII treatment. This astonishing difference can be explained with the surface topography and the phase composition of the anodized titanium samples

  13. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  14. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  15. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  16. Antibacterial iodine-supported titanium implants.

    Science.gov (United States)

    Shirai, T; Shimizu, T; Ohtani, K; Zen, Y; Takaya, M; Tsuchiya, H

    2011-04-01

    Deep infection remains a serious complication in orthopedic implant surgery. In order to reduce the incidence of implant-associated infections, several biomaterial surface treatments have been proposed. This study focused on evaluating the antibacterial activity of iodine-supported titanium (Ti-I(2)) and its impact on post-implant infection, as well as determining the potential suitability of Ti-I(2) as a biomaterial. External fixation pins were used in this experiment as trial implants because of the ease of making the septic models. The antibacterial activity of the metal was measured using a modification of the Japanese Industrial Standards method. Activity was evaluated by exposing the implants to Staphylococcus aureus or Escherichia coli and comparing reaction of pathogens to Ti-I(2) vs. stainless steel and titanium controls. Ti-I(2) clearly inhibited bacterial colonization more than the control metals. In addition, cytocompatibility was assessed by counting the number of colonies that formed on the metals. The three metals showed the same amount of fibroblast colony formation. Japanese white rabbits were used as an in vivo model. Three pins were inserted into both femora of six rabbits for histological analysis. Pin sites were inspected and graded for infection and inflammation. Fewer signs of infection and inflammatory changes were observed in conjunction with the Ti-I(2) pins. Furthermore, osteoconductivity of the implant was evaluated with osteoid formation surface of the pin. Consecutive bone formation was observed around the Ti-I(2) and titanium pins, while little osteoid formation was found around the stainless steel pins. These findings suggest that Ti-I(2) has antimicrobial activity and exhibits cytocompatibility. Therefore, Ti-I(2) substantially reduces the incidence of implant infection and shows particular promise as a biomaterial. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Titanium diffusion in shinbone of rats with osseointegrated implants.

    Science.gov (United States)

    Grenón, Miriam S; Robledo, José; Ibáñez, Juan Carlos; Sánchez, Héctor J

    2016-11-01

    Dental implants are composed of commercially pure Ti (which is actually an alloy of titanium, and minor or trace components such as aluminium and vanadium). When the implant is inserted, its surface undergoes a number of chemical and mechanical processes, releasing particles of titanium to the medium. The metabolism of free ions of titanium is uncertain; the uptaking processes in the body are not well known, nor their toxic dose. In addition, physical properties of newly formed bone, such as diffusivity and activation energy, are scarce and rarely studied. In this study, we analysed the diffusion of titanium in the titanium-implanted shinbones of six adult male Wistar rats by spatially resolved micro x-ray fluorescence. The measurements were carried out at the microfluorescence station of the x-ray fluorescence (XRF) beamline of the Brazilian synchrotron facility LNLS (from Portuguese 'Laboratorio Nacional de Luz Sincrotron'). For each sample, XRF spectra were taken by linear scanning in area near the new bone formed around the Ti implant. The scanning line shows a clear effect of titanium diffusion whereas calcium intensity presents a different behaviour. Moreover, a clear correlation among the different structures of bones is observed in the Ti and Ca intensities. The results obtained in these measurements may allow determining quantitatively the parameters of diffusion rates and other physical properties of new bone like diffusion coefficients. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  19. The biocompatibility of SLA-treated titanium implants

    International Nuclear Information System (INIS)

    Kim, Hyeongil; Choi, Seong-Ho; Ryu, Jae-Jun; Koh, Seung-Yong; Park, Ju-Han; Lee, In-Seop

    2008-01-01

    The titanium implant surface was sandblasted with large grits and acid etched (SLA) to increase the implant surface for osseointegration. The topography of the titanium surface was investigated with scanning electron microscopy (SEM) and a profilometer. The SLA implant demonstrated uniform small micro pits (1-2 μm in diameter). The values of average roughness (R a ) and maximum height (R t ) were 1.19 μm and 10.53 μm respectively after sandblasting and the acid-etching treatment. In the cell-surface interaction study, the human osteoblast cells grew well in vitro. The in vivo evaluation of the SLA implant placed in rabbit tibia showed good bone-to-implant contact (BIC) with a mean value of 29% in total length of the implant. In the short-term clinical study, SLA implants demonstrated good clinical performance, maintaining good crestal bone height

  20. Strength of titanium intramedullary implant versus miniplate fixation of mandibular condyle fractures.

    Science.gov (United States)

    Frake, Paul C; Howell, Rebecca J; Joshi, Arjun S

    2012-07-01

    To test the strength of internal fixation of mandibular condyle fractures repaired with titanium miniplates versus titanium intramedullary implants. Prospective laboratory experimentation in urethane mandible models and human cadaveric mandibles. Materials testing laboratory at an academic medical center. Osteotomies of the mandibular condyle were created in 40 urethane hemimandible models and 24 human cadaveric specimens. Half of the samples in each group were repaired with traditional miniplates, and the other half were repaired with intramedullary titanium implants. Anteroposterior and mediolateral loads were applied to the samples, and the displacement was measured with reference to the applied force. Titanium intramedullary implants demonstrated statistically significant improved strength and stiffness versus miniplates in the urethane model experimental groups. Despite frequent plastic deformation and mechanical failures of the miniplates, a 1.6-mm-diameter titanium intramedullary pin did not mechanically fail in any of the cases. Intramedullary implantation failures were due to secondary fracture of the adjacent cortical bone or experimental design limitations including rotation of the smooth pin implant. Mechanical implant failures that were encountered with miniplate fixation were not seen with titanium intramedullary implants. These intramedullary implants provide stronger and more rigid fixation of mandibular condyle fractures than miniplates in this in vitro model.

  1. Long-term hearing result using Kurz titanium ossicular implants.

    Science.gov (United States)

    Hess-Erga, Jeanette; Møller, Per; Vassbotn, Flemming Slinning

    2013-05-01

    Titanium implants in middle ear surgery were introduced in the late 90s and are now frequently used in middle ear surgery. However, long-term studies of patient outcome are few and have only been published in subgroups of patients. We report the long-term effect of titanium middle ear implants for ossicular reconstruction in chronic ear disease investigated in a Norwegian tertiary otological referral centre. Retrospective chart reviews were performed for procedures involving 76 titanium implants between 2000 and 2007. All patients who underwent surgery using the Kurz Vario titanium implant were included in the study. Audiological parameters using four frequencies, 0.5, 1, 2, and 3 kHz, according to AAO-HNS guidelines, was assessed pre and postoperatively. Otosurgical procedures, complications, revisions, and extrusion rates were analyzed. The study had no dropouts. The partial ossicular replacement prosthesis (PORP) was used in 44 procedures and the total ossicular replacement prosthesis (TORP) in 32 procedures, respectively. Mean follow-up was 5.2 years (62 months). The ossiculoplasties were performed as staging procedures or in combination with other chronic ear surgery. The same surgeon performed all the procedures. A postoperative air-bone gap of ≤ 20 dB was obtained in 74 % of the patients, 82 % for the Bell (PORP) prosthesis, and 63 % for the Arial (TORP) prosthesis. The extrusion rate was 5 %. We conclude that titanium ossicular implants give stable and excellent long-term hearing results.

  2. Nanotubular topography enhances the bioactivity of titanium implants.

    Science.gov (United States)

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Adhesion of osteoblasts to a nanorough titanium implant surface

    Directory of Open Access Journals (Sweden)

    Gongadze E

    2011-08-01

    Full Text Available Ekaterina Gongadze1, Doron Kabaso2, Sebastian Bauer3, Tomaž Slivnik2, Patrik Schmuki3, Ursula van Rienen1, Aleš Iglič21Institute of General Electrical Engineering, University of Rostock, Rostock, Germany; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science, Friedrich-Alexander University of Erlangen-Nurenberg, Erlangen, GermanyAbstract: This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.Keywords: osteoblasts, nanostructures, adhesion, titanium implants, osteointegration

  4. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    Science.gov (United States)

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.

  5. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  7. Titanium implants in irradiated dog mandibles

    International Nuclear Information System (INIS)

    Schweiger, J.W.

    1989-01-01

    The use of osseointegrated titanium implants has been a great benefit to selected cancer patients who otherwise would not be able to wear conventional and/or maxillofacial prostheses. Cognizant of the risk of osteoradionecrosis, we used an animal model to seek experimental evidence for successful osseointegration in bone irradiated to tumoricidal levels. Five healthy male beagle dogs received 60 gray to a previously edentulated and healed area of the right hemimandible. The left hemimandible was kept as a nonirradiated control. After 9 months, titanium implants were placed and allowed an additional 5 1/2 months to osseointegrate. At that time, block specimens were obtained, radiographed, photographed, and analyzed histologically. Although statistical significance cannot be attached to the results, osseointegration was achieved in half of the irradiated specimens

  8. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  9. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Directory of Open Access Journals (Sweden)

    Julia Matena

    2015-04-01

    Full Text Available To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF, high mobility group box 1 (HMGB1 and chemokine (C-X-C motif ligand 12 (CXCL12. As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI. Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.

  10. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656

  11. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants.

    Science.gov (United States)

    Jäger, Marcus; Jennissen, Herbert P; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise

    2017-11-13

    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of "smaller, faster, cheaper", nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.

  12. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  13. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions.

    Science.gov (United States)

    Bosshardt, Dieter D; Chappuis, Vivianne; Buser, Daniel

    2017-02-01

    Bone healing around dental implants follows the pattern and sequence of intramembraneous osteogenesis with formation of woven bone first of all followed later by formation of parallel-fibered and lamellar bone. Bone apposition onto the implant surface starts earlier in trabecular bone than in compact bone. While the first new bone may be found on the implant surface around 1 week after installation, bone remodeling starts at between 6 and 12 weeks and continues throughout life. Bone remodeling also involves the bone-implant interface, thus transiently exposing portions of the implant surface. Surface modifications creating micro-rough implant surfaces accelerate the osseointegration process of titanium implants, as demonstrated in numerous animal experiments. Sandblasting followed by acid-etching may currently be regarded as the gold standard technique to create micro-rough surfaces. Chemical surface modifications, resulting in higher hydrophilicity, further increase the speed of osseointegration of titanium and titanium-zirconium implants in both animals and humans. Surface modifications of zirconia and alumina-toughened zirconia implants also have an influence on the speed of osseointegration, and some implant types reach high bone-to-implant contact values in animals. Although often discussed independently of each other, surface characteristics, such as topography and chemistry, are virtually inseparable. Contemporary, well-documented implant systems with micro-rough implant surfaces, placed by properly trained and experienced clinicians, demonstrate high long-term survival rates. Nevertheless, implant failures do occur. A low percentage of implants are diagnosed with peri-implantitis after 10 years in function. In addition, a low number of implants seem to be lost for primarily reasons other than biofilm-induced infection. Patient factors, such as medications interfering with the immune system and bone cells, may be an element contributing to continuous bone

  14. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    Science.gov (United States)

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  15. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    Science.gov (United States)

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards

  16. A comparison of fit of CNC-milled titanium and zirconia frameworks to implants.

    Science.gov (United States)

    Abduo, Jaafar; Lyons, Karl; Waddell, Neil; Bennani, Vincent; Swain, Michael

    2012-05-01

    Computer numeric controlled (CNC) milling was proven to be predictable method to fabricate accurately fitting implant titanium frameworks. However, no data are available regarding the fit of CNC-milled implant zirconia frameworks. To compare the precision of fit of implant frameworks milled from titanium and zirconia and relate it to peri-implant strain development after framework fixation. A partially edentulous epoxy resin models received two Branemark implants in the areas of the lower left second premolar and second molar. From this model, 10 identical frameworks were fabricated by mean of CNC milling. Half of them were made from titanium and the other half from zirconia. Strain gauges were mounted close to the implants to qualitatively and quantitatively assess strain development as a result of framework fitting. In addition, the fit of the framework implant interface was measured using an optical microscope, when only one screw was tightened (passive fit) and when all screws were tightened (vertical fit). The data was statistically analyzed using the Mann-Whitney test. All frameworks produced measurable amounts of peri-implant strain. The zirconia frameworks produced significantly less strain than titanium. Combining the qualitative and quantitative information indicates that the implants were under vertical displacement rather than horizontal. The vertical fit was similar for zirconia (3.7 µm) and titanium (3.6 µm) frameworks; however, the zirconia frameworks exhibited a significantly finer passive fit (5.5 µm) than titanium frameworks (13.6 µm). CNC milling produced zirconia and titanium frameworks with high accuracy. The difference between the two materials in terms of fit is expected to be of minimal clinical significance. The strain developed around the implants was more related to the framework fit rather than framework material. © 2011 Wiley Periodicals, Inc.

  17. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    Science.gov (United States)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Determining the Young's modulus of a cellular titanium implant by FEM simulation

    Science.gov (United States)

    Loginov, Yu. N.; Golodnov, A. I.; Stepanov, S. I.; Kovalev, E. Yu.

    2017-12-01

    The role of additive manufacturing is noted for the construction of titanium medical implants. The purpose of the study is to determine the Young's modulus of cellular titanium implants, which is based on calculations performed by finite element analysis. A honeycomb structure from intersecting cylinder surfaces is offered for the implant made of the Ti-6Al-4V alloy. Boundary conditions are stated for the loading of the implant structure. It is demonstrated that the Young's modulus can be reduced more than three times comparing to a solid titanium alloy. Zones of strain and stress localization located near the abutment of the cylindrical surfaces. Recommendations for the further improvement of the implant architecture are generated.

  19. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  20. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  1. Titanium implants with modified surfaces: Meta-analysis of in vivo osteointegration

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, Michael, E-mail: michael.gasik@aalto.fi [Aalto University Foundation, School of Chemical Technology, P.O. Box 16200, FIN-00076 AALTO (Finland); Braem, Annabel [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Chaudhari, Amol; Duyck, Joke [Department of Prosthetic Dentistry, BIOMAT Research Cluster, KU Leuven, Kapucijnenvoer 7a, B-3000 Leuven (Belgium); Vleugels, Jozef [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)

    2015-04-01

    Titanium-based implants are widely used in modern clinical practice, but their “optimal” properties in terms of porosity and topology, roughness and hydrophilic parameters are being a subject of intensive discussions. Recent in vitro results have shown a possibility to optimize the surface of an implant with maximal repelling of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and improvement in human osteogenic and endothelial cell adhesion, proliferation and differentiation. In this work, these different grades titanium implants were tested in vivo using the same analytical methodology. In addition to material parameters, key histomorphometrical parameters such a regeneration area, bone adaptation area and bone-to-implant contact were determined after 2 and 4 weeks of implantation in rabbit animal model. Porous implants have more clear differences than non-porous ones, with the best optimum values obtained on hydrothermally treated electrophoretically deposited titanium. These in vivo data correlate well with the optimal prediction made by in vitro tests. - Highlights: • Various titanium specimens were studied in vivo on osteointegration vs their properties. • Non-porous implants had a better performance when coated with bioactive glass. • Porous implants have shown the best results for hydrothermally treated specimens. • Good correlation was found with the previous in vitro tests. • New analysis of the in vivo data has shown benefits to assess biomaterials performance.

  2. Titanium implants with modified surfaces: Meta-analysis of in vivo osteointegration

    International Nuclear Information System (INIS)

    Gasik, Michael; Braem, Annabel; Chaudhari, Amol; Duyck, Joke; Vleugels, Jozef

    2015-01-01

    Titanium-based implants are widely used in modern clinical practice, but their “optimal” properties in terms of porosity and topology, roughness and hydrophilic parameters are being a subject of intensive discussions. Recent in vitro results have shown a possibility to optimize the surface of an implant with maximal repelling of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and improvement in human osteogenic and endothelial cell adhesion, proliferation and differentiation. In this work, these different grades titanium implants were tested in vivo using the same analytical methodology. In addition to material parameters, key histomorphometrical parameters such a regeneration area, bone adaptation area and bone-to-implant contact were determined after 2 and 4 weeks of implantation in rabbit animal model. Porous implants have more clear differences than non-porous ones, with the best optimum values obtained on hydrothermally treated electrophoretically deposited titanium. These in vivo data correlate well with the optimal prediction made by in vitro tests. - Highlights: • Various titanium specimens were studied in vivo on osteointegration vs their properties. • Non-porous implants had a better performance when coated with bioactive glass. • Porous implants have shown the best results for hydrothermally treated specimens. • Good correlation was found with the previous in vitro tests. • New analysis of the in vivo data has shown benefits to assess biomaterials performance

  3. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    Science.gov (United States)

    Langhoff, J D; Mayer, J; Faber, L; Kaestner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. The new surface anodized screws demonstrated similar or slightly higher bone-implant-contact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p = 0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p = 0.06). The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.

  4. Chitosan patterning on titanium alloys

    OpenAIRE

    Gilabert Chirivella, Eduardo; Pérez Feito, Ricardo; Ribeiro, Clarisse; Ribeiro, Sylvie; Correia, Daniela; González Martin, María Luisa; Manero Planella, José María; Lanceros Méndez, Senentxu; Gallego Ferrer, Gloria; Gómez Ribelles, José Luis

    2017-01-01

    Titanium and its alloys are widely used in medical implants because of their excellent properties. However, bacterial infection is a frequent cause of titanium-based implant failure and also compromises its osseointegration. In this study, we report a new simple method of providing titanium surfaces with antibacterial properties by alternating antibacterial chitosan domains with titanium domains in the micrometric scale. Surface microgrooves were etched on pure titanium disks at i...

  5. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  6. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  7. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    Directory of Open Access Journals (Sweden)

    M. Niinomi

    2011-01-01

    Full Text Available β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants.

  8. Surface analysis of titanium dental implants with different topographies

    Directory of Open Access Journals (Sweden)

    Silva M.H. Prado da

    2000-01-01

    Full Text Available Cylindrical dental implants made of commercially pure titanium were analysed in four different surface finishes: as-machined, Al2O3 blasted with Al2O3 particles, plasma-sprayed with titanium beads and electrolytically coated with hydroxyapatite. Scanning electron microscopy (SEM with Energy Dispersive X-ray Analysis (EDX revealed the topography of the surfaces and provided qualitative results of the chemical composition of the different implants. X-ray Photoelectron Spectroscopy (XPS was used to perform chemical analysis on the surface of the implants while Laser Scanning Confocal Microscopy (LSM produced topographic maps of the analysed surfaces. Optical Profilometry was used to quantitatively characterise the level of roughness of the surfaces. The implant that was plasma-sprayed and the hydroxyapatite coated implant showed the roughest surface, followed by the implant blasted with alumina and the as-machined implant. Some remnant contamination from the processes of blasting, coating and cleaning was detected by XPS.

  9. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  10. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  11. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  12. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  13. CT provides precise size assessment of implanted titanium alloy pedicle screws.

    Science.gov (United States)

    Elliott, Michael J; Slakey, Joseph B

    2014-05-01

    After performing instrumented spinal fusion with pedicle screws, postoperative imaging using CT to assess screw position may be necessary. Stainless steel implants produce significant metal artifact on CT, and the degree of distortion is at least partially dependent on the cross-sectional area of the implanted device. If the same effect occurs with titanium alloy implants, ability to precisely measure proximity of screws to adjacent structures may be adversely affected as screw size increases. We therefore asked whether (1) CT provides precise measurements of true screw widths; and (2) precision degrades based on the size of the titanium implant imaged. CT scans performed on 20 patients after instrumented spinal fusion for scoliosis were reviewed. The sizes of 151 titanium alloy pedicle screws were measured and compared with known screw size. The amount of metal bloom artifact was determined for each of the four screw sizes. ANOVA with Tukey's post hoc test were performed to evaluate differences in scatter, and Spearman's rho coefficient was used to measure relationship between screw size and scatter. All screws measured larger than their known size, but even with larger 7-mm screws the size differential was less than 1 mm. The four different screw sizes produced scatter amounts that were different from each other (p titanium alloy pedicle screws produces minimal artifact, thus making this the preferred imaging modality to assess screw position after surgery. Although the amount of artifact increases with the volume of titanium present, the degree of distortion is minimal and is usually less than 1 mm.

  14. In-vitro evaluation of corrosion resistance of nitrogen ion implanted titanium simulated body fluid

    International Nuclear Information System (INIS)

    Subbaiyan, M.; Sundararajian, T.; Rajeswari, S.; Kamachi Mudali, U.; Nair, K.G.M.; Thampi, N.S.

    1997-01-01

    Titanium and its alloy Ti6Al4V enjoy widespread use in various biomedical applications because of favourable local tissue response, higher corrosion resistance and fatigue strength than the stainless steels and cobalt-chromium alloy previously used. The study reported in this paper aims to optimize the conditions of nitrogen ion implantation on commercially pure titanium and to correlate the implantation parameters to the corrosion resistance. X-ray photoelectron spectroscopy was used to analyse surface concentration and the implantation processes. An improvement in the electrochemical behaviour of the passive film was shown to occur with nitrogen ion implantation on titanium, in simulated body fluids. (UK)

  15. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  16. Efficacy of Octacalcium Phosphate Collagen Composite for Titanium Dental Implants in Dogs

    Directory of Open Access Journals (Sweden)

    Tadashi Kawai

    2018-02-01

    Full Text Available Background: Previous studies showed that octacalcium (OCP collagen composite (OCP/Col can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model. Methods: The premolars of dogs were extracted; each extraction socket was extended, and titanium dental implants were placed in each socket. OCP/Col was inserted in the space around a titanium dental implant. Autologous bone was used to fill the other sockets, while the untreated socket (i.e., no bone substitute material served as a control. Three months after the operation, these specimens were analyzed for the osseointegration of each bone substitute material with the surface of the titanium dental implant. Results: In histomorphometric analyses, the peri-implant bone areas (BA% and bone-implant contact (BIC% were measured. There was no difference in BA% or BIC% between OCP/Col and autologous bone. Conclusion: These results suggested that OCP/Col could be used for implant treatment as a bone substitute.

  17. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Science.gov (United States)

    Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C.

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed. PMID:25525434

  18. Direct metal laser sintering titanium dental implants: a review of the current literature.

    Science.gov (United States)

    Mangano, F; Chambrone, L; van Noort, R; Miller, C; Hatton, P; Mangano, C

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  19. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    F. Mangano

    2014-01-01

    Full Text Available Statement of Problem. Direct metal laser sintering (DMLS is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs; to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  20. Alveolar Ridge Reconstruction with Titanium Meshes and Simultaneous Implant Placement: A Retrospective, Multicenter Clinical Study

    Directory of Open Access Journals (Sweden)

    Raquel Zita Gomes

    2016-01-01

    Full Text Available Objective. To evaluate horizontal bone gain and implant survival and complication rates in patients treated with titanium meshes placed simultaneously with dental implants and fixed over them. Methods. Twenty-five patients treated with 40 implants and simultaneous guided bone regeneration with titanium meshes (i–Gen®, MegaGen, Gyeongbuk, Republic of Korea were selected for inclusion in the present retrospective multicenter study. Primary outcomes were horizontal bone gain and implant survival; secondary outcomes were biological and prosthetic complications. Results. After the removal of titanium meshes, the CBCT evaluation revealed a mean horizontal bone gain of 3.67 mm (±0.89. The most frequent complications were mild postoperative edema (12/25 patients: 48% and discomfort after surgery (10/25 patients: 40%; these complications were resolved within one week. Titanium mesh exposure occurred in 6 patients (6/25 : 24%: one of these suffered partial loss of the graft and another experienced complete graft loss and implant failure. An implant survival rate of 97.5% (implant-based and a peri-implant marginal bone loss of 0.43 mm (±0.15 were recorded after 1 year. Conclusions. The horizontal ridge reconstruction with titanium meshes placed simultaneously with dental implants achieved predictable satisfactory results. Prospective randomized controlled trials on a larger sample of patients are required to validate these positive outcomes.

  1. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  2. A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures

    Directory of Open Access Journals (Sweden)

    Tae Joon Choi

    2016-01-01

    Full Text Available Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic.

  3. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    International Nuclear Information System (INIS)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-01-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures

  4. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wauthle, Ruben, E-mail: ruben.wauthle@3dsystems.com [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Ahmadi, Seyed Mohammad; Amin Yavari, Saber [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Mulier, Michiel [KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg (Belgium); Zadpoor, Amir Abbas [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Weinans, Harrie [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Van Humbeeck, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); Kruth, Jean-Pierre [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); Schrooten, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O& N1, Herestraat 49, 3000 Leuven (Belgium)

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures.

  5. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  6. Clinical evidence on titanium-zirconium dental implants: a systematic review and meta-analysis.

    Science.gov (United States)

    Altuna, P; Lucas-Taulé, E; Gargallo-Albiol, J; Figueras-Álvarez, O; Hernández-Alfaro, F; Nart, J

    2016-07-01

    The use of titanium implants is well documented and they have high survival and success rates. However, when used as reduced-diameter implants, the risk of fracture is increased. Narrow diameter implants (NDIs) of titanium-zirconium (Ti-Zr) alloy have recently been developed (Roxolid; Institut Straumann AG). Ti-Zr alloys (two highly biocompatible materials) demonstrate higher tensile strength than commercially pure titanium. The aim of this systematic review was to summarize the existing clinical evidence on dental NDIs made from Ti-Zr. A systematic literature search was performed using the Medline database to find relevant articles on clinical studies published in the English language up to December 2014. Nine clinical studies using Ti-Zr implants were identified. Overall, 607 patients received 922 implants. The mean marginal bone loss was 0.36±0.06mm after 1 year and 0.41±0.09mm after 2 years. The follow-up period ranged from 3 to 36 months. Mean survival and success rates were 98.4% and 97.8% at 1 year after implant placement and 97.7% and 97.3% at 2 years. Narrow diameter Ti-Zr dental implants show survival and success rates comparable to regular diameter titanium implants (>95%) in the short term. Long-term follow-up clinical data are needed to confirm the excellent clinical performance of these implants. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  8. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2016-04-01

    Full Text Available Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were used for incorporation into poly-ε-caprolactone (PCL-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.

  9. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

    Science.gov (United States)

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone

  10. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  11. Investigation of corrosion and ion release from titanium dental implant

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Mouhyi, J.; Louvette, P.; Sennerby, L.

    1997-01-01

    A thin passive titanium dioxide, in its stoichiometric form, has a very high corrosion resistance, but the same conclusion can not be made on corrosion resistance of a surface which is not stoichiometrically titanium dioxide, or even a surface which is a composition of various elements and oxides. In practice, the implants available on the market have an oxide surface contaminated with other elements. The aim of this paper is to correlate clinical observations that show the deterioration of Ti made implants after certain period of insertion in the patients, and in vitro corrosion resistance of Ti implants with surface passive oxide layer. For this purpose, surface analysis of the retrieved failed implants were performed and in vivo animal experiments with relation to ion release from implants were done. Finally, on the basis of the clinical observation, in vivo animal test, and in vitro electrochemical corrosion test, a model is proposed to explain the corrosion and ion release from the Ti implant. (author)

  12. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Science.gov (United States)

    Pozhitkov, Alex E; Daubert, Diane; Brochwicz Donimirski, Ashley; Goodgion, Douglas; Vagin, Mikhail Y; Leroux, Brian G; Hunter, Colby M; Flemmig, Thomas F; Noble, Peter A; Bryers, James D

    2015-01-01

    Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  13. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Directory of Open Access Journals (Sweden)

    Alex E Pozhitkov

    Full Text Available Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  14. Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.

    Science.gov (United States)

    Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon

    2016-02-01

    The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.

  15. Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants.

    Science.gov (United States)

    Choi, Hae Won; Park, Young Seok; Chung, Shin Hye; Jung, Min Ho; Moon, Won; Rhee, Sang Hoon

    2017-07-01

    The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of 0°, 10°, 20°, 30°, and 40°. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was 56.88 ± 6.72%. Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

  16. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Dirscherl, Kai; Jørgensen, Bodil

    2017-01-01

    that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell...... wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96....... The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more...

  17. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  18. Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.

    Science.gov (United States)

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2017-07-01

    The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  20. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R.; Morales, J.

    2007-01-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  1. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  2. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  3. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep.

    Science.gov (United States)

    Xiao, J; Zhou, H; Zhao, L; Sun, Y; Guan, S; Liu, B; Kong, L

    2011-06-01

    Hydrofluoric etching and anodized hierarchical micro/nanotextured surface titanium implant was placed in mandibles of ovariectomized sheep for 12 weeks, and it showed improved osseointegration by resonance frequency analysis (RFA), microcomputed tomography (micro-CT) evaluation, histomorphometry, and biomechanical test. This study aimed to investigate the effects of micro/nanotextured titanium implant on osseointegration in ovariectomized (OVX) sheep. The hierarchical micro/nanotextured surface of titanium implant was fabricated by acid in 0.5% (w/v) hydrofluoric (HF) and anodized in HF acid electrolytes with a DC power of 20 V, and the machined surface implants with no treatment served as control group. The implants were placed in mandibles of OVX sheep, respectively. Twelve weeks after implantation, RFA, microcomputed tomography, histomorphometry, and biomechanical tests were applied to detect the osseointegration of the two groups. The implant stability quotient (ISQ) values, the maximum pull-out forces, and the bone-implant contact (BIC) were 65.5 ± 6.3, 490.6 ± 72.7 N, and 58.31 ± 5.79% in the micro/nanogroup and 58.3 ± 8.9, 394.5 ± 54.5 N, and 46.85 ± 5.04% in the control group, respectively. There was no significant difference between the two groups in ISQ values (p > 0.05), but in the micro/nanogroup, the maximal pull-out force and the BIC were increased significantly (p Micro-CT analysis showed that the bone volume ratio and the trabecular number increased significantly (p micro/nanogroup. Implant modification by HF acid etching and anodization to form a hierarchical micro/nanotextured surface could improve titanium implant osseointegration in OVX sheep 12 weeks after implantation.

  4. Strategies For Immobilization Of Bioactive Organic Molecules On Titanium Implant Surfaces – A Review

    Directory of Open Access Journals (Sweden)

    Panayotov Ivan V.

    2015-03-01

    Full Text Available Numerous approaches have been used to improve the tissue-implant interface of titanium (Ti and titanium alloy (Ti6Al4V. They all aim at increasing cell migration and attachment to the metal, preventing unspecific protein adsorption and improving post-implantation healing process. Promising methods for titanium and titanium alloy surface modification are based on the immobilization of biologically active organic molecules. New and interesting biochemical approaches to such surface modification include layer-by-layer deposition of polyelectrolyte films, phage display-selected surface binding peptides and self-assembled DNA monolayer systems. The present review summarizes the scientific information about these methods, which are at in vitro or in vivo development stages, and hopes to promote their future application in dental implantology and in oral and maxillofacial surgery.

  5. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W.

    1998-01-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al 2 O 3 ) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al 2 O 3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al 2 O 3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti 3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti 3+ . Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al 2O 3 waveguide. (authors)

  6. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  7. Development of titanium alloys and surface treatments to increase the implants lifetime

    Directory of Open Access Journals (Sweden)

    Joan Lario-Femenía

    2016-12-01

    Full Text Available The population aging together with increase of life expectancy forces the development of new prosthesis which may present a higher useful life. The clinical success of implants is based on the osseointegration achievement. Therefore, metal implants must have a mechanical compatibility with the substituted bone, which is achieved through a combination of low elastic modulus, high flexural and fatigue strength. The improvement, in the short and long term, of the osseointegration depends on several factors, where the macroscopic design and dimensional, material and implant surface topography are of great importance. This article is focused on summarizing the advantages that present the titanium and its alloys to be used as biomaterials, and the development that they have suffered in recent decades to improve their biocompatibility. Consequently, the implants evolution has been recapitulated and summarized through three generations. In the recent years the interest on the surface treatments for metallic prostheses has been increased, the main objective is achieve a lasting integration between implant and bone tissue, in the shortest time possible. On this article various surface treatments currently used to modify the surface roughness or to obtain coatings are described it; it is worthy to mention the electrochemical oxidation with post-heat treated to modify the titanium oxide crystalline structure. After the literature review conducted for prepare this article, the ? titanium alloys, with a nanotubes surface of obtained by electrochemical oxidation and a subsequent step of heat treatment to obtain a crystalline structure are the future option to improve long term biocompatibility of titanium prostheses.

  8. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  9. Implant-supported titanium prostheses following augmentation procedures: a clinical report.

    Science.gov (United States)

    Knabe, C; Hoffmeister, B

    2003-03-01

    This report describes a novel technique for fabricating retrievable implant-supported titanium (Ti) prostheses in patients requiring a comprehensive treatment plan involving the combined efforts of maxillofacial surgery and implant prosthodontics. Following bone graft reconstructive surgery and implant placement prosthetic treatment was initiated by inserting ITI-Octa abutments. An impression was made, and a framework was fabricated by fusing Ti-cast frameworks to prefabricated titanium copings by laser-welding. This was followed by veneering or fabrication of a removable denture with Ti metal re-enforcement. Favourable clinical results have been achieved using these screw-retained Ti implant-supported restorations for patients treated with reconstructive bone graft-surgery, with clinical observation periods ranging from three to four years. The present observations suggest that these screw-retained implant-supported Ti prostheses may be a meaningful contribution to implant prosthodontics, facilitating retrievable restorations of optimum biocompatibility, good marginal precision and with a good esthetic result. However, controlled clinical studies are needed to establish the long-term serviceability of these Ti restorations.

