WorldWideScience

Sample records for titanium dioxide tio2

  1. Titanium Dioxide (TiO2) Dye-Sensitized Solar Cells

    Science.gov (United States)

    Alseadi, Anwar Abdulaziz

    With the increasing global energy consumption and diminishing fossil fuels, various renewable and sustainable energies have been harvested in past decades and related devices have been fabricated. Dye-sensitized solar cells (DSSCs) are the most efficient third-generation solar cells to harvest solar energy into electricity directly. Titanium dioxide (TiO2) based DSSCs were invented in 1988 and have attracted more and more attention since then because of low-cost and high efficiency. TiO2 nanoparticles are one kind of popular anode materials of DSSC because of stability, abundance, environment safety, non-toxicity, and excellent photovoltaic properties. In the project, TiO2 nanoparticles with different crystallographic sizes were produced by ball-milling. Physical properties of the produced TiO 2 nanoparticles were characterized by X-ray powder diffraction, UV-visible spectroscopy, and Raman scattering. TiO2-based DSSCs were fabricated and their photovoltaic performances were tested. The effects of TiO2 layer thickness, crystallographic size, and microsphere fillings were investigated. The project enriched our understanding of TiO2-based DSSCs.

  2. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  3. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    Science.gov (United States)

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  5. Titanium Dioxide Nanoparticles (TiO2 Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection

    Directory of Open Access Journals (Sweden)

    Atul Sharma

    2015-09-01

    Full Text Available We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO2 quenching based aptasensing platform for detection of target molecules. TiO2 quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer upon the non-covalent adsorption of fluorescent labeled aptamer on TiO2 surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO2, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA. At optimized experimental condition, the obtained limit of detection (LOD was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB. The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%–99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte.

  6. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats.

    Science.gov (United States)

    Pujalté, Igor; Dieme, Denis; Haddad, Sami; Serventi, Alessandra Maria; Bouchard, Michèle

    2017-01-04

    This study focused on the generation of aerosols of titanium dioxide (TiO 2 ) nanoparticles (NPs) and their disposition kinetics in rats. Male Sprague-Dawley rats were exposed by inhalation to 15mg/m 3 of anatase TiO 2 NPs (∼20nm) during 6h. Rats were sacrificed at different time points over 14days following the onset of inhalation. Ti levels were quantified by ICP-MS in blood, tissues, and excreta. Oxidative damages were also monitored (MDA). Highest tissue levels of Ti were found in lungs; peak values were reached only at 48h followed by a progressive decrease over 14days, suggesting a persistence of NPs at the site-of-entry. Levels reached in blood, lymph nodes and other internal organs (including liver, kidney, spleen) were circa one order of magnitude lower than in lungs, but the profiles were indicative of a certain translocation to the systemic circulation. Large amounts were recovered in feces compared to urine, suggesting that inhaled NPs were eliminated mainly by mucociliary clearance and ingested. TiO 2 NPs also appeared to be partly transferred to olfactory bulbs and brain. MDA levels indicative of oxidative damage were significantly increased in lungs and blood at 24h but this was not clearly reflected at later times. Translocation and clearance rates of inhaled NPs under different realistic exposure conditions should be further documented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Titanium dioxide (TIO2) thin film and plasma properties in RF magnetron sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2013-01-01

    Lately, titanium dioxide (TiO 2 ) films with anatase crystalline property received numerous attentions as unique material properties. There are wide applications of TiO 2 thin film such as for photocatalytic application in solar cell. In the present study, radio frequency (RF) magnetron sputtering technique has been used to produce high dense, homogeneously controllable film layer at low deposition temperature using titanium (Ti) target. The diameter of the Ti target is 3 inch with fixed discharge power of 400W. Magnetron sputtering plasma has been produced in high purity 99.99% Argon (Ar) and 99.99% Oxygen (O 2 ) environment pressure ranging from 5 to 20 mTorr. The TiO2 were growth on silicon and glass substrates. Substrate temperature during deposition was kept constant at 400°C. The distance between target and substrate holder was maintain at 14 cm with rotation of 10 rotation-per-minutes. Our X-ray diffraction result, shows anatase crystalline successfully formed with characterization peaks of plane (101) at 2θ = 25.28°, plane (202) at 2θ = 48.05° and plane (211) at 2θ = 55.06°. In addition, it is our interest to study the plasma properties and optical spectrum of Ti, Ti+ , O- , ArM and Ar+ in the chamber during the deposition process. Result of emission line intensities, electron density and temperature from optical spectroscope and Langmuir probe will be discuss further during the workshop. This works were supported by Graduate Incentive Scheme of Universiti Tun Hussein Onn Malaysia (UTHM) and Fundamental Research Grant Scheme of Ministry of Higher Education, Malaysia. (author)

  8. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO_2) thin films

    International Nuclear Information System (INIS)

    Nordin, N.; Azizah, N.; Hashim, U.

    2016-01-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO_2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  9. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO2) thin films

    Science.gov (United States)

    Nordin, N.; Hashim, U.; Azizah, N.

    2016-07-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  10. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Integrated titanium dioxide (TiO_2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO_2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO_2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO_2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO_2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO_2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  12. Nano titanium dioxide photocatalytic protein tyrosine nitration: A potential hazard of TiO2 on skin

    International Nuclear Information System (INIS)

    Lu, Naihao; Zhu Zhening; Zhao Xuqi; Tao Ran; Yang Xiangliang; Gao Zhonghong

    2008-01-01

    Protein tyrosine nitration is a prevalent post-translational modification which occurs as a result of oxidative and nitrative stress, it may be directly involved in the onset and/or progression of diseases. Considering the existence of nano titanium dioxide (TiO 2 ) in environment and sunscreen products along with the high content of nitrite in sweat, the UV-exposed skin may be a significant target for the photosensitized damage. In this paper, tyrosine nitration of bovine serum albumin (BSA) was initiated in the UV-irradiated reaction mixture containing 0.2-3.0 mg/ml of three commercially nano TiO 2 products and 0.25-1.0 mM NO 2 - . It was found that anatase TiO 2 and Degussa P25 TiO 2 showed prominent photocatalytic activity on promoting the formation of protein tyrosine nitration, and the optimum condition for the reaction was around physiological pH. Meanwhile, the photocatalytic effect of rutile on protein tyrosine nitration was subtle. The potential physiological significance of nano TiO 2 -photocatalytic protein nitration was also demonstrated in mouse skin homogenate. Although the relationship between photocatalytic protein tyrosine nitration and chronic cutaneous diseases needs further study, the toxicity of nano TiO 2 to the skin disease should be paid more attention in the production and utilization process

  13. Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering

    NARCIS (Netherlands)

    Gerhardt, L.C.; Jell, G.M.R.; Boccaccini, A.R.

    2007-01-01

    Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting.

  14. Titanium dioxide use (TiO2) in cement matrix as a photocatalyst of nitrogen oxides (NOx)

    International Nuclear Information System (INIS)

    Casagrande, C.A.; Hotza, D.; Repette, W.L.; Jochem, L.F.

    2012-01-01

    The use of titanium dioxide (TiO 2 ) in the photodegradation of nitrogen oxides (NO x ) is a technology that can contribute against to environmental pollution. This work shows the feasibility of using TiO 2 in mortars for photocatalysis. The Degussa P25 titania were characterized chemically and physically, revealing that the sample consists of nanoparticles, but has become crowded. Tests Samples (TS) were manufactured with added titania and the NO x tests at 28, 60 and 120 days of age of TSs, showing that it was 3% capable of degrading 100% of the NO x gas flow. Proved that conditions like relative humidity, flow and radiation intensity are relevant when it comes to efficiency in photocatalysis, altering the efficiency by varying these conditions. The photocatalysis with titania in cement matrix was efficient in NO x degradation, presenting itself as a promising technique to control environmental pollution

  15. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2).

    Science.gov (United States)

    Yemmireddy, Veerachandra K; Hung, Yen-Con

    2015-07-02

    The purpose of this study was to determine the effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2) nanoparticles (NPs). Produce and meat processing wash solutions were prepared using romaine lettuce and ground beef samples. Physico-chemical properties such as pH, turbidity, chemical oxygen demand (COD), total phenolics (for produce) and protein (for meat) content of the extracts were determined using standard procedures. The photocatalytic bactericidal activity of TiO2 (1 mg/mL) in suspension with or without organic matter against Escherichia coli O157:H7 (5-strain) was determined over a period of 3h. Increasing the concentration of organic matter (either produce or meat) from 0% to 100% resulted in 85% decrease in TiO2 microbicidal efficacy. 'Turbidity, total phenolics, and protein contents in wash solutions had significant effect on the log reduction. Increasing the total phenolics content in produce washes from 20 to 114 mg/L decreased the log reduction from 2.7 to 0.38 CFU/mL, whereas increasing the protein content in meat washes from 0.12 to 1.61 mg/L decreased the log reduction from and 5.74 to 0.87 CFU/mL. Also, a linear correlation was observed between COD and total phenolics as well as COD and protein contents. While classical disinfection kinetic models failed to predict, an empirical equation in the form of "Y=me(nX)" (where Y is log reduction, X is COD, and m and n are reaction rate constants) predicted the disinfection kinetics of TiO2 in the presence of organic matter (R(2)=94.4). This study successfully identified an empirical model with COD as a predictor variable to predict the bactericidal efficacy of TiO2 when used in food processing environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Formation of Sol Gel Dried Droplets of Carbon Doped Titanium Dioxide (TiO2) at Low Temperature via Electrospraying

    Science.gov (United States)

    Halimi, S. U.; Hashib, S. Abd; Abu Bakar, N. F.; Ismail, S. N.; Nazli Naim, M.; Rahman, N. Abd; Krishnan, J.

    2018-05-01

    The high band gap energy of TiO2 and inconsistency in particles size has imposed a significant drawback on TiO2 applications. Dried droplets of carbon-doped TiO2 fine particles were produced by using electrospraying technique. The C-doped TiO2 particles were prepared by hydrolysis of titanium isopropoxide with the addition of carbon precursor followed by electrospraying the suspension in stable Taylor cone-jet mode. Coulomb fission of charged droplets from the electrospraying technique successfully transformed dispersed liquid C-doped TiO2 particles into solid. The deposited C-doped TiO2 droplets were collected on aluminium substrates placed at working distances of 10 to 20 cm from the tip of the electrospray needle. The collected C-doped TiO2 droplets were characterized by using FESEM, UV-Vis, FTIR and XRD. By increasing the working distance, the average droplets size of the deposited C-doped TiO2 was reduced from ±163.2 nm to ±147.56 nm. UV-Vis analysis showed a strong absorption in the visible-light region and about 93 nm red shift of the onset spectrum for C-doped TiO2. The red shift indicates an increase in photocatalytic efficiency by reducing the TiO2 band gap energy from 3.0 eV to 2.46 eV and shifting its activity to the visible-light region. FTIR analysis indicated the presence of Ti-C and C-O chemical bonding in the C-doped TiO2.

  17. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.

    Science.gov (United States)

    Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian

    2013-03-15

    Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Effect of titanium dioxide nanoparticles (TiO2 NPs) on the expression of mucin genes in human airway epithelial cells.

    Science.gov (United States)

    Kim, Gui Ok; Choi, Yoon Seok; Bae, Chang Hoon; Song, Si-Youn; Kim, Yong-Dae

    2017-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are utilized with growing frequency for a wide variety of industrial applications. Recently, acute and chronic exposures to TiO 2 NPs have been found to induce inflammatory response in the human respiratory tract. However, the effect and mechanism underlying the induction of major airway mucins by TiO 2 NPs have not been elucidated. This study was conducted to characterize the effect of TiO 2 NPs, and the mechanism involved, on the expressions of airway mucins in human airway epithelial cells. In NCI-H292 cells and primary cultures of normal nasal epithelial cells, the effects of TiO 2 NPs and signaling pathway for airway mucin genes were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassays and immunoblot analysis using several specific inhibitors and small interfering RNAs (siRNAs). TiO 2 NPs increased MUC5B expression and activated the phosphorylations of extracellular signal-related kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). U0126 (an ERK1/2 MAPK inhibitor) and SB203580 (a p38 MAPK inhibitor) inhibited TiO 2 NPs-induced MUC5B expression. And knockdown of ERK1, ERK2 and p38 MAPK using siRNAs significantly blocked TiO 2 NPs-induced MUC5B mRNA expression. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by TiO 2 NPs, and knockdown by TLR4 siRNA significantly attenuated TiO 2 NPs-induced MUC5B mRNA expression and the TiO 2 NPs-induced phosphorylations of ERK1/2 and p38 MAPK. These results demonstrate for the first time that TiO 2 NPs induce MUC5B expression via TLR4-dependent ERK1/2 and p38 MAPK signaling pathways in respiratory epithelium.

  19. Development of Titanium Dioxide (TiO2 ) Nanocoatings on Food Contact Surfaces and Method to Evaluate Their Durability and Photocatalytic Bactericidal Property.

    Science.gov (United States)

    Yemmireddy, Veerachandra K; Farrell, Glenn D; Hung, Yen-Con

    2015-08-01

    Titanium dioxide (TiO2 ) is a well-known photocatalyst for its excellent bactericidal property under UVA light. The purpose of this study was to develop physically stable TiO2 coatings on food contact surfaces using different binding agents and develop methods to evaluate their durability and microbicidal property. Several types of organic and inorganic binders such as polyvinyl alcohol, polyethylene glycol, polyurethane, polycrylic, sodium and potassium silicates, shellac resin, and other commercial binders were used at 1:1 to 1:16 nanoparticle to binder weight ratios to develop a formulation for TiO2 coating on stainless steel surfaces. Among the tested binders, polyurethane, polycrylic, and shellac resin were found to be physically more stable when used in TiO2 coating at 1:4 to 1:16 weight ratio. The physical stability of TiO2 coatings was determined using adhesion strength and scratch hardness tests by following standard ASTM procedures. Further, wear resistance of the coatings was evaluated based on a simulated cleaning procedure used in food processing environments. TiO2 coating with polyurethane at a 1:8 nanoparticle to binder weight ratio showed the highest scratch hardness (1.08 GPa) followed by coating with polycrylic (0.68 GPa) and shellac (0.14 GPa) binders. Three different techniques, namely direct spreading, glass cover-slip, and indented coupon were compared to determine the photocatalytic bactericidal property of TiO2 coatings against Escherichia coli 0157:H7 at 2 mW/cm(2) UVA light intensity. Under the tested conditions, the indented coupon technique was found to be the most appropriate method to determine the bactericidal property of TiO2 coatings and showed a reduction of 3.5 log CFU/cm(2) in 2 h. © 2015 Institute of Food Technologists®

  20. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  1. Analysis of X-ray diffraction of the titanium dioxide (TiO_2) synthesized by the Pechini Method for application in heterogeneous photocatalysis processes

    International Nuclear Information System (INIS)

    Oliveira, P.L.; Araujo, D.S.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2016-01-01

    Titanium dioxide (TiO_2) is a polymorph commonly applied to heterogeneous photocatalysis processes for being relatively inexpensive and photo - stable. It is usually found in three different crystalline phases (anatase, rutile and brookite), which directly interfere in their photocatalytic efficiency. Therefore, this study aimed to investigate the obtainment of TiO_2 by Pechini method in different conditions for application in the heterogeneous photocatalysis process. For this purpose, it was evaluated by analysis of X-ray diffraction (XRD ) the behavior of TiO_2 materials synthesized in proportions of 2:1 and 3:1 (titanium isopropoxide/citric acid), pyrolyzed at 300°C/3h and 400°C /h and calcined at 400°C and 500°C/1h. The results revealed that the TiO_2 samples produced in the ratio of 2:1 and 3:1 isopropoxide/citric acid and calcined at 500°C/h presented the best results. (author)

  2. Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    International Nuclear Information System (INIS)

    Wang, Shichao; Zhang, Jun

    2014-01-01

    Highlights: • HDPE/TiO 2 composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO 2 composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO 2 ) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO 2 particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO 2 particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO 2 particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO 2 particles in HDPE matrix. It was found the rutile TiO 2 could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result

  3. Bioaccumulation and physiological effects of copepods sp. (Eucyclop sp.) fed Chlorella ellipsoides exposed to titanium dioxide (TiO2) nanoparticles and lead (Pb2+).

    Science.gov (United States)

    Matouke, Moise M; Mustapha, Moshood

    2018-05-01

    The demand for manufactured products and the derivatives of nanomaterials and non essential metals continue to increase, and as a consequence their presence in fisheries and aquaculture has therefore become a major concern for the risks to which our environment is exposed. The bioaccumulation profile of binary compounds (Titanium dioxide nanoparticles and lead) and their effects on the feeding behaviour of copepods were assessed in a simplified food chain including, the freshwater alga Chlorella ellipsoides and the cyclopoids copepods sp. Our results indicated that Pb and TiO 2 NPs individually and mixed can be transferred from alga to copepods via dietary pathway. The highest bioconcentration factor (748.5) was recorded for Pb in the combined compounds (Pb15 + Ti16.5) μg L -1 and the highest BCF (5.57) recorded for TiO 2 NPs was found in TiO 2 NPs (16.5) alone. Ingestion and filtration rate decreased significantly (p  0.05) in both single and binary treatments. The results demonstrate that the co-exposure of TiO 2 NPs and Pb inhibit the ingestion and filtration of microalgae by cyclopoid copepods sp. and also induce increase of carbohydrate, lipid; GPx, GR and CAT due to stress. Copyright © 2018. Published by Elsevier B.V.

  4. Investigating the Effect of Titanium Dioxide (TiO2) Pollution on the Performance of the Mono-crystalline Solar Module

    Science.gov (United States)

    Ahmed Darwish, Zeki; Sopian, K.; Kazem, Hussein A.; Alghoul, M. A.; Alawadhi, Hussain

    2017-11-01

    This paper presents a study of titanium oxide TiO2 as one of the components of dust pollution affecting the PV performance. This pollutant can be found in various quantities in different locations around the world. The production of energy by different types of photovoltaic systems is very sensitive and depends on various environmental factors. Dust is one of the main contributing factors, yet the type of the dust is often neglected when studying the behaviour of the solar panel. In this experimental work we have studied the performance of the monocrystalline solar module as affected by the density of TiO2. The reduction of the PV module power caused by titanium dioxide under various mass densities was investigated. The results showed that the TiO2 has a significant effect on the PV output power. The dust density varied between 0-125 g.m-2. The corresponding reduction of the PV output power increased from 0 to 86.7%. This is based on various influencing parameters such as: short circuit current (Isc), maximum current (Im), open circuit voltage (Voc), maximum voltage (Vm), maximum power (Pm) and efficiency (E). Two functions are proposed as a mathematical model in order to explain this behaviour, namely the exponential and Fourier functions. The coefficients of all general models are valid for this type of dust with a density value ranging from 0-125 g.m-2.