  10. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  11. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?

    Science.gov (United States)

    Serhan, Hassan; Slivka, Michael; Albert, Todd; Kwak, S Daniel

    2004-01-01

    Surgeons are hesitant to mix components made of differing metal classes for fear of galvanic corrosion complications. However, in vitro studies have failed to show a significant potential for galvanic corrosion between titanium and stainless steel, the two primary metallic alloys used for spinal implants. Galvanic corrosion resulting from metal mixing has not been described in the literature for spinal implant systems. To determine whether galvanic potential significantly affects in vitro corrosion of titanium and stainless steel spinal implant components during cyclical compression bending. Bilateral spinal implant constructs consisting of pedicle screws, slotted connectors, 6.35-mm diameter rods and a transverse rod connector assembled in polyethylene test blocks were tested in vitro. Two constructs had stainless steel rods with mixed stainless steel (SS-SS) and titanium (SS-Ti) components, and two constructs had titanium rods with mixed stainless steel (Ti-SS) and titanium (Ti-Ti) components. Each construct was immersed in phosphate-buffered saline (pH 7.4) at 37 C and tested in cyclic compression bending using a sinusoidal load-controlling function with a peak load of 300 N and a frequency of 5 Hz until a level of 5 million cycles was reached. The samples were then removed and analyzed visually for evidence of corrosion. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to evaluate the extent of corrosion at the interconnections. None of the constructs failed during testing. Gross observation of the implant components after disassembly revealed that no corrosion had occurred on the surface of the implants that had not been in contact with another component. The Ti-Ti interfaces showed some minor signs of corrosion only detectable using SEM and EDS. The greatest amount of corrosion occurred at the SS-SS interfaces and was qualitatively less at the SS-Ti and Ti-SS interfaces. The results from this study indicate

  12. Electrical characteristic of the titanium mesh electrode for transcutaneous intrabody communication to monitor implantable artificial organs.

    Science.gov (United States)

    Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori

    2016-09-01

    We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.

  13. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    OpenAIRE

    Langhoff, J; Mayer, J; Faber, L; Kästner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods...

  14. [Susceptibility to infections and behavior of stainless steel : Comparison with titanium implants in traumatology].

    Science.gov (United States)

    Haubruck, Patrick; Schmidmaier, Gerhard

    2017-02-01

    Despite modern treatment options, implant-associated infections (IAI) remain a severe and challenging complication in the treatment of trauma patients. Almost 30 years after the introduction of implants made of titanium alloy into the treatment of trauma patients, there is still no uniform consensus regarding the clinical benefit of titanium alloy in the context of patients with IAI. We sought to determine if implants made of titanium alloy have been proven to be less susceptible regarding IAI in contrast to implants made of stainless steel. A review of the current literature on IAI in association with the utilized implant material was conducted. Relevant articles from the years 1995 to 2016 were searched in the PubMed database. A total of 183 articles were identified and all abstracts were reviewed for relevance. A total of 14 articles met the inclusion criteria and were stratified according to the level of evidence and furthermore evaluated regarding the influence of the implant material on IAI. Considerable debate remains concerning the influence of the implant material on the susceptibility to IAI; however, the available literature shows that despite slight tendencies, there is no proof of titanium alloy being favorable in the susceptibility to IAI. Furthermore, the literature shows that the design of plates for osteosynthesis might influence IAI. In particular, plates that cause less soft tissue damage and preserve perfusion of the periosteum proved to be beneficial regarding IAI.

  15. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Science.gov (United States)

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  16. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Zeng, Z.M.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C 2 H 2 ) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C 2 H 2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel

  17. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    Science.gov (United States)

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  18. Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres - Comparative study

    International Nuclear Information System (INIS)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D.; Bokorov, M.; Trtica, M.

    2012-01-01

    Interaction of a TEA CO 2 laser, operating at 10.6 μm wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm 2 in the surrounding of air, N 2 , O 2 or He. The energy absorbed from the TEA CO 2 laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N 2 and O 2 , and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  19. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Otsuka, T.; Tsuboi, Y.; Yokoyama, K.; Albrektsson, T.; Sennerby, L.; Johansson, C.

    1994-01-01

    In the past two decades the utilization of dental and orthopaedic implants in reconstructive surgery has been spread widely. Most of these implants are inserted in the corrosive environment of the human body for long periods of time. The level of dissolution, release, and transport of metal ions as a result of corrosion of these materials are not fully known at present. We report the results of application of micro ion beam PIXE spectroscopy to detect release of titanium from titanium and titanium alloy implants inserted in the tibiae of rabbits for three months. It was found that titanium ions could be detected in the surrounding tissues, with high precision, as a gradient from the implant surface and in higher amounts in the bone tissue as compared with the soft tissues. It is concluded that application of micro ion beam PIXE spectroscopy for detection of metal ion release, and distribution of the released material around the implants with high special resolution and accuracy may be used to further investigate the mechanism of metal release, and the relation between surface micromorphology and corrosion resistance of the implant materials. (author)

  20. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  1. Dynamic sterilization of titanium implants with ultraviolet light

    International Nuclear Information System (INIS)

    Singh, S.; Schaaf, N.G.

    1989-01-01

    All implantable devices must be sterile. However, autoclaves produce poor surface properties that jeopardize the integration process. The application of a modified ultraviolet light source has proven to enhance bioreactivity by controlling surface properties, but it lacks validation of its sterilization capabilities. Forty-eight titanium implants were contaminated with spores of the biological indicator Bacillus stearothermophilus and subjected to dynamic sterilization by ultraviolet light. Forty-seven of the implants were successfully sterilized, as indicated by not producing turbidity in a suitable growth medium. This sterilization technique only requires a 20-second exposure to achieve sterility

  2. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  3. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis.

    Science.gov (United States)

    Brown, Ryan N; Sexton, Brent E; Gabriel Chu, Tien-Min; Katona, Thomas R; Stewart, Kelton T; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2014-04-01

    The detailed mechanical and histologic properties of stainless steel miniscrew implants used for temporary orthodontic anchorage have not been assessed. Thus, the purpose of this study was to compare them with identically sized titanium alloy miniscrew implants. Forty-eight stainless steel and 48 titanium alloy miniscrew implants were inserted into the tibias of 12 rabbits. Insertion torque and primary stability were recorded. One hundred grams of tensile force was applied between half of the implants in each group, resulting in 4 subgroups of 24 specimens each. Fluorochrome labeling was administered at weeks 4 and 5. When the rabbits were euthanized at 6 weeks, stability and removal torque were measured in half (ie, 12 specimens) of each of the 4 subgroups. Microdamage burden and bone-to-implant contact ratio were quantified in the other 12 specimens in each subgroup. Mixed model analysis of variance was used for statistical analysis. All implants were stable at insertion and after 6 weeks. The only significant difference was the higher (9%) insertion torque for stainless steel. No significant differences were found between stainless steel and titanium alloy miniscrew implants in microdamage burden and bone-to-implant contact regardless of loading status. Stainless steel and titanium alloy miniscrew implants provide the same mechanical stability and similar histologic responses, suggesting that both are suitable for immediate orthodontic clinical loads. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. [Long-term follow-up study of titanium implant impact on pediatric mandibular growth and development].

    Science.gov (United States)

    Hu, Yun; Li, Wei; Chen, Qi; Song, Fumin; Tang, Wei; Wang, Hang

    2015-08-01

    To explore the impact of titanium implant on the growth and development of pediatric mandible after suffering from mandibular fracture and undergoing open reduction and internal fixation (ORIF) compared with those that underwent titanium plate removal postoperatively. Fifteen pediatric patients with mandibular fracture who underwent ORIF were included in this study. Eight patients did not undergo titanium implant removal postoperatively, whereas the other seven patients underwent the routine. The postoperative data of the pediatrics were collected for comparative analysis by taking the patients' frontal and lateral photos, recording the inter-incisor distance, and measuring the height of mandibular ramus, length of the mandibular body, and combined length of the mandible in three-dimensional reconstruction image. All patients had acceptable facial contour, mouth opening, and occlusion, without obvious abnormalities. The radiography showed no significant difference between the bilateral mandibular lengths in the two groups of patients (P>0.05). The titanium plants have no significant impact on the growth and development of pediatric mandible postoperatively; hence, the question on whether the titanium plates should be removed or not may be neglected. The removal operation may lead to secondary trauma; thus, performing titanium plate removal routinely is not recommended.

  5. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  6. A decomposable silica-based antibacterial coating for percutaneous titanium implant

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-01-01

    Full Text Available Jia Wang,1,* Guofeng Wu,2,* Xiangwei Liu,3,* Guanyang Sun,1 Dehua Li,3 Hongbo Wei3 1State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 2Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 3State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Although percutaneous titanium implants have become one of the best choices as retainers in the facial defects, peri-implantitis still occurs at a significant rate. This unwanted complication occurs due to adhesion of bacteria and subsequent biofilm formation. To solve this problem, we have developed a novel antibiotic nanodelivery system based on self-decomposable silica nanoparticles. In this study, silica-gentamycin (SG nanoparticles were successfully fabricated using an innovative one-pot solution. The nanoparticles were incorporated within a gelatin matrix and cross-linked on microarc-oxidized titanium. To characterize the SG nanoparticles, their particle size, zeta potential, surface morphology, in vitro drug release, and decomposition process were sequentially evaluated. The antibacterial properties against the gram-positive Staphylococcus aureus, including bacterial viability, antibacterial rate, and bacteria morphology, were analyzed using SG-loaded titanium specimens. Any possible influence of released gentamycin on the viability of human fibroblasts, which are the main component of soft tissues, was investigated. SG nanoparticles from the

  7. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  8. Preservation and release dose of helium implanted in nanocrystal titanium film

    International Nuclear Information System (INIS)

    Long Xinggui; Luo Shunzhong; Peng Shuming; Zheng Sixiao; Liu Zhongyang; Wang Peilu; Liao Xiaodong; Liu Ning

    2003-01-01

    Helium concentration profile, preservation dose and release rate from a nanocrystal titanium film implanted with helium at an energy of 100 keV and dose of 2.2 x 10 18 cm -2 are measured by proton Rutherford backscattering technique in a range from room temperature to 400 degree C. The implanted helium may be stably preserved up to the 68 percent after keeping a long time of 210 d in the nanocrystal titanium film at the room temperature environment, and the He-Ti atomic ratio reaches to 52.6%. When the temperature of specimen increases to 100 degree C, the helium concentration can be preserved to 89.6% of the keeping helium dose at room temperature and He-Ti atomic ratio reaches 44%. Even if the specimen temperature up to 400 degree C, the helium concentration still can be preserved to 32.6% of the keeping helium dose at room temperature and the He-Ti atomic ratio is 17.1%. Possible mechanism of helium effectively preserved in the nanocrystal titanium film is discussed based on the energy stability viewpoint

  9. Microhardness of boron, titanium, and nitrogen implanted steel

    International Nuclear Information System (INIS)

    Sowa, M.; Szyszko, W.; Sielanko, J.; Glusiec, L.

    1989-01-01

    Mechanically polished steel (1H18N9T) and (15GTM) samples are implanted with boron, titanium, and nitrogen ions, with dose ranging from 10 16 to 10 17 ions/cm 2 . The implantation energy varied from 100 to 250 keV. Implanted samples are heat-treated at 400 to 800 0 C in vacuum. The microhardness of implanted samples is measured by using a Hanneman tester with loads ranging from 2 to 40 g. The influence of annealing temperature on microhardness of the implanted layers is determined. The diffusion of boron from the implanted layers is also investigated by using the secondary ion mass spectrometer. The diffusion coefficients of boron in steel are determined. (author)

  10. Torque Analysis of a Triple Acid-Etched Titanium Implant Surface

    Directory of Open Access Journals (Sweden)

    Ana Emília Farias Pontes

    2015-01-01

    Full Text Available The present study aimed to evaluate the removal torque of titanium implants treated with triple acid etching. Twenty-one rats were used in this study. For all animals, the tibia was prepared with a 2 mm drill, and a titanium implant (2 × 4 mm was inserted after treatment using the subtraction method of triple acid etching. The flaps were sutured. Seven animals were killed 14, 28, and 63 days after implant installation, and the load necessary for removing the implant from the bone was evaluated by using a torque meter. The torque values were as follows: 3.3 ± 1.7 Ncm (14 days, 2.2 ± 1.3 Ncm (28 days, and 6.7 ± 1.4 Ncm (63 days. The torque value at the final healing period (63 days was statistically significantly different from that at other time points tested (ANOVA, p=0.0002. This preliminary study revealed that treatment with triple acid etching can create a promising and efficient surface for the process of osseointegration.

  11. Comparisons of maximum deformation and failure forces at the implant–abutment interface of titanium implants between titanium-alloy and zirconia abutments with two levels of marginal bone loss

    Science.gov (United States)

    2013-01-01

    Background Zirconia materials are known for their optimal aesthetics, but they are brittle, and concerns remain about whether their mechanical properties are sufficient for withstanding the forces exerted in the oral cavity. Therefore, this study compared the maximum deformation and failure forces of titanium implants between titanium-alloy and zirconia abutments under oblique compressive forces in the presence of two levels of marginal bone loss. Methods Twenty implants were divided into Groups A and B, with simulated bone losses of 3.0 and 1.5 mm, respectively. Groups A and B were also each divided into two subgroups with five implants each: (1) titanium implants connected to titanium-alloy abutments and (2) titanium implants connected to zirconia abutments. The maximum deformation and failure forces of each sample was determined using a universal testing machine. The data were analyzed using the nonparametric Mann–Whitney test. Results The mean maximum deformation and failure forces obtained the subgroups were as follows: A1 (simulated bone loss of 3.0 mm, titanium-alloy abutment) = 540.6 N and 656.9 N, respectively; A2 (simulated bone loss of 3.0 mm, zirconia abutment) = 531.8 N and 852.7 N; B1 (simulated bone loss of 1.5 mm, titanium-alloy abutment) = 1070.9 N and 1260.2 N; and B2 (simulated bone loss of 1.5 mm, zirconia abutment) = 907.3 N and 1182.8 N. The maximum deformation force differed significantly between Groups B1 and B2 but not between Groups A1 and A2. The failure force did not differ between Groups A1 and A2 or between Groups B1 and B2. The maximum deformation and failure forces differed significantly between Groups A1 and B1 and between Groups A2 and B2. Conclusions Based on this experimental study, the maximum deformation and failure forces are lower for implants with a marginal bone loss of 3.0 mm than of 1.5 mm. Zirconia abutments can withstand physiological occlusal forces applied in the anterior region. PMID

  12. Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Chang Ting-Ling

    2007-07-01

    Full Text Available Abstract Background Osteoporosis may present a risk factor in achievement of osseointegration because of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical and electrical-energy in osteoporotic rats. Methods Fifteen 12-week old sprague-dowley rats were ovariectomized to develop osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the proximal metaphyses of tibia. The animals were randomly divided into a control group and biophysically-stimulated two test groups with five animals in each group. In the first test group, a pulsed electromagnetic field (PEMF stimulation was administrated at a 0.2 mT 4 h/day, whereas the second group received low-magnitude high-frequency mechanical vibration (MECHVIB at 50 Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed. Bone sites including implants were sectioned, removed en bloc and analyzed using a microCT unit. Relative bone volume and bone micro-structural parameters were evaluated for 144 μm wide peri-implant volume of interest (VOI. Results Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB was significantly higher than of those in control (P P > .05 while the difference in trabecular-number among test and control groups was significant in all VOIs (P Conclusion Biophysical stimulation remarkably enhances bone volume around titanium implants placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF on bone healing in terms of relative bone volume.

  13. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    Science.gov (United States)

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  14. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants

    OpenAIRE

    Jäger, Marcus; Jennissen, Herbert P.; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise

    2017-01-01

    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the bi...

  15. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review

    NARCIS (Netherlands)

    Subramani, K.; Wismeijer, D.

    2012-01-01

    PURPOSE: To review the literature on decontamination of titanium implant surfaces following peri-implantitis and the effect of various cleaning methods on re-osseointegration. MATERIALS AND METHODS: An electronic search of the literature at PubMed was conducted on the studies published between 1966

  16. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  17. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  19. Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs

    DEFF Research Database (Denmark)

    Gotfredsen, K; Nimb, L; Hjörting-Hansen, E

    1992-01-01

    The aim of the present study was to compare the anchorage of TiO2-blasted screw and cylindrical implants with conventionally used machine-produced screw and cylindrical implants inserted immediately in extraction sockets on dogs. 6 adult mongrel dogs had 3rd and 4th mandibular premolars extracted...... bilaterally and 24 commercial pure titanium implants were placed immediately in extraction sockets and covered with mucoperiosteum. Each dog had inserted 4 implants: 1 screw implant and 1 cylindrical implant blasted with titanium-dioxide-particles; 1 screw implant and 1 cylindrical implant with machine...

  20. Reconstruction with a patient-specific titanium implant after a wide anterior chest wall resection

    Science.gov (United States)

    Turna, Akif; Kavakli, Kuthan; Sapmaz, Ersin; Arslan, Hakan; Caylak, Hasan; Gokce, Hasan Suat; Demirkaya, Ahmet

    2014-01-01

    The reconstruction of full-thickness chest wall defects is a challenging problem for thoracic surgeons, particularly after a wide resection of the chest wall that includes the sternum. The location and the size of the defect play a major role when selecting the method of reconstruction, while acceptable cosmetic and functional results remain the primary goal. Improvements in preoperative imaging techniques and reconstruction materials have an important role when planning and performing a wide chest wall resection with a low morbidity rate. In this report, we describe the reconstruction of a wide anterior chest wall defect with a patient-specific custom-made titanium implant. An infected mammary tumour recurrence in a 62-year old female, located at the anterior chest wall including the sternum, was resected, followed by a large custom-made titanium implant. Latissimus dorsi flap and split-thickness graft were also used for covering the implant successfully. A titanium custom-made chest wall implant could be a viable alternative for patients who had large chest wall tumours. PMID:24227881

  1. Repositioning Titanium: An In Vitro Evaluation of Laser-Generated Microporous, Microrough Titanium Templates As a Potential Bridging Interface for Enhanced Osseointegration and Durability of Implants

    Directory of Open Access Journals (Sweden)

    Daniel Tang

    2017-12-01

    Full Text Available Although titanium alloys remain the preferred biomaterials for the manufacture of biomedical implants today, such devices can fail within 15 years of implantation due to inadequate osseointegration. Furthermore, wear debris toxicity due to alloy metal ion release has been found to cause side-effects including neurotoxicity and chronic inflammation. Titanium, with its known biocompatibility, corrosion resistance, and high elastic modulus, could if harnessed in the form of a superficial scaffold or bridging device, resolve such issues. A novel three-dimensional culture approach was used to investigate the potential osteoinductive and osseointegrative capabilities of a laser-generated microporous, microrough medical grade IV titanium template on human skeletal stem cells (SSCs. Human SSCs seeded on a rough 90-µm pore surface of ethylene oxide-sterilized templates were observed to be strongly adherent, and to display early osteogenic differentiation, despite their inverted culture in basal conditions over 21 days. Limited cellular migration across the template surface highlighted the importance of high surface wettability in maximizing cell adhesion, spreading and cell-biomaterial interaction, while restricted cell ingrowth within the conical-shaped pores underlined the crucial role of pore geometry and size in determining the extent of osseointegration of an implant device. The overall findings indicate that titanium only devices, with appropriate optimizations to porosity and surface wettability, could yet play a major role in improving the long-term efficacy, durability, and safety of future implant technology.

  2. Displacement comparison of CAD-CAM titanium and zirconia abutments to implants with different conical connections.

    Science.gov (United States)

    Yilmaz, Burak; Hashemzadeh, Shervin; Seidt, Jeremy D; Clelland, Nancy L

    2018-04-01

    To compare the displacements of CAD-CAM zirconia and titanium abutments into different internal connection systems after torquing. OsseoSpeed EV and OsseoSpeed TX implants (n=10) were placed in resin blocks. Zirconia and titanium abutments (n=5) were first hand tightened and then tightened to the recommended torque (20Ncm for TX and 25Ncm for EV). Displacements of abutments between screw tightening by hand and torque driver was measured using three-dimensional digital image correlation (3D DIC) technique. Displacements were measured in U (front/back), V (into/outward), W (right/left) directions and 3-dimensionally (3D). ANOVA with restricted maximum likelihood estimation method was used to analyze the data. Bonferroni-corrected t tests was used to determine the statistical differences (α=0.05). 3D displacement of zirconia and titanium abutments was significantly greater in OsseoSpeed EV implant (PDisplacement of zirconia and titanium abutments was not significantly different within implant systems, 3D (P≥0.386) and in each direction (P≥0.382). In U and V directions, zirconia and titanium abutments displaced significantly more towards negative in OsseoSpeed EV implant (Pdisplaced significantly more in V direction compared to the U and W (P≤0.005), and within the Osseospeed EV system, abutment displacements were significantly different amongst directions and displacements in V were the greatest (Pdisplaced more in the implant that required higher torque values to tighten the abutment. The amount of displacement in both systems was clinically small. Abutment material did not affect the magnitude of displacement. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Periodontal ligament formation around different types of dental titanium implants. I. The self-tapping screw type implant system

    DEFF Research Database (Denmark)

    Warrer, K; Karring, T; Gotfredsen, K

    1993-01-01

    The aim of this study was to determine if a periodontal ligament can form around self-tapping, screw type titanium dental implants. Implants were inserted in contact with the periodontal ligament of root tips retained in the mandibular jaws of 7 monkeys. In each side of the mandible, 1 premolar......, a periodontal ligament can form on self-tapping, screw type titanium dental implants in areas where a void is present between the surrounding bone and the implant at the time of insertion....... and 2 molars were removed in such a manner that in approximately half the cases, the root tips were retained. Following healing, the experimental areas were examined on radiographs, and sites were selected for the insertion of the implants, so that every second implant would have a close contact...

  4. Soft tissue response to zirconia and titanium implant abutments : an in vivo within-subject comparison

    NARCIS (Netherlands)

    van Brakel, Ralph; Meijer, Gert J.; Verhoeven, Jan Willem; Jansen, John; de Putter, Cornelis; Cune, Marco S.

    2012-01-01

    Aim To compare the health of the soft tissues towards zirconia and titanium abutments in man, as observed using histological data. Material and Methods Twenty patients received two mandibular implants with either a zirconia or titanium abutment (split mouth study design, left-right randomization).

  5. Soft tissue response to zirconia and titanium implant abutments: an in vivo within-subject comparison.

    NARCIS (Netherlands)

    Brakel, R. van; Meijer, G.J.; Verhoeven, J.W.; Jansen, J.A.; Putter, C. de; Cune, M.S.

    2012-01-01

    AIM: To compare the health of the soft tissues towards zirconia and titanium abutments in man, as observed using histological data. MATERIAL AND METHODS: Twenty patients received two mandibular implants with either a zirconia or titanium abutment (split mouth study design, left-right randomization).

  6. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    Wang Chengyue; Zhao Baohong; Ai Hongjun; Wang Yiwei

    2008-01-01

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  7. Short-term results using Kurz titanium ossicular implants.

    Science.gov (United States)

    Vassbotn, Flemming S; Møller, Per; Silvola, Juha

    2007-01-01

    The efficiency of titanium middle ear prosthesis for ossicular reconstruction in chronic ear disease is investigated in a Scandinavian two-center retrospective study from a Norwegian tertiary otology referral center and a Finnish otology referral center. Retrospective chart reviews were performed for procedures involving 73 titanium prostheses between 1999 and 2004. All patients that underwent surgery including the Kurz Vario titanium prosthesis were included in the study, 38 procedures including the partial ossicular replacement prosthesis (PORP) and 35 procedures including the total ossicular replacement prosthesis (TORP). Mean follow-up was 14 months. The ossiculoplasty was performed alone (29 patients) or in combination with other chronic ear surgery procedures (34 patients). Comparisons of preoperative and postoperative pure tone averages (0.5, 1, 2, and 3 kHz) according to AAO-HNS guidelines are presented, as well as data for different PTA definitions. Otosurgery procedures, complications, revisions, and extrusion rates are reported. A postoperative air-bone gap (ABG) of Titanium prostheses have been easy and fast to handle and effective implants for reconstruction of the ossicular chain. We found no difference between reconstruction with or without cholesteatoma surgery during the same procedure. The combination of CWD and Torp gave significant inferior hearing thresholds as compared to Torp/CWU and Porp/CWD combinations.

  8. Porous Titanium for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Zena J. Wally

    2015-10-01

    Full Text Available Recently, an increasing amount of research has focused on the biological and mechanical behavior of highly porous structures of metallic biomaterials, as implant materials for dental implants. Particularly, pure titanium and its alloys are typically used due to their outstanding mechanical and biological properties. However, these materials have high stiffness (Young’s modulus in comparison to that of the host bone, which necessitates careful implant design to ensure appropriate distribution of stresses to the adjoining bone, to avoid stress-shielding or overloading, both of which lead to bone resorption. Additionally, many coating and roughening techniques are used to improve cell and bone-bonding to the implant surface. To date, several studies have revealed that porous geometry may be a promising alternative to bulk structures for dental implant applications. This review aims to summarize the evidence in the literature for the importance of porosity in the integration of dental implants with bone tissue and the different fabrication methods currently being investigated. In particular, additive manufacturing shows promise as a technique to control pore size and shape for optimum biological properties.

  9. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  10. Non-Destructive Analysis of Basic Surface Characteristics of Titanium Dental Implants Made by Miniature Machining

    Science.gov (United States)

    Babík, Ondrej; Czán, Andrej; Holubják, Jozef; Kameník, Roman; Pilc, Jozef

    2016-12-01

    One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.

  11. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    Science.gov (United States)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia

  12. Surface modification of the titanium implant using TEA CO{sub 2} laser pulses in controllable gas atmospheres - Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D. [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia); Bokorov, M. [Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad (Serbia); Trtica, M., E-mail: etrtica@vinca.rs [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia)

    2012-01-15

    Interaction of a TEA CO{sub 2} laser, operating at 10.6 {mu}m wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm{sup 2} in the surrounding of air, N{sub 2}, O{sub 2} or He. The energy absorbed from the TEA CO{sub 2} laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N{sub 2} and O{sub 2}, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  13. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.

    Science.gov (United States)

    Shaoki, Algabri; Xu, Jia-Yun; Sun, Haipeng; Chen, Xian-Shuai; Ouyang, Jianglin; Zhuang, Xiu-Mei; Deng, Fei-Long

    2016-10-27

    The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface. In addition, we evaluated the osseointegration capability of the SLM implants in vivo and compared it with those of MA and Nobel-speedy (Nobel-S) implants. SLM microtopographical surface analysis revealed porous and high roughness with varied geometry compared with a smooth surface in MA Ti samples but with similar favourable wettability. Osteoblast proliferation and alkaline phosphatase activity were significantly enhanced on the SLM surface. Histological analysis of the bone-implant contact ratio revealed no significant difference among SLM, MA, and Nobel-S implants. Micro-CT assessment indicated that there was no significant difference in bone volume fraction around the implant among SLM implants and other types of surface modification implants. The removal torque value measurement of SLM implants was significantly lower that of than Nobel-S implants P manufacturing technique.

  14. Structure and properties of Titanium for dental implants

    Directory of Open Access Journals (Sweden)

    M. Greger

    2009-10-01

    Full Text Available This paper describes manufacture of nano-structural titanium, its structure and properties. Nano-titanium has higher specific strength properties than ordinary (coarse-grained titanium. Nano-titanium was produced by the equal-channel angular pressing (ETAP process. The research it self was focused on physical base of strengthening and softening processes and developments occurring at the grain boundaries during the ECAP process at half-hot temperature. Strength of nano-titanium varies around 960 MPa, grain size around 300 nm.

  15. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    Science.gov (United States)

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  16. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    Science.gov (United States)

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  17. Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires

    Directory of Open Access Journals (Sweden)

    Manu Krishnan

    2013-01-01

    Full Text Available Aim: To evaluate the changes in surface roughness and frictional features of ′ion-implanted nickel titanium (NiTi and titanium molybdenum alloy (TMA arch wires′ from its conventional types in an in-vitro laboratory set up. Materials and Methods: ′Ion-implanted NiTi and low friction TMA arch wires′ were assessed for surface roughness with scanning electron microscopy (SEM and 3 dimensional (3D optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS values in nanometers and Frictional Forces (FF in grams. Statistical Analysis Used: Mean values of RMS and FF were compared by Student′s ′t′ test and one way analysis of variance (ANOVA. Results: SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm and 48.90% for TMA groups (463.28 to 236.35 nm from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. Conclusion: The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.

  18. Characterizations of additive manufactured porous titanium implants.

    Science.gov (United States)

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  19. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  20. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  1. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    Science.gov (United States)

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  2. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  3. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B

    2008-12-01

    Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P smoke on bone healing may represent a new concern for implant success/failure.

  4. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration.

    Science.gov (United States)

    Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G

    2017-03-01

    The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  6. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  7. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  8. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  9. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sophie C. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Jamshidi, Parastoo [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Eisenstein, Neil M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ (United Kingdom); Webber, Mark A. [School of Biosciences, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hassanin, Hany [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); School of Mechanical and Automotive Engineering, Kingston University, London SW15 3DW (United Kingdom); Attallah, Moataz M. [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Shepherd, Duncan E.T. [Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Addison, Owen [School of Dentistry, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Grover, Liam M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  10. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    International Nuclear Information System (INIS)

    Cox, Sophie C.; Jamshidi, Parastoo; Eisenstein, Neil M.; Webber, Mark A.; Hassanin, Hany; Attallah, Moataz M.; Shepherd, Duncan E.T.; Addison, Owen; Grover, Liam M.

    2016-01-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  11. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    Science.gov (United States)

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  12. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  13. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    Science.gov (United States)

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    Science.gov (United States)

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn 2+ and Mg 2+ concentrations in rBMSCs by promoting the influx of Zn 2+ and Mg 2+ and inhibiting the outflow of Zn 2+ , and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg 2+ ions from Zn/Mg-PIII increased Mg 2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  15. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Naoya, E-mail: tani110@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Fujibayashi, Shunsuke, E-mail: shfuji@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Takemoto, Mitsuru, E-mail: m.take@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Sasaki, Kiyoyuki, E-mail: kiy-sasaki@spcom.co.jp [Sagawa Printing Co., Ltd., 5-3, Inui, Morimoto-Cho, Mukou-Shi, Kyoto 617-8588 (Japan); Otsuki, Bungo, E-mail: bungo@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Nakamura, Takashi, E-mail: ntaka@kuhp.kyoto-u.ac.jp [National Hospital Organization Kyoto Medical Center, 1-1, Mukaihatacho, Hukakusa, Hushimi, Kyoto 612-8555 (Japan); Matsushita, Tomiharu, E-mail: matsushi@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Kokubo, Tadashi, E-mail: kokubo@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Matsuda, Shuichi, E-mail: smat522@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan)

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900 μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone–implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8 weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956 μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2 weeks than the other implants. After 4 weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4 weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. - Highlights: • We studied the effect of pore size on bone tissue in-growth in a rabbit in vivo model. • Titanium samples with 300/600/900 μm pore size in three-dimensionally controlled shapes were fabricated by additive manufacturing. • Samples were

  16. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  17. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  18. No positive effect of Acid etching or plasma cleaning on osseointegration of titanium implants in a canine femoral condyle press-fit model

    DEFF Research Database (Denmark)

    Saksø, Henrik; Jakobsen, Thomas Vestergaard; Mortensen, Mikkel Saksø

    2013-01-01

    Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants.......Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants....

  19. Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants.

    Science.gov (United States)

    Zhao, Desheng; Moritz, Niko; Vedel, Erik; Hupa, Leena; Aro, Hannu T

    2008-07-01

    Soft-tissue attachment is a desired feature of many clinical biomaterials. The aim of the current study was to design a suitable experimental method for tensile testing of implant incorporation with soft-tissues. Conical implants were made of three compositions of bioactive glass (SiO(2)-P(2)O(5)-B(2)O(3)-Na(2)O-K(2)O-CaO-MgO) or titanium fiber mesh (porosity 84.7%). The implants were surgically inserted into the dorsal subcutaneous soft-tissue or back muscles in the rat. Soft-tissue attachment was evaluated by pull-out testing using a custom-made jig 8 weeks after implantation. Titanium fiber mesh implants had developed a relatively high pull-out force in subcutaneous tissue (12.33+/-5.29 N, mean+/-SD) and also measurable attachment with muscle tissue (2.46+/-1.33 N). The bioactive glass implants failed to show mechanically relevant soft-tissue bonding. The experimental set-up of mechanical testing seems to be feasible for verification studies of soft-tissue attachment. The inexpensive small animal model is beneficial for large-scale in vivo screening of new biomaterials.

  20. Electrochemical Characterization of Surface Reactions on Biomedical Titanium alloys

    OpenAIRE

    Alkhateeb, Emad Hashim

    2008-01-01

    Titanium and its alloys are successfully used as implant materials for dental, orthopedic and osteosynthesis applications. The processes that take place at the implant tissue interface are important for the acceptance and integration of the implant. This thesis is divided into two parts: the first part deals with surface modification of titanium to improve the osseointegration, and the second part studies metastable pitting of titanium and its alloys. The weakly attached layer of a bone-like ...

  1. Bone compaction enhances fixation of weightbearing titanium implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2005-01-01

    are weightbearing, the effects of compaction on weightbearing implants were examined. The hypothesis was that compaction would increase implant fixation compared with conventional drilling. Porous-coated titanium implants were inserted bilaterally into the weightbearing portion of the femoral condyles of dogs....... In each dog, one knee had the implant cavity prepared with drilling, and the other knee was prepared with compaction. Eight dogs were euthanized after 2 weeks, and eight dogs were euthanized after 4 weeks. Femoral condyles from an additional eight dogs represented Time 0. Compacted specimens had higher...... bone-implant contact and periimplant bone density at 0 and 2 weeks, but not at 4 weeks. A biphasic response of compaction was found with a pushout test, as compaction increased ultimate shear strength and energy absorption at 0 and 4 weeks, but not at 2 weeks. This biphasic response indicates...

  2. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  3. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    Science.gov (United States)

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  5. Carbon dioxide ion implantation in Titanium Nitride (Ti N)

    International Nuclear Information System (INIS)

    Torabi, Sh.; Sari, A. H.; Hojabri, A.; Ghoranneviss, M.

    2007-01-01

    Nitrogen ion implantation on titanium samples performed at 3x10 18 , 8x10 17 , 3x10 18 doses. In addition CO 2 ions were also implanted at doses in the range of 1x10 17 ,4 x10 17 ,8x10 17 . Atomic Force Microscopy, used to investigate the topographical changes of implanted samples. The structure of samples and phase composition were characterized using x-ray diffraction. The results show that by increasing of nitrogen ions, the roughness, grain sizes and hardness will increase. But by further increasing of dose, hardness will be decreased. The CO 2 implantation also enhance the roughness, grain size and hardness which could be caused by phase composition.

  6. Assessment of modified gold surfaced titanium implants on skeletal fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2013-01-01

    shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration...... and increase mechanical fixation. Cylindrical porous coated Ti-6Al4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out...

  7. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    OpenAIRE

    Ogawa, Takahiro; Yamada,Masahiro; Ueno,; Tsukimura,Naoki; Ikeda,; Nakagawa,; Hori,; Suzuki,

    2012-01-01

    Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integratio...

  8. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept.

    Science.gov (United States)

    Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E

    2018-04-01

    There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p internal connection had higher bending moments than zirconia abutments with external connection (T2) (p internal connected zirconia

  9. CNC-milled titanium frameworks supported by implants in the edentulous jaw: a 10-year comparative clinical study.

    Science.gov (United States)

    Örtorp, Anders; Jemt, Torsten

    2012-03-01

    No long-term clinical studies covering more than 5 years are available on Computer Numeric Controlled (CNC) milled titanium frameworks. To evaluate and compare the clinical and radiographic performance of implant-supported prostheses provided with CNC titanium frameworks in the edentulous jaw with prostheses with cast gold-alloy frameworks during the first 10 years of function. Altogether, 126 edentulous patients were by random provided with 67 prostheses with titanium frameworks (test) in 23 maxillas and 44 mandibles, and with 62 prostheses with gold-alloy castings (control) in 31 maxillas and 31 mandibles. Clinical and radiographic 10-year data were collected for the groups and statistically compared on patient level. The 10-year prosthesis and implant cumulative survival rate was 95.6% compared with 98.3%, and 95.0% compared with 97.9% for test and control groups, respectively (p > .05). No implants were lost after 5 years of follow-up. Smokers lost more implants than nonsmokers after 5 years of follow-up (p .05), respectively. One prosthesis was lost in each group due to loss of implants, and one prosthesis failed due to framework fracture in the test group. Two metal fractures were registered in each group. More appointments of maintenance were needed for the prostheses in the maxilla compared with those in the mandible (p CNC-milled titanium frameworks are a viable alternative to gold-alloy castings for restoring patients with implant-supported prostheses in the edentulous jaw. © 2009 Wiley Periodicals, Inc.

  10. Titanium implant insertion into dog alveolar ridges augmented by allogenic material

    DEFF Research Database (Denmark)

    Pinholt, E M; Haanaes, H R; Donath, K

    1994-01-01

    The purpose of this investigation was to evaluate whether titanium endosseous implants would osseointegrate in dog alveolar ridges augmented by allogenic material. In 8 dogs en bloc resection, including 2 pre-molars, was performed bilaterally in the maxilla and the mandible. After a healing period...

  11. Reverse engineering of mandible and prosthetic framework: Effect of titanium implants in conjunction with titanium milled full arch bridge prostheses on the biomechanics of the mandible.

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Russo, Teresa; D'Amora, Ugo; Varriale, Angelo; Veltri, Mario; Balleri, Piero; Mollica, Francesco; Riccitiello, Francesco; Ambrosio, Luigi

    2014-12-18

    This study aimed at investigating the effects of titanium implants and different configurations of full-arch prostheses on the biomechanics of edentulous mandibles. Reverse engineered, composite, anisotropic, edentulous mandibles made of a poly(methylmethacrylate) core and a glass fibre reinforced outer shell were rapid prototyped and instrumented with strain gauges. Brånemark implants RP platforms in conjunction with titanium Procera one-piece or two-piece bridges were used to simulate oral rehabilitations. A lateral load through the gonion regions was used to test the biomechanical effects of the rehabilitations. In addition, strains due to misfit of the one-piece titanium bridge were compared to those produced by one-piece cast gold bridges. Milled titanium bridges had a better fit than cast gold bridges. The stress distribution in mandibular bone rehabilitated with a one-piece bridge was more perturbed than that observed with a two-piece bridge. In particular the former induced a stress concentration and stress shielding in the molar and symphysis regions, while for the latter design these stresses were strongly reduced. In conclusion, prosthetic frameworks changed the biomechanics of the mandible as a result of both their design and manufacturing technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  13. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  14. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    Science.gov (United States)

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  15. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  16. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  17. Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants.

    Science.gov (United States)

    Ren, Na; Li, Jianhua; Qiu, Jichuan; Sang, Yuanhua; Jiang, Huaidong; Boughton, Robert I; Huang, Ling; Huang, Wei; Liu, Hong

    2014-08-13

    Titanium (Ti) is widely used for load-bearing bio-implants, however, it is bio-inert and exhibits poor osteo-inductive properties. Calcium and magnesium ions are considered to be involved in bone metabolism and play a physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this study, a facile synthesis approach to the in situ construction of a nanostructure enriched with Ca(2+) and Mg(2+) on the surface of titanium foil is proposed by inserting Ca(2+) and Mg(2+) into the interlayers of sodium titanate nanostructures through an ion-substitution process. The characteriz 0.67, and 0.73 nm ation results validate that cations can be inserted into the interlayer regions of the layered nanostructure without any obvious change of morphology. The cation content is positively correlated to the concentration of the solutions employed. The biological assessments indicate that the type and the amount of cations in the titanate nanostructure can alter the bioactivity of titanium implants. Compared with a Na(+) filled titanate nanostructure, the incorporation of divalent ions (Mg(2+) , Ca(2+) ) can effectively enhance protein adsorption, and thus also enhance the adhesion and differentiation ability of rat bone-marrow stem cells (rBMSCs). The Mg(2+) /Ca(2+) -titanate nanostructure is a promising implantable material that will be widely applicable in artificial bones, joints, and dental implants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

    Science.gov (United States)

    Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo

    2014-01-01

    PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (Pabutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206

  19. Clinical evaluation of immediate loading of electroeroded screw-retained titanium fixed prostheses supported by tilted implant: a multicenter retrospective study.

    Science.gov (United States)

    Acocella, Alessandro; Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Billi, Mauro; Acocella, Gabriele; Giannini, Domenico; Sacco, Roberto

    2012-05-01

    Immediate occlusal loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable treatment protocol. However, there is limited long-term data available in the literature, when an electroeroded definitive cast-titanium fixed prosthesis is used for this treatment protocol. The aim of this study was to evaluate the clinical effectiveness of dental implants (Astra Tech Dental, Mölndal, Sweden) in the edentulous mandible immediately loaded with an electroeroded cast-titanium screw-retained fixed prosthesis. Forty-five patients received five implants each in the interforaminal area. All the implants were inserted with torque up to 40 Ncm and the distal implants were distally tilted approximately 20 to 30 degrees to minimize the length of posterior cantilevers. Implants were loaded within 48 hours of placement with an acrylic resin-titanium screw-retained prosthesis fabricated by electroerosion. Two of the 225 inserted implants failed after 3 and 16 months of healing, respectively, with a cumulative survival rate of 99.1% and a prosthetic survival rate of 97.8%. Immediate loading of tilted dental implants inserted in the edentulous mandible with a screw-retained titanium definitive prosthesis fabricated with electrical discharge machining provide reliable and predictable results. © 2011 Wiley Periodicals, Inc.

  20. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Linden, B; Jemt, T

    1999-01-01

    The purpose of this study was to report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks and to compare their performance with that of prostheses provided with conventional cast frameworks. On a routine basis, a consecutive group of 824 edentulous patients were provided with fixed prostheses supported by implants in the edentulous mandible. In addition to conventional gold-alloy castings, patients were at random provided with 2 kinds of laser-welded titanium frameworks. In all, 155 patients were included in the 2 titanium framework groups. A control group of 53 randomly selected patients with conventional gold-alloy castings was used for comparison. Clinical and radiographic 5-year data was collected for the 3 groups. All followed patients still had fixed prostheses in the mandible after 5 years. The overall cumulative success rates were 95.9% and 99.7% for titanium-framework prostheses and implants, respectively. The corresponding success rates for the control group were 100% and 99.6%, respectively. Bone loss was 0.5 mm on average during the 5-year follow-up period. The most common complications for titanium frameworks were resin or tooth fractures, gingival inflammation, and fractures of the metal frames (10%). One of the cast frameworks fractured and was resoldered. Loose and fractured implant screw components were few (laser-welded titanium frameworks seem to be a viable alternative to conventional castings in the edentulous mandible.

  1. Effect of Nanosheet Surface Structure of Titanium Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Satoshi Komasa

    2014-01-01

    Full Text Available Titanium alloys are the most frequently used dental implants partly because of the protective oxide coating that spontaneously forms on their surface. We fabricated titania nanosheet (TNS structures on titanium surfaces by NaOH treatment to improve bone differentiation on titanium alloy implants. The cellular response to TNSs on Ti6Al4V alloy was investigated, and the ability of the modified surfaces to affect osteogenic differentiation of rat bone marrow cells and increase the success rate of titanium implants was evaluated. The nanoscale network structures formed by alkali etching markedly enhanced the functions of cell adhesion and osteogenesis-related gene expression of rat bone marrow cells. Other cell behaviors, such as proliferation, alkaline phosphatase activity, osteocalcin deposition, and mineralization, were also markedly increased in TNS-modified Ti6Al4V. Our results suggest that titanium implants modified with nanostructures promote osteogenic differentiation, which may improve the biointegration of these implants into the alveolar bone.

  2. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  3. [Complex skull defects reconstruction with САD/САМ titanium and polyetheretherketone (PEEK) implants].

    Science.gov (United States)

    Eolchiyan, S A

    2014-01-01

    Predictable and stable functional and aesthetic result is the aim of priority for the neurosurgeon dealing with the reconstruction of large cranial bone defects and complex-formed skull defects involving cranio-orbital region. the paper presents the experience with САD/САМ titanium and polyetheretherketone (PEEK) implants for complex-formed and large skull bone defects reconstruction. Between 2005 and 2013 nine patients (5 females and 4 males) underwent cranioplasty and cranio-facial reconstruction with insertion of the customized САD/САМ titanium and PEEK implants. Computer-assisted preoperative planning was undertaken by the surgeon and the engineer together in 3 cases to provide accurate implant design. Eight patients had complex-formed and large posttraumatic defects of fronto-orbital (7 cases) and parietal (one case) regions. In two of these cases one-step reconstruction surgery for posttraumatic fronto-orbital defects combined with adjacent orbital roof (one case) and orbito-zygomatic (one case) deformities was performed. One patient underwent one-step primary cranioplasty after cranio-orbital fibrous dysplasia focus resection. Titanium implants were used in 4 cases while PEEK implants - in 5 ones. The follow-up period ranged from 6 months till 8,5 years (median 4,4 years). The accuracy of the implant intraoperative fit was perfect in all cases. Postoperative wounds healed primary and there were no any complications in the series presented. Post-op clinical assessment and CT data testified to high implants precision, good functional and aesthetic outcomes in all patients. САD/САМ titanium and PEEK implants application should allow for optimal reconstruction in the challenging patients with complex-formed and large skull bone defects providing predictable good functional and aesthetic result together with surgery morbidity and duration reduction. Computer-assisted preoperative planning should be undertaken for САD/САМ implants creation in

  4. The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation

    NARCIS (Netherlands)

    Han, A.; Li, X.; Huang, B.; Tsoi, J.K.-H.; Matinlinna, J.P.; Chen, Z.; Deng, D.M.

    2016-01-01

    Purpose: The aim of the study was to investigate the dynamic process of biofilm adhesion on titanium implant with two surface treatments, either pickled (PT) or moderately roughened by sandblasting with large grits and acid-etched (SLA). Materials and methods: Two types of titanium disks with

  5. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  6. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants.

    LENUS (Irish Health Repository)

    Leonard, Gary

    2009-03-01

    This study was designed to compare the bone healing process around plateau root from (PRF) and screw root from (SRF) titanium dental implants over the immediate 12 week healing period post implant placement.

  7. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  8. The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats.

    Science.gov (United States)

    Kung, S; Devlin, H; Fu, E; Ho, K-Y; Liang, S-Y; Hsieh, Y-D

    2011-02-01

    The enhancing effects of chitosan on activation of platelets and differentiation of osteoprogenitor cells have been demonstrated in vitro. The purpose of this study was to evaluate the in vivo osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces. Chitosan-collagen composites containing chitosan of different molecular weights (450 and 750 kDa) were wrapped onto titanium implants and embedded into the subcutaneous area on the back of 15 Sprague-Dawley rats. The control consisted of implants wrapped with plain collagen type I membranes. Implants and surrounding tissues were retrieved 6 wks after surgery and identified by Alizarin red and Alcian blue whole mount staining. The newly formed structures in the test groups were further analyzed by Toluidine blue and Masson-Goldner trichrome staining, and immunohistochemical staining with osteopontin and alkaline phosphotase. The bone formation parameters of the new bone in the two test groups were measured and compared. New bone formed ectopically in both chitosan-collagen groups, whereas no bone induction occurred in the negative control group. These newly formed bone-like structures were further confirmed by immunohistochemical staining. Comparison of bone parameters of the newly induced bone revealed no statistically significant differences between the 450 and 750 kDa chitosan-collagen groups. Our results demonstrated that chitosan-collagen composites might induce in vivo new bone formation around pure titanium implant surfaces. Different molecular weights of chitosan did not show significantly different effects on the osteoinductive potential of the test materials. © 2010 John Wiley & Sons A/S.

  9. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  10. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  11. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  12. Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue.

    NARCIS (Netherlands)

    Hallers, E.J.O. ten; Jansen, J.A.; Marres, H.A.M.; Rakhorst, G.; Verkerke, G.J.

    2007-01-01

    Polypropylene (PP) and titanium (Ti) meshes are well-known surgical implants that provoke a relative low foreign body reaction. Firm stabilization of the implant is important to prevent migration and subsequent failure of the operation. Fibrin tissue glues are commercially available adhesives and

  13. Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue

    NARCIS (Netherlands)

    ten Hallers, E.J. Olivier; Jansen, John A.; Marres, Henri A.M.; Rakhorst, Gerhard; Verkerke, Gijsbertus Jacob

    2007-01-01

    Polypropylene (PP) and titanium (Ti) meshes are well-known surgical implants that provoke a relative low foreign body reaction. Firm stabilization of the implant is important to prevent migration and subsequent failure of the operation. Fibrin tissue glues are commercially available adhesives and

  14. Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue

    NARCIS (Netherlands)

    ten Hallers, E. J. Olivier; Jansen, John A.; Marres, Henri A. M.; Rakhorst, Gerhard; Verkerke, Gijsbertus J.

    Polypropylene (PP) and titanium (Ti) meshes are well-known surgical implants that provoke a relative low foreign body reaction. Firm stabilization of the implant is important to prevent migration and subsequent failure of the operation. Fibrin tissue glues are commercially available adhesives and

  15. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  16. Mathematical filtering minimizes metallic halation of titanium implants in MicroCT images.

    Science.gov (United States)

    Ha, Jee; Osher, Stanley J; Nishimura, Ichiro

    2013-01-01

    Microcomputed tomography (MicroCT) images containing titanium implant suffer from x-rays scattering, artifact and the implant surface is critically affected by metallic halation. To improve the metallic halation artifact, a nonlinear Total Variation denoising algorithm such as Split Bregman algorithm was applied to the digital data set of MicroCT images. This study demonstrated that the use of a mathematical filter could successfully reduce metallic halation, facilitating the osseointegration evaluation at the bone implant interface in the reconstructed images.

  17. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Cecilia Larsson Wexell

    2016-01-01

    Full Text Available This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.

  18. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  19. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 10-year follow-up study.

    Science.gov (United States)

    Ortorp, Anders; Jemt, Torsten

    2006-01-01

    Long-term follow-up studies for more than 5 years are not available on laser-welded titanium frameworks. To report and compare 10-year data on implant-supported prostheses in the edentulous mandible provided with laser-welded titanium frameworks and conventional gold alloy frameworks. Altogether, 155 patients were consecutively treated with prostheses at abutment level with two generations of fixed laser-welded titanium frameworks (test groups). A control group of 53 randomly selected patients with conventional gold alloy castings was used for comparison. Clinical and radiographic 10-year data were collected for the three groups. All patients followed-up for 10 years (n=112) still had fixed prostheses in the mandible (cumulative success rate [CSR] 100%). The overall 10-year cumulative success rate (CSR) was 92.8 and 100.0% for titanium and gold alloy frameworks, respectively. Ten-year implant cumulative survival rate (CSR) was 99.4 and 99.6% for the test and control groups, respectively. Average 10-year bone loss was 0.56 (SD 0.45) mm for the titanium group and 0.77 (SD 0.36) mm for the control group (p screw components were below 3%. Excellent overall long-term results with 100% CSR could be achieved with the present treatment modality. Fractures of the metal frames and remade prostheses were more common for the laser-welded titanium frameworks, and the first generation of titanium frameworks worked poorly when compared with gold alloy frameworks during 10 years (p < 0.05). However, on average more bone loss was observed for implants supporting gold alloy frameworks during 10 years. The reasons for this difference are not clear.

  20. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    Science.gov (United States)

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  1. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    Science.gov (United States)

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  2. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  3. Calcium phosphate-based coatings on titanium and its alloys.

    Science.gov (United States)

    Narayanan, R; Seshadri, S K; Kwon, T Y; Kim, K H

    2008-04-01

    Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.

  4. Stability of prototype two-piece zirconia and titanium implants after artificial aging: an in vitro pilot study.

    Science.gov (United States)

    Kohal, Ralf-Joachim; Finke, Hans Christian; Klaus, Gerold

    2009-12-01

    Zirconia oral implants are a new topic in implant dentistry. So far, no data are available on the biomechanical behavior of two-piece zirconia implants. Therefore, the purpose of this pilot investigation was to test in vitro the fracture strength of two-piece cylindrical zirconia implants after aging in a chewing simulator. This laboratory in vitro investigation comprised three different treatment groups. Each group consisted of 16 specimens. In group 1, two-piece zirconia implants were restored with zirconia crowns (zirconia copings veneered with Triceram; Esprident, Ispringen, Germany), and in group 2 zirconia implants received Empress 2 single crowns (Ivoclar Vivadent AG, Schaan, Liechtenstein). The implants, including the abutments, in the two zirconia groups were identical. In group 3, similar titanium implants were reconstructed with porcelain-fused-to-metal crowns. Eight samples of each group were submitted to artificial aging with a long-term load test in the artificial mouth (chewing simulator). Subsequently, all not artificially aged samples and all artificially aged samples that survived the long-term loading of each group were submitted to a fracture strength test in a universal testing machine. For the pairwise comparisons in the different test groups with or without artificial loading and between the different groups at a given artificial loading condition, the Wilcoxon rank-sum test for independent samples was used. The significance level was set at 5%. One sample of group 1 (veneer fracture), none of group 2, and six samples of group 3 (implant abutment screw fractures) failed while exposed to the artificial mouth. The values for the fracture strength after artificial loading with 1.2 million cycles for group 1 were between 45 and 377 N (mean: 275.7 N), in group 2 between 240 and 314 N (mean: 280.7 N), and in the titanium group between 45 and 582 N (mean: 165.7 N). The fracture strength results without artificial load for group 1 amounted to between

  5. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up.

    Science.gov (United States)

    Tunchel, Samy; Blay, Alberto; Kolerman, Roni; Mijiritsky, Eitan; Shibli, Jamil Awad

    2016-01-01

    This prospective 3-year follow-up clinical study evaluated the survival and success rates of 3DP/AM titanium dental implants to support single implant-supported restorations. After 3 years of loading, clinical, radiographic, and prosthetic parameters were assessed; the implant survival and the implant-crown success were evaluated. Eighty-two patients (44 males, 38 females; age range 26-67 years) were enrolled in the present study. A total of 110 3DP/AM titanium dental implants (65 maxilla, 45 mandible) were installed: 75 in healed alveolar ridges and 35 in postextraction sockets. The prosthetic restorations included 110 single crowns (SCs). After 3 years of loading, six implants failed, for an overall implant survival rate of 94.5%; among the 104 surviving implant-supported restorations, 6 showed complications and were therefore considered unsuccessful, for an implant-crown success of 94.3%. The mean distance between the implant shoulder and the first visible bone-implant contact was 0.75 mm (±0.32) and 0.89 (±0.45) after 1 and 3 years of loading, respectively. 3DP/AM titanium dental implants seem to represent a successful clinical option for the rehabilitation of single-tooth gaps in both jaws, at least until 3-year period. Further, long-term clinical studies are needed to confirm the present results.

  6. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up

    Directory of Open Access Journals (Sweden)

    Samy Tunchel

    2016-01-01

    Full Text Available This prospective 3-year follow-up clinical study evaluated the survival and success rates of 3DP/AM titanium dental implants to support single implant-supported restorations. After 3 years of loading, clinical, radiographic, and prosthetic parameters were assessed; the implant survival and the implant-crown success were evaluated. Eighty-two patients (44 males, 38 females; age range 26–67 years were enrolled in the present study. A total of 110 3DP/AM titanium dental implants (65 maxilla, 45 mandible were installed: 75 in healed alveolar ridges and 35 in postextraction sockets. The prosthetic restorations included 110 single crowns (SCs. After 3 years of loading, six implants failed, for an overall implant survival rate of 94.5%; among the 104 surviving implant-supported restorations, 6 showed complications and were therefore considered unsuccessful, for an implant-crown success of 94.3%. The mean distance between the implant shoulder and the first visible bone-implant contact was 0.75 mm (±0.32 and 0.89 (±0.45 after 1 and 3 years of loading, respectively. 3DP/AM titanium dental implants seem to represent a successful clinical option for the rehabilitation of single-tooth gaps in both jaws, at least until 3-year period. Further, long-term clinical studies are needed to confirm the present results.

  7. Effect of titanium on microstructural changes in SUS 316 stainless steels

    International Nuclear Information System (INIS)

    Kawanishi, H.; Yamada, M.; Fukuya, K.; Ishino, S.

    1982-01-01

    The microstructural changes have been examined in order to study the effect of titanium addition to type 316 stainless steels on void swelling. Titanium ions of 400 keV from an accelerator have been implanted at room temperature to solution treated SUS 316 stainless steels which have the original titanium content of 0.02 wt.% to the concentration increase of titanium by 0.01, 0.02 and 0.1 wt.%. Following the preinjection of 20 at.ppm helium at ambient temperature, 400 keV-aluminium ions have been irradiated to the specimen to 40 dpa at 550, 625 and 675 0 C. The TEM observations have revealed that the void number density is drastically increased in the specimen with the content of implanted titanium of more than 0.01 wt.%, whereas the void diameter is remarkably decreased with the titanium content. (orig.)

  8. Effects of nacre-coated titanium surfaces on cell proliferation and ...

    African Journals Online (AJOL)

    Titanium is widely used for dental implants because of its superior mechanical properties, low modulus, excellent corrosion resistance, and good biocompatibility. However, even when they are used in combination with a protective coating, such as hydroxyapatite (HA), titanium implants have been reported to have several ...

  9. Human Mesenchymal Stem Cell Morphology and Migration on Micro-Textured Titanium

    Directory of Open Access Journals (Sweden)

    Brittany eBanik

    2016-05-01

    Full Text Available The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that micro-textured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 hours, rate and directionality of migration 6 to 18 hours post seeding, differentiation markers at 10 days, and the long term morphology of MSCs at 7 days, on micro-textured, acid-etched titanium (Endoskeleton, smooth titanium, and smooth PEEK surfaces. The results demonstrate in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

  10. [Titanium or steel as osteosynthesis material : Systematic literature search for clinical evidence].

    Science.gov (United States)

    Joeris, Alexander; Goldhahn, Sabine; Rometsch, Elke; Höntzsch, Dankward

    2017-02-01

    The selection of the appropriate implant material, stainless steel or titanium, is still the decision of the surgeon and/or the affiliated institution. Additionally, remarkable international differences can be found between the different markets, which cannot really be explained. A systematic literature search was performed to verify whether there is clinical evidence for the preference of one material over the other. The systematic literature search was performed utilizing the internet databases PubMed, Cochrane and Web of Science. Comparative studies were included that reported on adult patients with osteosynthesis of extremities after trauma using either stainless steel or titanium implants. Information was extracted about infection rates, incidence of clinically relevant allergies, problems with implant removal and other complications. A total of 18 publications were identified to be eligible and 2 referenced articles were added. In summary, there is insufficient clinical evidence that the use of titanium or steel implants has a positive or negative effect on fracture healing, shows different rates of allergies, different rates of infections or mechanical failure. No supporting evidence could be identified for the difficulties with removal of titanium implants reported by surgeons. This systematic literature search did not provide any clinical evidence for material-related differences between titanium or stainless steel implants for fracture fixation. Based on the current clinical evidence both titanium and steel implants can be considered to be of equal value. The reported difficulties with implant removal are not reflected in the published literature.

  11. Residual stress in ion implanted titanium nitride studied by parallel beam glancing incidence x-ray diffraction

    International Nuclear Information System (INIS)

    Geist, D.E.; Perry, A.J.; Treglio, J.R.; Valvoda, V.; Rafaja, D.

    1995-01-01

    Ion implantation is known to increase the lifetime of cutting tools. Current theories are the increase in lifetime is caused by an increase in the residual stress, or by work hardening of the surface associated with the implantation. In this work the effect of ion implantation on the residual stress in titanium nitride coatings made by the standard industrial methods of chemical and physical vapor deposition (CVD and PVD) is studied. It is found in the as-received condition (unimplanted), the residual stress levels are near zero for CVD materials and highly compressive, of the order of 6 GPa, for PVD materials. Ion implantation has no effect on the residual stress in the coatings made by CVD. Nitrogen does increase the compressive residual stress by some 10% in the near surface regions of PVD coatings, while nickel-titanium dual metal ion implantation does not have any effect. It appears that the lifetime increase is not associated with residual stress effects

  12. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  13. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  14. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    OpenAIRE

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured w...

  15. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.

    Science.gov (United States)

    Korovessis, P; Baikousis, A; Deligianni, D; Mysirlis, Y; Soucacos, P

    2001-04-01

    This study compares the effectiveness of transfixation on the stiffness of two pedicle screw-rod constructs of different manufacture, implant design, and alloy, applied in one-and two-level instability. Four screws composed of either stainless steel or Titanium were assembled in pairs to two polymethylmethacrylate blocks to resemble one-and two-level corpectomy models and the construct underwent nondestructive torsional, extension, and flexion loading. In every loading test, each construct was tested using stainless steel or titanium rods of 4.9-mm diameter in two different lengths (short, 10 cm; long, 15 cm), not augmented or augmented with different transfixation devices or a pair of devices. The authors compared the stiffness of stainless steel and titanium constructs without cross-link with the stiffness of that reinforced with single or double Texas Scottish Rite Hospital (TSRH) cross-link, closed new-type cross-link (closed NTC), or open new-type cross-link (open NTC). The results showed that augmentation or no augmentation of short rods conferred significantly more stiffness than that of long rods of the same material in all three loading modes. The closed NTC provided the greatest increase of torsional, extension, and flexion stiffness, and single TSRH provided the least amount of stiffness. Torsional stiffness of short stainless steel rods augmented or not augmented was significantly greater than that of their titanium counterparts. Torsional stiffness of long titanium rods was always greater than that of their stainless steel counterparts. Extension stiffness of short nonaugmented titanium rods was superior to that of long titanium rods, whereas extension stiffness of nonaugmented short and long stainless steel rods was similar. Nonaugmented short titanium rods showed greater flexion stiffness than that of long titanium rods. Long stainless steel rods displayed significantly greater flexion stiffness than did their titanium counterparts. This

  16. The maintenance of inserted titanium implants: in-vitro evaluation of exposed surfaces cleaned with three different instruments.

    Science.gov (United States)

    Bertoldi, Carlo; Lusuardi, Donatella; Battarra, Francesca; Sassatelli, Paolo; Spinato, Sergio; Zaffe, Davide

    2017-01-01

    Changes to titanium implants smooth-surfaces after instrumentation were comparatively analyzed using low-vacuum scanning electron microscopy (LV-SEM) and white-light confocal (WLC) profilometry, to accurately evaluate curved surfaces. Sixty titanium implants screwed to their abutments were randomly split into three groups for cleaning treatment with (S) stainless-steel Gracey-curettes, (T) titanium Langer-curettes, and (P) an ultrasonic-device with the probe covered with a plastic-tip. One sector of each implant was left unprocessed (U). The other sectors were cleaned for either 60 s, to simulate a single cleaning session, or 180 s to simulate a series of sessions. Surface morphology was analyzed by LV-SEM, without metal sputtering. Quantitative evaluations of the roughness of surfaces were performed using a WLC-profilometer. The Wilcoxon and the Mann-Whitney tests were used in statistical comparisons. U-surfaces showed that thin transverse ridges and grooves, i.e. a polarized surface roughness was substantially compromised after S-instrumentation. Small surface alterations, increasing with time, were also recorded after T-·and·P-instrumentation, although to a lesser degree. The gap of the fixture-abutment connection appeared almost completely clean after T-, clotted with titanium debris after S-, and clotted with plastic debris after P-treatment. The mean roughness (Ra) was unchanged after P-, significantly increased after S- and decreased after T-treatment, when compared with U. The Rz roughness-parameter, calculated along the fixture Y-axis, of S, T, and P resulted similar and significantly lower than that of U. Rz (X-axis) resulted unchanged after P-, slightly increased (+40%) after T-, and greatly increased (+260%) after S-treatment, this latter being statistically significant when compared with U. The careful use of titanium-curettes could produce only minimal smooth surface alteration particularly over prolonged treatments, and avoid debris production

  17. FTIR absorption reflection study of biomimetic growth of phosphates on titanium implants

    Science.gov (United States)

    Stoch, A.; Jastrzębski, W.; Brożek, A.; Stoch, J.; Szaraniec, J.; Trybalska, B.; Kmita, G.

    2000-11-01

    Titanium has been used for many medical applications; however, its joining to a living bone still is not satisfactorily good, challenging appropriate investigations. The aim of this work was to generate chemical modifications at its surface such that in vivo conditions, heterogeneous nucleation, and then growth of apatite from the body fluid could be easily induced and successfully performed. For this purpose, on the titanium samples, the oxide sublayers containing titanium, calcium and silicon (TCS) were deposited from a suitable solution using the sol-gel deep-coating procedure. Dried samples were heated at 400°C then cooled and thermostatically held in synthetic body fluids (SBF, SBFIII) under physiological conditions to mimic the natural process of apatite formation. Changes in surface composition of TCS sublayers caused by the heating were studied with XPS. Infrared spectroscopy and scanning electron microscopy monitored successive steps of apatite growth. It was found that in SBF, at the precoated titanium surface, nucleation and growth of the apatite containing carbonate took place. In SBFIII, for a higher concentration of calcium ions in comparison with SBF, a much-enhanced growth of the apatite free of carbonate was observed. TCS precoatings applied on stainless steel and Cr-Co-Mo alloy (Micromed) act also as bioactive interfaces with high ability to nucleation of biologically equivalent apatite. Biomimetic formation of this apatite on biologically inactive materials can be an important step in implant surgery.

  18. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    OpenAIRE

    James Tedesco; Bryan E. J. Lee; Alex Y. W. Lin; Dakota M. Binkley; Kathleen H. Delaney; Jacek M. Kwiecien; Kathryn Grandfield

    2017-01-01

    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomogra...

  19. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  1. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  2. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The purpose of the present study was to compare bone reactions adjacent to titanium implants with either a titanium plasma-sprayed (TPS) or a machined surface subjected to lateral static loading induced by an expansion force. In 3 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were...

  3. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  4. Distortion of CAD-CAM-fabricated implant-fixed titanium and zirconia complete dental prosthesis frameworks.