  5. Simultaneous enrichment of cysteine-containing peptides and phosphopeptides using a cysteine-specific phosphonate adaptable tag (CysPAT) in combination with titanium dioxide (TiO2) chromatography

    DEFF Research Database (Denmark)

    Huang, Honggang; Pedersen, Martin Haar; Ibañez-Vea, Maria

    2016-01-01

    to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO2) and subsequent mass spectrometric analysis. The CysPAT strategy was developed using a synthetic peptide, a standard protein and subsequently the strategy was applied to protein lysates from...

  6. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles.

    Science.gov (United States)

    Bachler, Gerald; von Goetz, Natalie; Hungerbuhler, Konrad

    2015-05-01

    Nano-sized titanium dioxide particles (nano-TiO2) can be found in a large number of foods and consumer products, such as cosmetics and toothpaste, thus, consumer exposure occurs via multiple sources, possibly involving different exposure routes. In order to determine the disposition of nano-TiO2 particles that are taken up, a physiologically based pharmacokinetic (PBPK) model was developed. High priority was placed on limiting the number of parameters to match the number of underlying data points (hence to avoid overparameterization), but still reflecting available mechanistic information on the toxicokinetics of nano-TiO2. To this end, the biodistribution of nano-TiO2 was modeled based on their ability to cross the capillary wall of the organs and to be phagocytosed in the mononuclear phagocyte system (MPS). The model's predictive power was evaluated by comparing simulated organ levels to experimentally assessed organ levels of independent in vivo studies. The results of our PBPK model indicate that: (1) within the application domain of the PBPK model from 15 to 150 nm, the size and crystalline structure of the particles had a minor influence on the biodistribution; and (2) at high internal exposure the particles agglomerate in vivo and are subsequently taken up by macrophages in the MPS. Furthermore, we also give an example on how the PBPK model may be used for risk assessment. For this purpose, the daily dietary intake of nano-TiO2 was calculated for the German population. The PBPK model was then used to convert this chronic external exposure into internal titanium levels for each organ.

  7. Effects of titanium dioxide (TiO2 ) nanoparticles on caribbean reef-building coral (Montastraea faveolata).

    Science.gov (United States)

    Jovanović, Boris; Guzmán, Héctor M

    2014-06-01

    Increased use of manufactured titanium dioxide nanoparticles (nano-TiO2 ) is causing a rise in their concentration in the aquatic environment, including coral reef ecosystems. Caribbean mountainous star coral (Montastraea faveolata) has frequently been used as a model species to study gene expression during stress and bleaching events. Specimens of M. faveolata were collected in Panama and exposed for 17 d to nano-TiO2 suspensions (0.1 mg L(-1) and 10 mg L(-1) ). Exposure to nano-TiO2 caused significant zooxanthellae expulsion in all the colonies, without mortality. Induction of the gene for heat-shock protein 70 (HSP70) was observed during an early stage of exposure (day 2), indicating acute stress. However, there was no statistical difference in HSP70 expression on day 7 or 17, indicating possible coral acclimation and recovery from stress. No other genes were significantly upregulated. Inductively coupled plasma mass spectrometry analysis revealed that nano-TiO2 was predominantly trapped and stored within the posterior layer of the coral fragment (burrowing sponges, bacterial and fungal mats). The bioconcentration factor in the posterior layer was close to 600 after exposure to 10 mg L(-1) of nano-TiO2 for 17 d. The transient increase in HSP70, expulsion of zooxanthellae, and bioaccumulation of nano-TiO2 in the microflora of the coral colony indicate the potential of such exposure to induce stress and possibly contribute to an overall decrease in coral populations. © 2014 SETAC.

  8. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    Science.gov (United States)

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution

  9. Titanium dioxide nanomaterials for photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Zhe; Green, Michael; Just, Michael; Chen, Xiaobo; Li, Yang Yang

    2017-01-01

    Titanium dioxide (TiO 2 ) has been long regarded as one of the more promising photocatalysts to remove environmental pollution and to generate hydrogen from water under sunlight irradiation via photocatalysis. TiO 2 is environmentally benign and thus is considered a ‘green’ catalyst. In this review we present a short introduction to the physical and electronic properties of TiO 2 , its photocatalytic mechanisms, and some recent examples of various TiO 2 materials used for photocatalysis; these examples include 0, 1, 2, 3D, faceted, defected, composited, and hydrogenated TiO 2 materials. (topical review)

  10. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  11. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  12. Enhancing Properties and Performance of Cellulose Acetate/Polyethylene Glycol (CA/PEG Membrane with the addition of Titanium Dioxide (TiO2 by Using Surface Coating Method

    Directory of Open Access Journals (Sweden)

    Nurkhamidah Siti

    2018-01-01

    Full Text Available In this study, cellulose acetate/polyethylene glycol (CA/PEG membrane with composition 80/20 was prepared by phase inversion method. Titanium dioxide with different number has been added by using surface coating. Hydrophilicity, morphology, flux permeate and salt rejection of membranes has been studied. The hydrophilicity is determined by Fourier-Transformed Infra-Red (FTIR spectra and contact angle analysis. Surface and fractured morphology are identified by using Scanning Electron Microscopy (SEM. The experiment results show that hydrophilicity of CA/PEG membrane increases with the addition and the increasing of TiO2 contents. However, with further increasing of TiO2, hydrophilicity of CPT membrane decreases. The optimum membrane is CA/PEG/TiO2 80/20/1,25 g/L solvent (CPT 3 with flux permeate of 111,82 L.m-2h-1 and salt rejection of 48,30%.

  13. Catalytic Efficiency of Titanium Dioxide (TiO2) and Zeolite ZSM-5 Catalysts in the in-situ Epoxidation of Palm Olein

    Science.gov (United States)

    Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.

    2018-05-01

    Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.

  14. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  15. Thermal degradation of TiO2 nanotubes on titanium

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  16. In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: nanoparticle characterisation, effects on phagocytic activity and internalisation of nanoparticles into haemocytes.

    Science.gov (United States)

    Marisa, Ilaria; Marin, Maria Gabriella; Caicci, Federico; Franceschinis, Erica; Martucci, Alessandro; Matozzo, Valerio

    2015-02-01

    The continuous growth of nanotechnology and nano-industries, the considerable increase of products containing nanoparticles (NPs) and the potential release of NPs in aquatic environments suggest a need to study NP effects on aquatic organisms. In this context, in vitro assays are commonly used for evaluating or predicting the negative effects of chemicals and for understanding their mechanisms of action. In this study, a physico-chemical characterisation of titanium dioxide NPs (n-TiO2) was performed, and an in vitro approach was used to investigate the effects of n-TiO2 on haemocytes of the clam Ruditapes philippinarum. In particular, the effects on haemocyte phagocytic activity were evaluated in two different experiments (with and without pre-treatment of haemocytes) by exposing cells to P25 n-TiO2 (0, 1 and 10 μg/mL). In addition, the capability of n-TiO2 to interact with clam haemocytes was evaluated with a transmission electron microscope (TEM). In this study, n-TiO2 particles showed a mean diameter of approximately 21 nm, and both anatase (70%) and rutile (30%) phases were revealed. In both experiments, n-TiO2 significantly decreased the phagocytic index compared with the control, suggesting that NPs are able to interfere with cell functions. The results of the TEM analysis support this hypothesis. Indeed, we observed that TiO2 NPs interact with cell membranes and enter haemocyte cytoplasm and vacuoles after 60 min of exposure. To the best of our knowledge, this is the first study demonstrating the internalisation of TiO2 NPs into R. philippinarum haemocytes. The present study can contribute to the understanding of the mechanisms of action of TiO2 NPs in bivalve molluscs, at least at the haemocyte level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells

    International Nuclear Information System (INIS)

    Reeves, James F.; Davies, Simon J.; Dodd, Nicholas J.F.; Jha, Awadhesh N.

    2008-01-01

    TiO 2 nanoparticles ( 2 nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO 2 alone (0.1-1000 μg ml -1 ) had little effect whereas co-exposure with UVA (0.5-2.0 kJ m -2 ) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO 2 and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 μg ml -1 in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO 2 . UVA irradiation of TiO 2 -treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO 2 were most likely due to hydroxyl radical (·OH) formation

  18. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  19. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  20. Influences of metallic doping on anatase crystalline titanium dioxide: From electronic structure aspects to efficiency of TiO2-based dye sensitized solar cell (DSSC)

    International Nuclear Information System (INIS)

    Nguyen, Thuy Trang; Tran, Van Nam; Bach, Thanh Cong

    2014-01-01

    In this work, we examined the influences of metallic X dopants (X = Be, Mg, Ca, Zn, Al, W and Nb) on the electronic structure of anatase TiO 2 in the framework of density functional theory (DFT). The dopant-induced electronic structure modifications are believed to directly change the photovoltaic (PV) behaviors of the X-doped TiO 2 based DSSCs. The dopants are shown to either directly inhibit the intrinsic Ti 3+ and oxygen vacancy surface defects of TiO 2 or enhance these defects depending on their valence states. These dopant-induced defect modifications, in turn, strongly affect the PV behaviors of the DSSCs. The combined effect of electronic structure and surface-defect modifications determined the photoelectric efficiency of the device. - Highlights: • Ca, Al and W dopants strongly distort the lattice and narrowed the band gap. • Nb negatively shifts while the others positive shift the conduction band bottom. • Nb and W dopants reduce Ti 4+ to Ti 3+ without forming oxygen vacancy. • Be, Mg, Ca, Zn and Al dopants induce oxygen vacancy without Ti 3+ . • Nb and W inhibit the surface defects while the others do the reversed manner

  1. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  2. Erbium diffusion in titanium dioxide

    Directory of Open Access Journals (Sweden)

    Louise Basse

    2017-04-01

    Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.

  3. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  4. Reusable photocatalytic titanium dioxide-cellulose nanofiber films

    Science.gov (United States)

    Alexandra Snyder; Zhenyu Bo; Robert Moon; Jean-Christophe Rochet; Lia. Stanciu

    2013-01-01

    Titanium dioxide (TiO2) is a well-studied photocatalyst that is known to break down organic molecules upon ultraviolet (UV) irradiation. Cellulose nanofibers (CNFs) act as an attractive matrix material for the suspension of photocatalytic particles due to their desirable mechanical and optical properties. In this work, TiO2...

  5. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles

    NARCIS (Netherlands)

    Peters, R.J.B.; Bemmel, G. van; Herrera-Rivera, Z.; Helsper, H.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H.

    2014-01-01

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO 2 content and the

  6. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles

    NARCIS (Netherlands)

    Peters, R.J.B.; Bemmel, van M.E.M.; Herrera-Rivera, Z.; Helsper, J.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H.

    2014-01-01

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the

  7. Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs

    DEFF Research Database (Denmark)

    Gotfredsen, K; Nimb, L; Hjörting-Hansen, E

    1992-01-01

    The aim of the present study was to compare the anchorage of TiO2-blasted screw and cylindrical implants with conventionally used machine-produced screw and cylindrical implants inserted immediately in extraction sockets on dogs. 6 adult mongrel dogs had 3rd and 4th mandibular premolars extracted...... bilaterally and 24 commercial pure titanium implants were placed immediately in extraction sockets and covered with mucoperiosteum. Each dog had inserted 4 implants: 1 screw implant and 1 cylindrical implant blasted with titanium-dioxide-particles; 1 screw implant and 1 cylindrical implant with machine...

  8. Reactivity of Trapped and Accumulated Electrons in Titanium Dioxide Photocatalysis

    Directory of Open Access Journals (Sweden)

    Shigeru Kohtani

    2017-10-01

    Full Text Available Electrons, photogenerated in conduction bands (CB and trapped in electron trap defects (Tids in titanium dioxide (TiO2, play crucial roles in characteristic reductive reactions. This review summarizes the recent progress in the research on electron transfer in photo-excited TiO2. Particularly, the reactivity of electrons accumulated in CB and trapped at Tids on TiO2 is highlighted in the reduction of molecular oxygen and molecular nitrogen, and the hydrogenation and dehalogenation of organic substrates. Finally, the prospects for developing highly active TiO2 photocatalysts are discussed.

  9. Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor

    NARCIS (Netherlands)

    Slooff, L.H.; Wienk, M.M.; Kroon, J.M.

    2004-01-01

    Hybrid TiO2:polymer photovoltaic cells were made from mixtures of titanium(IV) isopropoxide and poly[2-methoxy-5-(3',7'-dimethyloctyl)-p-phenylene vinylene] (MDMO-PPV) or poly(3-octyl thiophene) (P3OT) via hydrolysis in air. Cells were made with varying titanium(IV) isopropoxide:polymer ratios.

  10. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  11. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    Science.gov (United States)

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Titanium dioxide: inhalation toxicology and epidemiology.

    Science.gov (United States)

    Hext, Paul M; Tomenson, John A; Thompson, Peter

    2005-08-01

    Titanium dioxide (TiO(2)) is manufactured worldwide in large quantities for use in a wide range of applications and is normally considered to be toxicologically inert. Findings of tumours in the lungs of rats exposed chronically to high concentrations of TiO(2), but not in similarly exposed mice or hamsters, suggest that the tumorigenic response may be a rat-specific phenomenon but nonetheless raises concerns for potential human health effects. With the limited toxicological understanding of species differences in response to inhaled TiO(2) and a similarly limited amount of epidemiological information with respect to TiO(2) exposure in the workplace, a consortium of TiO(2) manufacturers in Europe (under the European Chemistry Industry Council; CEFIC) and in North America (under the American Chemistry Council; ACC) initiated a programme of research to investigate inter-species differences as a result of exposure to TiO(2) and to conduct detailed epidemiological surveys of the major manufacturing sites. The toxicology studies exposed rats, mice and hamsters to pigment-grade TiO(2) (PG-TiO(2), 0, 10, 50 and 250 mg m(-3)) or ultrafine TiO(2) (UF-TiO(2), 0, 0.5, 2 and 10 mg m(-3)) for 90 days and the lung burdens and tissue responses were evaluated at the end of the exposure period and for up to 1 year after exposure. Results demonstrated clear species differences. Rats and mice had similar lung burdens and clearance rates while hamsters showed high clearance rates. At high lung particle burdens, rats showed a marked progression of histopathological lesions throughout the post-exposure period while mice and hamsters showed minimal initial lesions with recovery apparent during the post-exposure period. Lung neutrophil responses, a sensitive marker of inflammatory changes, reflected the development or recovery of the histopathological lesions. The use of surface area rather than gravimetric lung burden provided closer correlates of the burden to the biological effect

  13. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population

    NARCIS (Netherlands)

    Rompelberg, Cathy; Heringa, Minne B.; Donkersgoed, van Gerda; Drijvers, José; Roos, Agnes; Westenbrink, Susanne; Peters, R.J.B.; Bemmel, van M.E.M.; Brand, Walter; Oomen, Agnes G.

    2016-01-01

    Titanium dioxide (TiO2) is commonly applied to enhance the white colour and brightness of food products. TiO2 is also used as white pigment in other products such as toothpaste. A small fraction of the pigment is known to be present as nanoparticles (NPs). Recent studies with TiO2 NPs indicate that

  14. Titanium Dioxide Nanoparticles: a Risk for Human Health?

    Science.gov (United States)

    Grande, Fedora; Tucci, Paola

    2016-01-01

    Titanium dioxide (TiO2) is a natural oxide of the element titanium with low toxicity, and negligible biological effects. The classification as bio-inert material has given the possibility to normal-sized (>100 nm) titanium dioxide particles (TiO2-NPs) to be extensively used in food products and as ingredients in a wide range of pharmaceutical products and cosmetics, such as sunscreens and toothpastes. Therefore, human exposure may occur through ingestion and dermal penetration, or through inhalation route, during both the manufacturing process and use. In spite of the extensively use of TiO2-NPs, the biological effects and the cellular response mechanisms are still not completely elucidated and thus a deep understanding of the toxicological profile of this compound is required. The main mechanism underlining the toxicity potentially triggered by TiO2-NPs seems to involve the reactive oxygen species (ROS) production, resulting in oxidative stress, inflammation, genotoxicity, metabolic change and potentially carcinogenesis. The extent and type of cell damage strongly depend on chemical and physical characteristics of TiO2-NPs, including size, crystal structure and photo-activation. In this mini-review, we would like to discuss the latest findings on the adverse effects and on potential human health risks induced by TiO2-NPs exposure.

  15. TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Guerrero, M.; Castillo, N.; Soto, A.B.; Fragoso, R.; Cabanas-Moreno, J.G.

    2005-01-01

    Titanium dioxide thin films were deposited on crystalline silicon (100) and fused quartz substrates by spray pyrolysis (SP) of an aerosol, generated ultrasonically, of titanium diisopropoxide. The evolution of the crystallization, studied by X-ray diffraction (XRD), atomic force (AFM) and scanning electron microscopy (SEM), reflection and transmission spectroscopies, shows that the deposition process is nearly close to the classical chemical vapor deposition (CVD) technique, producing films with smooth surface and good crystalline properties. At deposition temperatures below 400 deg. C, the films grow in amorphous phase with a flat surface (roughness∼0.5 nm); while for equal or higher values to this temperature, the films develop a crystalline phase corresponding to the TiO 2 anatase phase and the surface roughness is increased. After annealing at 750 deg. C, the samples deposited on Si show a transition to the rutile phase oriented in (111) direction, while for those films deposited on fused quartz no phase transition is observed

  16. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    Science.gov (United States)

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  17. Microwave synthesis of Titanium Dioxide nanotubes for use in water treatment

    CSIR Research Space (South Africa)

    Sikhwivhilu, L

    2010-09-01

    Full Text Available various methods have been used to synthesise Titanium Dioxide (TiO2) (also known as Titania) nanoparticles hydrothermal synthesis in the presence of a base solution, has proved to be an effective approach to prepare 1D nanostructures of TiO2...

  18. Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2012-03-01

    Full Text Available Titanium dioxide (TiO2) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO2 powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures...

  19. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  20. Preparation and integration of nanostructured titanium dioxide

    KAUST Repository

    Zeng, Hua Chun

    2011-10-01

    Titanium dioxide (TiO2) is a chemically stable nontoxic transition-metal oxide associated with a wide range of existing chemical engineering processes. In this short review, recent research endeavors in preparation and integration of nanostructured TiO2 materials system will be featured and discussed for their potential new applications. Because material development always plays pivotal roles in the progress of a particular engineering discipline, the reviewed subjects will provide useful information to stimulate nanoscale research of chemical engineering, linking established fundamentals with practical applications. Some critical issues and challenges regarding further development of this important functional material for nanotechnology will also be addressed. © 2011 Elsevier Ltd. All rights reserved.