    Science.gov (United States)

    Al-Meraikhi, Hadi; Yilmaz, Burak; McGlumphy, Edwin; Brantley, William A; Johnston, William M

    2018-01-01

    Computer-aided design and computer-aided manufacturing (CAD-CAM)-fabricated titanium and zirconia implant-supported fixed dental prostheses have become increasingly popular for restoring patients with complete edentulism. However, the distortion level of these frameworks is not well known. The purpose of this in vitro study was to compare the 3-dimensional (3D) distortion of CAD-CAM zirconia and titanium implant-fixed screw-retained complete dental prostheses. A master edentulous model with 4 implants at the positions of the maxillary first molars and canines was used. Multiunit abutments (Nobel Biocare) secured to the model were digitally scanned using scan bodies and a laboratory scanner (S600 ARTI; Zirkonzahn). Titanium (n=5) and zirconia (n=5) frameworks were milled using a CAD-CAM system (Zirkonzahn M1; Zirkonzahn). All frameworks were scanned using an industrial computed tomography (CT) scanner (Nikon/X-Tek XT H 225kV MCT Micro-Focus). The direct CT scans were reconstructed to generate standard tessellation language (STL) files. To calculate the 3D distortion of the frameworks, STL files of the CT scans were aligned to the CAD model using a sum of the least squares best-fit algorithm. Surface comparison points were placed on the CAD model on the midfacial aspect of all teeth. The 3D distortion of each direct scan to the CAD model was calculated. In addition, color maps of the scan-to-CAD comparison were constructed using a ±0.500 mm color scale range. Both materials exhibited distortion; however, no significant difference was found in the amount of distortion from the CAD model between the materials (P=.747). Absolute values of deviations from the CAD model were evident in the x and y plane and less so in the z direction. Zirconia and titanium frameworks showed similar 3D distortion compared with the CAD model for the tested CAD-CAM and implant systems. The distortion was more pronounced in the horizontal and sagittal plane than in the vertical plane

  5. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    Science.gov (United States)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  6. Local and systemic changes associated with long-term, percutaneous, static implantation with titanium alloys in rhesus macaques (Macaca mulatta)

    Energy Technology Data Exchange (ETDEWEB)

    Frydman, Galit F.; Marini, Robert P.; Bakthavatchalu, Vasudevan; Biddle, Kathleen; Muthupalani, Sureshkumar; Vanderburg, Charles R.; Lai, Barry; Bendapudi, Pavan K.; Tompkins, Ronald G.; Fox, James G.

    2017-04-01

    Metal alloys are frequently used as implant materials in veterinary medicine. Recent studies suggest that many types of metal alloys may induce both local and systemic inflammatory responses. In this study, 37 rhesus macaques with long-term skull-anchored percutaneous titanium alloy implants (0-14 years duration) were evaluated for changes in their hematology, coagulation and serum chemistry profiles. Negative controls (n=28) did not have implants. All of the implanted animals were on IACUC-approved protocols and were not implanted for the purpose of this study. Animals with implants had significantly higher plasma D-dimer and lower antithrombin III concentrations compared with nonimplanted animals (p-values < 0.05). Additionally, animals with implants had significantly higher globulin, and lower albumin and calcium concentrations compared with nonimplanted animals (p-values < 0.05). Many of these changes were positively correlated with duration of implantation as well as the number of implants. Chronic bacterial infection was observed on the skin around many of the implant sites, and within deeper tissues. Representative histopathology around the implant site of two implanted animals revealed chronic suppurative to pyogranulomatous inflammation extending from the skin to the dura mater. X-ray fluorescence microscopy of tissue biopsies from the implant site of the same two animals revealed significant increases in free metal ions within the tissue, including titanium and iron. Free metal ions persisted in the tissues up to 6 months postexplant. These results suggest that long-term skull-anchored percutaneous titanium alloy implants results in localized inflammation, chronic infection, and leaching of metal ions into local tissues.

  7. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  8. The Effect of Hierarchical Micro/Nanotextured Titanium Implants on Osseointegration Immediately After Tooth Extraction in Beagle Dogs.

    Science.gov (United States)

    Fu, Qian; Bellare, Anuj; Cui, Yajun; Cheng, Bingkun; Xu, Shanshan; Kong, Liang

    2017-06-01

    Owing to simplify the operation and shorten the overall duration of treatment, immediate implantation earned much satisfactory from patients and dentists. The results of immediate implantation determined by osseointegration, we fabricated a micro/nanotextured titanium implants to improve osseointegration immediately after tooth extraction. The aim of this study was to investigate the effect of hierarchical micro/nanotextured titanium implant on osseointegration immediately after tooth extraction. The micro/nanotextured titanium implants were fabricated by etching with 0.5 wt% hydrofluoric (HF) acid followed by anodization in HF electrolytes. Implants with a machined surface as well as implants a microtextured surface prepared by 0.5 wt% HF etching served as control groups. The machined, microtextured, and micro/nanotextured implants were inserted into fresh sockets immediately after tooth extraction in beagle dogs. Twelve weeks after implantation, the animals were sacrificed for micro-CT scanning, histological analysis and biomechanical test. The micro-CT imaging revealed that the bone volume/total volume (BV/TV) and trabecular thickness (Tb.Th) in the micro/nanotextured group was significantly higher than that in the machined group and microtextured group, and the trabecular separation (Tb.Sp) in the micro/nanotextured group was significantly lower than that in the other groups. For the histological analysis, the bone-to-implant contact in the machined, micro and micro/nanotextured groups were 47.13 ± 6.2%, 54.29 ± 4.18%, and 63.38 ± 7.63%, respectively, and the differences significant. The maximum pull-out force in the machined, micro, and micro/nanotextured groups were 216.58 ± 38.71 N, 259.42 ± 28.93 N, and 284.73 ± 47.09 N, respectively. The results indicated that implants with a hierarchical micro/nanotextured can promote osseointegration immediately after tooth extraction. © 2016 Wiley Periodicals, Inc.

  9. Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

    OpenAIRE

    Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar; Alikhasi, Marzieh

    2017-01-01

    PURPOSE This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS Two regular platform dental implants, one with external connection (Br?nemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurement...

  10. A novel approach to fabrication of three-dimensional porous titanium with controllable structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Li, Qiuyan; Xu, Mingqin; Jiang, Guofeng; Zhang, Yunxia [Shanghai Key Laboratory of Materials Laser Processing and Modification, and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Guo, E-mail: ghe@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2017-02-01

    A new approach to fabrication of porous titanium by using the molybdenum wire as space holder was developed, in which titanium liquid was cast into the entangled molybdenum wires in a vacuum environment, and followed by etching off the space holder material in an aqua regia solution. This infiltration casting and acid corrosion method fabricated the porous titanium with different porosities with a pore diameter of 0.4 mm. The porous titanium with the porosity of 32–47% exhibited the Young's modulus in the range of 23–62 GPa and the yielding strength in the range of 76–192 MPa. The adhesion and spreadability of the bovine osteoblast cells on the porous titanium were also evaluated in vitro. The porous titanium with 47% porosity has great potential for implant applications. - Highlights: • A new approach to fabrication of porous titanium was developed. • The 3D morphology of the interconnected porous structure can be exactly controlled. • The as-prepared porous titanium exhibits adequate yielding strength. • The elastic modulus of the porous titanium matches well with that of cortical bone. • The as-prepared porous titanium has great potential for implant applications.

  11. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Oirschot, B.A. van; Bosco, R.; Beucken, J.J. van den; Aldosari, A.A.; Anil, S.; Jansen, J.A.

    2013-01-01

    OBJECTIVE: The current study aimed to evaluate the osteogenic potential of electrosprayed organic and non-organic surface coatings in a gap-implant model over 4 and 12 weeks of implantation into the dog mandible. MATERIAL AND METHODS: Sixteen Beagle dogs received experimental titanium implants in

  12. Study of the plasma immersion implantation of titanium in stainless steel

    International Nuclear Information System (INIS)

    Nikitenkov, N N; Sutygina, A N; Shulepov, I A; Sivin, D O; Kashkarov, E B

    2015-01-01

    The results of the study of the pulsed plasma-immersion ion implantation of titanium in steel Cr18Ni10Ti depending on the time (dose) implantation are presented. It is shown that the change of the element and the phase composition of the surface layers and their microscopic characteristics and mechanical properties (hardness, wear resistance) depending on the implantation time is not monotonic, but follows to a certain rule. The possibility of interpretation of the obtained results in the thermal spike concept of the generation on the surface by the stable (magic) clusters is discussed. This concept follows logically from the recent studies on the plasma arc composition and from a polyatomic clusters-surface interaction. (paper)

  13. Study of the plasma immersion implantation of titanium in stainless steel

    Science.gov (United States)

    Nikitenkov, N. N.; Sutygina, A. N.; Shulepov, I. A.; Sivin, D. O.; Kashkarov, E. B.

    2015-04-01

    The results of the study of the pulsed plasma-immersion ion implantation of titanium in steel Cr18Ni10Ti depending on the time (dose) implantation are presented. It is shown that the change of the element and the phase composition of the surface layers and their microscopic characteristics and mechanical properties (hardness, wear resistance) depending on the implantation time is not monotonic, but follows to a certain rule. The possibility of interpretation of the obtained results in the thermal spike concept of the generation on the surface by the stable (magic) clusters is discussed. This concept follows logically from the recent studies on the plasma arc composition and from a polyatomic clusters-surface interaction.

  14. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  15. In vivo response of laser processed porous titanium implants for load-bearing implants

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  16. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  17. Titanium ; dream new material

    International Nuclear Information System (INIS)

    Lee, Yong Tae; Kim Seung Eon; Heoon, Yong Taek; Jung, Hui Won

    2001-11-01

    The contents of this book are history of Titanium, present situation of Titanium industry, property of Titanium alloy, types of it, development of new alloy of Titanium smelting of Titanium, cast of Titanium and heat treatment of Titanium, Titanium alloy for plane, car parts, biological health care, and sport leisure and daily life, prospect, and Titanium industrial development of Titanium in China.

  18. Marginal bone-level alterations of loaded zirconia and titanium dental implants: an experimental study in the dog mandible.

    Science.gov (United States)

    Thoma, Daniel S; Benic, Goran I; Muñoz, Fernando; Kohal, Ralf; Sanz Martin, Ignacio; Cantalapiedra, Antonio G; Hämmerle, Christoph H F; Jung, Ronald E

    2016-04-01

    The aim was to test whether or not the marginal bone-level alterations of loaded zirconia implants are similar to the bone-level alterations of a grade 4 titanium one-piece dental implant. In six dogs, all premolars and the first molars were extracted in the mandible. Four months later, three zirconia implants (BPI, VC, ZD) and a control titanium one-piece (STM) implant were randomly placed in each hemimandible and left for transmucosal healing (baseline). Six months later, CAD/CAM crowns were cemented. Sacrifice was scheduled at 6-month postloading. Digital X-rays were taken at implant placement, crowns insertion, and sacrifice. Marginal bone-level alterations were calculated, and intra- and intergroup comparisons performed adjusted by confounding factors. Implants were successfully placed. Until crown insertion, two implants were fractured (one VC, one ZD). At sacrifice, 5 more implants were (partly) fractured (one BPI, four ZD), and one lost osseointegration (VC). No decementation of crowns occurred. All implant systems demonstrated a statistically significant (except VC) loss of marginal bone between baseline and crown insertion ranging from 0.29 mm (VC; P = 0.116) to 0.80 mm (ZD; P = 0.013). The estimated marginal bone loss between baseline and 6 months of loading ranged between 0.19 mm (BPI) and 1.11 mm (VC), being statistically significant for STM and VC only (P implants and control implants (STM vs. BPI P = 0.007; vs. VC P = 0.001; vs. ZD P = 0.011). Zirconia implants were more prone to fracture prior to and after loading with implant-supported crowns compared to titanium implants. Individual differences and variability in the extent of the bone-level changes during the 12-month study period were found between the different implant types and materials. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. One-year results of maxillary overdentures supported by 2 titanium-zirconium implants - implant survival rates and radiographic outcomes.

    Science.gov (United States)

    Zembic, Anja; Tahmaseb, Ali; Jung, Ronald E; Wismeijer, Daniel

    2017-07-01

    To assess implant survival rates and peri-implant bone loss of 2 titanium-zirconium implants supporting maxillary overdentures at 1 year of loading. Twenty maxillary edentulous patients (5 women and 15 men) being dissatisfied with their complete dentures were included. In total, 40 diameter-reduced titanium-zirconium implants were placed in the anterior maxilla. Local guided bone regeneration (GBR) was allowed if the treatment did not compromise implant stability. Following 3 to 5 months of healing, implant-supported overdentures were inserted on two ball anchors. Implants and overdentures were assessed at 1, 2, 4, and 8 weeks after implant insertion and 2, 4, and 12 months after insertion of overdentures (baseline). Standardized radiographs were taken at implant loading and 1 year. Implant survival rates and bone loss were the primary outcomes. Nineteen patients (1 dropout) with 38 implants were evaluated at a mean follow-up of 1.1 years (range 1.0-1.7 years). One implant failed resulting in an implant survival rate of 97.3%. There was a significant peri-implant bone loss of the implants at 1 year of function (mean, 0.7 mm, SD = 1.1 mm; median: 0.48 mm, IQR = 0.56 mm). There was a high 1-year implant survival rate for edentulous patients receiving 2 maxillary implants and ball anchors as overdenture support. However, several implants exhibited an increased amount of bone loss of more than 2 mm. Overdentures supported by 2 maxillary implants should thus be used with caution as minimally invasive treatment for specific patients encountering problems with their upper dentures until more long-term data is available. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. X-ray photoelectron spectroscopy characterization of high dose carbon-implanted steel and titanium alloys

    Science.gov (United States)

    Viviente, J. L.; García, A.; Alonso, F.; Braceras, I.; Oñate, J. I.

    1999-04-01

    A study has been made of the depth dependence of the atomic fraction and chemical bonding states of AISI 440C martensitic stainless steel and Ti-6Al-4V alloy implanted with 75 keV C + at very high doses (above 10 18 ions cm -2), by means of X-ray photoelectron spectroscopy combined with an Ar + sputtering. A Gaussian-like carbon distribution was observed on both materials at the lowest implanted dose. More trapezoidal carbon depth-profiles were found with increasing implanted doses, and a pure carbon layer was observed only on the titanium alloy implanted at the highest dose. The implanted carbon was combined with both base metal and carbon itself to form metallic carbides and graphitic carbon. Furthermore, carbon-enriched carbides were also found by curve fitting the C 1s spectra. The titanium alloy showed a higher carbidic contribution than the steel implanted at the same C + doses. A critical carbon concentrations of about 33 at.% and 23 at.% were measured for the formation of C-C bonds in Ti-6Al-4V and steel samples, respectively. The carbon atoms were bound with metal to form carbidic compounds until these critical concentrations were reached; when this C concentration was exceeded the proportion of C-C bonds increased and resulted in the growth of carbonaceous layers.

  1. Nano-engineered titanium for enhanced bone therapy

    Science.gov (United States)

    Gulati, Karan; Atkins, Gerald J.; Findlay, David M.; Losic, Dusan

    2013-09-01

    Current treatment of a number of orthopaedic conditions, for example fractures, bone infection, joint replacement and bone cancers, could be improved if mechanical support could be combined with drug delivery. A very challenging example is that of infection following joint replacement, which is very difficult to treat, can require multiple surgeries and compromises both the implant and the patient's wellbeing. An implant capable of providing appropriate biomechanics and releasing drugs/proteins locally might ensure improved healing of the traumatized bone. We propose fabrication of nanoengineered titanium bone implants using bioinert titanium wires in order to achieve this goal. Titanium in the form of flat foils and wires were modified by fabrication of titania nanotubes (TNTs), which are hollow self-ordered cylindrical tubes capable of accommodating substantial drug amounts and releasing them locally. To further control the release of drug to over a period of months, a thin layer of biodegradable polymer PLGA poly(lactic-coglycolic acid) was coated onto the drug loaded TNTs. This delayed release of drug and additionally the polymer enhanced bone cell adhesion and proliferation.

  2. Deposition of silver nanoparticles on titanium surface for antibacterial effect

    Directory of Open Access Journals (Sweden)

    Liao Juan

    2010-04-01

    Full Text Available Liao Juan1, Zhu Zhimin3, Mo Anchun1,2, Li Lei1, Zhang Jingchao11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; 2Department of Dental Implant, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Prosthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR ChinaAbstract: Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg surface using silanization method. The morphology and chemical components of the Ti-nAg surface were characterized by scanning electron microscopy (SEM equipped with energy-dispersive spectroscopy (EDS. Two species of bacteria, Staphylococcus aureus and Escherichia coli, were utilized to test the antibacterial effect of the Ti-nAg treated surface. The SEM examination revealed that a small quantity of silver nanoparticles was sparsely deposited on the titanium surface. The diameter of these nanoparticles ranged from ten to several hundred nm. EDS analyses revealed that there was 4.26% of Ag present on the surface. After a 24-hour incubation, 94% of Staphylococcus aureus and over 95% of Escherichia coli had been killed on the Ti-nAg surface, and the SEM examination of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to a control surface of untreated Titanium. These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.Keywords: nano-silver, titanium, antibacterial activity, silanization method

  3. Influence of Electropolishing and Magnetoelectropolishing on Corrosion and Biocompatibility of Titanium Implants

    Science.gov (United States)

    Rahman, Zia ur; Pompa, Luis; Haider, Waseem

    2014-11-01

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.

  4. Enhanced bonding of chitosan to implant quality titanium via four treatment combinations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Holly J. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, Mississippi 39762 (United States)], E-mail: hjp2@msstate.edu; Schulz, Kirk H. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, Mississippi 39762 (United States); Bumgardner, Joel D. [Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, Tennessee 38152 (United States); Schneider, Judith A. [Department of Mechanical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9552, Mississippi State, Mississippi 39762 (United States)

    2008-07-31

    Bioactive coatings have been investigated to enhance the integration of orthopaedic and dental-craniofacial implants in the surrounding bone tissue. Chitosan has been shown to possess many properties desirable in implant coatings, such as cell attachment and growth, and encouraging ordered bone tissue formation. Previous studies have produced methods to deposit chitosan onto a titanium surface using both two-step and three-step reaction schemes. In the current study, two different titanium surface treatments were evaluated for determining the strength of chitosan coatings bonded to titanium via two reaction processes. The chitosan coatings produced from the four treatment combinations were examined using X-ray Photoelectron Spectroscopy, which demonstrated that the final coatings were similar in composition to the previously reported coatings. Coatings examined by nano-indentation, exhibited hardness (0.19 {+-} 0.08 GPa) and elastic modulus (4.90 {+-} 1.82 GPa) values similar to the hardness and elastic modulus values previously reported. Scanning Electron Microscopy examination of the nano-indentation marks revealed cracks only at sites of applied stress, demonstrating that the chitosan coatings were able to absorb the applied stress. Bulk adhesion of the chitosan coatings demonstrated significant increases in bond strength (19.50 {+-} 1.63 MPa) over previously reported data (1.5-1.8 MPa), but no significant differences were seen between the four treatment combinations. Contact angle testing demonstrated that the chitosan coatings were more hydrophobic (98.0 {+-} 3.6 deg.) than published values (76.4 {+-} 5.1 deg.). Overall, mechanical testing demonstrated that, while the bulk properties of the chitosan coating were unaffected by the four treatment combinations, the bulk adhesion of the chitosan coating was greatly increased and high quality coatings were produced.

  5. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions.

    Science.gov (United States)

    Iijima, Masahiro; Yuasa, Toshihiro; Endo, Kazuhiko; Muguruma, Takeshi; Ohno, Hiroki; Mizoguchi, Itaru

    2010-01-01

    This study investigated the corrosion properties of ion implanted nickel-titanium wire (Neo Sentalloy Ionguard) in artificial saliva and fluoride mouth rinse solutions (Butler F Mouthrinse, Ora-Bliss). Non ion implanted nickel-titanium wire (Neo Sentalloy) was used as control. The anodic corrosion behavior was examined by potentiodynamic polarization measurement. The surfaces of the specimens were examined with SEM. The elemental depth profiles were characterized by XPS. Neo Sentalloy Ionguard in artificial saliva and Butler F Mouthrinse (500 ppm) had a lower current density than Neo Sentalloy. In addition, breakdown potential of Neo Sentalloy Ionguard in Ora-Bliss (900 ppm) was much higher than that of Neo Sentalloy although both wires had similar corrosion potential in Ora-Bliss (450 and 900 ppm). The XPS results for Neo Sentalloy Ionguard suggested that the layers consisted of TiO(2) and TiN were present on the surface and the layers may improve the corrosion properties.

  6. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Guosong; Lu, Qiuyuan [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Jun [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Xu, Ruizhen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yeung, Kelvin W.K., E-mail: wkkyeung@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-02-01

    Magnesium alloys are potential biodegradable materials and have attracted much attention due to their outstanding biological performance and mechanical properties. However, their rapid degradation inside the human body cannot meet clinical needs. In order to improve the corrosion resistance, dual titanium and oxygen ion implantation is performed to modify the surface of the WE43 magnesium alloy. X-ray photoelectron spectroscopy is used to characterize the microstructures in the near surface layer and electrochemical impedance spectroscopy, potentiodynamic polarization, and immersion tests are employed to investigate the corrosion resistance of the implanted alloys in simulated body fluids. The results indicate that dual titanium and oxygen ion implantation produces a TiO{sub 2}-containing surface film which significantly enhances the corrosion resistance of WE43 magnesium alloy. Our data suggest a simple and practical means to improve the corrosion resistance of degradable magnesium alloys. - Highlights: ► Surface modification of WE43 magnesium alloy using dual ion implantation ► Dual Ti and O ion implantation produces a homogeneous TiO{sub 2}-containing surface film ► Significant improvement of the alloy corrosion resistance after the dual ion implantation.

  7. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  8. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Directory of Open Access Journals (Sweden)

    Saita M

    2016-01-01

    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  9. Lactam inhibiting Streptococcus mutans growth on titanium

    International Nuclear Information System (INIS)

    Xavier, J.G.; Geremias, T.C.; Montero, J.F.D.; Vahey, B.R.; Benfatti, C.A.M.; Souza, J.C.M.; Magini, R.S.; Pimenta, A.L.

    2016-01-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48 h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml −1 ), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5 × 10 2 CFU/ml in the presence of lactam and 4 × 10 2 CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. - Highlights: • A novel synthetic compound is tested on preventing biofilm formation on titanium surfaces • Biofilm inhibition has been achieved on titanium surfaces containing the novel compound. • Planktonic growth of S. mutans was not affected by the presence of lactams on titanium.

  10. Lactam inhibiting Streptococcus mutans growth on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, J.G.; Geremias, T.C.; Montero, J.F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis/SC, 88040-900 (Brazil); Vahey, B.R. [Herman Ostrow School of Dentistry of USC, 925 W 34 St, Los Angeles, CA 90089 (United States); Benfatti, C.A.M.; Souza, J.C.M.; Magini, R.S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis/SC, 88040-900 (Brazil); Pimenta, A.L., E-mail: andrea@intelab.ufsc.br [Department of Biologia, ERRMECe, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin 95302 Cergy, Pontoise (France); Integrated Laboratories Technologies (InteLab), Dept. Chemical and Food Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis/SC, 88040-970 (Brazil)

    2016-11-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48 h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml{sup −1}), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5 × 10{sup 2} CFU/ml in the presence of lactam and 4 × 10{sup 2} CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. - Highlights: • A novel synthetic compound is tested on preventing biofilm formation on titanium surfaces • Biofilm inhibition has been achieved on titanium surfaces containing the novel compound. • Planktonic growth of S. mutans was not affected by the presence of lactams on titanium.

  11. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects.

    Science.gov (United States)

    Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won

    2016-06-01

    The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.

  12. Evaluation on the movement of endosseous titanium implants under continuous orthodontic forces: an experimental study in the dog.

    Science.gov (United States)

    Hsieh, Yao-Dung; Su, Ching-Ming; Yang, Yi-Hsin; Fu, Earl; Chen, Hui-Lin; Kung, Suefang

    2008-06-01

    The purpose of this study was to evaluate the movement of pure titanium implants under different continuous forces in the edentulous alveolar ridge. Four pairs of titanium implants were inserted into the right maxillary and mandibular post-extraction edentulous ridge of the experimental dog. Three different levels of continuous force (100, 200, and 500 g) were loaded onto three pairs of adjacent implant abutments using a memory Ni-Ti coil spring for up to 6 months and the remaining two implant abutments as the control group received no force. The positions of implant abutments were observed and the distances between the implants abutment at the top, middle and base levels were measured at the 0th, 2nd, 3rd, 6th and 8th month of the follow-up period. There was no significant change in the distances between adjacent abutments loaded with 100 or 200 g continuous forces throughout the entire study period. However, significantly more movement of implant abutments was noted in the 500 g pair after the 3rd month of loading when compared with the 200 or the 100 g pair (both P < 0.001). This change further increased at the 6th month (P < 0.001, 0.01, respectively). Moreover, the difference in the measurements at the top, middle and base level indicated that the two adjacent implants moved in a tipping manner in the 500 g pair after 3 and 6 months of loading. The osseointegrated implants remained stable and rigid with a pulling force of 100 and 200 g after 6 months of loading. However, when the force reached 500 g, the implants moved in an inward-tipping pattern. The results suggested that endosseous titanium implants might not necessarily be rigid anchorages under all circumstances.

  13. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  14. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  15. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.

  16. In vivo evaluation of defined polished titanium surfaces to prevent soft tissue adhesion.

    Science.gov (United States)

    Hayes, Jessica S; Welton, Joanne L; Wieling, Ronald; Richards, R Geoff

    2012-04-01

    Soft tissue-implant adhesion is often required for implant integration into the body; however, in some situations, the tissue is required to glide freely over an implant. In the case of distal radius fracture treatment, current literature describes how titanium and its alloys tend to lead to more intra-tendon inflammatory reactions compared with stainless steel. This leads to tendon-implant adhesion and damage possibly causing limited palmar flexion and even tendon rupture. The goal of this study was to analyze the effect of different surface polishings of titanium and titanium molybdenum implants on soft tissue reactions in vivo, with the aim to prevent direct soft tissue adhesion. Using a nonfracture model, to allow for study of the soft-tissue-implant surface interactions only, six surface variants of the same plate design were implanted onto the tibia of 24 New Zealand white rabbits and left in situ for 12 weeks. Results indicate that paste polished commercially pure titanium and titanium molybdenum alloy had the least soft tissue adhesion, with the concomitant development of a soft tissue capsule. Surface topography did not appear influence the thickness of the connective tissue surrounding the plate. Therefore, suitable surface polishing could be applied to plates for clinical use, where free gliding of tissues is required. Copyright © 2012 Wiley Periodicals, Inc.

  17. Surface modification of porous titanium with rice husk as space holder

    Science.gov (United States)

    Wang, Xinsheng; Hou, Junjian; Liu, Yanpei

    2018-06-01

    Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.

  18. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  19. Accuracy of Bone Measurements in the Vicinity of Titanium Implants in CBCT Data Sets: A Comparison of Radiological and Histological Findings in Minipigs

    Directory of Open Access Journals (Sweden)

    Alexander Gröbe

    2017-01-01

    Full Text Available Purpose. The aim of this animal study was the determination of accuracy of bone measurements in CBCT (cone-beam computed tomography in close proximity to titanium implants. Material and Methods. Titanium implants were inserted in eight Göttingen minipigs. 60 implants were evaluated histologically in ground section specimen and radiologically in CBCT in regard to thickness of the buccal bone. With random intercept models, the difference of histologic measurements and CBCT measurements of bone thickness was calculated. Results. The mean histological thickness of the buccal bone was 5.09 mm (CI 4.11–6.08 mm. The four raters measured slightly less bone in CBCT than it was found in histology. The random effect was not significant (p value 1.000. Therefore, the Intraclass Correlation Coefficient (ICC was 98.65% (CI 100.00–96.99%. Conclusion. CBCT is an accurate technique to measure even thin bone structures in the vicinity of titanium implants.

  20. Enhanced bonding of chitosan to implant quality titanium via four treatment combinations

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Schneider, Judith A.

    2008-01-01

    Bioactive coatings have been investigated to enhance the integration of orthopaedic and dental-craniofacial implants in the surrounding bone tissue. Chitosan has been shown to possess many properties desirable in implant coatings, such as cell attachment and growth, and encouraging ordered bone tissue formation. Previous studies have produced methods to deposit chitosan onto a titanium surface using both two-step and three-step reaction schemes. In the current study, two different titanium surface treatments were evaluated for determining the strength of chitosan coatings bonded to titanium via two reaction processes. The chitosan coatings produced from the four treatment combinations were examined using X-ray Photoelectron Spectroscopy, which demonstrated that the final coatings were similar in composition to the previously reported coatings. Coatings examined by nano-indentation, exhibited hardness (0.19 ± 0.08 GPa) and elastic modulus (4.90 ± 1.82 GPa) values similar to the hardness and elastic modulus values previously reported. Scanning Electron Microscopy examination of the nano-indentation marks revealed cracks only at sites of applied stress, demonstrating that the chitosan coatings were able to absorb the applied stress. Bulk adhesion of the chitosan coatings demonstrated significant increases in bond strength (19.50 ± 1.63 MPa) over previously reported data (1.5-1.8 MPa), but no significant differences were seen between the four treatment combinations. Contact angle testing demonstrated that the chitosan coatings were more hydrophobic (98.0 ± 3.6 deg.) than published values (76.4 ± 5.1 deg.). Overall, mechanical testing demonstrated that, while the bulk properties of the chitosan coating were unaffected by the four treatment combinations, the bulk adhesion of the chitosan coating was greatly increased and high quality coatings were produced

  1. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour

    International Nuclear Information System (INIS)

    Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C.

    2003-01-01

    Cell attachment and spreading to titanium-based alloy surfaces is a major parameter in implant technology. In this paper, substratum surface hydrophobicity, surface free energy, interfacial free energy and surface roughness were investigated to ascertain which of these parameters is predominant in human fibroblast spreading. Two methods for contact angle measurement were compared: the sessile drop method and the captive bubble two-probe method. The relationship between surface roughness and the sessile drop contact angles of various engineered titanium surfaces such as commercial pure titanium (cp-Ti), titanium-aluminium-vanadium alloy (Ti-6Al-4V), and titanium-nickel (NiTi), was shown. Surface free energy (SFE) calculations were performed from contact angles obtained on smooth samples based on the same alloys in order to eliminate the roughness effect. SFE of the surfaces have been calculated using the Owens-Wendt (OW) and Van Oss (VO) approaches with the sessile drop method. The OW calculations are used to obtain the dispersive (γ d ) and polar (γ p ) component of SFE, and the VO approach allows to reach the apolar (γ LW ) and the polar acid-base component (γ ab ) of the surface. From captive bubble contact angle experiments (air or octane bubble under water), the interfacial free energy of the different surfaces in water was obtained. A relationship between cell spreading and the polar component of SFE was found. Interfacial free energy values were low for all the investigated surfaces indicating good biocompatibility for such alloys

  2. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  3. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration

    Science.gov (United States)

    Zhang, Wenjie; Cao, Huiliang; Zhang, Xiaochen; Li, Guanglong; Chang, Qing; Zhao, Jun; Qiao, Yuqin; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-02-01

    Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants.Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to

  4. Microstructural characterization of titanium dental implants by electron microscopy and mechanical tests

    International Nuclear Information System (INIS)

    Helfenstein, B.; Muniz, N.O.; Dedavid, B.A.; Gehrke, S.A.; Vargas, A.L.M.

    2010-01-01

    Mini screw types for titanium implants, with differentiated design, were tested for traction and torsion for behavior analysis of the shape relative to the requirements of ASTM F136. All implants showed mechanical tensile strength above by the standard requirement, being that 83.3% of them broke above the doughnut, in support of the prosthesis. Distinct morphologies in ruptured by mechanical tests, were obtained. However, both fracture surfaces showed fragile comportments. Metallographic tests, x-ray diffraction (XRD) and microhardness were used for microstructural characterization of material, before and after heat treatment. The presences of β phase in screw surface after quenching treatment proves that the thermal treatment can contribute for mechanical resistance in surface implants. (author)

  5. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  6. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery

    Directory of Open Access Journals (Sweden)

    Pokrowiecki R

    2017-06-01

    Full Text Available Rafał Pokrowiecki,1,2 Tomasz Zaręba,3 Barbara Szaraniec,4 Krzysztof Pałka,5 Agnieszka Mielczarek,6 Elżbieta Menaszek,7 Stefan Tyski3,8 1Center for Cranio-Maxillo-Facial Surgery, Voivodeship Children’s Hospital, Olsztyn, 2Department of Oral Surgery, Jagiellonian Medical University, Kraków, 3Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, 4Faculty of Material Science and Ceramics, AGH University of Science and Technology, Kraków, 5Department of Materials Engineering, Lublin University of Technology, Lublin, 6Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, 7Department of Cytobiology, Collegium Medicum, Jagiellonian University, Kraków, 8Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland Abstract: The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure

  7. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  8. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants

    DEFF Research Database (Denmark)

    Mortensen, Mikkel Saksø; Jakobsen, Stig Storgaard; Saksø, Henrik

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation...... was evaluated by implant osseointegration and biomechanical fixation.The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were...... compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri-implant...

  9. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  10. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  11. Oral mucosa tissue response to titanium cover screws.

    Science.gov (United States)

    Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L

    2012-08-01

    Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.

  12. [Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computer- aided manufacturing of zirconia and titanium ceramic implant-supported crowns].