  1. Black Titanium Dioxide Nanomaterials in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yan

    2017-01-01

    Full Text Available Titanium dioxide (TiO2 nanomaterials are widely considered to be state-of-the-art photocatalysts for environmental protection and energy conversion. However, the low photocatalytic efficiency caused by large bandgap and rapid recombination of photo-excited electrons and holes is a challenging issue that needs to be settled for their practical applications. Structure engineering has been demonstrated to be a highly promising approach to engineer the optical and electronic properties of the existing materials or even endow them with unexpected properties. Surface structure engineering has witnessed the breakthrough in increasing the photocatalytic efficiency of TiO2 nanomaterials by creating a defect-rich or amorphous surface layer with black color and extension of optical absorption to the whole visible spectrum, along with markedly enhanced photocatalytic activities. In this review, the recent progress in the development of black TiO2 nanomaterials is reviewed to gain a better understanding of the structure-property relationship with the consideration of preparation methods and to project new insights into the future development of black TiO2 nanomaterials in photocatalytic applications.

  2. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  3. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  4. Nanoporous TiO_2 electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature

    International Nuclear Information System (INIS)

    Białous, Anna; Gazda, Maria; Grochowska, Katarzyna; Atanasov, Petar; Dikovska, Anna; Nedyalkov, Nikolay; Reszczyńska, Joanna; Zaleska-Medynska, Adriana; Śliwiński, Gerard

    2016-01-01

    Recently, fabrication of the nanoporous TiO_2 photoelectrode on metal foils by means of sputtering of the Ti film on preheated metal substrate followed by the TiO_2 deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is applied and discussed in which the nanoporous TiO_2 electrode is fabricated under conditions similar to pulsed laser deposition but with the deposit formed directly on the ablated target at atmospheric pressure and room temperature. The titanium dioxide thin film is grown by ablation of the Ti foil with the nanosecond UV laser (266 nm) at fluence up to 1.5 J/cm"2. The rutile–anatase phase transformation takes place during this one-step process and no thermal pre-and post-treatment of the deposit is needed. In samples produced in air, the presence of mixed phases of the non-stoichiometric anatase (> 70%), rutile and negligible amount of TiN is consistently confirmed by the X-ray diffraction, energy-dispersive X-ray and Raman spectra. For applications of the reported films as electrode material in the third generation photovoltaic cells, the use of industrial lasers could significantly improve the process efficiency. - Highlights: • TiO_2 films via laser ablation of Ti in air under standard temperature and pressure conditions • Nanoporous crystalline structure from one-step process • Anatase content > 70% in the mixed phase film

  5. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  6. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology 3 Rationale – Titanium Cost Build-up Material Cost Ilmenite $0.27/kg Ti sponge Titanium slag $0.75/kg Ti Sponge TiCl4 and TiO2 $3....10/kg Ti Sponge Ti Sponge raw materials costs $5.50/kg Ti Sponge Total Ti Sponge cost $9-$11/kg Ti Sponge Ti ingot $15-17/kg Ti Aluminium $1.7/kg Al Supporting the Manufacturing and Materials Industry in its quest for global competitivenessorting...

  7. Titanium dioxide nanoparticles: a review of current toxicological data

    Science.gov (United States)

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290

  8. Titanium dioxide nanoparticles: a review of current toxicological data.

    Science.gov (United States)

    Shi, Hongbo; Magaye, Ruth; Castranova, Vincent; Zhao, Jinshun

    2013-04-15

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.

  9. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    Science.gov (United States)

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  10. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    -column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline...... a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...... solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass...

  11. Dermal Titanium Dioxide Deposition Associated With Intralesional Triamcinolone Injection.

    Science.gov (United States)

    Cohen, Brandon E; Bashey, Sameer; Cole, Christine; Abraham, Jerrold L; Ragsdale, Bruce; Ngo, Binh

    2016-12-01

    Cutaneous discoloration secondary to dermal deposition of titanium dioxide (TiO2) particles is recognized but seldom reported in the literature. In this report, the authors describe the case of a 61-year-old gentleman, with a long history of alopecia areata, who presented with numerous, discrete dark blue macules on the scalp. Scanning electron microscopy with energy dispersive x-ray spectroscopy analysis ultimately identified the macules as deposits of TiO2. The patient had a history of intralesional triamcinolone injections for management of alopecia areata. A sample of generic 0.1% triamcinolone acetonide paste was analyzed and found to contain many TiO2 particles analogous to those seen in the patient's biopsy sample. To the authors' knowledge, this is the first reported case of TiO2 deposition in the dermis likely resulting from topical combined with intralesional triamcinolone injection.

  12. Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat.

    Science.gov (United States)

    Farrell, Thomas P; Magnuson, Berna

    2017-08-01

    Titanium dioxide (TiO 2 ) is a white color additive that has a long history of global approval and use in food. There is, however, considerable confusion regarding the applicability of the biological effects of novel, engineered, nano-sized forms of TiO 2 developed for nonpigmentary applications to the safety of oral exposure to food grade TiO 2 pigment. The objective of this study was to assess the absorption, distribution, and routes of excretion in rats after oral exposure to food grade TiO 2 . Four different grades of TiO 2 (200 ppm) or control (0 ppm) diets were fed to rats for 7 consecutive days, followed by control diet only for 1, 24, or 72 h. Concentrations of titanium in liver, kidney and muscle were mainly below the limit of detection (titanium above the LOD were in the range of 0.1 to 0.3 mg/kg wet weight for all groups. Whole blood concentrations of titanium were titanium was equivalent to titanium in tissues following consumption of diets containing 200 ppm food grade TiO 2 . No differences in systemic absorption of the 4 forms of TiO 2 were observed indicating that the bioavailability of TiO 2 is consistently low for the range of particle sizes and morphologies examined in this study. © 2017 Institute of Food Technologists®.

  13. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells.

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-11-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO(2)) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO(2), either uncoated (TiO(2)-1, hydrophilic) or coated with stearic acid (TiO(2)-2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO(2)-1, but not TiO(2)-2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO(2)-1 and TiO(2)-2 treatments. However, TiO(2)-2, but not TiO(2)-1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO(2)-1 and TiO(2)-2 resulted in intracellular ROS formation, TiO(2)-2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO(2)-2, but not TiO(2)-1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO(2) toxicity acquired a tumorigenic phenotype. TiO(2)-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO(2) has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells.

  14. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  15. Mucin secretion induced by titanium dioxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Eric Y T Chen

    2011-01-01

    Full Text Available Nanoparticle (NP exposure has been closely associated with the exacerbation and pathophysiology of many respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD and asthma. Mucus hypersecretion and accumulation in the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium dioxide (TiO(2, one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of various commercial products. Although TiO(2 NPs have been shown to induce cellular nanotoxicity and emphysema-like symptoms, whether TiO(2 NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we showed that TiO(2 NPs (<75 nm can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a Ca(2+ signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA. The corresponding changes in cytosolic Ca(2+ concentration were monitored with Rhod-2, a fluorescent Ca(2+ dye. We found that TiO(2 NP-evoked mucin secretion was a function of increasing intracellular Ca(2+ concentration resulting from an extracellular Ca(2+ influx via membrane Ca(2+ channels and cytosolic ER Ca(2+ release. The calcium-induced calcium release (CICR mechanism played a major role in further amplifying the intracellular Ca(2+ signal and in sustaining a cytosolic Ca(2+ increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary diseases involving mucus hypersecretion.

  16. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  17. Titanium dioxide in our everyday life; is it safe?

    International Nuclear Information System (INIS)

    Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa

    2011-01-01

    Titanium dioxide (TiO 2 ) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO 2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO 2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO 2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO 2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO 2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO 2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO 2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO 2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO 2 nanoparticles should be used with great care

  18. Titanium dioxide in our everyday life; is it safe?

    Science.gov (United States)

    Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa

    2011-01-01

    Background Titanium dioxide (TiO2) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Conclusions Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO2 nanoparticles should be used with great care. PMID:22933961

  19. Effects of titanium dioxide nanoparticles on human keratinocytes.

    Science.gov (United States)

    Wright, Clayton; Iyer, Anand Krishnan V; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S; Rojanasakul, Yon; Azad, Neelam

    2017-01-01

    Titanium dioxide (TiO 2 ) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO 2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO 2 nanoparticles (H 2 TiO 7 ) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO 2 particles varying in size (Fine, Ultrafine and H 2 TiO 7 ) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO 2 ; however, there is no consistent effect on cell viability and proliferation with either of these TiO 2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO 2 , we did not observe any significant effect of UV-C exposure combined with TiO 2 treatment on HaCaTs. Furthermore, TiO 2 -treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H 2 TiO 7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO 2 .

  20. Evaluation of the properties of TiO2 films on titanium

    International Nuclear Information System (INIS)

    Panizza, C.

    2009-01-01

    We report the results of laboratory tests concerning the characterization of photo catalytic properties of titanium dioxide films obtained on titanium substrates by using three different techniques for anodizing. Been investigated in scanning electron microscopy, X-ray analysis cyclic voltammetry. [it

  1. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals

    KAUST Repository

    Chen, X.

    2011-01-20

    When used as a photocatalyst, titanium dioxide (TiO 2) absorbs only ultraviolet light, and several approaches, including the use of dopants such as nitrogen, have been taken to narrow the band gap of TiO 2. We demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder in the surface layers of nanophase TiO 2 through hydrogenation. We showed that disorder-engineered TiO 2 nanocrystals exhibit substantial solar-driven photocatalytic activities, including the photo-oxidation of organic molecules in water and the production of hydrogen with the use of a sacrificial reagent.

  2. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals

    KAUST Repository

    Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S.

    2011-01-01

    When used as a photocatalyst, titanium dioxide (TiO 2) absorbs only ultraviolet light, and several approaches, including the use of dopants such as nitrogen, have been taken to narrow the band gap of TiO 2. We demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder in the surface layers of nanophase TiO 2 through hydrogenation. We showed that disorder-engineered TiO 2 nanocrystals exhibit substantial solar-driven photocatalytic activities, including the photo-oxidation of organic molecules in water and the production of hydrogen with the use of a sacrificial reagent.

  3. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  4. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    Science.gov (United States)

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest exposures because TiO2 content of sweets is higher than other food products, and that a typical exposure for a US adult may be on the order of 1 mg Ti per kilogram body weight per day. Thus, because of the millions of tons of titanium based

  5. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  6. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    NARCIS (Netherlands)

    Dekker, N.H.; Ha, S.; Janissen, R.; Ussembayev, Y.; van Oene, M.M.; Solano Hermosilla, B.P.

    2016-01-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and

  7. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    Science.gov (United States)

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  8. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    Science.gov (United States)

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  9. Effects of boric acid and borax on titanium dioxide genotoxicity.

    Science.gov (United States)

    Turkez, Hasan

    2008-07-01

    Titanium dioxide (TiO(2)) is a potential carcinogenic/mutagenic agent although it is used in many areas including medical industries and cosmetics. Boron (as boric acid and borax) has also well-described biological effects and therapeutic benefits. In a previous study, sister-chromatid exchanges (SCEs) and micronuclei (MN) rates were assessed in control and TiO(2)-treated (1, 2, 3, 5, 7.5 and 10 microm) human whole blood cultures. The results showed that the rates of SCE (at 2, 3, 5, 7.5 and 10 microm) and MN (at 5, 7.5 and 10 microm) formation in peripheral lymphocytes were increased significantly by TiO(2) compared with the controls. The present study also investigated the genetic effects of boric acid and borax (2.5, 5 and 10 microm) on cultures with and without TiO(2) addition. No significant increase in SCE and MN frequencies were observed at all concentrations of boron compounds. However, TiO(2)-induced SCE and MN could be reduced significantly by the presence of boric acid and borax. In conclusion, this study indicated for the first time that boric acid and borax led to an increased resistance of DNA to damage induced by TiO(2). 2008 John Wiley & Sons, Ltd

  10. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Directory of Open Access Journals (Sweden)

    Buford Mary

    2009-12-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere is relatively inert when internalized into a biological model system (in vivo or in vitro. For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension Results TiO2 nanospheres, short ( 15 μm nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  11. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min

    2015-01-01

    Graphical abstract: TiO 2 nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO 2 NWAs. • The formation mechanism of the TiO 2 nanostructures was discussed. • The density, average diameter, and morphology of TiO 2 NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO 2 nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO 2 nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO 2 nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO 2 nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO 2 NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm −2 , an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved

  12. Application of Titanium Dioxide-Graphene Composite Material for Photocatalytic Degradation of Alkylphenols

    Directory of Open Access Journals (Sweden)

    Chanbasha Basheer

    2013-01-01

    Full Text Available Titanium dioxide-graphene (TiO2-G composite was used for the photodegradation of alkylphenols in wastewater samples. The TiO2-G composites were prepared via sonochemical and calcination methods. The synthesized composite was characterized by X-ray diffraction (XRD, infrared spectroscopy (IR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDX, and fluorescence spectroscopy. The photocatalytic efficiency was evaluated by studying the degradation profiles of alkylphenols using gas chromatography-flame ionization detector (GC-FID. It was found that the synthesized TiO2-G composites exhibit enhanced photocatalytic efficiencies as compared to pristine TiO2. The presence of graphene not only provides a large surface area support for the TiO2 photocatalyst, but also stabilizes charge separation by trapping electrons transferred from TiO2, thereby hindering charge transfer and enhancing its photocatalytic efficiency.

  13. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers

    International Nuclear Information System (INIS)

    Esthappan, Saisy Kudilil; Kuttappan, Suma Kumbamala; Joseph, Rani

    2012-01-01

    Highlights: ► Wet synthesis method was used for the synthesis of TiO 2 nano particles. ► Mechanical properties of polypropylene fibers were increased by the addition of TiO 2 nanoparticles. ► Thermal stability of polypropylene fiber was improved significantly by the addition of TiO 2 nano particles. ► TiO 2 nanoparticles dispersed well in polypropylene fibers. -- Abstract: Titanium dioxide nanoparticles were prepared by wet synthesis method and characterized by transmission electron microscopy and X-ray diffraction studies. The nanotitanium dioxide then used to prepare polypropylene/titanium dioxide composites by melt mixing method. It was then made into fibers by melt spinning and subsequent drawing. Mechanical properties of the fibers were studied using Favimat tensile testing machine with a load cell of 1200 cN capacity. Thermal behavior of the fibers was studied using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscope studies were used to investigate the titanium dioxide surface morphology and crosssection of the fiber. Mechanical properties of the polypropylene fiber was improved by the addition of titanium dioxide nanoparticles. Incorporation of nanoparticles improves the thermal stability of polypropylene. Differential scanning calorimetric studies revealed an improvement in crystallinity was observed by the addition of titanium dioxide nanoparticles.

  14. A review on potential neurotoxicity of titanium dioxide nanoparticles

    Science.gov (United States)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  15. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    Science.gov (United States)

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    Science.gov (United States)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  17. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    Science.gov (United States)

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  18. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  19. Selective recovery of titanium dioxide from low grade sources

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2006-09-01

    Full Text Available that is too fine for use in the chloride process  Perovskite (CaTiO3) resources in Colorado3. The main problem with utilizing a low-grade resource is the amount of chemical wastes produced per unit of pigment of produced. If a TiO2 bearing feedstock... The mineralogical form of the titanium oxide species affects the thermodynamic equilibrium of the reaction. Calcium titanate, CaTiO3 (Perovskite) is more stable than magnesium titanate MgTiO3, (Geikilite) which is more stable than titanium dioxide or ilmenite (Fe...

  20. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  1. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  2. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  3. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    International Nuclear Information System (INIS)

    Larue, C; Carriere, M; Khodja, H; Herlin-Boime, N; Brisset, F; Flank, A M; Fayard, B; Chaillou, S

    2011-01-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO 2 -NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO 2 -NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO 2 -NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO 2 -NPs. These results show that TiO 2 -NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  4. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    International Nuclear Information System (INIS)

    Nikkanen, J-P; Heinonen, S; Saarivirta, E Huttunen; Honkanen, M; Levänen, E

    2013-01-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO 2 ) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO 2 was coagulated with magnetite particles using FeCl 3 ·6 H 2 O at a fixed pH value. Magnetic separation of coagulated TiO 2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO 2 powder. The magnetic separation of TiO 2 –magnetite coagulate from solution proved to be efficient around pH:8

  5. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO_2 immobilized on porous titanium sheets via thermal-chemical oxidation

    International Nuclear Information System (INIS)

    Arlos, Maricor J.; Liang, Robert; Hatat-Fraile, Melisa M.; Bragg, Leslie M.; Zhou, Norman Y.; Servos, Mark R.; Andrews, Susan A.

    2016-01-01

    Highlights: • TiO_2 self-assembled on oxidized porous titanium sheets. • UV-LED/TiO_2 membrane treatment reduced the concentrations of estrogens. • Different pH conditions affect treatment efficiency. • The estrogenic activity removal was similar to the chemical disappearance. - Abstract: The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO_2) has potential applications for the removal of EDCs from water. TiO_2 has been immobilized on supports using a variety of synthesis methods to increase its feasibility for water treatment. In this study, we immobilized TiO_2 through the thermal-chemical oxidation of porous titania sheets. The efficiency of the material to degrade target EDCs under UV-LED irradiation was examined under a wide range of pH conditions. A yeast-estrogen screen assay was used to complement chemical analysis in assessing removal efficiency. All compounds but 17β-estradiol were degraded and followed a pseudo first-order kinetics at all pH conditions tested, with pH 4 and pH 11 showing the most and the least efficient treatments respectively. In addition, the total estrogenic activity was substantially reduced even with the inefficient degradation of 17β-estradiol. Additional studies will be required to optimize different treatment conditions, UV-LED configurations, and membrane fouling mitigation measures to make this technology a more viable option for water treatment.

  6. Investigation of photocatalytic activity of titanium dioxide coating deposited on aluminium alloy substrate by plasma technique

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Soyama, Juliano; Dirscherl, Kai

    2011-01-01

    . Literature consists of large number of publications on titanium dioxide coating for self-cleaning applications, with glass as the main substrate. Only little work is available on TiO2 coating of metallic alloys used for engineering applications. Engineering materials, such as light-weight aluminium and steel...... have wide spread technological applications, where a combination of self-cleaning properties has a huge business potential. The results presented in this paper demonstrate superior photocatalytic properties of TiO2 coated aluminium compared to nano-scale TiO2 coating on glass substrate. The thickness...

  7. Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications

    Science.gov (United States)

    Yang, X. H.; Fu, H. T.; Wang, X. C.; Yang, J. L.; Jiang, X. C.; Yu, A. B.

    2014-08-01

    Silver-titanium dioxide (Ag-TiO2) nanostructures have attracted increasing attention because of unique functional properties and potential applications in many areas such as photocatalysis, antibacterial, and self-cleaning coatings. In this study, Ag@TiO2 core-shell nanostructures and Ag-decorated TiO2 particles (TiO2@Ag) (the size of these two nanoparticles is ranging from 200-300 nm) have been synthesized by a developed facile but efficient method. These two types of hybrid nanostructures, characterized by various advanced techniques (TEM, XRD, BET and others), exhibit unique functional properties particularly in antibacterial toward Gram negative Escherichia coli, as a case study. Specifically: (i) the TiO2@Ag nanoparticles are superior in bacterial growth inhibition in standard culture conditions (37 °C incubator) to the Ag@TiO2 core-shell ones, in which silver may dominate the antibacterial performance; (ii) while after UV irradiation treatment, the Ag@TiO2 core-shell nanoparticles exhibit better performance in killing grown bacteria than the TiO2@Ag ones, probably because of the Ag cores facilitating charge separation for TiO2, and thus produce more hydroxyl radicals on the surface of the TiO2 particles; and (iii) without UV irradiation, both TiO2@Ag and Ag@TiO2 nanostructures show poor capabilities in killing mature bacteria. These findings would be useful for designing hybrid metal oxide nanocomposites with desirable functionalities in bioapplications in terms of sterilization, deodorization, and water purification.

  8. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

    International Nuclear Information System (INIS)

    Lee, Myung Jin; Kim, Ji Ho; Park, Young Tae

    2010-01-01

    We have carried out the surface modification of photocatalytic TiO 2 with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state 29 Si MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water

  9. The use of titanium dioxide for selective enrichment of phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    acid (DHB), phthalic acid, lactic acid, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding of non-phosphorylated peptides. The phosphopeptides bound to the TiO2 are subsequently eluted from the chromatographic material using an alkaline buffer. TiO2......Titanium dioxide (TiO2) has very high affinity for phosphopeptides and in recent years it has become one of the most popular methods for phosphopeptide enrichment from complex biological samples. Peptide loading onto TiO2 resin in a highly acidic environment in the presence of 2,5-dihydroxybenzoic...... chromatography is extremely tolerant towards most buffers used in biological experiments, highly robust and as such it has become the method of choice in large-scale phosphoproteomics. Here we describe a batch mode protocol for phosphopeptide enrichment using TiO2 chromatographic material followed by desalting...

  10. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  11. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  12. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  13. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  14. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  15. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  16. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in the chemical, electrical and electronic industries. TiO 2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO 2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO 2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO 2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO 2 NPs were internalized and formation of vesicles was observed. TiO 2 NPs induced apoptosis after 96 h of treatment. Hence, TiO 2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO 2 NPs could cause brain injury and be hazardous to health.

  17. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration.

    Science.gov (United States)

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Chen, Tian; Li, Yang; Zhang, Wenxiao; Gao, Xin; Li, Ping; Wang, Haifang; Jia, Guang

    2015-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) have a broad application prospect in replace with TiO2 used as a food additive, especially used in sweets. Understanding the interaction of TiO2 NPs with sugar is meaningful for health promotion. We used a young animal model to study the toxicological effect of orally administrated TiO2 NPs at doses of 0, 2, 10 and 50 mg/kg per day with or without daily consumption of 1.8 g/kg glucose for 30 days and 90 days. The results showed that oral exposure to TiO2 NPs and TiO2 NPs+glucose both induced liver, kidney, and heart injuries as well as changes in the count of white and red blood cells in a dose, time and gender-dependent manner. The toxicological interactions between orally-administrated TiO2 NPs and glucose were evident, but differed among target organs. These results suggest that it is necessary to limit dietary co-exposure to TiO2 NPs and sugar. Nanotechnology has gained entrance in the food industry, with the presence of nanoparticles now in many food items. Despite this increasing trend, the potential toxic effects of these nanoparticles to human remain unknown. In this article, the authors studied titanium dioxide nanoparticles (TiO2 NPs), which are commonly used as food additive, together with glucose. The findings of possible adverse effects on liver, kidney, and heart might point to a rethink of using glucose and TiO2 NPs combination. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride

    International Nuclear Information System (INIS)

    Wu Zhongbiao; Dong Fan; Zhao Weirong; Guo Sen

    2008-01-01

    Nitrogen doped TiO 2 nanocrystals with anatase and rutile mixed phases were prepared by incomplete oxidation of titanium nitride at different temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), core level X-ray photoelectron spectroscopy (CL XPS), valence band X-ray photoelectron spectroscopy (VB XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and visible light excited photoluminescence (PL). The photocatalytic activity was evaluated for photocatalytic degradation of toluene in gas phase under visible light irradiation. The visible light absorption and photoactivities of these nitrogen doped TiO 2 nanocrystals can be clearly attributed to the change of the additional electronic (N - ) states above the valence band of TiO 2 modified by N dopant as revealed by the VB XPS and visible light induced PL. A band gap structure model was established to explain the electron transfer process over nitrogen doped TiO 2 nanocrystals under visible light irradiation, which was consistent with the previous theoretical and experimental results. This model can also be applied to understand visible light induced photocatalysis over other nonmetal doped TiO 2

  19. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Science.gov (United States)

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  20. Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont

    NARCIS (Netherlands)

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; Van Der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two

  1. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  2. Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass

    NARCIS (Netherlands)

    Moll, Janine; Klingenfuss, Florian; Widmer, Franco; Gogos, Alexander; Bucheli, Thomas D.; Hartmann, Martin; van der Heijden, Marcel G.A.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are the most produced NPs worldwide and have great potential to be utilized in agriculture as additives for plant protection products. However, concerns have been raised that some NPs may negatively affect crops and soil microbial communities, including

  3. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    Science.gov (United States)

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  4. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    Science.gov (United States)

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  5. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  6. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Saeko Tada-Oikawa

    2016-04-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2 cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm and rutile (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL of anatase (100 nm, rutile (50 nm, and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm TiO2 particles increased interleukin (IL-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  7. Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study.

    Science.gov (United States)

    Song, Zheng-Mei; Chen, Ni; Liu, Jia-Hui; Tang, Huan; Deng, Xiaoyong; Xi, Wen-Song; Han, Kai; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2015-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) are widely found in food-related consumer products. Understanding the effect of TiO2 NPs on the intestinal barrier and absorption is essential and vital for the safety assessment of orally administrated TiO2 NPs. In this study, the cytotoxicity and translocation of two native TiO2 NPs, and these two TiO2 NPs pretreated with the digestion simulation fluid or bovine serum albumin were investigated in undifferentiated Caco-2 cells, differentiated Caco-2 cells and Caco-2 monolayer. TiO2 NPs with a concentration less than 200 µg ml(-1) did not induce any toxicity in differentiated cells and Caco-2 monolayer after 24 h exposure. However, TiO2 NPs pretreated with digestion simulation fluids at 200 µg ml(-1) inhibited the growth of undifferentiated Caco-2 cells. Undifferentiated Caco-2 cells swallowed native TiO2 NPs easily, but not pretreated NPs, implying the protein coating on NPs impeded the cellular uptake. Compared with undifferentiated cells, differentiated ones possessed much lower uptake ability of these TiO2 NPs. Similarly, the traverse of TiO2 NPs through the Caco-2 monolayer was also negligible. Therefore, we infer the possibility of TiO2 NPs traversing through the intestine of animal or human after oral intake is quite low. This study provides valuable information for the risk assessment of TiO2 NPs in food. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Canulescu, Stela; Dirscherl, Kai

    2013-01-01

    The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology of the c......The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology...... sweep voltammetry, impedance measurements. The microstructure and surface morphology of the coating were similar irrespective of the nature of the substrate, while the photocatalytic behaviour was found to vary depending on the substrate type. In general the TiO2 coating on stainless steel was shown...

  9. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    Directory of Open Access Journals (Sweden)

    Szura Dominika

    2017-01-01

    Full Text Available Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  10. Exposure assessment of workplace manufacturing titanium dioxide particles

    International Nuclear Information System (INIS)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian; Zhou, Jingwen; Tang, Shichuan; Kong, Fanling; Li, Xinwei; Yan, Ling; Zhang, Ji; Jia, Guang

    2016-01-01

    With the widespread use of titanium dioxide (TiO 2 ) human exposure is inevitable, but the exposure data on TiO 2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO 2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m 3 , nano dust: 1.22 mg/m 3 ) were much higher than those in the milling workshop (total dust: 0.79 mg/m 3 , nano dust: 0.31 mg/m 3 ) and executive office (total dust: 0.44 mg/m 3 , nano dust: 0.19 mg/m 3 ). However, the MCs of TiO 2 were at a relatively low level in the packaging workshop (total TiO 2 : 46.4 μg/m 3 , nano TiO 2 : 16.7 μg/m 3 ) and milling workshop (total TiO 2 : 39.4 μg/m 3 , nano TiO 2 : 19.4 μg/m 3 ) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SAC A ), and tracheobronchial (SAC TB ) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 10 5 particles/cm 3 , 414.49 ± 395.07, and 86.01 ± 83.18 μm 2 /cm 3 , respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 10 5 particles/cm 3 , 75.38 ± 45.23, and 17.60 ± 9.22 μm 2 /cm 3 , respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO 2 particles exposure in the workplace.

  11. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    International Nuclear Information System (INIS)

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro; Freyre-Fonseca, Verónica; Delgado-Buenrostro, Norma L.; Flores-Flores, José O.; Gutiérrez-López, Gustavo F.; Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M.

    2015-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO 2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO 2 -B) using TiO 2 spheres (TiO 2 -SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm 2 ) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO 2 -B effect on agglomerates size, cell size and granularity than TiO 2 -SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO 2 -SP and TiO 2 -B, respectively; TiO 2 -SP and TiO 2 -B induced 23% and 70% cell size decrease, respectively, whilst TiO 2 -SP and TiO 2 -B induced 7 and 14-fold of granularity increase. NO x production was down-regulated (31%) by TiO 2 -SP and up-regulated (70%) by TiO 2 -B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO 2 -SP exposed cells while TiO 2 -B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO 2 -B had higher proliferative potential than TiO 2 -SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm 2 ) to titanium dioxide nanoparticles (TiO 2 -NPs) shaped as spheres (TiO 2 -SP) and belts (TiO 2 -B) for midterm (7 continuous days) separately. (B) Then, cells from each cell

  12. Categorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Naoki Hashizume

    Full Text Available A potentially useful means of predicting the pulmonary risk posed by new forms of nano-structured titanium dioxide (nano-TiO2 is to use the associations between the physicochemical properties and pulmonary toxicity of characterized forms of TiO2. In the present study, we conducted intratracheal administration studies in rats to clarify the associations between the physicochemical characteristics of seven characterized forms of TiO2 and their acute or subacute pulmonary inflammatory toxicity. Examination of the associations between the physicochemical characteristics of the TiO2 and the pulmonary inflammatory responses they induced revealed (1 that differences in the crystallinity or shape of the TiO2 particles were not associated with the acute pulmonary inflammatory response; (2 that particle size was associated with the acute pulmonary inflammatory response; and (3 that TiO2 particles coated with Al(OH3 induced a greater pulmonary inflammatory response than did non-coated particles. We separated the seven TiO2 into two groups: a group containing the six TiO2 with no surface coating and a group containing the one TiO2 with a surface coating. Intratracheal administration to rats of TiO2 from the first group (i.e., non-coated TiO2 induced only acute pulmonary inflammatory responses, and within this group, the acute pulmonary inflammatory response was equivalent when the particle size was the same, regardless of crystallinity or shape. In contrast, intratracheal administration to rats of the TiO2 from the second group (i.e., the coated TiO2 induced a more severe, subacute pulmonary inflammatory response compared with that produced by the non-coated TiO2. Since alteration of the pulmonary inflammatory response by surface treatment may depend on the coating material used, the pulmonary toxicities of coated TiO2 need to be further evaluated. Overall, the present results demonstrate that physicochemical properties may be useful for predicting the

  13. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    International Nuclear Information System (INIS)

    Huppmann, T.; Leonhardt, S.; Krampe, E.; Wintermantel, E.; Yatsenko, S.; Radovanovic, I.; Bastian, M.

    2014-01-01

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO 2 ) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO 2 for antimicrobial efficacy is to deposit a thin TiO 2 coating on the surface. In contrast to the common way of applying a coating, TiO 2 particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO 2 P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO 2 -PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result

  14. Photocatalytic Degradation Effect of μ-Dielectric Barrier Discharge Plasma Treated Titanium Dioxide Nanoparticles on Environmental Contaminant.

    Science.gov (United States)

    Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo

    2018-09-01

    This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.

  15. High-temperature interaction in the ZrSiO4-TiO2 system

    International Nuclear Information System (INIS)

    Matveeva, F.A.; Melekhova, T.F.; Samsonova, T.I.

    1976-01-01

    The solid phase interaction in the ZrSiO 4 - TiO 2 system in the region of lower concentrations of TiO 2 (between 0-30%) when heating in the range 1400-1600 0 C is investigated. The different mechanism of the interaction of zircon and titanium dioxide with a content of titanium dioxide of 10% and higher is shown. In compounds with a TiO 2 content to 10%, a solid solution of titanium dioxide and zircon arises, with a limiting value of TiO 2 dissolving in zircon of 1% at 1400 0 C and 2% at 1500-1600 0 C. The partial decomposition of zircon giving crystobalite and the solid solution of separated zirconium dioxide with rutile occurs when the content of titanium dioxide is higher than 10%

  16. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    Science.gov (United States)

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-01-01

    Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183

  17. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome.

    Science.gov (United States)

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-07-01

    Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO 2 ) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO 2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO 2 nanoparticles. The proinflammatory effects of TiO 2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO 2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Oral administration of TiO 2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO 2 -administered mice. In vitro, TiO 2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO 2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO 2 nanoparticles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Bin Song

    2016-04-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS, apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.

  19. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    Science.gov (United States)

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  1. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Hui; Yang Lu

    2012-01-01

    A thin layer of nanoparticle titanium dioxide was immobilized on polyamide 6 (PA6) fiber using titanium sulfate and urea at low temperature hydrothermal condition. The titanium dioxide loaded fabric was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermal gravimetry techniques. The optical and mechanical properties, water absorption and degradation of methylene blue dye under ultraviolet (UV) irradiation of the PA6 fabric before and after treatments were also examined. It was found that when PA6 fabric was treated in titanium sulfate and urea aqueous solution, anatase nanocrystalline titanium dioxide was synthesized and simultaneously adhered onto the fiber surface. The average crystal size of titanium dioxide nanoparticles was about 13.2 nm. The thermal behavior of PA6 fiber distinctly changed and the onset decomposition temperature decreased. As compared with the untreated fabric, the protection against UV radiation was improved. The water absorbency increased slightly. As the fabric dimensions were reduced in warp and weft directions, the breaking load and tensile strain increased to some extent. The titanium dioxide coated fabric could degradate methylene blue dye under UV irradiation. - Highlights: ► We employed a method to immobilize TiO 2 nanoparticle on polyamide fiber. ► We fabricated the TiO 2 -coated polyamide fabric with the photocatalytic activity. ► The modification method may be suitable for the potential applications.

  2. Instrument comparison for Aerosolized Titanium Dioxide

    Science.gov (United States)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  3. Electron microscopic investigation and elemental analysis of titanium dioxide in sun lotion.

    Science.gov (United States)

    Sysoltseva, M; Winterhalter, R; Wochnik, A S; Scheu, C; Fromme, H

    2017-06-01

    The objective of this research was to determine the size, shape and aggregation of titanium dioxide (TiO 2 ) particles which are used in sun lotion as UV-blocker. Overall, six sunscreens from various suppliers and two reference substances were analysed by electron microscopy (EM) techniques in combination with energy dispersive X-ray spectroscopy (EDS). Because of a high fat content in sun lotion, it was impossible to visualize the TiO 2 particles without previous EM sample preparation. Different defatting methods for TiO 2 from sun screens were tested. A novel sample preparation method was developed which allowed the characterization of TiO 2 particles with the help of EM and EDS. Aggregates of titanium dioxide with the size of primary particles varying between 15 and 40 nm were observed only in five products. In the sun lotion with the highest SPF, only few small aggregates were found. In the sun screen with the lowest SPF, the largest aggregates of TiO 2 particles were detected with sizes up to 1.6 μm. In one of the sun lotions, neither TiO 2 nor ZnO was found in spite of the labelling. Instead, approx. 500 nm large diamond-shaped particles were observed. These particles are composed of an organic material as only carbon was detected by EDS. A novel defatting method for sample preparation of titanium dioxide nanoparticles used in sun cosmetics was developed. This method was applied to six different sun lotions with SPF between 30 and 50+. TiO 2 particles were found in only five sunscreens. The sizes of the primary particles were below 100 nm and, according to the EU Cosmetic Regulation, have to be listed on the package with the term 'nano'. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Substitutional Carbon-Modified Anatase TiO2 Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition.

    Science.gov (United States)

    Niu, Ping; Wu, Tingting; Wen, Lei; Tan, Jun; Yang, Yongqiang; Zheng, Shijian; Liang, Yan; Li, Feng; Irvine, John Ts; Liu, Gang; Ma, Xiuliang; Cheng, Hui-Ming

    2018-03-30

    Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO 2 from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon-doped TiO 2 (TiO 2- x C x ) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO 2 . Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical-specific capacity at high charge-discharge rates. The strategy developed could also be applicable to the atomic-scale modification of other metal oxides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  6. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium.

    Science.gov (United States)

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  7. Synthesis of Silver-Doped Titanium TiO2 Powder-Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Saman Khan

    2013-01-01

    Full Text Available Hard, nonporous environmental surfaces in daily life are now receiving due recognition for their role in reducing the spread of several nosocomial infections. In this work, we established the photokilling effects of 1% silver-doped titanium dioxide TiO2. The nanoparticles synthesized by liquid impregnation method were characterized using X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and scanning electron microscopy (SEM. The Ag-TiO2 nanoparticle coatings that have been applied on glass and venetian blind surfaces were effective in generating a loss of viability of two bacteria (Pseudomonas aeruginosa and Bacillus subtilis after two hours of illumination under normal light in the visible spectrum. Such surfaces can be applicable to medical and other facilities where the potential for infection should be controlled.

  8. Synthesis of Silver-Doped Titanium TiO2 Powder-Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis

    International Nuclear Information System (INIS)

    Khan, S.; Qazi, I.A.; Hashmi, I.; Awan, M.A.; Zaidi, N.S.S.

    2013-01-01

    Hard, non porous environmental surfaces in daily life are now receiving due recognition for their role in reducing the spread of several nosocomial infections. In this work, we established the photo killing effects of 1% silver-doped titanium dioxide TiO 2 . The nanoparticles synthesized by liquid impregnation method were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). The Ag-TiO 2 nanoparticle coatings that have been applied on glass and venetian blind surfaces were effective in generating a loss of viability of two bacteria (Pseudomonas aeruginosa and Bacillus subtilis) after two hours of illumination under normal light in the visible spectrum. Such surfaces can be applicable to medical and other facilities where the potential for infection should be controlled

  9. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  10. Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow

    Science.gov (United States)

    Ndlovu, Thabile; Kuvarega, Alex T.; Arotiba, Omotayo A.; Sampath, Srinivasan; Krause, Rui W.; Mamba, Bhekie B.