    Science.gov (United States)

    Cuiling, Liu; Liyuan, Yang; Xu, Gao; Hong, Shang

    2016-06-01

    This study aimed to investigate the influence of coping material and porcelain firing on the marginal and internal fit of computer-aided design/computer-aided manufacturing (CAD/CAM) of zirconia ceramic implant- and titanium ceramic implant-supported crowns. Zirconia ceramic implant (group A, n = 8) and titanium metal ceramic implant-supported crowns (group B, n = 8) were produced from copings using the CAD/CAM system. The marginal and internal gaps of the copings and crowns were measured by using a light-body silicone replica technique combined with micro-computed tomography scanning to obtain a three-dimensional image. Marginal gap (MG), horizontal marginal discrepancy (HMD), and axial wall (AW) were measured. Statistical analyses were performed using SPSS 17.0. Prior to porcelain firing, the measurements for MG, HMD, and AW of copings in group A were significantly larger than those in group B (P 0.05). Porcelain firing significantly reduced MG (P 0.05). The marginal fits of CAD/CAM zirconia ceramic implant-supported crowns were superior to those of CAD/CAM titanium ceramic-supported crowns. The fits of both the CAD/CAM zirconia ceramic implant- and titanium ceramic implant-supported crowns were obviously influenced by porcelain firing.

  13. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia

    International Nuclear Information System (INIS)

    Castilho Filho, Thyrso

    2003-01-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser (λ=780 nm) during 10 seconds, with an energy density of 7.5 J/cm 2 on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  14. Early Healing Events around Titanium Implant Devices with Different Surface Microtopography: A Pilot Study in an In Vivo Rabbit Model

    Directory of Open Access Journals (Sweden)

    Ester Orsini

    2012-01-01

    Full Text Available In the present pilot study, the authors morphologically investigated sandblasted, acid-etched surfaces (SLA at very early experimental times. The tested devices were titanium plate-like implants with flattened wide lateral sides and jagged narrow sides. Because of these implant shape and placement site, the device gained a firm mechanical stability but the largest portion of the implant surface lacked direct contact with host bone and faced a wide peri-implant space rich in marrow tissue, intentionally created in order to study the interfacial interaction between metal surface and biological microenvironment. The insertion of titanium devices into the proximal tibia elicited a sequence of healing events. Newly formed bone proceeded through an early distance osteogenesis, common to both surfaces, and a delayed contact osteogenesis which seemed to follow different patterns at the two surfaces. In fact, SLA devices showed a more osteoconductive behavior retaining a less dense blood clot, which might be earlier and more easily replaced, and leading to a surface-conditioning layer which promotes osteogenic cell differentiation and appositional new bone deposition at the titanium surface. This model system is expected to provide a starting point for further investigations which clarify the early cellular and biomolecular events occurring at the metal surface.

  15. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    Science.gov (United States)

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767

  16. Electrochemical removal of biofilms from titanium dental implant surfaces.

    Science.gov (United States)

    Schneider, Sebastian; Rudolph, Michael; Bause, Vanessa; Terfort, Andreas

    2018-06-01

    The infection of dental implants may cause severe inflammation of tissue and even bone degradation if not treated. For titanium implants, a new, minimally invasive approach is the electrochemical removal of the biofilms including the disinfection of the metal surface. In this project, several parameters, such as electrode potentials and electrolyte compositions, were varied to understand the underlying mechanisms. Optimal electrolytes contained iodide as well as lactic acid. Electrochemical experiments, such as cyclic voltammetry or measurements of open circuit potentials, were performed in different cell set-ups to distinguish between different possible reactions. At the applied potentials of E species are formed at the anode, such as triiodide and hydrogen peroxide. Ex situ tests with model biofilms of E. coli clearly demonstrated the effectiveness of the respective anolytes in killing the bacteria, as determined by the LIVE/DEAD™ assay. Using optimized electrolysis parameters of 30 s at 7.0 V and 300 mA, a 14-day old wildtype biofilm could be completely removed from dental implants in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and In Vivo Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis.

    Science.gov (United States)

    Nie, Bin'en; Long, Teng; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing

    2017-01-01

    Infection is one of the most important causes of titanium implant failure in vivo A developing prophylactic method involves the immobilization of antibiotics, especially vancomycin, onto the surface of the titanium implant. However, these methods have a limited effect in curbing multiple bacterial infections due to antibiotic specificity. In the current study, enoxacin was covalently bound to an amine-functionalized Ti surface by use of a polyethylene glycol (PEG) spacer, and the bactericidal effectiveness was investigated in vitro and in vivo The titanium surface was amine functionalized with 3-aminopropyltriethoxysilane (APTES), through which PEG spacer molecules were covalently immobilized onto the titanium, and then the enoxacin was covalently bound to the PEG, which was confirmed by X-ray photoelectron spectrometry (XPS). A spread plate assay, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize the antimicrobial activity. For the in vivo study, Ti implants were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and implanted into the femoral medullary cavity of rats. The degree of infection was assessed by radiography, micro-computed tomography, and determination of the counts of adherent bacteria 3 weeks after surgery. Our data demonstrate that the enoxacin-modified PEGylated Ti surface effectively prevented bacterial colonization without compromising cell viability, adhesion, or proliferation in vitro Furthermore, it prevented MRSA infection of the Ti implants in vivo Taken together, our results demonstrate that the use of enoxacin-modified Ti is a potential approach to the alleviation of infections of Ti implants by multiple bacterial species. Copyright © 2016 American Society for Microbiology.

  18. Biofunctionalization of titanium for dental implant

    Directory of Open Access Journals (Sweden)

    Takao Hanawa

    2010-08-01

    Full Text Available Surface modification is an important and predominant technique for obtaining biofunction in metals for biomedical use including dentistry. One surface modification technique is a process that changes the surface composition, structure, and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques to improve the hard tissue compatibility of titanium have been developed. Hydroxyapatite layer, titanium oxide layer, and calcium titanate layer with various morphologies are deposited using electrochemical treatment including micro-arc oxidation. Also, surface modification layers without hydroxyapatite and calcium phosphate are chemically formed that accelerate bone formation. Other approach is the immobilization of biofunctional molecules such as poly(ethylene glycol to the metal surface to control the adsorption of proteins and adhesion of cells, platelets, and bacteria. In the case of immobilization of biomolecules such as collagen and peptide, bone formation and soft tissue adhesion are improved.

  19. Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

    International Nuclear Information System (INIS)

    Shu, Y.; Zou, J.; Ou, G.; Wang, L.; Li, Q.

    2011-01-01

    Extracellular matrix (ECM), like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi) and heparin (Hep) multilayer was coated on pure titanium using a layer-by-layer (LbL) self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL) on the NaOH-treated titanium substrate (negatively charged surface), followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibility in vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants

  20. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  1. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  2. Relevant insight of surface characterization techniques to study covalent grafting of a biopolymer to titanium implant and its acidic resistance

    Science.gov (United States)

    D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère

    2015-02-01

    Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.

  3. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    International Nuclear Information System (INIS)

    Gordin, D.M.; Busardo, D.; Cimpean, A.; Vasilescu, C.; Höche, D.; Drob, S.I.; Mitran, V.; Cornen, M.; Gloriant, T.

    2013-01-01

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility

  4. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Busardo, D. [Quertech Ingénierie, 9 rue de la Girafe, 14000 Caen (France); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Vasilescu, C. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Höche, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht -Zentrum für Material- und Küstenforschung GmbH Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Drob, S.I. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, V. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Cornen, M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2013-10-15

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility.

  5. Effects of storage methods on time-related changes of titanium surface properties and cellular response

    International Nuclear Information System (INIS)

    Lu Haibin; Zhou Lei; Wan Lei; Li Shaobing; Rong Mingdeng; Guo Zehong

    2012-01-01

    Titanium implants are sold in the market as storable medical devices. All the implants have a certain shelf life during which they maintain their sterility, but variations of the surface properties through this duration have not been subject to a comprehensive assessment. The aim of this study was to investigate the effects of storage methods on time-related changes of titanium surface properties. Acid-etched titanium discs (Sa = 0.82 µm) were placed in a sealed container (tradition method) or submerged in the ddH 2 O/NaCl solution (0.15 mol L −1 )/CaCl 2 solution (0.15 mol L −1 ), and new titanium discs were used as a control group. SEM and optical profiler showed that surface morphology and roughness did not change within different groups, but the XPS analysis confirmed that the surface chemistry altered by different storage protocols as the storage duration increased, and the contact angle also varied with storage methods. The storage method also affected the protein adsorption capacity and cellular response on the titanium surface. All titanium discs stored in the solution maintained their excellent bioactivity even after four weeks storage time, but titanium discs stored in a traditional manner decreased substantially in an age-dependent manner. Much effort is needed to improve the storage methods in order to maintain the bioactivity of a titanium dental implant. (paper)

  6. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  7. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Directory of Open Access Journals (Sweden)

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  8. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    Science.gov (United States)

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be

  9. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh.

    Science.gov (United States)

    Sumida, Tomoki; Otawa, Naruto; Kamata, Y U; Kamakura, Satoshi; Mtsushita, Tomiharu; Kitagaki, Hisashi; Mori, Shigeo; Sasaki, Kiyoyuki; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Yamaguchi, Atsushi; Sohmura, Taiji; Nakamura, Takashi; Mori, Yoshihide

    2015-12-01

    Development of new custom-made devices to reconstruct alveolar bone for implantation, and comparison with conventional methods were the goals of this study. Using a computer-aided design technique, three-dimensional images were constructed. From these data, custom-made devices were produced by a selective laser melting method with pure titanium. Clinical trials also have been conducted with 26 participants who needed bone reconstruction before implantation; they were divided into 2 groups with 13 patients each. The first group uses custom-made devices; the other uses commercial titanium meshes that need to bend during operation. Some clinical aspects are evaluated after the trial. The custom-made devices can be produced closely by following the data precisely. Devices are fit for bone defect site. Moreover, the operation time of the custom-made group (75.4 ± 11.6 min) was significantly shorter than that of the conventional group (111.9 ± 17.8 min) (p < 0.01). Mucosal rupture occurs, without significant difference (p = 0.27), in a patient in the custom-made without severe infection (7.7%), and 3 in conventional (23.1%), respectively. The retaining screw is significantly fewer in the custom-made group than commercial mesh group (p < 0.01). These results indicate that our novel protocol could be simple and safe for providing powerful support for guided bone regeneration. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Imaging and dosimetric considerations for titanium prosthesis implanted within the irradiated region by high photon beams

    International Nuclear Information System (INIS)

    Indogo, V.

    2014-07-01

    The aim of this research was to observe dose distributions in the vicinity of titanium prosthetic implants during radiotherapy procedures. Data were obtained using a locally fabricated tissue equivalent phantom CT images, and in blue water phantom with titanium prosthesis which was irradiated with 60 Co gamma radiation and Elekta Platform photon beams. Images obtained were loaded into Prowess Panther and Oncentra treatment planning systems (TPSs) for dose simulations. Prowess TPS (1.25 MeV) estimated lesser errors whilst Oncentra (6 and 15 MV) dose simulations yielded large variations. Proximal ends of the metal recorded slight increase in doses as a rcsult of backscatter with dose increment below acceptable tolerance of ±3%. Doses measured decreases on the distal side of the prosthesis at a distance less than d max from the plate on each beam energy. Beyond certain depth along the axis, depth doses increased slightly mainly due to increase in electron fluence by portions receiving unperturbed dose. An increase in the plate thickness showed a corresponding decrease on percentage depth dose. A reduction in the above trend was also noticed with an increase in beam energy primarily because scattered photons are more forwardly directed. Prowess TPS (convolution superposition algorithm) was found to be better at reducing dose variation than OMP (collapse cone algorithm) when correction for artifact. Manual calculations on blue phantom data agree with results from Prowess. Oncentra is not capable of simulating dose around titanium prosthesis as its range of densities, 0.00121 to 2.83, excludes titanium density (rED for titanium is 3.74). (au)

  11. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Jiang N

    2016-09-01

    Full Text Available Nan Jiang,1,2 Pinggong Du,2 Weidong Qu,2 Lin Li,2 Zhonghao Liu,2 Songsong Zhu1 1State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 2Yantai City Stomatological Hospital, Yantai, People’s Republic of China Abstract: For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM, atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and

  12. Additively Manufactured Titanium and Cobalt-Chromium Implant Frameworks: Fit and Effect of Ceramic Veneering.

    Science.gov (United States)

    Svanborg, Per; Eliasson, Alf; Stenport, Victoria

    The purpose of this study was to evaluate the fit of additively manufactured cobalt-chromium and titanium and CNC-milled titanium frameworks before and after ceramic veneering. Ten stone casts simulating an edentulous maxilla provided with six abutment analogs were produced. For each stone cast, one additively manufactured cobalt-chromium framework (AM CoCr) and one titanium framework (AM Ti) were fabricated. The fit was analyzed with a coordinate measuring machine in three dimensions (x, y, and z axes) using best-fit virtual matching of center point coordinates, before and after ceramic veneering. CNC-milled titanium frameworks (CNC Ti) and earlier results from CNC-milled cobalt-chromium frameworks (CNC CoCr) were used for comparison. All frameworks presented minor misfit before and after veneering in the horizontal plane (x- and y-axes) between 2.9 and 13.5 μm and in the vertical plane (z-axis) between 1.6 and 5.4 μm. Ceramic veneering affected the fit of all groups of frameworks. Both AM Ti and AM CoCr presented significantly smaller distortion in the vertical plane compared with the CNC-milled frameworks. Implant-supported frameworks can be produced in either Ti or CoCr using either CNC milling or additive manufacturing with a fit well within the range of 20 μm in the horizontal plane and 10 μm in the vertical plane. The fit of frameworks of both materials and production techniques are affected by the ceramic veneering procedure to a small extent.

  13. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Administrator

    mon method is the deposition of bioactive ceramic mate- rials on the metal ... tion of nanoparticle layer, including carbon nanoparti- ... Coatings made of CNTs provide implants with .... reaches composite of CNT built into titanium oxide formed.

  14. In vitro comparative analysis of the fit of gold alloy or commercially pure titanium implant-supported prostheses before and after electroerosion.

    Science.gov (United States)

    Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria; Francischone, Carlos Eduardo; de Mattos, Maria da Gloria Chiarello

    2004-08-01

    For implant-supported prostheses, passive fit is critical for the success of rehabilitation, especially when alternative materials are used. The purpose of this study was to compare interfacial fit of implant-supported prostheses cast in titanium to those cast in gold alloy. Five 3-unit fixed partial dentures were fabricated in gold alloy (Degudent U) as 1-piece castings, and 5 others were similarly cast in commercially pure titanium (Grade 1). The interfacial gaps between the prostheses and the abutments were evaluated with an optical microscope, before and after electroerosion. Readings were made with both screws tightened (10 N.cm torque), and with only 1 side tightened, so as to also evaluate the passive fit of the prostheses. Data were compared statistically by 2-way analysis of variance and the post hoc Tukey multiple range test (alpha=.05). Before electroerosion, the interfacial gaps for the 1-piece prostheses were significantly smaller (Pelectroerosion procedure significantly (Pelectroerosion did not present significant differences when the side opposite the tightened side was analyzed, but the gold alloy group showed better fit when the tightened side was analyzed (12.8 +/- 1.4 microm for gold alloy; 29.6 +/- 4.4 microm for titanium) and when both screws were tightened (5.4 +/- 2.3 microm for gold alloy; 16.1 +/- 5.5 microm for titanium). Cast titanium prostheses, despite showing larger interfacial gaps between the prosthesis and abutment than those obtained with gold alloy, had improved fit after being subjected to electroerosion.

  15. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  16. The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, S. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Department of Physics, Kigali Institute of Education, P.O. Box 5039 Kigali (Rwanda)], E-mail: schadrack.nsengiyumva@uct.ac.za; Ntsoane, T.P. [Nuclear Energy Corporation of South Africa (NECSA), P.O. Box 582 (South Africa); Raji, A.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Topic, M. [iThemba LABS, Somerset West 7129 (South Africa); Kellermann, G. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas (Brazil); Riviere, J.P. [Laboratoire de Physique des Materiaux UMR6630-CNRS, 86960 (France); Britton, D.T.; Haerting, M. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2009-08-15

    The stress profile in polycrystalline titanium implanted with krypton ions at different fluences has been determined using synchrotron radiation diffraction. For each fluence, the krypton profile has been measured using Rutherford backscattering geometry. The results were compared to model calculations obtained from the SRIM 2008 computer code. A strong stress relaxation was found for high fluence implantation, whereas for low fluence implantation an additional source of tensile stress was introduced in the near surface region. The projected range of the implanted krypton was significantly reduced compared to the expected range. A possible cause of this discrepancy is the drift of implanted ions under the influence of the pre-existing stress gradient.

  17. The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium

    International Nuclear Information System (INIS)

    Nsengiyumva, S.; Ntsoane, T.P.; Raji, A.T.; Topic, M.; Kellermann, G.; Riviere, J.P.; Britton, D.T.; Haerting, M.

    2009-01-01

    The stress profile in polycrystalline titanium implanted with krypton ions at different fluences has been determined using synchrotron radiation diffraction. For each fluence, the krypton profile has been measured using Rutherford backscattering geometry. The results were compared to model calculations obtained from the SRIM 2008 computer code. A strong stress relaxation was found for high fluence implantation, whereas for low fluence implantation an additional source of tensile stress was introduced in the near surface region. The projected range of the implanted krypton was significantly reduced compared to the expected range. A possible cause of this discrepancy is the drift of implanted ions under the influence of the pre-existing stress gradient.

  18. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    OpenAIRE

    Ni Putu Mira Sumarta; Coen Pramono Danudiningrat; Ester Arijani Rachmat; Pratiwi Soesilawati

    2011-01-01

    Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP) titanium in baby hamster kidney-21 (BHK-21) fibroblast culture through MTT...

  19. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2000-01-01

    ) TiO2-blasted with particles of grain size 10 to 53 microns; (3) TiO2-blasted, grain size 63 to 90 microns; (4) TiO2-blasted, grain size 90 to 125 microns; (5) titanium plasma-sprayed (TPS). The surface topography was determined by the use of an optical instrument. Twelve rabbits, divided into two...... groups, had a total of 120 implants inserted in the tibiae. One implant from each of the five surface categories was placed within the left tibia of each rabbit. By a second operation, implants were installed in the right tibia, after 2 weeks in group A and after 3 weeks in group B. Fluorochrome labeling...

  20. A comparison of laser-welded titanium and conventional cast frameworks supported by implants in the partially edentulous jaw: a 3-year prospective multicenter study.

    Science.gov (United States)

    Jemt, T; Henry, P; Lindén, B; Naert, I; Weber, H; Bergström, C

    2000-01-01

    The purpose of this prospective multicenter study was to evaluate and compare the clinical performance of laser-welded titanium fixed partial implant-supported prostheses with conventional cast frameworks. Forty-two partially edentulous patients were provided with Brånemark system implants and arranged into 2 groups. Group A was provided with a conventional cast framework with porcelain veneers in one side of the jaw and a laser-welded titanium framework with low-fusing porcelain on the other side. The patients in group B had an old implant prosthesis replaced by a titanium framework prosthesis. The patients were followed for 3 years after prosthesis placement. Clinical and radiographic data were collected and analyzed. Only one implant was lost, and all prostheses were still in function after 3 years. The 2 framework designs showed similar clinical performance with few clinical complications. Only one abutment screw (1%) and 9 porcelain tooth units (5%) fractured. Four prostheses experienced loose gold screws (6%). In group A, marginal bone loss was similar for both designs of prostheses, with a mean of 1.0 mm and 0.3 mm in the maxilla and mandible, respectively. No bone loss was observed on average in group B. No significant relationship (P > 0.05) was observed between marginal bone loss and placement of prosthesis margin or prosthesis design. The use of laser-welded titanium frameworks seems to present similar clinical performance to conventional cast frameworks in partial implant situations after 3 years.

  1. Influence of homeopathic treatment with comfrey on bone density around titanium implants: a digital subtraction radiography study in rats.

    Science.gov (United States)

    Sakakura, Celso Eduardo; Neto, Rubens Spin; Bellucci, Marina; Wenzel, Ann; Scaf, Gulnara; Marcantonio, Elcio

    2008-06-01

    The objective of this study was to evaluate the influence of homeopathic treatment with comfrey (Shymphytum officinalis 6CH) on radiographic bone density and area around titanium implants. Forty-eight rats were divided into two groups of 24 animals each: a control group (C) and a test group (SO). Each animal received one titanium micro-implant placed in the tibia. The animals in Group SO were subjected to 10 drops of comfrey 6CH per day mixed into their drinking water until the day of sacrifice. Eight animals of each group were sacrificed at 7, 14 and 28 days post-surgery, respectively. Standardized digital radiographs were obtained on the day of implant installation (baseline images) and on the day of sacrifice (final images). Digital subtraction of the two corresponding images was performed to evaluate changes in bone density and the area related to change around the implant between baseline and final images. Subtraction images demonstrated that a significant difference existed in mean shade of gray at 14 days post-surgery between Group SO (mean 175.3+/-14.4) and Group C (mean 146.2+/-5.2). Regarding the area in pixels corresponding to the bone gain in Group SO, the differences observed between the sacrifice periods and groups were only significant at 7 days sacrifice between Group SO (mean 171.2+/-21.9) and Group C (mean 64.5+/-60.4). Within the limits of this study, comfrey administration promotes an increase in radiographic bone density around titanium implants in the initial period of bone healing.

  2. Functional results after external vocal fold medialization thyroplasty with the titanium vocal fold medialization implant.

    Science.gov (United States)

    Schneider, Berit; Denk, Doris-Maria; Bigenzahn, Wolfgang

    2003-04-01

    A persistent insufficiency of glottal closure is mostly a consequence of a unilateral vocal fold movement impairment. It can also be caused by vocal fold atrophy or scarring processes with regular bilateral respiratory vocal fold function. Because of consequential voice, breathing, and swallowing impairments, a functional surgical treatment is required. The goal of the study was to outline the functional results after medialization thyroplasty with the titanium vocal fold medialization implant according to Friedrich. In the period of 1999 to 2001, an external vocal fold medialization using the titanium implant was performed on 28 patients (12 women and 16 men). The patients were in the age range of 19 to 84 years. Twenty-two patients had a paralysis of the left-side vocal fold, and six patients, of the right-side vocal fold. Detailed functional examinations were executed on all patients before and after the surgery: perceptive voice sound analysis according to the "roughness, breathiness, and hoarseness" method, judgment of the s/z ratio and voice dysfunction index, voice range profile measurements, videostroboscopy, and pulmonary function tests. In case of dysphagia/aspiration, videofluoroscopy of swallowing was also performed. The respective data were statistically analyzed (paired t test, Wilcoxon-test). All patients reported on improvement of voice, swallowing, and breathing functions postoperatively. Videostroboscopy revealed an almost complete glottal closure after surgery in all of the patients. All voice-related parameters showed a significant improvement. An increase of the laryngeal resistance by the medialization procedure could be excluded by analysis of the pulmonary function test. The results confirm the external medialization of the vocal folds as an adequate method in the therapy of voice, swallowing, and breathing impairment attributable to an insufficient glottal closure. The titanium implant offers, apart from good tissue tolerability, the

  3. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    Science.gov (United States)

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (Pzirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Maxillary arch rehabilitation using implant-supported computer-assisted design-computer-assisted manufacturing-milled titanium framework

    Directory of Open Access Journals (Sweden)

    Tulika S Khanna

    2017-01-01

    Full Text Available Esthetic and functional rehabilitation of completely edentulous maxillary arch with fixed implant supported prosthesis is a challenging task. Newer technologies such as computer assisted design computer assisted manufacturing (CAD CAM and cone beam conventional tomography play an important role in achieving predictable results. Full mouth porcelain fused to metal (PFM individual crowns on CAD CAM milled titanium framework provides positive esthetic and functional outcome. This is a case report of rehabilitation of partially edentulous maxillary arch patient. Staged rehabilitation of this patient was planned. In the first stage, root canal treatment of key abutment teeth was done, nonsalvageable teeth were removed, and immediate interim overdenture was provided. In the second stage, five Nobel Biocare dental implants were placed. After integration impressions were made, CAD CAM milled titanium bar was fabricated. Individual PFM crowns were made and cemented. This method gives better esthetic compared to acrylic fused to metal hybrid prosthesis with the advantage of retrievability just like screw retained prosthesis. Hence, this technique is good for rehabilitation of patients with high esthetic demands.

  5. Micro CT and human histological analysis of a peri-implant osseous defect grafted with porous titanium granules: a case report.

    Science.gov (United States)

    Wohlfahrt, Johan Caspar; Aass, Anne Merete; Ronold, Hans Jacob; Lyngstadaas, Stale Petter

    2011-01-01

    Treatment of peri-implant osseous defects represents a significant challenge for clinicians, and the need to evolve within predictable surgical procedures is important. This case report describes the surgical treatment and grafting with porous titanium granules (PTG) of one patient with a peri-implant osseous defect. The suggested thrombogenic properties of titanium are intriguing from the perspective of osseous reconstructive surgery. In an ongoing randomized clinical trial using PTG for treatment of peri-implant osseous defects, one patient with one test implant was excluded and scheduled for implant removal. The surgical therapy included open flap debridement with surface decontamination with 24% EDTA gel, grafting with PTG, and resubmersion of the implant. After 12 months of healing, the implant with surrounding tissues was excised en bloc and micro CT and histological analyses were performed. Analyses showed PTG in close contact with new bone and with bone growing both into the porosities of the graft material and onto the adjacent implant surface. Element analysis demonstrated calcium and phosphorus in the new tissue embedding the PTG and the implant. Int J Oral Maxillofac Implants 2011;26:e9-e14.

  6. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  7. Osseoconductivity of a Specific Streptavidin-Biotin-Fibronectin Surface Coating of Biotinylated Titanium Implants - A Rabbit Animal Study.

    Science.gov (United States)

    Kämmerer, Peer W; Lehnert, Michael; Al-Nawas, Bilal; Kumar, Vinay V; Hagmann, Sebastien; Alshihri, Abdulmonem; Frerich, Bernhard; Veith, Michael

    2015-10-01

    Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven. © 2015 Wiley Periodicals, Inc.

  8. Immediate loading of titanium hexed screw-type implants in the edentulous patient: case report.

    Science.gov (United States)

    Calvo, M P; Muller, E; Garg, A K

    2000-01-01

    Histologic and histomorphometric studies in both animals and humans have shown that more rapid and greater bone-to-implant contact can be achieved with implants that incorporate certain surface characteristics compared with the original machined-surface implants. Such findings are significant because various implant designs may allow the fixtures to sufficiently resist functional loading sooner than originally thought. The case report presented here indicates that immediate loading of hexed titanium screw-type implants in the anterior mandible can lead to successful osseointegration and clinical outcome. The number of implants placed, their distribution, and the type of rigid connection are critical considerations for immediate loading. A bone height that can accommodate dental implants > or = 10 mm long is recommended. Biomechanically, the implants to be immediately loaded must be stable and resistant to macromovement to ensure good osseointegration.

  9. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

    Science.gov (United States)

    Farrell, Brad J; Prilutsky, Boris I; Ritter, Jana M; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2014-05-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to seven groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all three types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4-6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p skin integration with the potential for a safe seal. Copyright © 2013 Wiley Periodicals, Inc.

  10. Biofilm formation on titanium alloy and anatase-Bactercline® coated titanium healing screws: an in vivo human study

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2013-03-01

    Full Text Available Aim Bacterial adherence to implants is considered to be an important event in the pathogenesis of bacterial infections. In fact, this infection process is a first stage of peri-implant mucositis and peri-implantitis, and a positive correlation has been found between oral hygiene and marginal bone loss around implants in the edentulous mandible. Surface properties of transgingival implant components are important determinants in bacterial adhesion. The purpose of this study was to characterize the biofilm formation, in vivo, on healing screws made of titanium alloy or coated with a combination of anatase and Bactercline® product. Materials and methods Twenty-five patients, between 21- 37 years, in excellent systemic health, participated in this study. In each of the 25 participants, one anatase-Bactercline® coated healing screw (Test and one titanium alloy (TI6Al4V healing screw (Control were adapted to two different implants. Quantitative and qualitative biofilm formation on healing abutments was analyzed by culture method.Results Bacterial adherence to the two different healing screws used in this study were compared. Statistically significant differences were found between the Control and the Test group for both aerobic and anaerobic bacterial counts (p<0,05. The microflora consisted both of Gram-positive and Gram-negative bacteria, and displayed a high variability. The anaerobic S. intermedius, potentially “pathogenic”, was isolated only from the Control group. Both healing screws harbored primarily Gram-positive rods as Actinomyces spp, A. naeslundii, A. viscosus and the Gram-negative rods (Fusobacterium spp, Prevotella spp, Capnocythophaga spp were mostly found on the Control healing screws.Conclusion Anatase-Bactercline® coated healing screws reduce the number of initially adhering bacteria, formed mainly of Gram-positive microorgnisms, while, on the contrary, the microflora covering the titanium alloy healing screws was, for the

  11. Titanium and aluminium ions implanted by plasma on polyethylene; lones de titanio y aluminio implantados por plasma sobre polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Morales, J. [UAM-I, Apdo. Postal 5534, Iztapalapa, D.F. (Mexico)]. e-mail: gcc@nuclear.inin.mx

    2007-07-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  12. Cyclosporine-a and bone density around titanium implants: a histometric study in rabbits

    Directory of Open Access Journals (Sweden)

    Celso Eduardo Sakakura

    2011-06-01

    Full Text Available Aim: Cyclosporine A (CsA is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA received daily subcutaneous injection of CsA (10mg/kg body weight and the control group (CTL received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 – p < 0.01. In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 – p <0.05. In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 – p= 0.001. Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.

  13. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  14. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  15. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  16. Photofunctionalization of Titanium: An Alternative Explanation of Its Chemical-Physical Mechanism.

    Directory of Open Access Journals (Sweden)

    Marco Roy

    Full Text Available To demonstrate that titanium implant surfaces as little as 4 weeks from production are contaminated by atmospheric hydrocarbons. This phenomenon, also known as biological ageing can be reversed by UVC irradiation technically known as photofunctionalization. To propose a new model from our experimental evidence to explain how the changes in chemical structure of the surface will affect the adsorption of amino acids on the titanium surface enhancing osteointegration.In our study XPS and AES were used to analyze the effects of UVC irradiation (photofunctionalization in reversing biological ageing of titanium. SEM was used to analyze any possible effects on the topography of the surface.UVC irradiation was able to reverse biological ageing of titanium by greatly reducing the amount of carbon contamination present on the implant surface by up to 4 times, while the topography of the surface was not affected. UVC photon energy reduces surface H2O and increases TiOH with many -OH groups being produced. These groups explain the super-hydrophilic effect from photofunctionalization when these groups come into contact with water.Photofunctionalization has proven to be a valid method to reduce the amount of hydrocarbon contamination on titanium dental implants and improve biological results. The chemisorption mechanisms of amino acids, in our study, are dictated by the chemical structure and electric state present on the surface, but only in the presence of an also favourable geometrical composition at the atomical level.

  17. Oxygen depth profiling in Kr+-implanted polycrystalline alpha titanium by means of 16O(α,α)16O resonance scattering

    International Nuclear Information System (INIS)

    Nsengiyumva, S.; Riviere, J.P.; Raji, A.T.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2011-01-01

    The 16 O(α,α) 16 O resonance scattering was applied to study the effects of ion implantation on the oxygen distribution in the near surface region of polycrystalline titanium implanted with 180 keV krypton ions at fluences, ranging between 1 x 10 14 and 5 x 10 15 Kr + /cm 2 . Two sample sets were chosen: as-received polycrystalline titanium discs rolled and annealed in half-hard condition which had a thick oxygen layer and similar samples in which this surface layer was removed by polishing. An increase of the mean oxygen concentration observed in both unpolished and polished samples at low fluence suggests a knock-on implantation of surface oxygen atoms. At high fluence, an overall decrease in the mean oxygen concentration and mean oxygen depth suggests an out-diffusion of near-surface oxygen atoms.

  18. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  19. Titanium disilicide formation by sputtering of titanium on heated silicon substrate

    Science.gov (United States)

    Tanielian, M.; Blackstone, S.

    1984-09-01

    We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated

  20. A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: an experimental rabbit study.

    Science.gov (United States)

    Nazzal, Adam; Lozano-Calderón, Santiago; Jupiter, Jesse B; Rosenzweig, Jaime S; Randolph, Mark A; Lee, Sang Gil P

    2006-09-01

    The current trend is to treat distal radius fractures with open reduction and internal fixation with either titanium or stainless steel plates. Both provide stable fixation; however, there is minimal evidence concerning the soft-tissue response to these materials. Our objective was to evaluate the response of adjacent extensor tendons to titanium and stainless steel in a rabbit in vivo model and to evaluate the influence of time. Forty rabbits were divided into 5 groups of 8 rabbits each. Groups I and II had unilateral osteotomy of the distal radius followed by dorsal fixation with titanium and stainless steel plates, respectively. Groups III and IV had fixation with titanium and stainless steel, respectively, but without osteotomy. Group V had surgical dissection without osteotomy or plates. Two animals per group were killed at 1, 4, 12, and 24 weeks. The specimens (distal radius, plate, overlying soft tissue, and extensor tendon) were harvested en bloc for histologic analysis. For interface preservation between implant and tissues the specimens were embedded in methylmethacrylate, sectioned, and stained with hematoxylin-eosin. Histologic analysis showed a fibrous tissue layer formed over both implants between the plate and the overlying extensor tendons in the groups treated with plating independently of the material and the presence or absence of osteotomy. This fibrous layer contained the majority of debris. Metallic particles were not observed in the tendon or muscle substance of any animals; however, they were visualized in the tenosynovium. Hematoxylin-eosin-stained sections of groups I through IV showed proliferative fibroblasts and metallic particles; however, this layer was not observed in group V. Statistical analysis did not show differences between the groups regarding the number of cells or metallic particles. Our results indicate that both implants generated adjacent reactive inflammatory tissue and particulate debris. There was no difference in cell

  1. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    Science.gov (United States)

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  2. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  3. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge.