    2014-05-01

    An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO2) was prepared. SEM and TEM micrographs showed that the spherical TiO2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO2, the rate constant was much higher than for EG and TiO2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO2, promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation.

  11. Biomimetic Approach to Solar Cells Based on TiO2 Nanotubes

    National Research Council Canada - National Science Library

    Allen, Jan L; Lee, Ivan C; Wolfenstine, Jeff

    2008-01-01

    The goal of this research was to explore the use of nanotube titanium dioxide (TiO2) as an electrode material in dye-sensitized solar cells in order to further the development of solar cell technology...

  12. Kinetic study of synthesis of Titanium carbide by methano thermal reduction of Titanium dioxide

    International Nuclear Information System (INIS)

    Alizadeh, R.; Ostrovski, O.

    2011-01-01

    Reduction of the Titanium dioxide, TiO 2 , by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150 d egree C to 1450 d egree C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method was used for determination of the extent of reduction rate. The gas products of the reaction are mostly CO and trace amount of CO 2 and H 2 O. The synthesized product powder was characterized by X-ray diffraction for elucidating solid phase compositions. The effect of varying temperature was studied during the reduction. The conversion-time data have been interpreted by using the grain model. For first order reaction with respect to methane concentration, the activation energy of titanium dioxide reduction by methane is found to be 51.4 kcal/g mole. No detailed investigation of kinetic and mechanism of the reaction was reported in literatures.

  13. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development.

    Science.gov (United States)

    Rollerova, E; Tulinska, J; Liskova, A; Kuricova, M; Kovriznych, J; Mlynarcikova, A; Kiss, A; Scsukova, S

    2015-04-01

    Nanosized titanium dioxide (TiO2) particles belong to the most widely manufactured nanoparticles (NPs) on a global scale because of their photocatalytic properties and the related surface effects. TiO2 NPs are in the top five NPs used in consumer products. Ultrafine TiO2 is widely used in the number of applications, including white pigment in paint, ceramics, food additive, food packaging material, sunscreens, cosmetic creams, and, component of surgical implants. Data evidencing rapid distribution, slow or ineffective elimination, and potential long-time tissue accumulation are especially important for the human risk assessment of ultrafine TiO2 and represent new challenges to more responsibly investigate potential adverse effects by the action of TiO2 NPs considering their ubiquitous exposure in various doses. Transport of ultrafine TiO2 particles in systemic circulation and further transition through barriers, especially the placental and blood-brain ones, are well documented. Therefore, from the developmental point of view, there is a raising concern in the exposure to TiO2 NPs during critical windows, in the pregnancy or the lactation period, and the fact that human mothers, women and men in fertile age and last but not least children may be exposed to high cumulative doses. In this review, toxicokinetics and particularly toxicity of TiO2 NPs in relation to the developing processes, oriented mainly on the development of the central nervous system, are discussed Keywords: nanoparticles, nanotoxicity, nanomaterials, titanium dioxide, reproductive toxicity, developmental toxicity, blood brain barrier, placental barrier.

  14. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    Directory of Open Access Journals (Sweden)

    Donya Ramimoghadam

    2014-01-01

    Full Text Available Anatase titanium dioxide nanoparticles (TiO2-NPs were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, thermogravimetric analysis (TGA, ultraviolet visible spectra (UV-Vis, and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.

  15. Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: an in vitro study.

    Science.gov (United States)

    Harini, P; Mohamed, Kasim; Padmanabhan, T V

    2014-01-01

    To improve the flexural strength of polymethylmethacrylate (PMMA). To evaluate whether the incorporation of titanium dioxide nanoparticles in polymethylmethacrylate (PMMA) increases the flexural strength and to compare the different concentrations of titanium dioxide nanoparticles and its relation to flexural strength. Study was conducted in Sri Ramachandra University utilizing 40 specimens manufactured from clear heat polymerizing acrylic resin. Forty specimens of clear heat polymerizing acrylic resin of dimensions 65 Χ 10 Χ 3 mm as per ISO 1,567 standardization were fabricated and were grouped into A (CONTROL) with no titanium dioxide (TiO2) nanoparticles, B with 0.5 gms of TiO 2 nanoparticles, C with 1 gm of TiO 2 nanoparticles and D with 2.5 gms of TiO 2 nanoparticles added.The concentrations of titanium dioxide in each group were 1 wt%, 2 wt% and 5 wt%. Universal testing machine INSTRON was used to load at the center of the specimen with a cross head speed of 1.50 mm/min and a span length of 40.00 mm. ANOVA and multiple comparisons are carried out using the independent t-test. The ANOVA result shows that there is a significant difference between the groups with respect to the mean flexural strength. Highest mean flexural strength is observed in Group D, while the lowest is seen in Group A. Independent t-test revealed that there was a statistical significance between Group A and Group D (0.041) and between Group B and Group D (0.028). The results concluded that polymethylmethacrylate reinforced with different concentrations of titanium dioxide nanoparticles showed superior flexural strength than those of normal PMMA.

  16. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  17. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  18. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.

  19. Examining the efficiency of muffle furnance-induced alkaline hydrolysis in determining the titanium content of environmental samples containing engineered titanium dioxide particles

    Science.gov (United States)

    A novel muffle furnace (MF)-based potassium hydroxide (KOH) fusion digestion technique was developed and its comparative digestion and dissolution efficacy for different titanium dioxide nanoparticles (TiO2-NPs)/environmental matrices was evaluated. Digestion of different enviro...

  20. Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms.

    Science.gov (United States)

    Waller, Travis; Marcus, Ian M; Walker, Sharon L

    2018-06-04

    Engineered nanomaterials (ENMs) are commonly incorporated into food and consumer applications to enhance a specific product aspect (i.e., optical properties). Life cycle analyses revealed ENMs can be released from products during usage and reach wastewater treatment plants (WWTPs), with titanium dioxide (TiO 2 ) accounting for a large fraction. As such, food grade (FG) TiO 2 , a more common form of TiO 2 in wastewater, was used in this study. Nanomaterials in WWTPs have been well characterized, although the problematic septic system has been neglected. Elution and bioaccumulation of TiO 2 ENMs from WTTPs in downriver sediments and microorganisms has been observed; however, little is known about mechanisms governing the elution of FG TiO 2 from the septic drainage system. This study characterized the transport behavior and mechanisms of FG TiO 2 particles in porous media conditions after septic waste treatment. FG and industrial grade (IG) TiO 2 (more commonly studied) were introduced to septic tank effluent and low-ionic strength electrolyte solutions prior to column transport experiments. Results indicate that FG TiO 2 aggregate size (200-400 nm) remained consistent across solutions. Additionally, elution of FG and IG TiO 2 was greatest in septic effluent at the higher nanoparticle concentration (100 ppm). FG TiO 2 was well retained at the low (2 ppm) concentration in septic effluent, suggesting that particles that escape the septic system may still be retained in drainage field before reaching the groundwater system, although eluted particles are highly stabilized. Findings provide valuable insight into the significance of the solution environment at mediating differences observed between uniquely engineered nanomaterials. Graphical abstract.

  1. Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation.

    Science.gov (United States)

    Faust, James J; Doudrick, Kyle; Yang, Yu; Westerhoff, Paul; Capco, David G

    2014-06-01

    Bulk- and nano-scale titanium dioxide (TiO2) has found use in human food products for controlling color, texture, and moisture. Once ingested, and because of their small size, nano-scale TiO2 can interact with a number of epithelia that line the human gastrointestinal tract. One such epithelium responsible for nutrient absorption is the small intestine, whose constituent cells contain microvilli to increase the total surface area of the gut. Using a combination of scanning and transmission electron microscopy it was found that food grade TiO2 (E171 food additive coded) included ∼25% of the TiO2 as nanoparticles (NPs; TiO2 sedimentation. It was found that TiO2 isolated from the candy coating of chewing gum and a commercially available TiO2 food grade additive samples were of the anatase crystal structure. Exposure to food grade TiO2 additives, containing nanoparticles, at the lowest concentration tested within this experimental paradigm to date at 350 ng/mL (i.e., 100 ng/cm(2) cell surface area) resulted in disruption of the brush border. Through the use of two independent techniques to remove the effects of gravity, and subsequent TiO2 sedimentation, it was found that disruption of the microvilli was independent of sedimentation. These data indicate that food grade TiO2 exposure resulted in the loss of microvilli from the Caco-2BBe1 cell system due to a biological response, and not simply a physical artifact of in vitro exposure.

  2. Titanium dioxide nanoparticles as guardian against environmental carcinogen benzo[alpha]pyrene.

    Directory of Open Access Journals (Sweden)

    Anupam Dhasmana

    Full Text Available Polycyclic aromatic hydrocarbons (PAH, like Benzo[alpha]Pyrene (BaP are known to cause a number of toxic manifestations including lung cancer. As Titanium dioxide Nanoparticles (TiO2 NPs have recently been shown to adsorb a number of PAHs from soil and water, we investigated whether TiO2 NPs could provide protection against the BaP induced toxicity in biological system. A549 cells when co-exposed with BaP (25 µM, 50 µM and 75 µM along with 0.1 µg/ml,0.5 µg/ml and 1 µg/ml of TiO2 NPs, showed significant reduction in the toxic effects of BaP, as measured by Micronucleus Assay, MTT Assay and ROS Assay. In order to explore the mechanism of protection by TiO2 NP against BaP, we performed in silico studies. BaP and other PAHs are known to enter the cell via aromatic hydrocarbon receptor (AHR. TiO2 NP showed a much higher docking score with AHR (12074 as compared to the docking score of BaP with AHR (4600. This indicates a preferential binding of TiO2 NP with the AHR, in case if both the TiO2 NP and BaP are present. Further, we have done the docking of BaP with the TiO2 NP bound AHR-complex (score 4710, and observed that BaP showed strong adsorption on TiO2 NP itself, and not at its original binding site (at AHR. TiO2 NPs thereby prevent the entry of BaP in to the cell via AHR and hence protect cells against the deleterious effects induced by BaP.

  3. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration.

    Science.gov (United States)

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Luan, Xianguo; Wang, Haifang; Jia, Guang

    2015-12-03

    Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various consumer products, especially food and personal care products. Compared to the well-characterized adverse cardiovascular effect of inhaled ambient ultrafine particles, research on the health response to orally administrated TiO2 NPs is still limited. In our study, we performed an in vivo study in Sprague-Dawley rats to understand the cardiovascular effect of TiO2 NPs after oral intake. After daily gastrointestinal administration of TiO2 NPs at 0, 2, 10, 50 mg/kg for 30 and 90 days, heart rate (HR), blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. Mild and temporary reduction of HR and systolic blood pressure as well as an increase of diastolic blood pressure was observed after daily oral administration of TiO2 NPs for 30 days. Injury of cardiac function was observed after daily oral administration of TiO2 NPs for 90 days as reflected in decreased activities of lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH) and creatine kinase (CK). Increased white blood cells count (WBC) and granulocytes (GRN) in blood as well as increased concentrations of tumor necrosis factor α (TNF α) and interleukin 6 (IL-6) in the serum indicated inflammatory response initiated by TiO2 NPs exposure. It was hypothesize that cardiac damage and inflammatory response are the possible mechanisms of the adverse cardiovascular effects induced by orally administrated TiO2 NPs. Data from our study suggested that even at low dose of TiO2 NPs can induce adverse cardiovascular effects after 30 days or 90 days of oral exposure, thus warranting concern for the dietary intake of TiO2 NPs for consumers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Titanium Dioxide Nanoparticles As Guardian against Environmental Carcinogen Benzo[alpha]Pyrene

    Science.gov (United States)

    Dhasmana, Anupam; Sajid Jamal, Qazi Mohd.; Mir, Snober Shabnam; Bhatt, Madan Lal Bramha; Rahman, Qamar; Gupta, Richa; Siddiqui, Mohd. Haris; Lohani, Mohtashim

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH), like Benzo[alpha]Pyrene (BaP) are known to cause a number of toxic manifestations including lung cancer. As Titanium dioxide Nanoparticles (TiO2 NPs) have recently been shown to adsorb a number of PAHs from soil and water, we investigated whether TiO2 NPs could provide protection against the BaP induced toxicity in biological system. A549 cells when co-exposed with BaP (25 µM, 50 µM and 75 µM) along with 0.1 µg/ml,0.5 µg/ml and 1 µg/ml of TiO2 NPs, showed significant reduction in the toxic effects of BaP, as measured by Micronucleus Assay, MTT Assay and ROS Assay. In order to explore the mechanism of protection by TiO2 NP against BaP, we performed in silico studies. BaP and other PAHs are known to enter the cell via aromatic hydrocarbon receptor (AHR). TiO2 NP showed a much higher docking score with AHR (12074) as compared to the docking score of BaP with AHR (4600). This indicates a preferential binding of TiO2 NP with the AHR, in case if both the TiO2 NP and BaP are present. Further, we have done the docking of BaP with the TiO2 NP bound AHR-complex (score 4710), and observed that BaP showed strong adsorption on TiO2 NP itself, and not at its original binding site (at AHR). TiO2 NPs thereby prevent the entry of BaP in to the cell via AHR and hence protect cells against the deleterious effects induced by BaP. PMID:25215666

  5. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  6. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    Science.gov (United States)

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems.

  7. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    Directory of Open Access Journals (Sweden)

    Janine Moll

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems.

  8. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model.

    Science.gov (United States)

    Garcia-Contreras, Rene; Sugimoto, Masahiro; Umemura, Naoki; Kaneko, Miku; Hatakeyama, Yoko; Soga, Tomoyoshi; Tomita, Masaru; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Nakajima, Hiroshi; Sakagami, Hiroshi

    2015-07-01

    Although nanoparticles (NPs) has afforded considerable benefits in various fields of sciences, several reports have shown their harmful effects, suggesting the necessity of adequate risk assessment. To clarify the mechanism of titanium dioxide nanoparticles (TiO2 NPs)-enhanced gingival inflammation, we conducted the full-scale metabolomic analyses of human gingival fibroblast cells treated with IL-1β alone or in combination with TiO2 NPs. Observation with transmission electron microscope demonstrated the incorporation of TiO2 NPs into vacuoles of the cells. TiO2 NPs significantly enhanced the IL-1β-induced prostaglandin E2 production and COX-1 and COX-2 protein expression. IL-1β reduced the intracellular concentrations of overall primary metabolites especially those of amino acid, urea cycle, polyamine, S-adenosylmethione and glutathione synthetic pathways. The addition of TiO2 NPs further augmented these IL-1β-induced metabolic changes, recommending careful use of dental materials containing TiO2 NPs towards patients with gingivitis or periodontitis. The impact of the present study is to identify the molecular targets of TiO2 NPs for the future establishment of new metabolic markers and therapeutic strategy of gingival inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2016-03-01

    Full Text Available Titanium dioxide (TiO2 has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm and shows a relatively good photocatalytic activity in organic dye (Rhodamine B degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 How to Cite: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 40-47. (doi:10.9767/bcrec.11.1.414.40-47 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.414.40-47

  10. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  11. Toxicity and Fate Comparison between Several Brass and Titanium Dioxide Powders

    Science.gov (United States)

    1993-07-01

    the entire gut without showing any apparent effects . 14. UBJET TEMS1I. NUMBER OF PAGES 27 Daphnia Algae EC50 Aquatic toxicity 11T.PRICE CODE 9...levels of soluble copper and zinc in solution. 3. RESULTS The titanium dioxide ( TiO2 ) materials did not show any apparent toxic effects to daphnia up to...The extended exposure did not show any apparent toxic effects . Long term effects on aquatic org.rnisms exposed to TiO2 are not known. It is apparent

  12. Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations

    Science.gov (United States)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-06-01

    Based on the density functional theory (DFT) calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic NO2 and O3 molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined based on the most stable structures. We found that both of these molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of NO2 and O3 molecules. The side oxygen atoms of the gas molecules were found to be chemically bonded to these titanium atoms. The adsorption of gas molecules is an exothermic process, and the adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, which indicate the adsorption energies were increased for the most sable configurations. The gas sensing response and charge transfers were analyzed in detail. The pristine nanocomposites have better sensing response than the doped ones. The spin density distribution plots indicate that the magnetization was mainly located over the adsorbed gas molecules. Mulliken charge analysis reveals that both NO2 and O3 molecules behave as charge acceptors, as evidenced by the accumulation of electronic charges on the adsorbed molecules predicted by charge density difference calculations. Our DFT results provide a theoretical basis for an innovative gas sensor system designed from a sensitive TiO2/Stanene heterostructures for efficient detection of harmful air pollutants such as NO2 and O3.

  13. Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Lendal, Sara Eun; Engholm-Keller, Kasper

    2010-01-01

    -containing glycopeptides is achieved by using a low-pH buffer that contains a substituted acid such as glycolic acid to improve the binding efficiency and selectivity of SA-containing glycopeptides to the TiO(2) resin. By combining TiO(2) enrichment of sialylated glycopeptides with HILIC separation of deglycosylated...... of glycosylation sites and the characterization of glycan structures. In this paper, we describe a protocol for the selective enrichment of SA-containing glycopeptides using a combination of titanium dioxide (TiO(2)) and hydrophilic interaction liquid chromatography (HILIC). The selectivity of TiO(2) toward SA...... peptides, a more comprehensive analysis of formerly sialylated glycopeptides by MS can be achieved. Here we illustrate the efficiency of the method by the identification of 1,632 unique formerly sialylated glycopeptides from 817 sialylated glycoproteins. The TiO(2)/HILIC protocol requires 2 d...

  14. Dye sensitized solar cell based on environmental friendly eosin Y dye and Al doped titanium dioxide nano particles

    Science.gov (United States)

    Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.

    2018-03-01

    Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.

  15. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    Surowska, B.; Walczak, M.; Bienias, J.

    2004-01-01

    The paper presents the study of intermediate SiO 2 and SiO 2 -TiO 2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO 2 and SiO 2 -TiO 2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO 2 and TiO 2 coatings shows high wear resistance. (author)

  16. TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli

    NARCIS (Netherlands)

    Carre, Gaelle; Hamon, Erwann; Ennahar, Said; Estner, Maxime; Lett, Marie-Claire; Horvatovich, Peter; Gies, Jean-Pierre; Keller, Valerie; Keller, Nicolas; Andre, Philippe

    This study investigates the mechanisms of UV-A (315 to 400 nm) photocatalysis with titanium dioxide (TiO2) applied to the degradation of Escherichia coli and their effects on two key cellular components: lipids and proteins. The impact of TiO2 photocatalysis on E. coli survival was monitored by

  17. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.

    Science.gov (United States)

    Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans

    2014-07-09

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.

  18. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

    Directory of Open Access Journals (Sweden)

    Iwasa F

    2011-06-01

    Full Text Available Fuminori Iwasa1, Naoki Tsukimura1, Yoshihiko Sugita1, Rajita Kodali Kanuru1, Katsutoshi Kubo1, Hafiz Hasnain1, Wael Att1,2, Takahiro Ogawa11Laboratory of Bone and Implant Sciences (LBIS, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Prosthodontics, Dental School, Albert-Ludwigs University, Freiburg, GermanyAbstract: Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment, 3-day-old disks (disks stored for 3 days after UV treatment, and 7-day-old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano-hybrid surfaces became hydrorepellent

  19. Distribution of titanium dioxide in mice after nasal inhalation using SRXRF and ICP-MS

    International Nuclear Information System (INIS)

    Wang, J.X.; Yu, H.W.; Sun, J.; Li, Y.F.; Xing, L.; Chen, C.Y.; Li, B.; Gao, Y.X.; Chai, Z.F.; Zhao, Y.L.

    2005-01-01

    TiO 2 , a noncombustible and odorless white powder, naturally exists in antase, rutile and brookite. It is frequently used as a white pigment for a wide range of paints, paper, plastics, ceramics, and the like. TiO 2 of size is used for cleaning air, antibacterial and decomposing organic in wastewater because of its photocatalytic property. TiO 2 inhalation is the most common route of exposure in industry. After inhalation by human or rodents, TiO 2 can induce inflammation and pulmonary lesions, which even cause lung cancer by long-term exposure to TiO 2 powder. In this paper, the distributions of titanium dioxide in different organs and tissues of mice, in particular in brain, were investigated after inhalation of TiO 2 suspension. Twenty ICR mice (body weight 21±2 g) were randomly divided into four groups: A (80 nm TiO 2 ), B (25 nm TiO 2 ), C (Control for H 2 O) and D (Micrometer TiO 2 ). Each rat was given 25 μl TiO 2 suspension for the first five days at a time, and there was no significant difference of growth rate in body weight. Subsequently, only 10 μl TiO 2 suspension was inhaled each time every other day. After one month, all the animals were sacrificed and blood samples were collected through extirpating eyeball. The tissues and organs, such as heart, liver, spleen, kidney, lung and brain, were excised and weighed. All samples were stored at -20 degree C until used. The brains were removed and frozen sections (50 μm) were cut in coronal plane on a freezing microtome. The change of neurons in brain was observed under a light microscope after Nissl staining. The positional distributions of titanium in the olfactory bulb, cerebral cortex, hippocampus and thalamus areas were measured by Synchronization Radiation X-ray fluorescence (SRXRF) at Beijing Synchrotron Radiation Facility. An Al absorber: foil was used to reduce the lower energy intensity of the white light. The spectra were analyzed by AXIL program. The preliminary result showed that the

  20. Point Defects in 3D and 1D Nanomaterials: The Model Case of Titanium Dioxide

    International Nuclear Information System (INIS)

    Knauth, Philippe

    2010-01-01

    Titanium dioxide is one of the most important oxides for applications in energy and environment, such as solar cells, photocatalysis, lithium-ion batteries. In recent years, new forms of titanium dioxide with unusual structure and/or morphology have been developed, including nanocrystals, nanotubes or nanowires. We have studied in detail the point defect chemistry in nanocrystalline TiO 2 powders and ceramics. There can be a change from predominant Frenkel to Schottky disorder, depending on the experimental conditions, e.g. temperature and oxygen partial pressure. We have also studied the local environment of various dopants with similar ion radius, but different ion charge (Zn 2+ , Y 3+ , Sn 4+ , Zr 4+ , Nb 5+ ) in TiO 2 nanopowders and nanoceramics by Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy. Interfacial segregation of acceptors was demonstrated, but donors and isovalent ions do not segregate. An electrostatic 'space charge' segregation model is applied, which explains well the observed phenomena.

  1. Facile Conversion of Electrospun TiO2 into Titanium Nitride/Oxynitride Fibers

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Procházka, Jan; Bastl, Zdeněk; Duchoslav, J.; Rubáček, L.; Havlíček, D.; Kavan, Ladislav

    2010-01-01

    Roč. 22, č. 13 (2010), s. 4045-4055 ISSN 0897-4756 R&D Projects: GA MŠk LC510; GA MŠk OC09048; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : visible-light photocatalysis * nitrogen doped TiO2 * thin films Subject RIV: CG - Electrochemistry Impact factor: 6.400, year: 2010

  2. TiO2 thin and thick films grown on Si/glass by sputtering of titanium targets in an RF inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2015-01-01

    TiO 2 thin and thick films were deposited on silicon/glass substrates using RF inductive plasma in continuous wave. The films thickness, as well as phases control, is achieved with a gradual increase in temperature substrates varying supplied RF power or working gas pressure besides deposition time as well. The deposition conditions were: argon 80%/oxygen 20% carefully calibrated mixture of 2 to 7×10 −2 mbar as working gas pressure range. Deposition time 0.5 to 5 hours, 500 or 600 W RF power at 13.56 MHz frequency and 242-345 °C substrates temperature range. The titanium dioxide deposited on the substrates is grown by sputtering of a titanium target negatively polarized at 3-5 kV DC situated 14 mm in front of such substrates. The plasma reactor is a simple Pyrex-like glass cylindrical vessel of 50 cm long and 20 cm in diameter. Using the before describe plasma parameters we obtained films only anatase and both anatase/rutile phases with stoichiometric different. The films were characterized by X-ray photoelectron spectroscopy (XPS), stylus profilometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. (paper)

  3. Photoactivity of Titanium Dioxide Foams

    Directory of Open Access Journals (Sweden)

    Maryam Jami

    2018-01-01

    Full Text Available TiO2 foams have been prepared by a simple mechanical stirring method. Short-chain amphiphilic molecules have been used to stabilize colloidal suspensions of TiO2 nanoparticles. TiO2 foams were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, UV-vis absorption spectroscopy, and scanning electron microscopy (SEM. The photoassisted oxidation of NO in the gas phase according to ISO 22197-1 has been used to compare the photoactivity of the newly prepared TiO2 foams to that of the original powders. The results showed that the photoactivity is increased up to about 135%. Foam structures seem to be a good means of improving the photoactivity of semiconductor materials and can readily be used for applications such as air purification devices.

  4. Two-Level Micro-to-Nanoscale Hierarchical TiO2 Nanolayers on Titanium Surface

    Directory of Open Access Journals (Sweden)

    Elena G. Zemtsova

    2016-12-01

    Full Text Available Joint replacement is being actively developed within modern orthopedics. One novel material providing fast implantation is bioactive coatings. The synthesis of targeted nanocoatings on metallic nanotitanium surface is reported in this paper. TiO2-based micro- and nanocoatings were produced by sol-gel synthesis using dip-coating technology with subsequent fast (shock drying in hot plate mode at 400 °C. As a result of shock drying, the two-level hierarchical TiO2 nanolayer on the nanotitanium was obtained. This two-level hierarchy includes nanorelief of porous xerogel and microrelief of the micron-sized “defect” network (a crack network. The thickness of TiO2 nanolayers was controlled by repeating dip-coating process the necessary number of times after the first layer deposition. The state of the MS3T3-E1 osteoblast cell line (young cells that form bone tissue on the two-level hierarchical surface has been studied. Particularly, adhesion character, adhesion time and morphology have been studied. The reported results may serve the starting point for the development of novel bioactive coatings for bone and teeth implants.

  5. Effects of titanium dioxide nanoparticles isolated from confectionery products on the metabolic stress pathway in human lung fibroblast cells.

    Science.gov (United States)

    Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Al-Hadi, Ahmed M; Juhaimi, Fahad Al; Alshatwi, Ali A

    2015-04-01

    Titanium dioxide (TiO2) is a common additive in many foods, pigments, personal care products, and other consumer products used in daily life. Despite the widespread use of nanoscale TiO2 and composites of nanoscale TiO2 in the food industry, there is a serious lack of awareness of the toxicity of TiO2 nanoparticles (NPs) among consumers and manufacturers. There is an urgent need for toxicological studies of TiO2 NPs. TiO2 food additives separated from marketed foods were characterized by transmission electron microscopy. In addition, the effects of TiO2 NPs on metabolic stress in WI-38 cells were analyzed. Cell viability, total ROS, mitochondrial transmembrane potential (ΔψM), cell cycle, and metabolism-related gene expression were analyzed. The results indicate that TiO2 NPs have a significant concentration-dependent toxic effect in lung cells. The ΔψM, the intracellular ROS level, and the stages of the WI-38 cell cycle were altered by increasing TiO2 concentrations after exposure for 24 and 48 h relative to the control. Cytochrome P450 1A, GSTM3, and glutathione S-transferase A4 upregulation in response to the TiO2 NPs was observed. These findings suggest that the toxicity of TiO2 from confectionery products in WI-38 cells may be mediated through an increase in oxidative stress. The results of this study clearly demonstrate the nanotoxicological effects of TiO2 on WI-38 cells and will be useful for nanotoxicological indexing.

  6. Biological characterization of coatings based on titanium dioxide doped with metallic elements for antimicrobial applications

    OpenAIRE

    Silva, Isabel Carina Simões da

    2013-01-01

    Dissertação de mestrado em Biofísica e Bionanossistemas The use of semiconductors for processes of self-­‐cleaning, air and water depollution as well as surface disinfection has triggered a great interest in the scientific community. One of the most used semiconductor materials is titanium dioxide (TiO2) due to their large photocatalytic effect, higher oxidati...

  7. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  8. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    Science.gov (United States)

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    International Nuclear Information System (INIS)

    Babitha, S; Korrapati, Purna Sai

    2013-01-01

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO 2 nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO 2 NPs with average size 2 nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO 2 NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO 2 NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO 2 NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO 2 NPs from the metal oxide enriched effluent sample for future biological applications

  10. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins.

    Science.gov (United States)

    Koseki, Hironobu; Asahara, Tomohiko; Shida, Takayuki; Yoda, Itaru; Horiuchi, Hidehiko; Baba, Koumei; Osaki, Makoto

    2013-01-01

    Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO(2)) for inhibition of infection was compared with that of stainless steel control pins in an in vivo study. Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples. Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO(2)-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO(2)-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO(2)-coated pin group was significantly higher (71.4%) than in the control pin group (58.2%). The TiO(2) was successful in decreasing infection both clinically and histomorphometrically. The photocatalytic bactericidal effect of TiO(2) is thought to be useful for inhibiting pin site infection after external fixation.

  11. Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Ammendolia

    Full Text Available Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.

  12. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12.

    Science.gov (United States)

    Hu, Qinglian; Guo, Fengliang; Zhao, Fenghui; Fu, Zhengwei

    2017-04-01

    Nanomaterials hold significant potential for industrial and biomedical application these years. Therefore, the relationship between nanoparticles and neurodegenerative disease is of enormous interest. In this contribution, zebrafish embryos and PC12 cell lines were selected for studying neurotoxicity of titanium dioxide nanoparticles (TiO 2 NPs). After exposure of different concentrations of TiO 2 NPs to embryos from fertilization to 96 hpf, the hatching time of zebrafish was decreased, accompanied by an increase in malformation rate. However, no significant increases in mortality relative to control were observed. These results indicated that TiO 2 NPs exposure hold a risk for premature of zebrafish embryos, but not fatal. The further investigation confirmed that TiO 2 NPs could accumulate in the brain of zebrafish larvae, resulting in reactive oxygen species (ROS) generation and cell death of hypothalamus. Meanwhile, q-PCR analysis showed that TiO 2 NPs exposure increased the pink1, parkin, α-syn and uchl1 gene expression, which are related with the formation of Lewy bodies. We also observed loss of dopaminergic neurons in zebrafish and in vitro. These remarkable hallmarks are all linked to these Parkinson's disease (PD) symptoms. Our results indicate that TiO 2 NPs exposure induces neurotoxicity in vivo and in vitro, which poses a significant risk factor for the development of PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison of the Thrapeutic Effcts of Silymarin and Nanosilymarin on Hepatotoxicity Induced by Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hajizadeh Moghaddam A

    2017-03-01

    Full Text Available Introduction: Recent studies have indicated that titanium dioxide nanoparticles (TiO2 NPs are toxic for human. Silymarin is a well-known hepatoprotective drug. In this study, the nanoprecipitation technique was used for nanocrystals to improve the solubility of silymarin. Th aim of this study was to analyze the protective role of silymarin and its nanocrystal on liver damage due to TiO2 NPs in rat. Methods: In this experimental study, rats were divided to fie groups in separate cages: Control, vehicle, toxic group (150 mg/kg TiO2 NPs for three weeks orally as well as silymarin and silymarin NPs groups (100 mg/kg for three weeks orally aftr TiO2 NPs administration. Thn, the serum level of aspartate transaminase (AST, alanine transaminase (ALT and alkaline phosphatase (ALP as well as the liver histological changes were investigated. Results: Oral administration of Tio2 NPs resulted in signifiantly elevated levels of ALT, AST and ALP of serum and signifiantly increased the core diameter of hepatocytes (P > 0.05. Silymarin and its nanocrystal reduced the elevated liver enzyme levels and also decreased the core diameter of hepatocytes in toxic rats (P > 0.001. Conclusion: Th results from the present study indicated that silymarin and its nanocrystal probably due to antioxidant effcts cause hepatoprotective against TiO2 NPs-induced liver injury.

  14. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain.

    Science.gov (United States)

    Grissa, Intissar; Guezguez, Sabrine; Ezzi, Lobna; Chakroun, Sana; Sallem, Amira; Kerkeni, Emna; Elghoul, Jaber; El Mir, Lassaad; Mehdi, Meriem; Cheikh, Hassen Ben; Haouas, Zohra

    2016-10-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO 2 NPs is still limited. In our study, we investigate the effects of anatase TiO 2 NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO 2 NPs (5-10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO 2 NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO 2 NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.

  15. Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility.

    Science.gov (United States)

    Wang, Yawen; Duo, Fangfang; Peng, Shiqi; Jia, Falong; Fan, Caimei

    2014-09-15

    In this paper, we report a novel polyol process to synthesize highly water-dispersible anatase titanium dioxide (TiO2) nanoparticles (∼5 nm) by the introduction of inorganic oxidizing agent--KIO3. The obtained TiO2 nanoparticles are well dispersible in water at pH≥5.0 and the resulting aqueous dispersion remains stable over months. The superior water-dispersibility of as-formed TiO2 is ascribed to the electrostatic repulsion from carboxylic acid group modified on TiO2 nanoparticles, which is the oxidation product of solvent diethylene glycol (DEG) by KIO3. Based on the characterization results, the formation processes of water-dispersibility TiO2 nanoparticles are proposed. Meanwhile, the synthesized TiO2 nanoparticles are found to be doped by iodine and exhibit excellent photocatalytic activity on degradation of rhodamine-B (RhB) under visible-light irradiation. The further tests demonstrate that the O(2-) is the main active species during photodegradation of RhB. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... dioxide (Ti(OH)2) (80 mL) in aqueous solution with stirring for 2 h at room temperature. The TiO2 NPs ... The TiO2 NPs showed dose-dependent cytotoxicity towards D145 cells. Keywords: .... with ethanol and chloroform, and dried at room ... oxidation state of the TiO2 NPs.

  17. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  18. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  19. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.; Trifkovic, Milana; Abdullahi, Inusa; Rohani, Sohrab M F; Ray, Ajay

    2014-01-01

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing

  20. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  1. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  2. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  3. Algal testing of titanium dioxide nanoparticles - Testing considerations, inhibitory effects and modification of cadmium bioavailability

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; von der Kammer, F.; Hofmann, T.

    2010-01-01

    The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types...... surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2 mg/LTiO(2). The presence of TiO(2) in algal tests......(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity...

  4. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Buhari Rosnawati

    2018-01-01

    Full Text Available This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2 powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  5. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  6. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations.

    Science.gov (United States)

    Heringa, Minne B; Geraets, Liesbeth; van Eijkeren, Jan C H; Vandebriel, Rob J; de Jong, Wim H; Oomen, Agnes G

    2016-12-01

    Titanium dioxide white pigment consists of particles of various sizes, from which a fraction is in the nano range (food as additive E 171 as well as in other products, such as food supplements and toothpaste. Here, we assessed whether a human health risk can be expected from oral ingestion of these titanium dioxide nanoparticles (TiO 2 NPs), based on currently available information. Human health risks were assessed using two different approaches: Approach 1, based on intake, i.e. external doses, and Approach 2, based on internal organ concentrations using a kinetic model in order to account for accumulation over time (the preferred approach). Results showed that with Approach 1, a human health risk is not expected for effects in liver and spleen, but a human health risk cannot be excluded for effects on the ovaries. When based on organ concentrations by including the toxicokinetics of TiO 2 NPs (Approach 2), a potential risk for liver, ovaries and testes is found. This difference between the two approaches shows the importance of including toxicokinetic information. The currently estimated risk can be influenced by factors such as absorption, form of TiO 2 , particle fraction, particle size and physico-chemical properties in relation to toxicity, among others. Analysis of actual particle concentrations in human organs, as well as organ concentrations and effects in liver and the reproductive system after chronic exposure to well-characterized TiO 2 (NPs) in animals are recommended to refine this assessment.

  7. Optical properties of titanium-di-oxide (TiO2) prepared by hydrothermal method

    Science.gov (United States)

    Rahman, Kazi Hasibur; Biswas, Sayari; Kar, Asit Kumar

    2018-05-01

    Research on titanate and its derived TiO2 nanostructures with large specific surface area have received great attention due to their enhanced efficiency in photocatalysis, DSSC etc. Here, in this communication TiO2 powder has been prepared by hydrothermal method at 180 °C. In this work we have shown the changes in optical properties of the powder with two different sintering temperatures ‒ 500 °C and 800 °C. The as prepared powder was also studied. FESEM images show spherical particles for the as prepared samples which look more like agglomeration after sintering. Band gaps of the prepared samples were calculated from UV-Vis spectroscopy which lies in the range 2.85 eV ‒ 3.13 eV. The photoluminescence (PL) spectra of the prepared samples were recorded at room temperature in the range of 300‒700 nm. It shows two distinct peaks at 412 nm and 425 nm.

  8. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Titanium dioxide (TiO2 materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B, and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions.

  9. Nonactivated titanium-dioxide nanoparticles promote the growth of Chlamydia trachomatis and decrease the antimicrobial activity of silver nanoparticles.