    Science.gov (United States)

    Mounir, M; Atef, M; Abou-Elfetouh, A; Hakam, M M

    2018-05-01

    The aim of this study was to assess two new protocols for single-stage rehabilitation of the severely atrophic maxillary ridge using customized porous titanium or polyether ether ketone (PEEK) sub-periosteal implants. Ten patients with a severely atrophic anterior maxillary alveolar ridge were divided randomly into two groups (five patients in each) to receive customized sub-periosteal implants fabricated via CAD/CAM technology: group 1, porous titanium implants; group 2, PEEK implants. Prosthetic loading with fixed acrylic bridges was performed 1 month postoperative. The implants were followed-up for 12 months and evaluated for the presence of any sign of radiographic bone resorption, mobility, infection, prosthetic fracture, or implant exposure. The immediate postoperative period was uneventful except for one case complicated by wound dehiscence in group 1. At 12 months, all implants were functionally stable and the patients were comfortable with the prostheses. No signs of radiographic bone resorption, mobility, infection, or prosthetic fracture were observed. Within the limitations of this study, the application of customized porous titanium and PEEK sub-periosteal implants produced through CAD/CAM technology appears to be an acceptable method for single-stage prosthetic rehabilitation of the severely atrophic edentulous anterior maxilla. This study was awarded the best case study at the academy of osseintegration annual meeting 2017, Orlando, Florida. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: 2-Year Follow-Up from a Prospective Multicenter Trial.

    Science.gov (United States)

    Duhon, Bradley S; Bitan, Fabien; Lockstadt, Harry; Kovalsky, Don; Cher, Daniel; Hillen, Travis

    2016-01-01

    Sacroiliac joint (SIJ) dysfunction is an underdiagnosed condition. Several published cohorts have reported favorable mid-term outcomes after SIJ fusion using titanium implants placed across the SIJ. Herein we report long-term (24-month) results from a prospective multicenter clinical trial. One hundred and seventy-two subjects at 26 US sites with SI joint dysfunction were enrolled and underwent minimally invasive SI joint fusion with triangular titanium implants. Subjects underwent structured assessments preoperatively and at 1, 3, 6, 12, 18 and 24 months postoperatively, including SIJ pain ratings (0-100 visual analog scale), Oswestry Disability Index (ODI), Short Form-36 (SF-36), EuroQOL-5D (EQ-5D), and patient satisfaction. Adverse events were collected throughout follow-up. All participating patients underwent a high-resolution pelvic CT scan at 1 year. Mean subject age was 50.9 years and 69.8% were women. SIJ pain was present for an average of 5.1 years prior to surgical treatment. SIJ pain decreased from 79.8 at baseline to 30.4 at 12 months and remained low at 26.0 at 24 months (pdysfunction, minimally invasive SI joint fusion using triangular titanium implants showed marked improvements in pain, disability and quality of life at 2 years. Imaging showed that bone apposition to implants was common but radiographic evidence of intraarticular fusion within the joint may take more than 1 year in many patients. This prospective multicenter clinical trial was approved by local or regional IRBs at each center prior to first patient enrollment. Informed consent with IRB-approved study-specific consent forms was obtained from all patients prior to participation.

  5. Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching

    Science.gov (United States)

    Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing

    2018-05-01

    Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.

  6. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  7. Titanium and titanium alloys: fundamentals and applications

    National Research Council Canada - National Science Library

    Leyens, C; Peters, M

    2003-01-01

    ... number of titanium alloys have paved the way for light metals to vastly expand into many industrial applications. Titanium and its alloys stand out primarily due to their high specific strength and excellent corrosion resistance, at just half the weight of steels and Ni-based superalloys. This explains their early success in the aerospace and the...

  8. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    International Nuclear Information System (INIS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-01-01

    with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  9. Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry – Part III: Surface characteristics an bone-implant contact formation

    Czech Academy of Sciences Publication Activity Database

    Strnad, J.; Strnad, Z.; Šesták, Jaroslav; Urban, K.; Povýšil, C.

    2007-01-01

    Roč. 68, - (2007), s. 841-843 ISSN 0022-3697 R&D Projects: GA AV ČR IAA100100639 Grant - others:GAMPO(CZ) FT-TA/087 Program:FT Institutional research plan: CEZ:AV0Z10100521 Keywords : implants * surface * titanium * bioactivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.899, year: 2007

  10. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  11. The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs

    Directory of Open Access Journals (Sweden)

    Iurii Mikhailovich Irianov

    2014-05-01

    Full Text Available The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of meshtitanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase.

  12. Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition

    Directory of Open Access Journals (Sweden)

    Xing H

    2017-10-01

    Full Text Available Helin Xing,1,* Xing Wang,2,* Saisong Xiao,3,* Guilan Zhang,1 Meng Li,1 Peihuan Wang,1 Quan Shi,1 Pengyan Qiao,1 Lingling E,1 Hongchen Liu1 1Institute of Stomatology, Chinese PLA General Hospital, Beijing, 2Hospital of Stomatology, Shanxi Medical University, Taiyuan, 3Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China *These authors contributed equally to this work Purpose: Titanium implant is a widely used method for dental prosthesis restoration. Nevertheless, in patients with systemic diseases, including osteoporosis, diabetes, and cancer, the success rate of the implant is greatly reduced. This study investigates a new implant material loaded with insulin-like growth factor 1 (IGF1, which could potentially improve the implant success rate, accelerate the occurrence of osseointegration, and provide a new strategy for implant treatment in osteoporotic patients. Materials and methods: Biofunctionalized polyelectrolyte multilayers (PEMs with polyethylenimine as the excitation layer and gelatin/chitosan loaded with IGF1 were prepared on the surface of titanium implant by layer-by-layer self-assembly technique. The physical and chemical properties of the biofunctionalized PEMs, the biological characteristics of bone marrow mesenchymal stem cells (BMMSCs, and bone implant contact correlation test indexes were detected and analyzed in vitro and in vivo using osteoporosis rat model. Results: PEMs coatings loaded with IGF1 (TNS-PEM-IGF1-100 implant promoted the early stage of BMMSCs adhesion. Under the action of body fluids, the active coating showed sustained release of growth factors, which in turn promoted the proliferation and differentiation of BMMSCs and the extracellular matrix. At 8 weeks from implant surgery, the new bone around the implants was examined using micro-CT and acid fuchsin/methylene blue staining. The new bone formation increased with time in each group, while the TNS-PEM-IGF1

  13. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    International Nuclear Information System (INIS)

    Zanoni, R.; Ioannidu, C.A.; Mazzola, L.; Politi, L.; Misiano, C.; Longo, G.; Falconieri, M.; Scandurra, R.

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides

  14. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, R., E-mail: robertino.zanoni@uniroma1.it [Dipartimento di Chimica, Università di Roma ‘La Sapienza’ p.le Aldo Moro 5, 00185 Rome (Italy); Ioannidu, C.A.; Mazzola, L.; Politi, L. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy); Misiano, C. [Romana Film Sottili, Anzio, Rome (Italy); Longo, G. [Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Ecole Polytechnique Fédérale de Lausanne, SB IPSB LPMV, BSP 409 (Cubotron UNIL), R.te de la Sorge, CH-1015 Lausanne (Switzerland); Falconieri, M. [ENEA, Unità Tecnica Applicazioni delle Radiazioni, via Anguillarese 301, 00123 Rome (Italy); Scandurra, R. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy)

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides.

  15. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study.

    Science.gov (United States)

    Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.

  16. The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: a histologic and histomorphometric study.

    Science.gov (United States)

    Anitua, Eduardo; Orive, Gorka; Pla, Rafael; Roman, Pedro; Serrano, Victoriano; Andía, Isabel

    2009-10-01

    The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained from venous blood of three goats and applied either as a 3D fibrin scaffold (scaffold-like PRGF) in the regeneration of artificial defects or as liquid PRGF via humidifying the implants before their insertion. Initially, 12 defects were filled with scaffold-like PRGF and another 12 were used as controls. The histological analysis at 8 weeks revealed mature bone trabeculae when PRGF was used, whereas the control samples showed mainly connective tissue with incipient signs of bone formation. For the second set of experiments, 26 implants (13 humidified with liquid PRGF) were placed in the tibiae of goats. Histological and histomorphometric results demonstrated that application of liquid PRGF increased the percentage of bone-implant contact in 84.7%. The whole surface of the PRGF-treated implants was covered by newly formed bone, whereas only the upper half was surrounded in control implants. In summary, PRGF can accelerate bone regeneration in artificial defects and improve the osseointegration of titanium dental implants.

  17. Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas

    Science.gov (United States)

    Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih

    2018-02-01

    In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.

  18. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  19. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.

    Science.gov (United States)

    Moiduddin, Khaja

    2018-02-01

    The traditional methods of metallic bone implants are often dense and suffer from adverse reactions, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. The objective of this study is to evaluate the customized porous cranial implant with mechanical properties closer to that of bone and to improve the aesthetic outcome in cranial surgery with precision fitting for a better quality of life. Two custom cranial implants (bulk and porous) are digitally designed based on the Digital Imaging and Communications in Medicine files and fabricated using additive manufacturing. Initially, the defective skull model and the implant were fabricated using fused deposition modeling for the purpose of dimensional validation. Subsequently, the implant was fabricated using titanium alloy (Ti6Al4V extra low interstitial) by electron beam melting technology. The electron beam melting-produced body diagonal node structure incorporated in cranial implant was evaluated based on its mechanical strength and structural characterization. The results show that the electron beam melting-produced porous cranial implants provide the necessary framework for the bone cells to grow into the pores and mimic the architecture and mechanical properties closer to the region of implantation. Scanning electron microscope and micro-computed tomography scanning confirm that the produced porous implants have a highly regular pattern of porous structure with a fully interconnected network channel without any internal defect and voids. The physical properties of the titanium porous structure, containing the compressive strength of 61.5 MPa and modulus of elasticity being 1.20 GPa, represent a promising means of reducing stiffness and stress-shielding effect on the surrounding bone. This study reveals that the use of porous structure in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength and structural characteristics

  20. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  1. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants

    Directory of Open Access Journals (Sweden)

    Ma Q

    2012-04-01

    Full Text Available Qianli Ma1*, Wei Wang1*, Paul K Chu2, Shenglin Mei1,2, Kun Ji3, Lei Jin4, Yumei Zhang11Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China; 3Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 4Stomatology Department, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: Titanium (Ti implants are widely used clinically, but peri-implantitis remains one of the most common and serious complications. Healthy integration between gingival tissue and the implant surface is critical to long-term success in dental implant therapy. The objective of this study was to investigate how different concentrations of immobilized fibroblast growth factor 2 (FGF2 on the titania nanotubular surface influence the response of human gingival fibroblasts (HGFs.Methods: Pure Ti metal was anodized at 20 V to form a vertically organized titanium dioxide nanotube array on which three concentrations of FGF2 (250 ng/mL, 500 ng/mL, or 1000 ng/mL were immobilized by repeated lyophilization. Surface topography was observed and FGF2 elution was detected using enzyme-linked immunosorbent assay. The bioactivity changes of dissolvable immobilized FGF2 were measured by methyl-thiazolyl-tetrazolium assay. Behavior of HGFs was evaluated using adhesion and methyl-thiazolyl-tetrazolium bromide assays.Results: The FGF2 remained for several days on the modified surface on which HGFs were cultured. Over 90% of the dissolvable immobilized FGF2 had been eluted by Day 9, whereas the FGF2 activity was found to diminish gradually from Day 1 to Day 9. The titania nanotubular surface with an optimal preparing

  2. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  3. Corrosion of titanium and titanium alloys in spent fuel repository conditions - literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haenninen, H.; Aaltonen, P.; Taehtinen, S.

    1985-03-01

    The spent nuclear fuel is planned to be disposed in Finnish bedrock. The canister of spent fuel in waste repository is one barrier to the release of radionuclides. It is possible to choose a canister material with a known, measurable corrosion rate and to make it with thickness allowing corrosion to occur. The other possibility is to use a material which is nearly immune to general corrosion. In this second category there are titanium and titanium alloys which exhibit a very high degree of resistance to general corrosion. In this literature study the corrosion properties of unalloyed titanium, titanium alloyed with palladium and titanium alloyed with molybdenum and nickel are reviewed. The two titanium alloys own in addition to the excellent general corrosion properties outstanding properties against localized corrosion like pitting or crevice corrosion. Stress corrosion cracking and corrosion fatique of titanium seem not to be a problem in the repository conditions, but the possibilities of delayed cracking caused by hydrogen should be carefully appreciated. (author)

  4. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  5. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants.

    Science.gov (United States)

    Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E

    2013-10-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  7. Characterization of poly(Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces

    Science.gov (United States)

    Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.

    2011-01-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821

  8. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  9. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients

    NARCIS (Netherlands)

    van Velzen, F.J.J.; Ofec, R.; Schulten, E.A.J.M.; ten Bruggenkate, C.M.

    2015-01-01

    Purpose This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients.

  10. Influence of surgical and prosthetic techniques on marginal bone loss around titanium implants. Part I: immediate loading in fresh extraction sockets.

    Science.gov (United States)

    Berberi, Antoine N; Tehini, Georges E; Noujeim, Ziad F; Khairallah, Alexandre A; Abousehlib, Moustafa N; Salameh, Ziad A

    2014-10-01

    Delayed placement of implant abutments has been associated with peri-implant marginal bone loss; however, long-term results obtained by modifying surgical and prosthetic techniques after implant placement are still lacking. This study aimed to evaluate the marginal bone loss around titanium implants placed in fresh extraction sockets using two loading protocols after a 5-year follow-up period. A total of 36 patients received 40 titanium implants (Astra Tech) intended for single-tooth replacement. Implants were immediately placed into fresh extraction sockets using either a one-stage (immediate loading by placing an interim prosthesis into functional occlusion) or a two-stage prosthetic loading protocol (insertion of abutments after 8 weeks of healing time). Marginal bone levels relative to the implant reference point were evaluated at four time intervals using intraoral radiographs: at time of implant placement, and 1, 3, and 5 years after implant placement. Measurements were obtained from mesial and distal surfaces of each implant (α = 0.05). One-stage immediate implant placement into fresh extraction sockets resulted in a significant reduction in marginal bone loss (p sockets reduced marginal bone loss and did not compromise the success rate of the restorations. © 2014 by the American College of Prosthodontists.

  11. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    Science.gov (United States)

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  12. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pmicroscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  13. Pheochromocytoma (PC12 Cell Response on Mechanobactericidal Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Jason V. Wandiyanto

    2018-04-01

    Full Text Available Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

  14. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    International Nuclear Information System (INIS)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-01-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4 ). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  15. Osseointegration improvement by shot peening in titanium dental implants

    International Nuclear Information System (INIS)

    Aparicio, C.; Gil, F.J.; Planell, J.A.; Padros, A.; Peraire, C.

    1998-01-01

    In order to optimize the implant-bone fixation, different shot peening treatments with different shot particles (TiO 2 , Al 2 O 3 ; SiC) have been made. The influence that each type of shot particle has in the bone colonization on the different treatment surfaces has been determined by means of osteoblast-like cells culture. Commercially pure titanium discs have been shot peened. Their qualitative and quantitative surface roughness have been characterized; as well as their surface contamination caused by the shot particles. Particle size has also been determined, before and after the treatment, in order to evaluate their breaking averages. Finally, a TiO 2 shot particles manufacture process by sintering has been developed. The manufacture has been necessary since this type of shot particles are not available in the market with the adequate size. (Author) 10 refs

  16. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  17. Ceramic modifications of porous titanium: effects on macrophage activation.

    Science.gov (United States)

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  19. Guidelines for patient-specific jawline definition with titanium implants in esthetic, deformity, and malformation surgery

    OpenAIRE

    Mommaerts, Maurice Yves

    2016-01-01

    Context: Asymmetry and unfavorable esthetics of the jawline have become possible to correct in three dimensions using computer aided design and computer aided manufacturing. Aims: The aim of this study was to provide esthetic, technical, and operative guidelines for mandibular angle and border augmentation using patient-specific titanium implants made by selective laser melting. Settings and Design: University hospital - prospective registry. Subjects and Methods: Twelve patients and 17 impla...

  20. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  1. In Vitro Evaluation of PCL and P(3HB as Coating Materials for Selective Laser Melted Porous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-11-01

    Full Text Available Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL and the biopolymer poly(3-hydroxybutyrate (P(3HB were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM and coated with PCL or P(3HB via dip coating. To test the biocompatibility, Live Cell Imaging (LCI as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM and energy-dispersive X-ray (EDX analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB. Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL

  2. Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants

    Science.gov (United States)

    Lee, Bryan E. J.; Exir, Hourieh; Weck, Arnaud; Grandfield, Kathryn

    2018-05-01

    Reproducible and controllable methods of modifying titanium surfaces for dental and orthopaedic applications are of interest to prevent poor implant outcomes by improving osseointegration. This study made use of a femtosecond laser to generate laser-induced periodic surface structures with periodicities of 300, 620 and 760 nm on titanium substrates. The reproducible rippled patterns showed consistent submicron scale roughness and relatively hydrophobic surfaces as measured by atomic force microscopy and contact angle, respectively. Transmission electron microscopy and Auger electron spectroscopy identified a thicker oxide layer on ablated surfaces compared to controls. In vitro testing was conducted using osteosarcoma Saos-2 cells. Cell metabolism on the laser-ablated surfaces was comparable to controls and alkaline phosphatase activity was notably increased at late time points for the 620 and 760 nm surfaces compared to controls. Cells showed a more elongated shape on laser-ablated surfaces compared to controls and showed perpendicular alignment to the periodic structures. This work has demonstrated the feasibility of generating submicron features on an implant material with the ability to influence cell response and improve implant outcomes.

  3. Comparison of porosity measurement techniques for porous titanium scaffolds evaluation

    International Nuclear Information System (INIS)

    Oliveira, M.V.; Ribeiro, A.A.; Moreira, A.C.; Moraes, A.M.C.; Appoloni, C.R.; Pereira, L.C.

    2009-01-01

    Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds. (author)

  4. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    Science.gov (United States)

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm 2 ) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm 2 ) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  5. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Matthias J.; Walter, Martin S. [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Lyngstadaas, S. Petter [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Wintermantel, Erich [Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway)

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium–zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p < 0.01) on the titanium–zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium. - Highlights: ► TiZr alloy showed increased hydrogen levels over Ti. ► The alloying element Zr appeared to catalyze hydrogen absorption in Ti. ► Surface roughness was significantly increased for the TiZr alloy over Ti. ► TiZr alloy revealed nanostructures not observed for Ti.

  6. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  7. The use of titanium and stainless steel in fracture fixation.

    Science.gov (United States)

    Hayes, J S; Richards, R G

    2010-11-01

    The use of metal in fracture fixation has demonstrated unrivalled success for many years owing to its high stiffness, strength, biological toleration and overall reliable function. The most prominent materials used are electropolished stainless steel and commercially pure titanium, along with the more recent emergence of titanium alloys. Despite the many differences between electropolished stainless steel and titanium, both materials provide a relatively predictable clinical outcome, and offer similar success for fulfilling the main biomechanical and biological requirements of fracture fixation despite distinctive differences in implant properties and biological responses. This article explores these differences by highlighting the limitations and advantages of both materials, and addresses how this translates to clinical success.

  8. Alkalescent nanotube films on a titanium-based implant: A novel approach to enhance biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanxian [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Dong, Chaofang, E-mail: cfdong@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Yang, Sefei [Department of Stomatology, The PLA General Hospital, Beijing 100853 (China); Wu, Junsheng; Xiao, Kui; Huang, Yunhua; Li, Xiaogang [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-03-01

    The interfacial pH value has a marked effect on cell viability because the pro-mineralization activity of osteoblasts increases at alkaline extracellular pH, whereas the pro-resorptive activity of osteoclasts increases under more acidic conditions. To obtain the more favorable alkaline interface, we developed a novel nanotube layer that was incorporated with magnesium oxide on a titanium implant substrate (MgO/NT/Ti) via ethylenediamine tetraacetic acid (EDTA) chelation. This facile immersion-annealing process successfully created a homogeneous magnesium oxide layer with sustained release kinetics and superior hydrophilicity according to the surface characterization and microenvironment measurement. The titania nanotubes on the substrate with an anatase phase exhibited a lower passivation current and a more positive corrosion potential compared with pure titanium, which guaranteed a reasonable corrosion resistance, even when it was wrapped with a magnesium oxide layer. In vitro cell cultures showed that MgO/NT/Ti significantly increased cell proliferation and alkaline phosphatase (ALP) activity. The resulting alkalescent microenvironment created by the MgO layer encouraged the cells to spread into polygonal shapes, accelerated the differentiation stage to osteoblast and induced a higher expression of vinculin. In summary, the incorporated alkalescent microenvironment of MgO/NT/Ti provided a viable approach to stimulate cell proliferation, adhesion, and differentiation and to improve the implant osseointegration. - Highlights: • We developed a novel nanotube layer incorporated with magnesium oxide to obtain a favorable alkaline interface. • The homogeneous magnesium oxide layer exhibited sustained release kinetics. • The resulting alkalescent microenvironment provided a viable approach to improve the implant osseointegration.

  9. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions

    International Nuclear Information System (INIS)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D.

    2007-01-01

    Corrosion resistance and galvanic coupling of Grade 2 commercially pure titanium in its welded and non-welded condition were systematically analyzed in LiBr solutions. Galvanic corrosion was evaluated through two different methods: anodic polarization (according to the Mixed Potential Theory) and electrochemical noise (using a zero-resistance ammeter). Samples have been etched to study the microstructure. The action of lithium chromate as corrosion inhibitor has been evaluated. Titanium and welded titanium showed extremely low corrosion current densities and elevated pitting potential values (higher than 1 V). The results of both methods, anodic polarization and electrochemical noise, showed that the welded titanium was always the anodic element of the pair titanium-welded titanium, so that its corrosion resistance decreases due to the galvanic effect

  10. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom); Jones, D. [School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Yue, S. [Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Lee, P.D., E-mail: peter.lee@manchester.ac.uk [Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Jones, J.R. [Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom); Sutcliffe, C.J. [School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Jones, E. [Department of Advanced Technology, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland)

    2013-10-15

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Highlights: • Experimentally validated permeability prediction tools for hierarchical implants. • Randomised structures form preferential flow channels with stronger shear flows. • Hierarchical strut structures allow independent tailoring of flow and pore size.

  11. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants

    International Nuclear Information System (INIS)

    Zhang, Z.; Jones, D.; Yue, S.; Lee, P.D.; Jones, J.R.; Sutcliffe, C.J.; Jones, E.

    2013-01-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Highlights: • Experimentally validated permeability prediction tools for hierarchical implants. • Randomised structures form preferential flow channels with stronger shear flows. • Hierarchical strut structures allow independent tailoring of flow and pore size

  12. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  13. Biocorrosion and uptake of titanium by human osteoclasts.

    Science.gov (United States)

    Cadosch, Dieter; Al-Mushaiqri, Mohamed S; Gautschi, Oliver P; Meagher, James; Simmen, Hans-Peter; Filgueira, Luis

    2010-12-15

    All metals in contact with a biological system undergo corrosion through an electrochemical redox reaction. This study investigated whether human osteoclasts (OC) are able to grow on titanium and aluminum, and directly corrode the metals leading to the release of corresponding metal ions, which are believed to cause inflammatory reactions and activate osteoclastic differentiation. Scanning electron microscopy analysis demonstrated long-term viable OC cultures on the surface of titanium and aluminum foils. Atomic emission spectrometry investigations showed significantly increased levels of aluminum in the supernatant of OC cultured on aluminum; however, all measurements in the supernatants of cell cultures on titanium were below detection limits. Despite this, confocal microscopy analysis with Newport Green DCF diacetate ester staining depicted intense fluorescence throughout the cytoplasm and nucleolus of OC cultured on titanium foils. Comparable fluorescence intensities were not observed in monocytes and control cells cultured on glass. The present study demonstrated that human osteoclast precursors are able to grow and differentiate toward mature OC on titanium and aluminum. Furthermore, it established that the mature cells are able to directly corrode the metal surface and take up corresponding metal ions, which subsequently may be released and thereby induce the formation of osteolytic lesions in the periprosthetic bone, contributing to the loosening of the implant. Copyright © 2010 Wiley Periodicals, Inc.

  14. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology 3 Rationale – Titanium Cost Build-up Material Cost Ilmenite $0.27/kg Ti sponge Titanium slag $0.75/kg Ti Sponge TiCl4 and TiO2 $3....10/kg Ti Sponge Ti Sponge raw materials costs $5.50/kg Ti Sponge Total Ti Sponge cost $9-$11/kg Ti Sponge Ti ingot $15-17/kg Ti Aluminium $1.7/kg Al Supporting the Manufacturing and Materials Industry in its quest for global competitivenessorting...

  15. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  17. LET spectra behind high-density titanium and stainless steel hip implants irradiated with a therapeutic proton beam

    Czech Academy of Sciences Publication Activity Database

    Oancea, Cristina; Ambrožová, Iva; Popescu, A. I.; Mytsin, G. V.; Vondráček, V.; Davídková, Marie

    2018-01-01

    Roč. 110, č. 3 (2018), s. 7-13 ISSN 1350-4487 R&D Projects: GA MŠk EF16_013/0001677 Institutional support: RVO:61389005 Keywords : proton therapy * metallic hip implant * titanium * stainless steel * track etched detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  18. The Sustainable Improvement of Manufacturing for Nano-Titanium

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2016-04-01

    Full Text Available Scientists have found that nanomaterials possess many outstanding features in their tiny grain structure compared to other common materials. Titanium at the nano-grain scale shows many novel characteristics which demonstrate suitability for use in surgical implants. In general, equal channel angular pressing (ECAP is the most popular and simple process to produce nano-titanium. However, ECAP is time-consuming, power-wasting, and insufficiently produces the ultrafine grain structure. Therefore, the objective of this research is to propose a new method to improve the ECAP’s performances to reach the ultrafine grain structure, and also to save production costs, based on the innovation theory of Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ. Research results show that the process time is reduced by 80%, and 94% of the energy is saved. Moreover, the grain size of the diameter for nano-titanium can be reduced from 160 nanometers (nm to 80 nm. The results are a 50% reduction of diameter and a 75% improvement of volume. At the same time, the method creates a refined grain size and good mechanical properties in the nano-titanium. The proposed method can be applied to produce any nanomaterial as well as biomaterials.

  19. Nitrogen contribution to tribological behaviour improvement of titanium alloys

    International Nuclear Information System (INIS)

    Corre, Y.; Lebrun, J.P.; Douet, M.

    1996-01-01

    Titanium an titanium alloys are more used materials in mechanical applications. A low density and very interesting mechanical characteristics present these materials as a first choice in many fields (aeronautics, automobile precision mechanics, biomedical...). Nevertheless, their poor tribological qualities often negate them as a friction surface. Modifying their surface properties is thus a real concern. The introduction of nitrogen on the surface enables a significant improvement to the tribological behaviour of these materials. Nitrogen ionic implantation is a technique used in titanium alloy surface treatment. Industrial applications of this process are numerous (biomedical, aeronautics...) but the limitations its (essentially treatment depth) prevent its use in certain cases. The increase in treatment temperature can overcome these limitations. Thus, the analysis of the properties obtained after treatment at various temperatures (20 deg. C) enables us to find the best compromise between metallurgic, geometrical properties (surface condition, deformation) and friction properties. This compromise enables us to solve a majority of tribological problems of titanium alloys. (authors). 7 refs., 10 figs., 2 tabs., 1 photo

  20. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  1. Effect of Amelogenin Coating of a Nano-Modified Titanium Surface on Bioactivity

    Directory of Open Access Journals (Sweden)

    Chisato Terada

    2018-04-01

    Full Text Available The interactions between implants and host tissues depend on several factors. In particular, a growing body of evidence has demonstrated that the surface texture of an implant influences the response of the surrounding cells. The purpose of this study is to develop new implant materials aiming at the regeneration of periodontal tissues as well as hard tissues by coating nano-modified titanium with amelogenin, which is one of the main proteins contained in Emdogain®. We confirmed by quartz crystal microbalance evaluation that amelogenin is easy to adsorb onto the nano-modified titanium surface as a coating. Scanning electron microscopy, scanning probe microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses confirmed that amelogenin coated the nano-modified titanium surface following alkali-treatment. In vitro evaluation using rat bone marrow and periodontal ligament cells revealed that the initial adhesion of both cell types and the induction of hard tissue differentiation such as cementum were improved by amelogenin coating. Additionally, the formation of new bone in implanted surrounding tissues was observed in in vivo evaluation using rat femurs. Together, these results suggest that this material may serve as a new implant material with the potential to play a major role in the advancement of clinical dentistry.

  2. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-11-01

    Full Text Available Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS, bone morphogenetic protein-2 immobilized on AMS (AMS + BMP, bio-active glass (BAG and two titanium coatings with different porosity (T1; T2. Four surfaces served as controls: uncoated Ti (Ti, Ti functionalized with BMP-2 (Ti + BMP, Ti surface with a thickened titanium oxide layer (TiO2 and a tissue culture polystyrene surface (TCPS. The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP; osteocalcin (OC; osteoprotegerin (OPG; vascular endothelial growth factor-A (VEGF-A]. Unrestrained cell proliferation was observed on (unfunctionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  3. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    Directory of Open Access Journals (Sweden)

    James Tedesco

    2017-01-01

    Full Text Available In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12 and conventional stainless steel conical (n = 4 implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

  4. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study.

    Science.gov (United States)

    Tedesco, James; Lee, Bryan E J; Lin, Alex Y W; Binkley, Dakota M; Delaney, Kathleen H; Kwiecien, Jacek M; Grandfield, Kathryn

    2017-01-01

    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed ( n  = 12) and conventional stainless steel conical ( n  = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

  5. Osseointegration of dental implants in extraction sockets preserved with porous titanium granules - an experimental study.

    Science.gov (United States)

    Verket, Anders; Lyngstadaas, Ståle P; Rønold, Hans J; Wohlfahrt, Johan C

    2014-02-01

    This study investigated osseointegration of dental implants inserted in healed extraction sockets preserved with porous titanium granules (PTG). Three adult female minipigs (Gøttingen minipig; Ellegaard A/S, Dalmose, Denmark) had the mandibular teeth P2, P3 and P4 extracted. The extraction sockets were preserved with metallic PTG (Tigran PTG; Tigran Technologies AB, Malmö, Sweden) n = 12, heat oxidized white porous titanium granules (WPTG) (Tigran PTG White) n = 12 or left empty (sham) n = 6. All sites were covered with collagen membranes (Bio-Gide; Geistlich Pharma, Wolhausen, Switzerland) and allowed 11 weeks of healing before implants (Straumann Bone Level; Straumann, Basel, Switzerland) were inserted. The temperature was measured during preparation of the osteotomies. Resonance frequency analysis (RFA, Osstell; Osstell AB, Gothenburg, Sweden) was performed at implant insertion and at termination. After 6 weeks of submerged implant healing, the pigs were euthanized and jaw segments were excised for microCT and histological analyses. In the temperature and RFA analyses no significant differences were recorded between the test groups. The microCT analysis demonstrated an average bone volume of 61.7% for the PTG group compared to 50.3% for the WPTG group (P = 0.03) and 57.1% for the sham group. Histomorphometry demonstrated an average bone-to-implant contact of 68.2% for the PTG group compared to 36.6% for the WPTG group and 60.9% for the sham group (n.s). Eight out of ten implants demonstrated apical osseous defects in the WPTG group, but similar defects were observed in all groups. PTG preserved extraction sockets demonstrate a similar outcome as the sham control group for all analyses suggesting that this material potentially can be used for extraction socket preservation prior to implant installment. Apical osseous defects were however observed in all groups including the sham group, and a single cause could not be determined. © 2012 John Wiley & Sons A/S.

  6. IMMUNOTOXICOLOGICAL ASPECTS OF BIOCOMPATIBILITY OF TITANIUM

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2017-05-01

    Full Text Available Titanium (Ti is a non-essential metal element. TiO2 is used predominantly in the form of micro and nanoparticles in consumer products, including cosmetics and food. Because of its excellent biocompatibility, the trade-pure titan and its alloys are widely used as an alternative to certain metals in invasive medicine, surgery, dental medicine. Contemporary data concerning the sources of exposure to titanium, immune reactions to Ti alloys, current knowledge and perspectives of diagnosis of sensitization or allergic reactions to titanium are discussed. Conclusion: TiO2 is much more stable than pure Ti and alloys used in the implants, that should be taken into account when conducting research and analysing the results. The evidence of possible toxic effects is insufficient. It is difficult to assess the frequency of Ti allergy due to the uncertainty of diagnostic methods, but it is believed that it is very low. This is supported by the evidence that Ti and TiO2 (often as NP doesn’t penetrate through the healthy skin. Skin patch testing with currently available formulations of Ti and TiO2 has no significant value in clinical practice, and currently, it is assumed that there is no reliable method for diagnosis Ti allergy. The functional analysis of cytokine release and investigation of genetic characteristics could be useful for individual risk assessment in dental implantology. Such studies may also help to investigate separately early and late implant loss, as well as to develop new diagnostic tools.

  7. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    Science.gov (United States)

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  8. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Science.gov (United States)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh

    2016-08-01

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  9. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca [Silicon Hall: Laser Micro/Nano Fabrication Laboratory, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2016-08-28

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  10. Review about laser nitriding of titanium alloys; Revision sobre nitruraciones laser de aleaciones de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Artieda, M.G.; Fernandez-Carrasquilla, J.

    2010-07-01

    A common technique used to improve the wear response of titanium alloys is to nitride the surface, using chemical or physical vapour deposition, ion implantation or surface remelting in a nitrogen atmosphere. In this revision nitriding systems with laser technology are studied, used in titanium alloys surface treatments.For high temperature, high strength applications, titanium based alloys are an attractive light-weight alternative to steel, due to their high strength to weight ratio and corrosion resistance. In applications that require good wear resistance, titanium alloys pose a problem due to their poor tribological characteristics.Titanium alloys used with a suitable nitriding treatment could allow the replacement of steel in different applications, obtaining weight savings in fabricated components. (Author). 68 refs.

  11. Effect of membranes and porous hydroxyapatite on healing in bone defects around titanium dental implants. An experimental study in monkeys

    DEFF Research Database (Denmark)

    Gotfredsen, K; Warrer, K; Hjørting-Hansen

    1991-01-01

    The purpose of the present study was to examine the effect of treating bony craters around titanium dental implant with polytetrafluoroethylene membranes (PTFE), with and without grafting of hydroxyapatite (HA), and with HA alone. 4 standardized bone defects were prepared in the alveolar ridge...

  12. Mechanical Properties of Abutments: Resin-Bonded Glass Fiber-Reinforced Versus Titanium.

    Science.gov (United States)

    Bassi, Mirko Andreasi; Bedini, Rosells; Pecci, Raffaela; Ioppolo, Pietro; Laritano, Dorina; Carinci, Francesco

    2016-01-01

    The clinical success and longevity of endosseous implants, after their prosthetic finalization, mainly depends on mechanical factors. Excessive mechanical stress has been shown to cause initial bone loss around implants in the presence of a rigid implant-prosthetic connection. The implant abutments are manufactured with high elastic modulus materials such as titanium, steel, precious alloys, or esthetic ceramics. These materials do not absorb any type of shock from the chewing loads or ensure protection of the bone-implant interface, especially when the esthetic restorative material is ceramic rather than composite resin. The mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment prototype (TCFRA) and compared to that of a similarly shaped titanium abutment (TA). Eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging the two types of abutments showed during the application of sinusoidal load was also analyzed. In the TA group, fracture and deformation occurred in 12.5% of samples, while debonding occurred in 62.5%. In the TCFRA group, only debonding was present, in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited greater swinging during the application of sinusoidal load. In the TA group extrusion prevailed, whereas in the TCFRA group intrusion was more frequent. TCFRA demonstrated a greater elasticity than did TAs to the flexural load, absorbing part of the transversal load applied on the fixture during the chewing function and thus reducing the stress on the bone-implant interface.

  13. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  14. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  15. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  16. Complications with computer-aided designed/computer-assisted manufactured titanium and soldered gold bars for mandibular implant-overdentures: short-term observations.

    Science.gov (United States)

    Katsoulis, Joannis; Wälchli, Julia; Kobel, Simone; Gholami, Hadi; Mericske-Stern, Regina

    2015-01-01

    Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased. © 2013 Wiley Periodicals, Inc.

  17. Rapid PMR determination of hydrogen in titanium hydride and dehydrogenated titanium powders

    International Nuclear Information System (INIS)

    Il'enko, V.S.; Demidenko, L.M.

    1987-01-01

    Proton magnetic resonance (PMR) enables determining hydrogen quantitatively in titanium hydride and dehydrogenated titanium powders without destroying the specimen and is also more informative than high-temperature extraction methods. PMR provides data on the electron-nuclear interactions and the activation energies for hydrogen diffusion while also providing conclusions on the forms and positives of the hydrogen in the lattice and the binding to the metal atoms. The authors have developed a rapid method for determining hydrogen in titanium hydride and dehydrogenated titanium powders which reduces the analysis time and improves the metrological characteristics. The authors use a YaMR-5535 spectrometer working at 40 MHz upgraded for use with hydrogen in solids. The authors used specimens of mass about 2 g ground to 0.1 mm powder

  18. Mechanism of mechanical property enhancement in nitrogen and titanium implanted 321 stainless steel

    International Nuclear Information System (INIS)

    Xu Ming; Li Liuhe; Liu Youming; Cai Xun; Chen Qiulong; Chu, Paul K.

    2006-01-01

    Ion implantation is a well-known method to modify surface mechanical properties. The improvement of the mechanical properties can usually be attributed to the formation of new strengthening phases, solution strengthening, dislocation strengthening, or grain refinement. However, in many cases, the roles of individual factors are not clear. In this study, we implanted nitrogen and titanium into 321 stainless steel samples to investigate the enhancement mechanism of the mechanical properties. Nano-indentation experiments were conducted to measure the hardness under various loadings. The N and Ti implanted 321 stainless steel samples were found to behave differently in the hardness (GPa) versus depth (nm) diagram. The effects of the radiation damage, solution strengthening, and dispersion strengthening phase were analyzed. Characterization of the modified layers was performed using techniques such as Auger electron spectroscopy (AES) and grazing incidence X-ray diffraction (GIXRD). Transmission electron microscopy (TEM) and X-ray diffraction were also applied to reveal the structure of the untreated 321 stainless steel

  19. Oxygen depth profiling in Kr{sup +}-implanted polycrystalline alpha titanium by means of {sup 16}O({alpha},{alpha}){sup 16}O resonance scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, S., E-mail: schadnse@hotmail.com [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Department of Physics and Electronics, Rhodes University, Grahamstown 6140 (South Africa); Department of Physics, Kigali Institute of Education, P.O. Box 5039 Kigali (Rwanda); Riviere, J.P. [Laboratoire de Physique des Materiaux UMR6630-CNRS, 86960 (France); Raji, A.T.; Comrie, C.M.; Britton, D.T.; Haerting, M. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2011-07-15

    The {sup 16}O({alpha},{alpha}){sup 16}O resonance scattering was applied to study the effects of ion implantation on the oxygen distribution in the near surface region of polycrystalline titanium implanted with 180 keV krypton ions at fluences, ranging between 1 x 10{sup 14} and 5 x 10{sup 15} Kr{sup +}/cm{sup 2}. Two sample sets were chosen: as-received polycrystalline titanium discs rolled and annealed in half-hard condition which had a thick oxygen layer and similar samples in which this surface layer was removed by polishing. An increase of the mean oxygen concentration observed in both unpolished and polished samples at low fluence suggests a knock-on implantation of surface oxygen atoms. At high fluence, an overall decrease in the mean oxygen concentration and mean oxygen depth suggests an out-diffusion of near-surface oxygen atoms.

  20. Evaluation of non-conformities of hip prostheses made of titanium alloys and stainless steel

    International Nuclear Information System (INIS)

    Bezerra, Ewerton de Oliveira Teotonio; Nascimento, Jose Jeferson da Silva; Luna, Carlos Bruno Barreto; Morais, Crislene Rodrigues da Silva; Campos, Karla Valeria Miranda de

    2017-01-01

    A large number of metallic alloys has satisfactory behavior when used to manufacture implants for hip prostheses. However, they must be in conformity with standards, to ensure their quality for long periods without losing its functionality. Therefore, this paper aims to study the non-conformities in two hip prostheses, one of titanium and other stainless steel according to standards. The implants studied passed by X-ray diffraction (XRD), X-ray fluorescence, tensile test and optical microscopy (OM). Specimens for the tensile test were made according to ASTM E 8M, as well, MO samples passed by metallographic procedure. The results evidenced that some chemical compositions showed in relation to the standards. The XRD analysis showed peaks of austenite and absence of ferrite for the stainless steel, while the titanium alloy presents an alpha phase (HCP) more significant than the beta phase (BCC). The stainless steel alloys and titanium have yield strength and tensile strength that meet the standards. On the other hand, the elastic modulus of the titanium alloy and stainless steel, comes to be ten times greater than the human bone. Therefore, the high modulus of elasticity of the alloys, favors bone resorption problems. The stainless steel microstructure is typical of an austenitic matrix, while the titanium alloy presents α + β microstructure. (author)

  1. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Eduardo Aloisio Fleck NEUMANN

    2014-08-01

    Full Text Available Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1, polyetheretherketone (PEEK screws (Group 2, and 30% carbon fiber-reinforced PEEK screws (Group 3. The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey’s range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05. Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  2. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.

    Science.gov (United States)

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes

    2014-01-01

    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  3. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    Science.gov (United States)

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  4. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  5. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Venith Jojee Pulikkottil

    2016-01-01

    Full Text Available Objective: (1 To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm on corrosion resistance of these archwires. (2 To assess whether surface roughness (Ra is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM, and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory.

  6. Corrosion-resistant titanium nitride coatings formed on stainless steel by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    1994-01-01

    Titanium films 70nm thick were deposited on austenitic type 316L stainless steel substrates, and these specimens were irradiated with titanium ions of energy 70kV at a fluence of 1x10 17 ioncm -2 , using a metal vapor vacuum arc (MEVVA) IV metallic ion source at room temperature. After irradiation, titanium nitride (TiN) films were deposited by titanium evaporation and simultaneous irradiation by a nitrogen ion beam, with transport ratios of Ti to N atoms from 0.5 to 10.0 and an ion acceleration voltage of 2kV. The preferred orientation of the TiN films varied from left angle 200 right angle to left angle 111 right angle normal to the surface when the transport ratio was increased. With the help of Auger electron spectroscopy, interfacial mixing was verified. Nitrogen atoms were present in the state of titanium nitride for all transport ratios from 0.5 up to 10.0. However, the chemical bonding state of titanium changed from titanium nitride to the metallic state with increasing transport ratio Ti/N. The corrosion behavior was evaluated in an aqueous solution of sulfuric acid saturated with oxygen, using multisweep cyclic voltammetry measurements. Thin film deposition of pure titanium and titanium implantation prior to TiN deposition have beneficial effects on the suppression of transpassive chromium dissolution. ((orig.))

  7. Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension

    Directory of Open Access Journals (Sweden)

    Alicja Kazek-Kęsik

    2017-08-01

    Full Text Available The surface modification of titanium alloys is an effective method to improve their biocompatibility and tailor the material to the desired profile of implant functionality. In this work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition from the powder phase suspended in solution. The anodized samples were immersed in NaOH or KOH solution with various concentrations with a different set of temperatures and exposure times. Based on their morphologies (observed by scanning electron microscope, the selected samples were investigated by Raman and X-ray photoelectron spectroscopy (XPS. Titaniate compounds were formed on the previously anodized titanium surfaces. The surface wettability significantly decreased, mainly on the modified Ti-15Mo alloy surface. Titanium alloy compounds had an influence on the results of the titanium alloys’ surface modification, which caused the surfaces to exhibit differential physical properties. In this paper, we present the influence of the anodization procedure on alkali treatment effects and the properties of obtained hybrid coatings.

  8. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-01-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10 16 ions/cm 2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  9. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  10. Gelatin functionalised porous titanium alloy implants for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanderleyden, E. [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium); Van Bael, S. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, Box 2419, 3001 Heverlee (Belgium); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Kruth, J.-P. [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, J. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Bus 2450, 3001 Leuven (Belgium); Dubruel, P., E-mail: pbmugent@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium)

    2014-09-01

    In the present work, we studied the immobilisation of the biopolymer gelatin onto the surface of three dimensional (3D) regular Ti6Al4V porous implants to improve their surface bio-activity. The successful immobilisation of the gelatin coating was made possible by a polydopamine interlayer, a polymer coating inspired by the adhesive nature of mussels. The presence of both coatings was first optimised on two dimensional titanium (2D Ti) substrates and confirmed by different techniques including X-ray photelectron spectroscopy, contact angle measurements, atomic force microscopy and fluorescence microscopy. Results showed homogeneous coatings that are stable for at least 24 h in phosphate buffer at 37 °C. In a next step, the coating procedure was successfully transferred to 3D Ti6Al4V porous implants, which indicates the versatility of the applied coating procedure with regard to complex surface morphologies. Furthermore, the bio-activity of these stable gelatin coatings was enhanced by applying a third and final coating using the cell-attractive protein fibronectin. The reproducible immobilisation process allowed for a controlled biomolecule presentation to the surrounding tissue. This newly developed coating procedure outperformed the previously reported silanisation procedure for immobilising gelatin. In vitro cell adhesion and culture studies with human periosteum-derived cells showed that the investigated coatings did not compromise the biocompatible nature of Ti6Al4V porous implants, but no distinct biological differences between the coatings were found. - Highlights: • Ti6Al4V porous implants were produced by selective laser melting. • A procedure to obtain a stable gelatin coating was developed. • Successful transfer of the coating procedure from 2D to 3D Ti6Al4V porous implants. • In vitro cell studies showed that the developed coatings supported cell growth.

  11. Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood.In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits' femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative PCR, western blotting analyses, reactive oxygen species (ROS detection and transmission electron microscopy examinations.The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group.Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models.

  12. Osteoblastic response to pectin nanocoating on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gurzawska, Katarzyna, E-mail: kagu@sund.ku.dk [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N (Denmark); Svava, Rikke [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Yihua, Yu; Haugshøj, Kenneth Brian [Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup (Denmark); Dirscherl, Kai [Dansk Fundamental Metrologi A/S, Matematiktorvet 307, 2800 Lyngby (Denmark); Levery, Steven B. [Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Byg, Inge [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Damager, Iben [Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd (Denmark); Nielsen, Martin W. [Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, Kgs. Lyngby DK-2800 (Denmark); Jørgensen, Bodil [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jørgensen, Niklas Rye [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); and others

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. - Highlights: • Surface nanocoating with plant-derived Rhamnogalacturonan-I (RG-I) is proposed. • Titanium surface became more hydrophilic after RG-Is nanocoating. • RG-Is with high galactose content resulted in high level of mineralized matrix. • RG-I is a new candidate for improvement of bone healing and osseointegration.

  13. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  14. Use of Fourier domain filtering and dynamic programming in finding a titanium coil implant in high voltage x-ray images

    DEFF Research Database (Denmark)

    Nielsen, Henning; Hansen, Jesper Carl

    2006-01-01

    This paper deals with the problem of finding precise position and orientation of a titanium coil implant in humans. Analysis of high voltage X-rays stereo images are used to determine the true 3D position. High voltage images inherently presents with poor contrast. Various image processing techni...

  15. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  16. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur.

    Science.gov (United States)

    Wang, Zi-Li; He, Rong-Zhen; Tu, Bin; Cao, Xu; He, Jin-Shen; Xia, Han-Song; Liang, Chi; Zou, Min; Wu, Song; Wu, Zhen-Jun; Xiong, Kun

    2017-06-01

    This study aimed to examine the biocompatibility of calcium titanate (CaTiO 3 ) coating prepared by a simplified technique in an attempt to assess the potential of CaTiO 3 coating as an alternative to current implant coating materials. CaTiO 3 -coated titanium screws were implanted with hydroxyapatite (HA)-coated or uncoated titanium screws into medial and lateral femoral condyles of 48 New Zealand white rabbits. Imaging, histomorphometric and biomechanical analyses were employed to evaluate the osseointegration and biocompatibility 12 weeks after the implantation. Histology and scanning electron microscopy revealed that bone tissues surrounding the screws coated with CaTiO 3 were fully regenerated and they were also well integrated with the screws. An interfacial fibrous membrane layer, which was found in the HA coating group, was not noticeable between the bone tissues and CaTiO 3 -coated screws. X-ray imaging analysis showed in the CaTiO 3 coating group, there was a dense and tight binding between implants and the bone tissues; no radiation translucent zone was found surrounding the implants as well as no detachment of the coating and femoral condyle fracture. In contrast, uncoated screws exhibited a fibrous membrane layer, as evidenced by the detection of a radiation translucent zone between the implants and the bone tissues. Additionally, biomechanical testing revealed that the binding strength of CaTiO 3 coating with bone tissues was significantly higher than that of uncoated titanium screws, and was comparable to that of HA coating. The study demonstrated that CaTiO 3 coating in situ to titanium screws possesses great biocompatibility and osseointegration comparable to HA coating.

  17. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  18. Titanium for salt water service

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Shibad, P.R.

    1980-01-01

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  19. [The surface roughness analysis of the titanium casting founding by a new titanium casting investment material].

    Science.gov (United States)

    Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng

    2012-04-01

    To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.

  20. Titanium Granules for Augmentation of the Maxillary Sinus

    DEFF Research Database (Denmark)

    Lyngstadaas, Ståle Petter; Verket, Anders; Pinholt, Else Marie

    2015-01-01

    BACKGROUND: Biomaterials are commonly used to augment the maxillary sinus floor prior to or in conjunction with dental implant installation. Recently, porous titanium granules (PTGs) have been used in oral implant surgery to stabilize implants and function as an osteoconductive matrix. PURPOSE...... in the study. RESULTS: One immobile implant was removed. The mean marginal bone loss was 0.5 mm and 0.8 mm, on the mesial and distal side, respectively. Histologically, all biopsies demonstrated bone ingrowth. CONCLUSIONS: The results suggest that PTG can be safely and effectively used as augmentation material...

  1. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  2. The microstructure of type 304 stainless steel implanted with titanium and carbon and its relation to friction and wear tests

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Pope, L.E.; Knapp, J.A.; Picraux, S.T.; Yost, F.G.

    1983-01-01

    The authors have used transmission electron microscopy to examine the microstructure of type 304 stainless steel which was ion implanted with high doses (2 X 10 17 atoms cm -2 ) of titanium and carbon. It is found that the resulting surface alloy is an amorphous phase similar to that observed when pure iron is identically implanted. This result is important for identifying the mechanisms by which the coefficient of friction and the wear depth are reduced in unlubricated pin-on-disc tests of type 304 stainless steel implanted with titanium and carbon. The effect of temperature on the amorphous alloy during annealing in the microscope has also been examined. It is found that devitrification begins after 15 min at 500 0 C and that the alloy fully crystallizes into f.c.c., b.c.c. and TiC phases after 15 min at 650 0 C. A comparison of mechanical test results from devitrified specimens with results from amorphous specimens demonstrates that the reduction in the coefficient of friction correlates with the presence of the amorphous layer, whereas the reduction in the wear depth is obtained for both amorphous and crystalline alloys. (Auth.)

  3. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application

    Directory of Open Access Journals (Sweden)

    Juliana P. L. Gonçalves

    2014-11-01

    Full Text Available Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an

  4. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application.

    Science.gov (United States)

    Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg

    2014-01-01

    Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and

  5. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  6. Effect of silicon ion implantation upon the structure and corrosion resistance of the surface layer of stainless steel 316L, Vitalium and titanium alloy Ti6Al14V

    International Nuclear Information System (INIS)

    Baszkiewicz, J.; Kaminski, M.; Krupa, D.; Kozubowski, J.; Barcz, A.; Gawlik, A.; Jagielski, J.

    1995-01-01

    Samples of 316L stainless steel, Vitalium and Ti6A14V titanium alloy have been implanted with doses of 1.5, 3, and 4.5 x 10 17 Si + /cm 2 . Transmission electron microscopy shows that during ion implantation amorphous layers are formed. When samples of titanium alloy were implanted with a dose of 0.5 x 10 17 Si + /cm 2 , the implanted layer consisted of a dispersion of fine silicide crystallites instead of being amorphous. The corrosion resistance was analyzed by electrochemical techniques in 0.9% NaCl at the temperature of 37 C. The increase of corrosion resistance has been observed as a result of structural modifications of the surface layer. (author). 7 refs, 4 tabs

  7. Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium

    Energy Technology Data Exchange (ETDEWEB)

    Gao Wenli [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Feng Bo, E-mail: fengbo@swjtu.edu.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ni Yuxiang [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang Yongli [College of Material Science and Engineering, Sichuan University, Chengdu 610054 (China); Lu Xiong; Weng Jie [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-11-01

    Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.

  8. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  9. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2015-10-01

    Full Text Available Yu Zhu,1,* Huiliang Cao,2,* Shichong Qiao,1,* Manle Wang,2,3 Yingxin Gu,1 Huiwen Luo,1 Fanhao Meng,2 Xuanyong Liu,2 Hongchang Lai1 1Department of Oral and Maxillofacial Implantology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 3School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: A versatile strategy to endow dental implants with long-term antibacterial ability without compromising the cytocompatibility is highly desirable to combat implant-related infection. Silver nanoparticles (Ag NPs have been utilized as a highly effective and broad-spectrum antibacterial agent for surface modification of biomedical devices. However, the high mobility and subsequent hazardous effects of the particles on mammalian cells may limit its practical applications. Thus, Ag NPs were immobilized on the surface of sand-blasted, large grit, and acid-etched (SLA titanium by manipulating the atomic-scale heating effect of silver plasma immersion ion implantation. The silver plasma immersion ion implantation-treated SLA surface gave rise to both good antibacterial activity and excellent compatibility with mammalian cells. The antibacterial activity rendered by the immobilized Ag NPs was assessed using Fusobacterium nucleatum and Staphylococcus aureus, commonly suspected pathogens for peri-implant disease. The immobilized Ag NPs offered a good defense against multiple cycles of bacteria attack in both F. nucleatum and S. aureus, and the mechanism was independent of silver release. F. nucleatum showed a higher susceptibility to Ag NPs than S. aureus, which might be explained by the presence of different wall structures. Moreover, the

  10. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications

    International Nuclear Information System (INIS)

    Sevilla, P.; Aparicio, C.; Planell, J.A.; Gil, F.J.

    2007-01-01

    Metallic porous materials are designed to allow the ingrowth of living tissue inside the pores and to improve the mechanical anchorage of the implant. In the present work, tantalum and nickel-titanium porous materials have been characterized. The tantalum foams were produced by vapour chemical deposition (CVD/CVI) and the NiTi foams by self-propagating high temperature synthesis (SHS). The former exhibited an open porosity ranging between 65 and 73% and for the latter it ranged between 63 and 68%. The pore sizes were between 370 and 440 μm for tantalum and between 350 and 370 μm for nickel-titanium. The Young's modulus in compression of the foams studied, especially for tantalum, were very similar to those of cancellous bone. This similitude may be relevant in order to minimize the stress shielding effect in the load transfer from the implant to bone. The strength values for NiTi foam are higher than for tantalum, especially of the strain to fracture which is about 23% for NiTi and only 8% for tantalum. The fatigue endurance limit set at 10 8 cycles is about 7.5 MPa for NiTi and 13.2 MPa for tantalum. The failure mechanisms have been studied by scanning electron microscopy

  11. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Chiang [School of Oral Hygiene, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Chang, Fang-Mo [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Yang, Tzu-Sen [Master Program in Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, Taipei 235, Taiwan (China); Lin, Che-Tong [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China)

    2016-11-01

    Titanium dioxide (TiO{sub 2}) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO{sub 2} with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. - Highlights: • The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces. • The nanocrystalline TiO{sub 2} with a rutile structure was formed on titanium surfaces. • A nanoporous TiO{sub 2} layer in the rutile phase prepared using oxygen PIII treatment can be used to prolong blood clot formation.

  12. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants.

    Science.gov (United States)

    Hudetz, D; Ursic Hudetz, S; Harris, L G; Luginbühl, R; Friederich, N F; Landmann, R

    2008-12-01

    Currently, ica is considered to be the major operon responsible for staphylococcal biofilm. The effect of biofilm on susceptibility to staphylococcal infection of different implant materials in vivo is unclear. The interaction of ica-positive (wild-type (WT)) and ica-negative (ica(-)) Staphylococcus aureus and Staphylococcus epidermidis strains with titanium and both smooth and rough stainless steel surfaces was studied by scanning electron microscopy in vitro and in a mouse tissue cage model during 2 weeks following perioperative or postoperative inoculation in vivo. In vitro, WT S. epidermidis adhered equally and more strongly than did WT S. aureus to all materials. Both WT strains, but not ica(-) strains, showed multilayered biofilm. In vivo, 300 CFUs of WT and ica(-)S. aureus led, in all metal cages, to an infection with a high level of planktonic CFUs and only 0.89% adherent CFUs after 8 days. In contrast, 10(6) CFUs of the WT and ica(-) strains were required for postoperative infection with S. epidermidis. In all metal types, planktonic numbers of S. epidermidis dropped to titanium cages adherent WT bacteria survived in higher numbers than ica(-) bacteria. In conclusion, the metal played a minor role in susceptibility to and persistence of staphylococcal infection; the presence of ica genes had a strong effect on biofilm in vitro and a weak effect in vivo; and S. epidermidis was more pathogenic when introduced during implantation than after implantation.

  13. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  14. Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants

    Directory of Open Access Journals (Sweden)

    Stathopoulos Konstantinos

    2011-09-01

    Full Text Available Abstract Background Secondary systemic vasculitis after posterior spinal fusion surgery is rare. It is usually related to over-reaction of immune-system, to genetic factors, toxicity, infection or metal allergies. Case Description A 14 year-old girl with a history of extended posterior spinal fusion due to idiopathic scoliosis presented to our department with diffuse erythema and nephritis (macroscopic hemuresis and proteinuria 5 months post surgery. The surgical trauma had no signs of inflammation or infection. The blood markers ESR and CRP were increased. Skin tests were positive for nickel allergy, which is a content of titanium alloy. The patient received corticosteroids systematically (hydrocortisone 10 mg for 6 months, leading to total recess of skin and systemic reaction. However, a palpable mass close to the surgical wound raised the suspicion of a late infection. The patient had a second surgery consisting of surgical debridement and one stage revision of posterior spinal instrumentation. Intraoperative cultures were positive to Staphylococcus aureus. Intravenous antibiotics were administered. The patient is now free of symptoms 24 months post revision surgery without any signs of recurrence of either vasculitis or infection. Literature Review Systemic vasculitis after spinal surgery is exceptionally rare. Causative factors are broad and sometimes controversial. In general, it is associated with allergy to metal ions. This is usually addressed with metal on metal total hip bearings. In spinal surgery, titanium implants are considered to be inert and only few reports have presented cases with systemic vasculitides. Therefore, other etiologies of immune over-reaction should always be considered, such as drug toxicity, infection, or genetic predisposition. Purposes and Clinical Relevance Our purpose was to highlight the difficulties during the diagnostic work-up for systemic vasculitis and management in cases of posterior spinal surgery.

  15. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  16. The vapour phase deposition of boron on titanium by the reaction between gaseous boron trichloride and titanium metal. Final report

    International Nuclear Information System (INIS)

    Cameron, D.J.; Shelton, R.A.J.

    1965-03-01

    The reaction, between boron trichloride vapour and titanium has been investigated in the temperature range 200 - 1350 deg. C. It has been found that an initial reaction leads to the formation of titanium tetrachloride and the deposition of boron on titanium, but that except for reactions between 900 and 1000 deg. C, the system is complicated by the formation of lower titanium chlorides due to secondary reactions between the titanium and titanium tetrachloride

  17. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  18. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  19. Effects of Low-Dose Microwave on Healing of Fractures with Titanium Alloy Internal Fixation: An Experimental Study in a Rabbit Model

    Science.gov (United States)

    Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong

    2013-01-01

    Background Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Methods Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. Findings The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Conclusion Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method. PMID:24086626

  20. Follow-up radiographs of the cervical spine after anterior fusion with titanium intervertebral disc

    International Nuclear Information System (INIS)

    Biederer, J.; Hutzelmann, A.; Heller, M.; Rama, B.

    1999-01-01

    Purpose: We examined the postoperative changes of the cervical spine after treatment of cervical nerve root compression with anterior cervical discectomy and fusion with a new titanium intervertebral disc. Patients and Methods: 37 patients were examined prior to, as well as 4 days, 6 weeks, and 7 months after surgery. Lateral view X-rays and functional imaging were used to evaluate posture and mobility of the cervical spine, the position of the implants, and the reactions of adjacent bone structures. Results: Implantation of the titanium disc led to post-operative distraction of the intervertebral space and slight lordosis. Within the first 6 months a slight loss of distraction and re-kyphosis due to impression of the implants into the vertebral end-plates were found in all patients. We noted partial infractions into the vertebral end-plates in 10/42 segments and slight mobility of the implants in 14/42 segments. Both groups of patients showed reactive spondylosis and local symptoms due to loosening of the implants. The pain subsided after onset of bone bridging and stable fixation of the loosened discs. Conclusions: The titanium intervertebral disc provides initial distraction of the fusioned segments with partial recurrence of kyphosis during the subsequent course. Loosening of the implants with local symptoms can be evaluated with follow-up X-rays and functional imaging. (orig.) [de

  1. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  2. Influence of surface modification on friction coefficient of the titanium-elastomer couple.

    Science.gov (United States)

    Chladek, Wiesław; Hadasik, Eugeniusz; Chladek, Grzegorz

    2007-01-01

    This paper presents the results of a study of the friction coefficient of titanium-elastomer couple. The study was carried out with a view to potential future utilization of its results for constructing retentive elements of implanted prostheses. Changes in the friction force were recorded while removing titanium specimens placed between two silicone counter specimens made of Ufi Gel. The influence of the titanium specimen movement speed in relation that of to the counter specimens and the influence of clamping force on the friction force were assessed. Additionally, the surface roughness of titanium specimens differed; in one case, titanium was coated with polyethylene. The effect of introducing artificial saliva between the cooperating surfaces on the friction force and friction coefficient was analyzed as well. Based on the characteristics recorded, the possibilities of shaping the friction coefficient have been assessed, since it is the friction coefficient that determines effective operation of a friction couple through increasing the titanium specimen roughness. The artificial saliva being introduced between the specimens reduces considerably the friction coefficient through a change of the phenomenon model. An increase in the pressure force for the specimens of high roughness entails a reduction of the friction coefficient. The study carried out allows us to identify the roughness parameters, which in turn will enable obtaining the prescribed retention force for friction/membrane couplings.

  3. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.

    Science.gov (United States)

    Hai, K; Sawase, T; Matsumura, H; Atsuta, M; Baba, K; Hatada, R

    2000-04-01

    This in vitro study evaluated the corrosion resistance of a titanium nitride (TiN) ion-plated magnetic stainless steel (447J1) for the purpose of applying a magnetic attachment system to implant-supported prostheses made of titanium. The surface hardness of the TiN ion-plated 447J1 alloy with varying TiN thickness was determined prior to the corrosion testing, and 2 micrometers thickness was confirmed to be appropriate. Ions released from the 447J1 alloy, TiN ion-plated 447J1 alloy, and titanium into a 2% lactic acid aqueous solution and 0.1 mol/L phosphate buffered saline (PBS) were determined by means of an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Long-term corrosion behaviour was evaluated using a multisweep cyclic voltammetry. The ICP-AES results revealed that the 447J1 alloy released ferric ions into both media, and that the amount of released ions increased when the alloy was coupled with titanium. Although both titanium and the TiN-plated 447J1 alloy released titanium ions into lactic acid solution, ferric and chromium ions were not released from the alloy specimen for all conditions. Cyclic voltamograms indicated that the long-term corrosion resistance of the 447J1 alloy was considerably improved by ion-plating with TiN.

  4. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  5. Nanobiotechnology approach to fabricate polycaprolactone nanofibers containing solid titanium nanoparticles as future implant materials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Cha, Jaegwan

    2011-01-01

    In this study, a good combination of electrospun poly(caprolactone) nanofibers incorporated with high purity titanium nanoparticles is introduced for hard tissue engineering applications. A simple approach to utilize the colloidal properties of poly(caprolactone) and titanium nanoparticles...... nanofiber mats, they were incubated in simulated body fluid at 37 °C for 10 days. Field emission scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy indicated that incorporation of titanium strongly activates precipitation of the apatite-like materials from the utilized...... simulated body fluid. Moreover, in-vivo experiments using experimental dogs revealed that nanofibers can yield good tissue regeneration on the surfaces of nanofibers....

  6. Coating of the orthopaedic titanium alloys with sol-gel derived hydroxyapatite

    International Nuclear Information System (INIS)

    Milev, A.; Green, D.; Chai, C.S.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) is known to be both biocompatible and bioactive material, however, due to its poor mechanical properties and design limitations is not suitable for applying as a load bearing implant. This could be overcome by using appropriate metallic substrates covered with HAp, derived via different techniques. These coatings allow improved adhesion strength of the load bearing substrate to the bone, resulting in shorter healing periods as well as predictable behaviour of the implant for longer periods of time. There are different techniques of producing HAp appropriate for coating purposes. Due to the small particle size of the grains derived, sol-gel route is preferable where lower sintering temperatures are of primary importance. For better adhesion between substrate and hydroxyapatite coating, the surface of titanium substrate, in this study, was converted to titanium nitride and/or oxynitride. Sintering temperatures of 900 deg C have been used for producing crystalline HAp coatings. The control of sol-gel solutions and the analysis of the coatings were carried out using XRD, SEM and DTA techniques. Results obtained indicate high quality HAp coatings can be produced on titanium substrates especially with complex shapes that benefits over the other coating methods

  7. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  8. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2016-02-01

    Full Text Available Morshed Khandaker,1,4 Shahram Riahinezhad,1 Fariha Sultana,1 Melville B Vaughan,2,4 Joshua Knight,2 Tracy L Morris3,4 1Department of Engineering & Physics, 2Department of Biology, 3Department of Mathematics and Statistics, 4Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA Abstract: Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples

  9. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  10. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  11. Advances in cost effective processing of titanium

    International Nuclear Information System (INIS)

    Nelson, O.E.