    Science.gov (United States)

    Bogdanov, A; Janovák, L; Lantos, I; Endrész, V; Sebők, D; Szabó, T; Dékány, I; Deák, J; Rázga, Z; Burián, K; Virok, D P

    2017-11-01

    Chlamydia trachomatis and herpes simplex virus (HSV) are the most prevalent bacterial and viral sexually transmitted infections. Due to the chronic nature of their infections, they are able to interact with titanium-dioxide (TiO 2 ) nanoparticles (NPs) applied as food additives or drug delivery vehicles. The aim of this study was to describe the interactions of these two prevalent pathogens with the TiO 2 NPs. Chlamydia trachomatis and HSV-2 were treated with nonactivated TiO 2 NPs, silver NPs and silver decorated TiO 2 NPs before infection of HeLa and Vero cells. Their intracellular growth was monitored by quantitative PCR. Unexpectedly, the TiO 2 NPs (100 μg ml -1 ) increased the growth of C. trachomatis by approximately fourfold, while the HSV-2 replication was not affected. Addition of TiO 2 to silver NPs decreased their antimicrobial activity against C. trachomatis up to 27·92-fold. In summary, nonactivated TiO 2 NPs could increase the replication of C. trachomatis and decrease the antimicrobial activity of silver NPs. The food industry or drug delivery use of TiO 2 NPs could enhance the growth of certain intracellular pathogens and potentially worsen disease symptoms, a feature that should be further investigated. © 2017 The Society for Applied Microbiology.

  10. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  11. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins

    Directory of Open Access Journals (Sweden)

    Koseki H

    2013-02-01

    Full Text Available Hironobu Koseki,1 Tomohiko Asahara,1 Takayuki Shida,1 Itaru Yoda,1 Hidehiko Horiuchi,1 Koumei Baba,2 Makoto Osaki11Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, 2Industrial Technology Center of Nagasaki, Nagasaki, JapanBackground: Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO2 for inhibition of infection was compared with that of stainless steel control pins in an in vivo study.Methods: Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples.Results: Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO2-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO2-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO2-coated pin group was significantly higher (71.4% than in the control pin group (58.2%. The TiO2 was successful in decreasing infection both clinically and histomorphometrically.Conclusion: The photocatalytic bactericidal effect of TiO2 is thought to be useful for inhibiting pin site infection after external fixation.Keywords: titanium dioxide, external fixation, bactericidal activity, Staphylococcus aureus

  12. A Study on Kaolin and Titanium dioxide affecting Physical Properties of Electrocoating

    International Nuclear Information System (INIS)

    Yang, Wonseog; Hwang, Woonsuk

    2013-01-01

    The electrocoating for automotive bodies is pigmented with a mixture of titanium dioxide and kaolin. In this study, the effects of titanium dioxide and kaolin contents in coating on electrodeposition process, drying, and surface properties such as surface roughness, gloss, impact resistance and corrosion resistance were investigated. Titanium dioxide and kaolin in coating do not have a decisive effect on curing reaction during drying and corrosion resistance but on gloss, surface roughness, impact resistance and electrodeposition process of coating. According to its size and shape on coating surface, pigment contents increased during drying process. However, the contents of kaolin and TiO 2 in coating didn't affect the corrosion resistance on zinc phosphated substrate, and the curing properties

  13. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    International Nuclear Information System (INIS)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues

    2016-01-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO 2 -OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO 2 -OPM from metallic titanium (TiO 2 -Met), and titanium isopropoxide (TiO 2 -Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO 2 -Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO 2 -Iso, resulting in an increase of peroxo groups on the surface, making the TiO 2 -Iso route

  14. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    OpenAIRE

    Jiaoping Cai; Zexiang Chen; Jun Li; Yan Wang; Dong Xiang; Jijun Zhang; Hai Li

    2015-01-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon ...

  15. Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films

    Science.gov (United States)

    Miller, Lawrence W.

    A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic

  16. Critical review of the safety assessment of titanium dioxide additives in food.

    Science.gov (United States)

    Winkler, Hans Christian; Notter, Tina; Meyer, Urs; Naegeli, Hanspeter

    2018-06-01

    Nanomaterial engineering provides an important technological advance that offers substantial benefits for applications not only in the production and processing, but also in the packaging and storage of food. An expanding commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide (TiO 2 ), which confers a white color and increased opacity with an optimal particle diameter of 200-300 nm. However, size distribution analyses showed that batches of food-grade TiO 2 always comprise a nano-sized fraction as inevitable byproduct of the manufacturing processes. Submicron-sized TiO 2 particles, in Europe listed as E 171, are widely used as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not possible to derive a safe daily intake of TiO 2 from the available long-term feeding studies in rodents. Also, the use of TiO 2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps as to local gastrointestinal effects of TiO 2 particles, primarily on the mucosa and the gut-associated lymphoid system. Tissue distributions after oral administration of TiO 2 differ from other exposure routes, thus limiting the relevance of data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospective assessment of TiO 2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of novel nano-sized or submicron-sized particles added deliberately to food.

  17. Critical review of public health regulations of titanium dioxide, a human food additive.

    Science.gov (United States)

    Jovanović, Boris

    2015-01-01

    From 1916 to 2011, an estimated total of 165050000 metric tons of titanium dioxide (TiO2 ) pigment were produced worldwide. Current safety regulations on the usage of the TiO2 pigment as an inactive ingredient additive in human food are based on legislation from 1969 and are arguably outdated. This article compiles new research results to provide fresh data for potential risk reassessment. However, even after 45 years, few scientific research reports have provided truly reliable data. For example, administration of very high doses of TiO2 is not relevant to daily human uptake. Nevertheless, because dose makes the poison, the literature provides a valuable source for understanding potential TiO2 toxicity after oral ingestion. Numerous scientific articles have observed that TiO2 can pass and be absorbed by the mammalian gastrointestinal tract; can bioconcentrate, bioaccumulate, and biomagnify in the tissues of mammals and other vertebrates; has a very limited elimination rate; and can cause histopathological and physiological changes in various organs of animals. Such action is contrary to the 1969 decision to approve the use of TiO2 as an inactive ingredient in human food without an established acceptable daily intake, stating that neither significant absorption nor tissue storage following ingestion of TiO2 was possible. Thus, relevant governmental agencies should reassess the safety of TiO2 as an additive in human food and consider establishing an acceptable maximum daily intake as a precautionary measure. © 2014 The Author. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  18. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Vaishaali Natarajan

    Full Text Available Titanium dioxide (TiO2 nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25 on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1 urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2 redox signaling mechanisms by measuring reactive oxygen species (ROS production, manganese superoxide dismutase (MnSOD activity and mitochondrial membrane potential (MMP; (3 OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4 mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05 in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.

  19. Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food Additive

    Science.gov (United States)

    Jovanović, Boris

    2015-01-01

    From 1916 to 2011, an estimated total of 165 050 000 metric tons of titanium dioxide (TiO2) pigment were produced worldwide. Current safety regulations on the usage of the TiO2 pigment as an inactive ingredient additive in human food are based on legislation from 1969 and are arguably outdated. This article compiles new research results to provide fresh data for potential risk reassessment. However, even after 45 years, few scientific research reports have provided truly reliable data. For example, administration of very high doses of TiO2 is not relevant to daily human uptake. Nevertheless, because dose makes the poison, the literature provides a valuable source for understanding potential TiO2 toxicity after oral ingestion. Numerous scientific articles have observed that TiO2 can pass and be absorbed by the mammalian gastrointestinal tract; can bioconcentrate, bioaccumulate, and biomagnify in the tissues of mammals and other vertebrates; has a very limited elimination rate; and can cause histopathological and physiological changes in various organs of animals. Such action is contrary to the 1969 decision to approve the use of TiO2 as an inactive ingredient in human food without an established acceptable daily intake, stating that neither significant absorption nor tissue storage following ingestion of TiO2 was possible. Thus, relevant governmental agencies should reassess the safety of TiO2 as an additive in human food and consider establishing an acceptable maximum daily intake as a precautionary measure. Integr Environ Assess Manag 2015;11:10–20. © 2014 The Author. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:25091211

  20. Catalytic Study on TiO2 Photo catalyst Synthesised Via Microemulsion Method on Atrazine

    International Nuclear Information System (INIS)

    Ruslimie, C.A.; Hasmizam Razali; Khairul, W.M.

    2011-01-01

    Titanium dioxide photo catalyst was synthesised by microemulsions method under controlled hydrolysis of titanium butoxide, Ti(O(CH 2 ) 3 )CH 3 . The synthesised TiO 2 photo catalyst was compared with Sigma-commercial TiO 2 by carrying out the investigation on its properties using scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis and thermal gravimetric analysis (TGA). The photo catalytic activities for both photo catalysts were studied for atrazine photodegradation. (author)

  1. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2012-12-01

    Full Text Available Titanium dioxide-polyaniline/polyamide 6 (TiO2-PANI/PA6 composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO2-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO2-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO2-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO2 had a great influence on both the morphology and the sensing property of TiO2-PANI/PA6 composite nanofibers.

  2. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  3. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  4. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  5. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  6. Characterization of food-grade titanium dioxide: the presence of nanosized particles.

    Science.gov (United States)

    Yang, Yu; Doudrick, Kyle; Bi, Xiangyu; Hristovski, Kiril; Herckes, Pierre; Westerhoff, Paul; Kaegi, Ralf

    2014-06-03

    Titanium dioxide (TiO2) is widely used in food products, which will eventually enter wastewater treatment plants and terrestrial or aquatic environments, yet little is known about the fraction of this TiO2 that is nanoscale, or the physical and chemical properties of TiO2 that influence its human and environmental fate or toxicity. Instead of analyzing TiO2 properties in complex food or environmental samples, we procured samples of food-grade TiO2 obtained from global food suppliers and then, using spectroscopic and other analytical techniques, quantified several parameters (elemental composition, crystal structure, size, and surface composition) that are reported to influence environmental fate and toxicity. Another sample of nano-TiO2 that is generally sold for catalytic applications (P25) and widely used in toxicity studies, was analyzed for comparison. Food-grade and P25 TiO2 are engineered products, frequently synthesized from purified titanium precursors, and not milled from bulk scale minerals. Nanosized materials were present in all of the food-grade TiO2 samples, and transmission electron microscopy showed that samples 1-5 contained 35, 23, 21, 17, and 19% of nanosized primary particles (average hydrodynamic diameter of >100 nm. Food-grade samples contained phosphorus (P), with concentrations ranging from 0.5 to 1.8 mg of P/g of TiO2. The phosphorus content of P25 was below inductively coupled plasma mass spectrometry detection limits. Presumably because of a P-based coating detected by X-ray photoelectron spectroscopy, the ζ potential of the food-grade TiO2 suspension in deionized water ranged from -10 to -45 mV around pH 7, and the iso-electric point for food-grade TiO2 (grade materials, and although the presence of amorphous TiO2 could not be ruled out, it is unlikely on the basis of Raman analysis. The food-grade TiO2 was solar photoactive. Cationic dyes adsorbed more readily to food-grade TiO2 than P25, indicating very different potentials for

  7. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    International Nuclear Information System (INIS)

    Castro, A.L.; Nunes, M.R.; Carvalho, M.D.; Ferreira, L.P.; Jumas, J.-C.; Costa, F.M.; Florencio, M.H.

    2009-01-01

    Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO 2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 , whereas no photocatalytic activity was detected for the Fe:TiO 2 and Co:TiO 2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 .

  8. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    Science.gov (United States)

    Ha, Seungkyu; Janissen, Richard; Ussembayev, Yera Ye.; van Oene, Maarten M.; Solano, Belen; Dekker, Nynke H.

    2016-05-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale.Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile

  9. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    International Nuclear Information System (INIS)

    Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo

    2015-01-01

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO 2 ) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO 2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO 2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO 2 may not lead to chronic, irreversible legions in the lung, and that TiO 2 nanoparticles may not have a high potential for lung disorder

  10. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  11. Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow

    International Nuclear Information System (INIS)

    Ndlovu, Thabile; Kuvarega, Alex T.; Arotiba, Omotayo A.; Sampath, Srinivasan; Krause, Rui W.; Mamba, Bhekie B.

    2014-01-01

    Graphical abstract: - Highlights: • Preparation of exfoliated graphite (EG) from natural graphite. • Sol–gel anchoring of TiO 2 on exfoliated graphite. • High adsorption and photoactivity was observed for the EG-TiO 2 nanocomposite. • Mechanism of enhancement was proposed. - Abstract: An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO 2 ) was prepared. SEM and TEM micrographs showed that the spherical TiO 2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO 2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO 2 , the rate constant was much higher than for EG and TiO 2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO 2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO 2 , promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation

  12. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    International Nuclear Information System (INIS)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I

    2008-01-01

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO 2 /SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO 2 /SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO 2 /PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO 2 nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO 2 , as evaluated by UV-vis spectroscopy

  13. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    Science.gov (United States)

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  14. Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina

    Directory of Open Access Journals (Sweden)

    Ya-Jie Wang

    2014-12-01

    Full Text Available AIM:To investigate the impact of titanium dioxide nanoparticles (TiO2 NPs on embryonic development and retinal neurogenesis. METHODS:The agglomeration and sedimentation of TiO2 NPs solutions at different dilutions were observed, and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to TiO2 NPs until 72h postfertilization (hpf. The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization. RESULTS: The1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to TiO2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms mRNA and the 4C4 antibody, which were specific to microglia in the central nervous system (CNS, closely resembled their endogenous profile. CONCLUSION:These data demonstrate that short-term exposure to TiO2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity.

  15. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Porthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  16. Nanostructured titanium dioxide: a control of crystallite size and content of polymorphic phases

    International Nuclear Information System (INIS)

    Boery, Mirella N. de O.; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K.

    2010-01-01

    TiO 2 (titanium dioxide) powders and nanoparticles have been largely used in toners and cosmetics. Nowadays, they are mainly focused in photocatalysis, antibacterial coatings, dye-sensitized solar cells, etc. The efficiency is related to photocatalytic properties of TiO 2 nanoparticles, such as crystallite size and phase (anatasio/rutile). In this research, flame aerosol method was used to synthesize TiO 2 nanoparticles by hydrolysis and oxidation of TiCl 4 (titanium tetrachloride). The oxy-hydrogen flame was provided by a five concentric nozzle silica burner. X-ray diffraction was used to identify each TiO 2 nanoparticles phase and scanning electron microscopy was used to observe the size and morphology of nanoparticles. Pure anatase was obtained with H 2 /O 2 ratio ≤ 1.0, and up to 52 wt% of rutile was obtained with H 2 /O 2 ratio > 2.0. Anatase crystal grain size varied from 25 to 38 nm, estimated by Scherrer formula.(author)

  17. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    International Nuclear Information System (INIS)

    Shinonaga, Togo; Tsukamoto, Masahiro; Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao; Matsushita, Nobuhiro; Xie, Guoqiang; Abe, Nobuyuki

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO 2 ) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO 2 film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO 2 particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO 2 a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  18. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  19. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain

    International Nuclear Information System (INIS)

    Meena, Ramovatar; Kumar, Sumit; Paulraj, R.

    2015-01-01

    The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO 2 (TiO 2 nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO 2 (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO 2 , oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO 2 in the brain increased with increasing the doses of nano-TiO 2 . Oxidative stress and injury of the brain occurred as nano-TiO 2 appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO 2 induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis

  20. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    International Nuclear Information System (INIS)

    Zydziak, Nicolas; Zanin, Maria-Helena Ambrosio; Trick, Iris; Hübner, Christof

    2015-01-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO 2 ) as photocatalyst. TiO 2 was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO 2 dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO 2 . The synthesized TiO 2 dispersions and commercially available TiO 2 particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO 2 in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO 2 as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO 2 incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO 2 via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology

  1. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    Science.gov (United States)

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  2. Growth behaviors and biocidal properties of titanium dioxide films depending on nucleation duration in liquid phase deposition

    Science.gov (United States)

    Park, Sohyeon; Park, Joohee; Heo, Jiwoong; Hong, Bo Young; Hong, Jinkee

    2017-12-01

    Liquid phase deposition (LPD), which is a method to directly form a titanium dioxide (TiO2) film on a substrate, is the most practical method for applying TiO2 films to medical devices because it is performed at lower temperatures than other methods. The TiO2 films to be applied to medical devices should offer excellent antibacterial effect, but should be stable to normal cells and have appropriate strength. In this research, we observed that the size, shape, and density of TiO2 particles varied with the nucleation duration in LPD and confirmed that these results caused changes in several properties including the mechanical properties, cytotoxicity and antibacterial effect of TiO2 films. From the analysis of these results, we established the conditions for the preparation of TiO2 films that are suitable for medical devices and suggest a new approach to the study of TiO2 films prepared by LPD.

  3. Effect of Titanium Dioxide Nanoparticles on The Amount of Blood Cells and Liver Enzymes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Rezaei Zarchi

    2011-11-01

    Full Text Available Introduction: Considering the development of nanotechnology and extensive use of nano-materials are in different fields of industry, it is necessary to investigate their destructive effects on biological systems. Titanium dioxide(TiO2 is used in the production of different dyes, cosmetics, ceramics, photocatalysts, water and sewage treatment and a lot of other products. In the present study, the effect of TiO2 on the number of blood cells and the activity of liver enzymes of rat was assessed. Methods: Concentrations of 50, 100 and 500 mg/Kg TiO2 nanoparticles (25 nm size in distilled water were administered orally to Wistar rats for 14 days and some blood factors were studied on the blood samples collected. Results: Results showed that TiO2 nanoparticles cause different changes in blood cells, and the changes were significant for some of them such as white blood cells (lymphocytes, monocytes, eosinophils and basophils. Decreased number of red blood cells and increased level of liver enzymes was also observed after the administration of different concentrations of TiO2, which proves the toxic effects of TiO2 on the body. Conclusion: Results of the present study proved the toxicity of TiO2 nanoparticles on the living organisms. So, further studies are recommended to predict TiO2 toxicity.

  4. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    Science.gov (United States)

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  5. Particle-size effect on the rate of TiO2 carbonizing

    International Nuclear Information System (INIS)

    Lekanova, T.L.; Ryabkov, Yu.I.; Sevbo, O.A.

    2003-01-01

    Dependence of recovery rate constant of titanium dioxide in TiO 2 -C system on the value of specific surface initial components at 1300 deg C was studied. It is shown that decrease in equivalent particle size of titanium dioxide and carbon particles in the range of 500-100 μm has a similar effect on increase in titanium dioxide recovery rate. Analysis of kinetic equations suggests diffusion character of titanium dioxide carbonizing at the values of initial components specific surface in excess of 100 m 2 /g [ru

  6. The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Directory of Open Access Journals (Sweden)

    Braun Armin

    2009-09-01

    Full Text Available Abstract Background Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO2 nanosized particles (NSP and microsized particles (MSP on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition, TiO2 effects on surfactant ultrastructure were visualized. Methods A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml of TiO2 NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope. Results TiO2 NSP, but not MSP, induced a surfactant dysfunction. For TiO2 NSP, adsorption surface tension (γads increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p min slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p 2 NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γads (63.6 ± 0.4 mN/m and γmin (21.1 ± 0.4 mN/m. Interestingly, TiO2 NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae. Conclusion TiO2 nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.