    1993-01-01

    Recently an industry expert pointed out that one of the greatest hindrances to the growth of titanium usage has been the low percentage of material usable in the final product. Due to the extensive processing, forming, and machining operations typically performed on titanium, yield losses are high. This is especially true in aerospace applications where most titanium is used. In engine components, the start to finish ratio, known as the buy to fly ratio, is often as high as 7 to 1. This can be illustrated by looking at the use of titanium in Pratt and Whitney engines. In the JT-8D-217 used on Boeing's 737-200, the titanium buyweight is 5,385 pounds, whereas the finished titanium, flyweight is just 758 pounds. This start to finish ratio is 7.1:1, giving titanium 17.0% of total engine weight. (orig.)

  12. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections

    DEFF Research Database (Denmark)

    Kazemzadeh-Narbat, Mehdi; Kindrachuk, Jason; Duan, Ke

    2010-01-01

    of this study was to develop a technique that enables the loading and local delivery of a unique group of cationic antimicrobial peptides (AMP) through implant surfaces. A thin layer of micro-porous calcium phosphate (CaP) coating was processed by electrolytic deposition onto the surface of titanium as the drug......Prevention of implant-associated infections has been one of the main challenges in orthopaedic surgery. This challenge is further complicated by the concern over the development of antibiotic resistance as a result of using traditional antibiotics for infection prophylaxis. The objective......) bacteria with 106-fold reductions of both bacterial strains within 30 min as assessed by measuring colony-forming units (CFU). Repeated CFU assays on the same CaP-Tet213 specimen demonstrated retention of antimicrobial activity by the CaP-Tet213 surfaces through four test cycles. The susceptibility...

  13. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  14. [Effect of low dose aspirin on osseointegration around titanium implants in osteoporotic rats].

    Science.gov (United States)

    Yang, Q; Li, F L

    2018-02-09

    Objective: To investigate the effect of aspirin on osseointegration around titanium implants in ostoeporotic rats and to provide evidence for future researches and clinical application. Methods: A total of 60 female SD rats, aged 3-4 months, were divided into ovariectomy group (Ovx group, n= 48) and sham-ovariectomy group (Sham group, n= 12). The rats in Ovx group received ovariectomy and those in Sham group underwent sham-ovariectomy. Twelve weeks later, six rats in each group were randomly selected to confirm the osteoporosis models. The Ovx group was divided into 4 subgroups with 12 rats in each group, namely the osteoporosis group (OP group), and Aspirin groups (A1, A2, A3 group). Pure screw titanium implants were placed in the right tibia near metaphysis of all rats. Three days after implant surgery, aspirin groups were intragastrically administered aspirin at a dose of 2.06, 4.11, 8.21 mg·kg(-1)·d(-1) (A1, A2, A3), and OP group and Sham group were fed the same amount of normal saline. Four and 12 weeks following implantations surgery, half of the rats in each group were randomly chosen and sacrificed. Implant bone contact rate (IBCR), combined bone lamella width (CBLW) and trabercular width (TW) were observed and calculated using histomorphometric measurement. Results: Four weeks after implantations surgery, the TW and CBLW of rats in A1 group [(39.60±2.77) and (27.56±4.14) μm] and the IBCR, TW and CBLW of rats in A2 group and A3 group [A2: (47.21±4.19)%, (48.74±3.20) and (35.91±3.79) μm; A3: (47.35±6.07)%, (50.27±5.25) and (40.66±2.11) μm] were much higher than those in OP group [(33.89±7.17)%, (32.20±6.10) and (19.77±6.80) μm]( P 0.05). Twelve weeks after implantations surgery, the IBCR and CBLW of rats in A1 group [ (85.86±3.64) %, (53.12±8.68) μm], and the IBCR, TW and CBLW of rats in A2 group and A3 group [A2: (85.64±3.97)%, (69.42±6.78) and (54.19±3.12) μm; A3: (86.22±3.48)%, (75.43±3.50) and (55.79±5.60) μm] were much higher

  15. Complications during removal of stainless steel versus titanium nails used for intramedullary nailing of diaphyseal fractures of the tibia.

    Science.gov (United States)

    Seyhan, Mustafa; Guler, Olcay; Mahirogullari, Mahir; Donmez, Ferdi; Gereli, Arel; Mutlu, Serhat

    2018-02-01

    Intramedullary nailing is the treatment of choice for fractures of the tibial shaft, which might necessitate the nail removal due to complications in the long-term. Although considered as a low-risk procedure, intramedullary nail removal is also associated with certain complications. Here, we compared the most commonly used stainless steel and titanium nails with respect to the complications during removal and clinical outcome for intramedullary nailing of diaphyseal fractures of the tibia. Sixty-two patients (26 females, 36 males) were included in this retrospective study. Of the removed nails, 24 were of stainless steel and 38 of titanium. Preoperative and intraoperative parameters, such as implant discomfort, anterior knee pain, operating time and amount of bleeding, and postoperative outcomes were evaluated for each patient. Titanium nail group had more, but not statistically significant, intraoperative complications than stainless steel group during the removal of nails (p = .4498). Operating time and amount of intraoperative bleeding were significantly higher in titanium group than stainless steel group (p = .0306 and p titanium nails than those of stainless steel nails, whereas there was no difference in terms of postoperative SF-36 and KSS scores. In conclusion, although greater bone contact with titanium increases implant stability, nail removal is more difficult, resulting in more longer surgical operation and more intraoperative bleeding. Therefore, we do not recommend titanium nail removal in asymptomatic patients.

  16. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    Science.gov (United States)

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  17. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.

    Science.gov (United States)

    Han, Changjun; Li, Yan; Wang, Qian; Wen, Shifeng; Wei, Qingsong; Yan, Chunze; Hao, Liang; Liu, Jie; Shi, Yusheng

    2018-04-01

    A significant requirement for a bone implant is to replicate the functional gradient across the bone to mimic the localization change in stiffness. In this work, continuous functionally graded porous scaffolds (FGPSs) based on the Schwartz diamond unit cell with a wide range of graded volume fraction were manufactured by selective laser melting (SLM). The micro-topology, strut dimension characterization and effect of graded volume fraction on the mechanical properties of SLM-processed FGPSs were systematically investigated. The micro-topology observations indicate that diamond FGPSs with a wide range of graded volume fraction from 7.97% to 19.99% were fabricated without any defects, showing a good geometric reproduction of the original designs. The dimensional characterization demonstrates the capability of SLM in manufacturing titanium diamond FGPSs with the strut size of 483-905µm. The elastic modulus and yield strength of the titanium diamond FGPSs can be tailored in the range of 0.28-0.59GPa and 3.79-17.75MPa respectively by adjusting the graded volume fraction, which are comparable to those of the cancellous bone. The mathematical relationship between the graded porosity and compression properties of a FGPS was revealed. Furthermore, two equations based on the Gibson and Ashby model have been established to predict the modulus and yield strength of SLM-processed diamond FGPSs. Compared to homogeneous diamond porous scaffolds, FGPSs provide a wide range of mutative pore size and porosity, which are potential to be tailored to optimize the pore space for bone tissue growth. The findings provide a basis of new methodologies to design and manufacture superior graded scaffolds for bone implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Production of titanium tetrachloride

    International Nuclear Information System (INIS)

    Perillo, P.M.; Botbol, O.

    1990-01-01

    This report presents a summary of results from theoperation of a laboratory scale for the production in batches of approximately 100 gs of titanium tetrachloride by chlorination with chloroform and carbon tetrachloride between 340 deg C and 540 deg C. Chlorination agent vapors were passed through a quartz column reacting with titanium oxide powder agglomerated in little spheres. Obtained titanium tetrachloride was condensed in a condenser, taken in a ballon and then purified by fractional distillation. Optimun temperature for chloroform was 400 deg C with 74 % yield and for carbon tetrachloride was 500 deg C with 69 % yield. (Author) [es

  19. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy, Quick, and Safe Technique

    OpenAIRE

    Gupta, Ravi; Singh, Harpreet; Singh, Amit; Garg, Sudhir

    2014-01-01

    Removal of jammed titanium screws can be difficult due to the problem of stripping of the hexagonal heads of the screws. We present a technique of extraction of stripped screws with the use of a standard 4.5 mm stainless steel hollow mill in a patient of peri-implant fracture of the radius fixed with a titanium locking plate 2 years back. The technique is quick, safe, and cost effective.

  20. Uranium fluorides analysis. Titanium spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Titanium determination in uranium hexafluoride in the range 0.7 to 100 microgrammes after transformation of uranium fluoride in sulfate. Titanium is separated by extraction with N-benzoylphenylhydroxylamine, reextracted by hydrochloric-hydrofluoric acid. The complex titanium-N-benzoylphenylhydroxylamine is extracted by chloroform. Spectrophotometric determination at 400 nm [fr

  1. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  2. Superficial characterization of titanium league when submitted to abrasive blasting

    International Nuclear Information System (INIS)

    Suzuki, L.Y.; Leite, I.V.; Szesz, E.M.; Siqueira, C.J.M.

    2010-01-01

    Commercially pure titanium and some of its alloys exhibit a good biocompatibility. These characteristics are frequently used in the manufacture of orthopedic and dental implants. It is possible to modify its surface making it the bioactive using various methods, such as deposition of hydroxyapatite by plasma spray and increasing the roughness of the surface by abrasive blasting. This work is to modify the surface of titanium alloy Ti6Al4V ELI (ASTM F136: 02a) for abrasive blasting and study the morphology, crystallographic phases and the mechanical characteristics of the surface obtained. For such purpose, SEM images, diffraction of X-rays and tests of risk produced by nanoindenter. The sandblasting was done using alumina powder and blasting time of 6s. The morphology of the surfaces of Ti6Al4V ELI changed after sandblasting with increased roughness. It is possible to conclude that after sandblasting the titanium surface do not have a ductile behavior. (author)

  3. Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation

    Directory of Open Access Journals (Sweden)

    Zhengao Wang

    2018-03-01

    Full Text Available To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.

  4. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  5. Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Cummings, F.R. [University of the Western Cape, Electron Microscopy Unit, Physics Department, Bellville 7535, Cape Town (South Africa); Turco, S. Lo; Ntwaeaborwa, O.M. [Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)-CNR, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2016-03-31

    Thin films of titanium were deposited on a glass substrate using electron beam evaporator. Femtosecond laser pulses were focused on the surface of the films, and the samples were scanned while mounted on the motorized computer-controlled motion stage to produce an areal modification of the films. X-ray diffraction of the laser-patterned samples showed evidence of the formation of a γ-Ti{sub 3}O{sub 5} with a monoclinic phase. Rutherford backscattering spectrometry simulation showed that there is an increase in the oxygen concentration as the average laser fluence is increased. Time of flight secondary ions mass spectrometry analysis showed an even distribution of the titanium and oxygen ions on the sample and also ionized molecules of the oxides of titanium were observed. The formation of the oxide of titanium was further supported using the UV–Vis-NIR spectroscopy, which showed that for 0.1 J/cm{sup 2} fluence, the laser-exposed film showed the electron transfer band and the d–d transition peak of titanium was observed at lower wavelengths. - Highlights: • γ-Ti{sub 3}O{sub 5} formed using femtosecond laser. • Fluence and oxygen relation were studied. • Nanoflakes of γ-Ti{sub 3}O{sub 5} were observed under HRSEM.

  6. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  7. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    Science.gov (United States)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  8. Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study.

    Science.gov (United States)

    Schwarz, F; Sculean, A; Wieland, M; Horn, N; Nuesry, E; Bube, C; Becker, J

    2007-12-01

    The aim of the present pilot study is to investigate the effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. Test specimens were manufactured from commercially pure grade 2 titanium according to one of the following procedures: polished (P), acid-etched (A), chemically modified (mod) A (modA), sand-blasted large grit and A (SLA), and modSLA. Intraoral splints were used to collect an in vivo supragingival plaque biofilm in each group at 12, 24, and 48 h. Stained plaque biofilm (PB) areas (%) were morphometrically assessed. All groups exhibited significant increases of mean PB areas over time (p P > A =modA (p modSLA = P > A = modA (p A = modA (p < 0.001; respectively). Within the limits of a pilot study, it could be concluded that hydrophilicity had no apparent effect, while microtopography had a highly uneven and unpredictable influence on supragingival plaque biofilm formation.

  9. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zuldesmi, Mansjur, E-mail: mzuldesmi@yahoo.com [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Department of Mechanical Engineering, Manad State University (UNIMA) (Indonesia); Waki, Atsushi [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Kuroda, Kensuke; Okido, Masazumi [EcoTopia Science Institute, Nagoya University, Nagoya (Japan)

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180 °C for 3 h was applied to titanium (Ti) and its alloys (Ti–6Al–4V, Ti–6Al–7Nb, Ti–29Nb–13Ta–4.6Zr, Ti–13Cr–1Fe–3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1 M of H{sub 3}PO{sub 4} with applied voltages from 0 V to 150 V at a scanning rate of 0.1 V s{sup −1}. The surface-treated samples were stored in a five time phosphate buffered saline (× 5 PBS(−)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity (R{sub B–I}) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in × 5 of PBS(−). - Highlights: • Hydrothermal treatment in distilled water was applied to titanium alloys. • Surface characteristics and osteoconductivity by in vivo test were evaluated. • Water contact angles of titanium alloys were decreased by hydrothermal treatment. • Osteoconductivity of titanium alloys improved notably by hydrothermal treatment after stored in × 5 of PBS (−)

  10. Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications

    Science.gov (United States)

    Hasan, Jafar; Jain, Shubham; Chatterjee, Kaushik

    2017-01-01

    We have developed a chlorine based reactive ion etching process to yield randomly oriented anisotropic nanostructures that render the titanium metal surface ‘black’ similar to that of black silicon. The surface appears black due to the nanostructures in contrast to the conventional shiny surface of titanium. The nanostructures were found to kill bacteria on contact by mechanically rupturing the cells as has been observed previously on wings of certain insects. The etching was optimized to yield nanostructures of ≈1 μm height for maximal bactericidal efficiency without compromising cytocompatibility. Within 4 hours of contact with the black titanium surface, 95% ± 5% of E. coli, 98% ± 2% of P. aeruginosa, 92% ± 5% of M. smegmatis and 22% ± 8% of S. aureus cells that had attached were killed. The killing efficiency for the S. aureus increased to 76% ± 4% when the cells were allowed to adhere up to 24 hours. The black titanium supported the attachment and proliferation of human mesenchymal stem cells and augmented osteogenic lineage commitment in vitro. Thus, the bioinspired nanostructures on black titanium impart multi-biofunctional properties toward engineering the next-generation biomaterials for orthopedic implants.

  11. Criterion of titanium aviation alloy application

    International Nuclear Information System (INIS)

    Stasyunas, O.P.

    1976-01-01

    The most significant statistic mechanical characteristics are presented of titanium as compared with those of aluminium and steel. Based on these data one can draw conclusions as to the advantages and disadvantages of titanium. High chemical activity and diffusivity of titanium place limitations on the use of its alloys. Despite the promising features of a needle-like structure, specifications still keep relying on a globular structure, which is explained by the easeiness of the production. Titanium is expensive, sometimes its cost may by a factor of 20 exceed that of other aviation materials

  12. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  13. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Science.gov (United States)

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  14. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Directory of Open Access Journals (Sweden)

    Alfred T. Sidambe

    2014-12-01

    Full Text Available Titanium (Ti and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  15. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  16. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  17. Fracture Strength of Titanium based Lithium Disilicate and Zirconia Abutment Crowns

    Science.gov (United States)

    2017-06-12

    zirconia abutment/lithium-disilicate crown. INTRODUCTION Dental implants and the use of esthetic abutments are widely practiced procedures for dentists...first implant abutments were fabricated from metals of mostly gold or titanium alloy. The downside of these materials, especially in esthetic areas...abutments presented esthetic complications. Because dentists and patients desire more naturally appearing restorations, the dental manufacturers

  18. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    Science.gov (United States)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  19. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  20. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Holly J. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States)], E-mail: hjp2@msstate.edu; Schulz, Kirk H. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States); Bumgardner, Joel D. [Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152 (United States); Walters, Keisha B. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States)

    2008-05-30

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  1. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-01-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  2. Microstructure of titanium-cement-lithium disilicate interface in CAD-CAM dental implant crowns: a three-dimensional profilometric analysis.

    Science.gov (United States)

    Cresti, Stefano; Itri, Angelo; Rebaudi, Alberto; Diaspro, Alberto; Salerno, Marco

    2015-01-01

    Peri-implantitis is an infection of the implant surface caused by adhesion of bacteria that generate bone resorption and sometimes even consequent implant loss. Both screw-retained and cemented fixed implants are affected. The purpose of this study is to investigate the morphological defects at the cemented interface between titanium abutment and ceramic crown, comparing different adhesive cements used to fill the marginal gap. Twelve computer-aided design-computer-aided manufacturing dental crowns were cemented to titanium abutments using three different resin composite cements. Sealed margins were polished using grommets with descending diamond particle size. Three groups of four crowns each were made according to the cement used, namely RelyX Unicem (3 M ESPE), Panavia F 2.0 (Kuraray), and NX3 (Nexus Kerr). Samples were analyzed using optical inspection, three-dimensional profilometry, and image analysis, including analysis of variance. Although RelyX showed significantly lower root mean square surface roughness (4.4 ± 1.5 μm) than that of NX3 (7.0 ± 2.9 μm), it showed no significant difference with Panavia (3.7 ± 1.5 μm). The marginal gap was significantly wider in Panavia (149 ± 108 μm) as compared with NX3 (71 ± 45 μm) and Relyx (64 ± 34 μm). For all groups, homogeneous heights of both metal-cement and ceramic-cement gaps were observed. Moreover, all samples showed homogeneity of the margins and absence of instrumental bias, thus validating both procedure and materials. When using the chosen polishing method, RelyX Unicem showed both low roughness and marginal width, and thus the smoothest and more continuous abutment-crown interlayer, promising a low probability of occurrence of peri-implantitis. © 2013 Wiley Periodicals, Inc.

  3. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches.

    Science.gov (United States)

    Ciocca, L; Fantini, M; De Crescenzio, F; Corinaldesi, G; Scotti, R

    2011-11-01

    This study describes a protocol for the direct manufacturing of a customized titanium mesh using CAD-CAM procedures and rapid prototyping to augment maxillary bone and minimize surgery when severe atrophy or post-oncological deformities are present. Titanium mesh and particulate autogenous plus bovine demineralised bone were planned for patient rehabilitation. Bone augmentation planning was performed using the pre-op CT data set in relation to the prosthetic demands, minimizing the bone volume to augment at the minimum necessary for implants. The containment mesh design was used to prototype the 0.6 mm thickness customized titanium mesh, by direct metal laser sintering. The levels of regenerated bone were calculated using the post-op CT data set, through comparison with the pre-op CT data set. The mean vertical height difference of the crestal bone was 2.57 mm, while the mean buccal-palatal dimension of thickness difference was 3.41 mm. All planned implants were positioned after an 8 month healing period using two-step implant surgery, and finally restored with a partial fixed prosthesis. We present a viable and reproducible method to determine the correct bone augmentation prior to implant placement and CAD-CAM to produce a customized direct laser-sintered titanium mesh that can be used for bone regeneration.

  4. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  5. Chest-wall reconstruction in case of infection of the operative site: is there any interest in titanium rib osteosynthesis?

    Science.gov (United States)

    Berthet, Jean-Philippe; Solovei, Laurence; Tiffet, Olivier; Gomez-Caro, Abel; Bommart, Sébastien; Canaud, Ludovic; Alric, Pierre; Marty-Ané, Charles-Henri

    2013-11-01

    To describe the management of thoracic reconstructions in the presence of primary chest-wall infection (PCWI) or secondary deep chest-wall infection (SCWI), focussing on local tolerance of a titanium rib osteosynthesis system. PCWI included infected chest wall tumours (CWT), infected T3 non-small-cell lung carcinoma (NSCLC) and open flail chest. SCWI was defined by deep infection of previous thoracic-wall reconstructions. Infection was identified by preoperative bacterial analysis of the tumour or surgical site. In PCWI, a one-step procedure combined extensive resection of infected tissues and rigid reconstruction of the defect; skeletal rigidity was achieved using titanium implants. In SCWI, we removed all synthetic material except titanium implants. In both groups, the surgical field was thoroughly cleaned and implants were wrapped or covered by flaps. From January 2005 to December 2011, 11 patients (54 ± 10.2 years) with either PCWI (3 CWT, 3 T3 NSCLC, 1 open flail chest) or SCWI (3 CWT, 1 funnel chest) were treated. Infection was polymicrobial in all but 1 case. Bacteria observed in PCWI patients were multidrug resistant. In PCWI, we resected 4.2 ± 0.6 ribs en bloc with the lung (n = 5), the skin and the pectoralis major and then used mesh and 2.1 ± 1.2 titanium implants for reconstruction (n = 6). The mean defect was 1154.4 ± 318 cm(3). Surgical SCWI management removed polytetrafluoroethylene-mesh and preserved the titanium implants. A Vicryl mesh (n = 3) and greater omentum flap (n = 3) were added. One of the 2 postoperative deaths in the PCWI group was related to infection recurrence. No other patient had infection at the 6-month follow-up with leucocyte-labelled scintigraphy. Titanium rib osteosynthesis is reliable in two complex and life-threatening situations: PCWIs and SCWIs. In combination with a flap, this allows rapid, reliable, rigid reconstruction of infected full-thickness chest-wall defects in a single-step procedure.

  6. Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections.

    Science.gov (United States)

    Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar; Alikhasi, Marzieh

    2017-08-01

    This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. Two regular platform dental implants, one with external connection (Brånemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at α=0.05 of significance. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups ( P internal and external connection implants in terms of rotational freedom ( P internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments ( P internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

  7. Open magnetic resonance imaging using titanium-zirconium needles: improved accuracy for interstitial brachytherapy implants?

    International Nuclear Information System (INIS)

    Popowski, Youri; Hiltbrand, Emile; Joliat, Dominique; Rouzaud, Michel

    2000-01-01

    Purpose: To evaluate the benefit of using an open magnetic resonance (MR) machine and new MR-compatible needles to improve the accuracy of brachytherapy implants in pelvic tumors. Methods and Materials: The open MR machine, foreseen for interventional procedures, allows direct visualization of the pelvic structures that are to be implanted. For that purpose, we have developed MR- and CT-compatible titanium-zirconium (Ti-Zr) brachytherapy needles that allow implantations to be carried out under the magnetic field. In order to test the technical feasibility of this new approach, stainless steel (SS) and Ti-Zr needles were first compared in a tissue-equivalent phantom. In a second step, two patients implanted with Ti-Zr needles in the brachytherapy operating room were scanned in the open MR machine. In a third phase, four patients were implanted directly under open MR control. Results: The artifacts induced by both materials were significantly different, strongly favoring the Ti-Zr needles. The implantation in both first patients confirmed the excellent quality of the pictures obtained with the needles in vivo and showed suboptimal implant geometry in both patients. In the next 4 patients, the tumor could be punctured with excellent accuracy, and the adjacent structures could be easily avoided. Conclusion: We conclude that open MR using MR-compatible needles is a very promising tool in brachytherapy, especially for pelvic tumors

  8. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    OpenAIRE

    I. I. Kuzhelivsky; M. A. Akselrov; L. A. Sitko

    2015-01-01

    The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  9. Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention

    Directory of Open Access Journals (Sweden)

    Carlos Nelson Elias

    2012-01-01

    Full Text Available Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN. The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%. The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm, suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.

  10. Analysis of titanium content in titanium tetrachloride solution

    Science.gov (United States)

    Bi, Xiaoguo; Dong, Yingnan; Li, Shanshan; Guan, Duojiao; Wang, Jianyu; Tang, Meiling

    2018-03-01

    Strontium titanate, barium titan and lead titanate are new type of functional ceramic materials with good prospect, and titanium tetrachloride is a commonly in the production such products. Which excellent electrochemical performance of ferroelectric tempreature coefficient effect.In this article, three methods are used to calibrate the samples of titanium tetrachloride solution by back titration method, replacement titration method and gravimetric analysis method. The results show that the back titration method has many good points, for example, relatively simple operation, easy to judgment the titration end point, better accuracy and precision of analytical results, the relative standard deviation not less than 0.2%. So, it is the ideal of conventional analysis methods in the mass production.

  11. Ultrasonic effects on titanium tanning of leather.

    Science.gov (United States)

    Peng, Biyu; Shi, Bi; Sun, Danhong; Chen, Yaowen; Shelly, Dennis C

    2007-03-01

    The effects of ultrasound on titanium tanning of leather were investigated. Either 20 or 40 kHz ultrasound was applied to the titanium tanning of pigskins. Five different treatment conditions were carried out and the effects were examined, such as leather shrinkage temperature (T(s)), titanium content and titanium distribution in the leather. Overall heat loading was carefully controlled. Results showed that 20 kHz ultrasound effectively improves titanium agent penetration into the hide and increases the leather's shrinkage temperature. Doubling the frequency to 40 kHz produced negligible enhancements. An impressive 105.6 degrees C T(s) was achieved using 20 kHz ultrasound pretreatment of the tanning liquor followed by 20 kHz ultrasound in the tanning mixture (liquor plus pigskins) in a special salt-free medium. Finally, using a unique ultrasonic tanning drum with 26.5 kHz ultrasound, the T(s) reached a record level of 106.5 degrees C, a value not achieved in conventional (no ultrasound) titanium tanning. The ultrasonic effects on titanium tanning of leather are judged to make a superior mineral tanned leather.

  12. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  13. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  14. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs

    Directory of Open Access Journals (Sweden)

    Qiao SC

    2015-01-01

    Full Text Available Shichong Qiao,1,* Huiliang Cao,2,* Xu Zhao,1,* Hueiwen Lo,1 Longfei Zhuang,1 Yingxin Gu,1 Junyu Shi,1 Xuanyong Liu,2 Hongchang Lai1 1Department of Oral and Maxillofacial Implantology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Dental implants with proper antibacterial ability as well as ideal osseointegration are being actively pursued. The antimicrobial ability of titanium implants can be significantly enhanced via modification with silver nanoparticles (Ag NPs. However, the high mobility of Ag NPs results in their potential cytotoxicity. The silver plasma immersion ion-implantation (Ag-PIII technique may remedy the defect. Accordingly, Ag-PIII technique was employed in this study in an attempt to reduce the mobility of Ag NPs and enhance osseointegration of sandblasted and acid-etched (SLA dental implants. Briefly, 48 dental implants, divided equally into one control and three test groups (further treated by Ag-PIII technique with three different implantation parameters, were inserted in the mandibles of six Labrador dogs. Scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry were used to investigate the surface topography, chemical states, and silver release of SLA- and Ag-PIII-treated titanium dental implants. The implant stability quotient examination, Microcomputed tomography evaluation, histological observations, and histomorphometric analysis were performed to assess the osseointegration effect in vivo. The results demonstrated that normal soft tissue healing around dental implants was observed in all the groups, whereas the implant stability

  15. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  16. Complications during removal of stainless steel versus titanium nails used for intramedullary nailing of diaphyseal fractures of the tibia

    Directory of Open Access Journals (Sweden)

    Mustafa Seyhan

    2018-02-01

    Full Text Available Objectives: Intramedullary nailing is the treatment of choice for fractures of the tibial shaft, which might necessitate the nail removal due to complications in the long-term. Although considered as a low-risk procedure, intramedullary nail removal is also associated with certain complications. Here, we compared the most commonly used stainless steel and titanium nails with respect to the complications during removal and clinical outcome for intramedullary nailing of diaphyseal fractures of the tibia. Patients and methods: Sixty-two patients (26 females, 36 males were included in this retrospective study. Of the removed nails, 24 were of stainless steel and 38 of titanium. Preoperative and intraoperative parameters, such as implant discomfort, anterior knee pain, operating time and amount of bleeding, and postoperative outcomes were evaluated for each patient. Results: Titanium nail group had more, but not statistically significant, intraoperative complications than stainless steel group during the removal of nails (p = .4498. Operating time and amount of intraoperative bleeding were significantly higher in titanium group than stainless steel group (p = .0306 and p < .001, respectively. Preoperative SF-36 physical component and KSS scores were significantly lower in patients who had removal of titanium nails than those of stainless steel nails, whereas there was no difference in terms of postoperative SF-36 and KSS scores. Conclusion: In conclusion, although greater bone contact with titanium increases implant stability, nail removal is more difficult, resulting in more longer surgical operation and more intraoperative bleeding. Therefore, we do not recommend titanium nail removal in asymptomatic patients. Keywords: Fractures of tibial shaft, Removal of intramedullary nailing, Stainless steel nail, Titanium nail

  17. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    Science.gov (United States)

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts.

  18. A new method for production of titanium vapor and synthesis of titanium nitride coatings

    Science.gov (United States)

    Grigoriev, Sergey N.; Melnik, Yury A.; Metel, Alexander S.; Volosova, Marina A.

    2018-03-01

    It is proposed to synthesize on machine parts and cutting tools wear-resistant titanium nitride coatings with the help of the hollow-cathode glow discharge, a molybdenum crucible for titanium evaporation being used as the anode of the discharge and a process vacuum chamber being used as the hollow cathode. The research revealed that at the anode surface area less than a critical value S* = (2m/M)1/2S, where S is the area of the chamber walls, m is the mass of electrons and M is the mass of ions, the anode fall of potential is positive and grows from ˜50 V at argon pressure p = 0.2 Pa to ˜2 kV at p = 0.02 Pa. At the discharge current I = 0.6 A electrons accelerated by the anode fall of 0.9 kV transport into the crucible with the inner diameter of 12 mm the power of ˜0.54 kW, which allows the titanium evaporation and the coating deposition rate of 5 µm·h-1 on a substrate distanced from the crucible at 100 mm. After the argon is replaced with the nitrogen, titanium nitride coating without titanium droplets is synthesized the deposition rate amounting to about the same value.

  19. In vitro biocompatibility of titanium after plasma surface alloying with boron

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Mariusz, E-mail: markacz@ump.edu.pl [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Miklaszewski, Andrzej [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Karolina [Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan (Poland)

    2016-12-01

    Recently, the effect of different sizes of precursor powders during surface plasma alloying modification on the properties of titanium surface was studied. In this work we show in vitro test results of the titanium (α-Ti) after plasma surface alloying with boron (B). Ti-B nanopowders with 2 and 10 wt% B were deposited onto microcrystalline Ti substrate. The in vitro cytocompatibility of these biomaterials was evaluated and compared with a conventional microcrystalline Ti. During the studies, established cell line of human gingival fibroblasts and osteoblasts were cultured in the presence of tested materials, and its survival rate and proliferation activity were examined. For this purpose, MTT assay, flow cytometric and fluorescent microscopic evaluation were made. Biocompatibility tests carried out indicate that the Ti after plasma surface alloying with B could be a possible candidate for dental implants and other medicinal applications. Plasma alloying is a promising method for improving the properties of titanium, thus increasing the field of its applications. - Highlights: • this is first article carried out on the titanium after plasma surface alloying with different contents of boron; • microcrystalline titanium modified with boron changes the physicochemical features of conventional material; • Ti modified by boron is proper in terms of effects on survival and proliferative activity of cells of dental alveoli; • precursors with different content of boron in different ways influence the intensity and stability of cell growth;.

  20. Microstructural characterization of titanium dental implants by electron microscopy and mechanical tests; Caracterizacao microestrutural de implantes dentarios de titanio por microscopia eletronica e ensaios mecanicos

    Energy Technology Data Exchange (ETDEWEB)

    Helfenstein, B.; Muniz, N.O.; Dedavid, B.A., E-mail: bruhelfenstein@hotmail.co [Pontificia Univ. Catolica do Rio Grande do Sul (FE/PUC/RS), Porto Alegre, RS (Brazil). Fac. de Engenharia; Gehrke, S.A. [Universidade Federal de Santa Maria (FE/UFSM), RS (Brazil). Fac. de Engenharia; Vargas, A.L.M. [Parque Tecnologico da PUCRS (TECNOPUC/GEPSI), Porto Alegre, RS (Brazil). Grupo de Estudos de Propriedades de Superficies e Interfaces

    2010-07-01

    Mini screw types for titanium implants, with differentiated design, were tested for traction and torsion for behavior analysis of the shape relative to the requirements of ASTM F136. All implants showed mechanical tensile strength above by the standard requirement, being that 83.3% of them broke above the doughnut, in support of the prosthesis. Distinct morphologies in ruptured by mechanical tests, were obtained. However, both fracture surfaces showed fragile comportments. Metallographic tests, x-ray diffraction (XRD) and microhardness were used for microstructural characterization of material, before and after heat treatment. The presences of {beta} phase in screw surface after quenching treatment proves that the thermal treatment can contribute for mechanical resistance in surface implants. (author)