  7. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats.

    Science.gov (United States)

    Morgan, Ashraf; Galal, Mona K; Ogaly, Hanan A; Ibrahim, Marwa A; Abd-Elsalam, Reham M; Noshy, Peter

    2017-09-01

    Although the widespread use of titanium dioxide nanoparticles (TiO 2 NPs), few studies were conducted on its hazard influence on human health. Tiron a synthetic vitamin E analog was proven to be a mitochondrial targeting antioxidant. The current investigation was performed to assess the efficacy of tiron against TiO 2 NPs induced nephrotoxicity. Eighty adult male rats divided into four different groups were used: group I was the control, group II received TiO2 NPs (100mg\\Kg BW), group III received TiO2 NPs plus tiron (470mg\\kg BW), and group IV received tiron alone. Urea, creatinine and total protein concentrations were measured in serum to assess the renal function. Antioxidant status was estimated by determining the activities of glutathione peroxidase, superoxide dismutase, malondialdehyde (MDA) level and glutathione concentration in renal tissue. As well as Renal fibrosis was evaluated though measuring of transforming growth factor-β1 (TGFβ1) and matrix metalloproteinase 9 (MMP9) expression levels and histopathological examination. TiO 2 NPs treated rats showed marked elevation of renal indices, depletion of renal antioxidant enzymes with marked increase in MDA concentration as well as significant up-regulation in fibrotic biomarkers TGFβ1 and MMP9. Oral administration of tiron to TiO 2 NPs treated rats significantly attenuate the renal dysfunction through decreasing of renal indices, increasing of antioxidant enzymes activities, down-regulate the expression of fibrotic genes and improving the histopathological picture for renal tissue. In conclusion, tiron was proved to attenuate the nephrotoxicity induced by TiO 2 NPs through its radical scavenging and metal chelating potency. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  9. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  10. Ab Initio Study of the Atomic Level Structure of the Rutile TiO2(110)-Titanium Nitride (TiN) Interface.

    Science.gov (United States)

    Gutiérrez Moreno, José Julio; Nolan, Michael

    2017-11-01

    Titanium nitride (TiN) is widely used in industry as a protective coating due to its hardness and resistance to corrosion and can spontaneously form a thin oxide layer when it is exposed to air, which could modify the properties of the coating. With limited understanding of the TiO 2 -TiN interfacial system at present, this work aims to describe the structural and electronic properties of oxidized TiN based on a density functional theory (DFT) study of the rutile TiO 2 (110)-TiN(100) interface model system, also including Hubbard +U correction on Ti 3d states. The small lattice mismatch gives a good stability to the TiO 2 -TiN interface after depositing the oxide onto TiN through the formation of interfacial Ti-O bonds. Our DFT+U study shows the presence of Ti 3+ cations in the TiO 2 region, which are preferentially located next to the interface region as well as the rotation of the rutile TiO 2 octahedra in the interface structure. The DFT+U TiO 2 electronic density of states (EDOS) shows localized Ti 3+ defect states forming in the midgap between the top edge of the valence and the bottom of the conduction band. We increase the complexity of our models by the introduction of nonstoichiometric compositions. Although the vacancy formation energies for Ti in TiN (E vac (Ti) ≥ 4.03 eV) or O in the oxide (E vac (O) ≥ 3.40 eV) are quite high relative to perfect TiO 2 -TiN, defects are known to form during the oxide growth and can therefore be present after TiO 2 formation. Our results show that a structure with exchanged O and N can lie 0.82 eV higher in energy than the perfect system, suggesting the stability of structures with interdiffused O and N anions at ambient conditions. The presence of N in TiO 2 introduces N 2p states localized between the top edge of the O 2p valence states and the midgap Ti 3+ 3d states, thus reducing the band gap in the TiO 2 region for the exchanged O/N interface EDOS. The outcomes of these simulations give us a most comprehensive

  11. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    One prominent method of modifying the properties of dielectric elastomers (DEs) is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting...... and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2) particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0...

  12. Semi-transparent ordered TiO_2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    International Nuclear Information System (INIS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-01-01

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO_2 were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO_2 layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO_2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO_2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO_2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm"−"2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  13. Complex impedance study on nano-CeO2 coating TiO2

    International Nuclear Information System (INIS)

    Zhang Mei; Wang Honglian; Wang Xidong; Li Wenchao

    2006-01-01

    Titanium dioxide (TiO 2 ) nanoparticles and cerium dioxide (CeO 2 ) nanoparticles coated titanium dioxide (TiO 2 ) nanoparticles (CeO 2 -TiO 2 nanoparticles) have been successfully synthesized by sol-gel method. The complex impedance of the materials was investigated. The grain resistance, boundary resistance and activation energy of the nanoparticles were calculated according to Arrhenius equation. According to calculating results, the active capacity of pure TiO 2 nanoparticles has been improved because of nano-CeO 2 coating. An optimal CeO 2 content of 4.9 mol% was achieved. The high resolution electron microscopy images of CeO 2 -TiO 2 nanoparticles showed that TiO 2 nanoparticles, as a core, were covered by CeO 2 nanoparticles. The average size of CeO 2 coating TiO 2 nanoparticles was about 70 nm. Scanning electron microscopy observation indicted that CeO 2 nanoparticle coating improved the separation, insulation, and stability the CeO 2 -TiO 2 nanoparticles, which was benefit to the activity of materials

  14. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  15. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness

    Directory of Open Access Journals (Sweden)

    Smijs TG

    2011-10-01

    Full Text Available Threes G Smijs1–3, Stanislav Pavel4 1Faculty of Science, Open University in The Netherlands, Rotterdam, The Netherlands; 2University of Leiden, Leiden Amsterdam Center for Drug Research, Leiden, The Netherlands; 3Erasmus MC, Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands; 4Charles University, Faculty of Medicine, Department of Dermatology, Pilsen, Czech Republic Abstract: Sunscreens are used to provide protection against adverse effects of ultraviolet (UVB (290–320 nm and UVA (320–400 nm radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2 and zinc oxide (ZnO minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs (<100 nm. This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle–particle, particle–skin, and skin–particle–light physicochemical interactions. Both sunscreen NPs induce (photocyto- and genotoxicity and have been sporadically observed in viable

  16. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications

    International Nuclear Information System (INIS)

    Farias, Emanuel Airton O.; Dionisio, Natália A.; Quelemes, Patrick V.; Leal, Sergio Henrique; Matos, José Milton E.; Filho, Edson C. Silva; Bechtold, Ivan H.; Leite, José Roberto S.A.; Eiras, Carla

    2014-01-01

    Composites prepared from polyaniline (PANI) and the ceramic technology of titanium dioxide (TiO 2 ) have been proposed, however, the interaction of these materials with greater control of molecular arrangement becomes attractive in order to achieve properties not previously described or yet the optimization of those already reported. Therefore, in this study, thin hybrid films made of polyaniline (PANI), a conductive polymer, and the technological ceramic, titanium dioxide (TiO 2 ), were prepared by the layer-by-layer (LbL) self-assembly technique. The films were characterized by cyclic voltammetry (CV), UV–VIS spectroscopy and atomic force microscopy (AFM). Aiming to improve the dispersion of the ceramic in the polymer matrix, the commercial surfactant, cetyl trimethylammonium bromide (CTAB), was used in the formation of the films. The best condition of deposition was found showing synergic interactions between the conjugated materials. The antibacterial activity of the PANI(TiO 2 )/CTAB films was studied and the obtained results suggest their use as antimicrobial coatings. - Highlights: • Nanocomposite films of PANI and TiO2 prepared by the LbL technique • Ceramic dispersion in PANI improved with CTAB for antimicrobial applications. • Optimized film deposition for synergic interactions of the conjugated materials • Antibacterial activity of the films suggests their use as antimicrobial coatings

  17. Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry Characterisation of Nanomaterials in Biological Samples

    NARCIS (Netherlands)

    Krystek, Petra; Tentschert, Jutta; Nia, Yacine; Trouiller, Benedicte; Noël, Laurent; Goetz, Mario E.; Papin, Arnaud; Luch, Andreas; Guérin, Thierry; De Jong, Wim H.

    2014-01-01

    Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its

  18. Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W. [Chemical; Saslow, Sarah A. [Earth

    2017-11-17

    Technetium-99 (Tc) is a problematic fission product that complicates the long-term disposal of nuclear waste due to its long half-life, high fission yield, and the environmental mobility of pertechnetate, its stable form in aerobic environments. One approach to preventing Tc contamination is through incorporation into durable waste forms based on weathering-resistant minerals such as rutile (titanium dioxide). Here, the incorporation of technetium into titanium dioxide by means of simple, aqueous chemistry is presented. X-ray absorption fine structure spectroscopy and diffuse reflectance spectroscopy indicate that Tc(IV) replaces Ti(IV) within the structure. Rather than being incorporated as isolated Tc(IV) ions, Tc is present as pairs of edge-sharing Tc(IV) octahedra similar to molecular Tc(IV) complexes such as [(H2EDTA)TcIV](u-O)2. Technetium-doped TiO2 was suspended in deionized water under aerobic conditions, and the Tc leached under these conditions was followed for 8 months. The normalized release rate of Tc (LRTc) from the TiO2 particles is low (3×10-6 g m-2 d-1), which illustrates the potential utility of TiO2 as waste form. However, the small size of the as-prepared TiO2 nanoparticles results in estimated retention of Tc for 104 years, which is only a fraction of the half-life of Tc (2×10-5 years).

  19. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry

  20. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    Science.gov (United States)

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  2. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  3. Graphene-enhanced Raman imaging of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Naumenko, Denys; Snitka, Valentinas; Snopok, Boris; Arpiainen, Sanna; Lipsanen, Harri

    2012-01-01

    The interaction of anatase titanium dioxide (TiO 2 ) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO 2 and graphene were found. The changes in the graphene Raman peak positions and intensity ratios indicate that charge transfer between graphene and TiO 2 nanoparticles occurred, increasing the Raman signal of the TiO 2 nanoparticles up to five times. The normalized Raman intensity of TiO 2 nanoparticles per their volume increased with the disorder of the graphene structure. The complementary reason for the observed enhancement is that due to the higher density of states in the defect sites of graphene, a higher electron transfer occurs from the graphene to the anatase TiO 2 nanoparticles. (paper)

  4. Dióxido de titânio sol-gel: propriedades e comportamento eletrocrômico Sol-gel titanium dioxide: properties and electrochromic behavior

    Directory of Open Access Journals (Sweden)

    Rita Aparecida Zoppi

    2000-12-01

    Full Text Available Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide. Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.

  5. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    OpenAIRE

    Leung, Solomon

    2008-01-01

    James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2) in various industrial applications (eg, production of paper, plast...

  6. The effect of titanium dioxide nanoparticles on antioxidant gene expression in tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Varela-Valencia, Ruth; Gómez-Ortiz, Nikte; Oskam, Gerko; de Coss, Romeo; Rubio-Piña, Jorge; del Río-García, Marcela; Albores-Medina, Arnulfo; Zapata-Perez, Omar

    2014-04-01

    The reactivity of nanoparticles (NPs) in biological systems is well recognized, but there are huge gaps in our understanding of NP toxicity in fish, despite a number of recent ecotoxicity studies. Therefore, the aim of this research was to evaluate the effect of titanium dioxide NPs (TiO2-NPs) on antioxidant gene expression in the tilapia, Oreochromis niloticus. First, different sizes, shapes, and phases of TiO2-NPs were synthesized and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Fish were injected intraperitoneally with different concentrations (0.1, 1.0, 10.0 mg/L), sizes (7, 14, and 21 nm), and phases (anatase and rutile) of TiO2-NPs, and sacrificed 3, 6, 12, and 24 h after injection, when their livers were removed. Total RNA was extracted, and expression of the catalase ( CAT), glutathione- S-transferase ( GST), and superoxide dismutase ( SOD) genes was assessed by real-time polymerase chain reaction (RT-PCR). The results showed that injection of 1.0 mg/L TiO2-NPs induced an initial mild increase in CAT, GST, and SOD gene expression in tilapia, after which transcript levels decreased. Fish injected with 7 and 14 nm TiO2-NPs showed an increase in antioxidant transcript levels 6 h after treatment. Finally, the rutile form generated stronger induction of the GST gene than anatase TiO2-NPs during the first 6 h after injection, which suggests that exposure to rutile causes higher levels of reactive oxygen species to be produced.

  7. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability

    International Nuclear Information System (INIS)

    Hartmann, N.B.; Von der Kammer, F.; Hofmann, T.; Baalousha, M.; Ottofuelling, S.; Baun, A.

    2010-01-01

    The ecotoxicity of three different sizes of titanium dioxide (TiO 2 ) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types, but the physiological mode of action is not yet clear. It was possible to establish a concentration/dose-response relationship for the three particle sizes. Reproducibility, however, was affected by concentration-dependent aggregation of the nanoparticles, subsequent sedimentation, and possible attachment to vessel surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2 mg/L TiO 2 . The presence of TiO 2 in algal tests reduced the observed toxicity due to decreased bioavailability of cadmium resulting from sorption/complexation of Cd 2+ ions to the TiO 2 surface. However, for the 30 nm TiO 2 nanoparticles, the observed growth inhibition was greater than what could be explained by the concentration of dissolved Cd(II) species, indicating a possible carrier effect, or combined toxic effect of TiO 2 nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity, potential interactions with existing environmental contaminants are also of crucial importance in assessing the potential environmental risks of nanoparticles.

  8. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine

    Science.gov (United States)

    Tassinari, Roberta; La Rocca, Cinzia; Stecca, Laura; Tait, Sabrina; De Berardis, Barbara; Ammendolia, Maria Grazia; Iosi, Francesca; Di Virgilio, Antonio; Martinelli, Andrea; Maranghi, Francesca

    2015-06-01

    In European Union, titanium dioxide (TiO2) as bulk material is a food additive (E171) and - as nanoparticle (NP) - is used as a white pigment in several products (e.g. food, cosmetics, drugs). E171 contains approximately 36% of particles less than 100 nm in at least one dimension and TiO2 NP exposure is estimated fairly below 2.5 mg/person/day. The gastrointestinal tract is a route of entry for NPs, thus representing a potential target of effects. In in vivo study, the effects of TiO2 NP in adult rat small intestine have been evaluated by oral administration of 0 (CTRL), 1 and 2 mg/kg body weight per day - relevant to human dietary intake. Detailed quali/quantitative histopathological analyses were performed on CTRL and treated rat samples. Scanning electron microscopy (SEM) analysis was performed on small intestine. An in vitro study on Caco-2 cells was also used in order to evaluate the potential cytotoxic effects directly on enterocytes through the lactate dehydrogenase (LDH) assay. Suspensions of TiO2 NPs for in vitro and in vivo study were characterized by EM. Histomorphometrical data showed treatment-related changes of villus height and widths in male rats. Significantly different from CTRL decreased LDH levels in the medium were detected in vitro at 24h with 2.5, 5, 10 and 20 µg/cm2 levels of TiO2 NPs. SEM analysis showed no damaged areas. Overall the results showed that enterocytes may represent a target of TiO2 NP toxicity by direct exposure both in vivo and in vitro models.

  9. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine

    International Nuclear Information System (INIS)

    Tassinari, Roberta; La Rocca, Cinzia; Tait, Sabrina; De Berardis, Barbara; Ammendolia, Maria Grazia; Iosi, Francesca; Di Virgilio, Antonio; Martinelli, Andrea; Maranghi, Francesca; Stecca, Laura

    2014-01-01

    In European Union, titanium dioxide (TiO 2 ) as bulk material is a food additive (E171) and - as nanoparticle (NP) - is used as a white pigment in several products (e.g. food, cosmetics, drugs). E171 contains approximately 36% of particles less than 100 nm in at least one dimension and TiO 2 NP exposure is estimated fairly below 2.5 mg/person/day. The gastrointestinal tract is a route of entry for NPs, thus representing a potential target of effects. In in vivo study, the effects of TiO 2 NP in adult rat small intestine have been evaluated by oral administration of 0 (CTRL), 1 and 2 mg/kg body weight per day - relevant to human dietary intake. Detailed quali/quantitative histopathological analyses were performed on CTRL and treated rat samples. Scanning electron microscopy (SEM) analysis was performed on small intestine. An in vitro study on Caco-2 cells was also used in order to evaluate the potential cytotoxic effects directly on enterocytes through the lactate dehydrogenase (LDH) assay. Suspensions of TiO 2 NPs for in vitro and in vivo study were characterized by EM. Histomorphometrical data showed treatment-related changes of villus height and widths in male rats. Significantly different from CTRL decreased LDH levels in the medium were detected in vitro at 24h with 2.5, 5, 10 and 20 µg/cm 2 levels of TiO 2 NPs. SEM analysis showed no damaged areas. Overall the results showed that enterocytes may represent a target of TiO 2 NP toxicity by direct exposure both in vivo and in vitro models

  10. Criteria to define a more relevant reference sample of titanium dioxide in the context of food: a multiscale approach.

    Science.gov (United States)

    Dudefoi, William; Terrisse, Hélène; Richard-Plouet, Mireille; Gautron, Eric; Popa, Florin; Humbert, Bernard; Ropers, Marie-Hélène

    2017-05-01

    Titanium dioxide (TiO 2 ) is a transition metal oxide widely used as a white pigment in various applications, including food. Due to the classification of TiO 2 nanoparticles by the International Agency for Research on Cancer as potentially harmful for humans by inhalation, the presence of nanoparticles in food products needed to be confirmed by a set of independent studies. Seven samples of food-grade TiO 2 (E171) were extensively characterised for their size distribution, crystallinity and surface properties by the currently recommended methods. All investigated E171 samples contained a fraction of nanoparticles, however, below the threshold defining the labelling of nanomaterial. On the basis of these results and a statistical analysis, E171 food-grade TiO 2 totally differs from the reference material P25, confirming the few published data on this kind of particle. Therefore, the reference material P25 does not appear to be the most suitable model to study the fate of food-grade TiO 2 in the gastrointestinal tract. The criteria currently to obtain a representative food-grade sample of TiO 2 are the following: (1) crystalline-phase anatase, (2) a powder with an isoelectric point very close to 4.1, (3) a fraction of nanoparticles comprised between 15% and 45%, and (4) a low specific surface area around 10 m 2  g - 1 .

  11. Plasticized Starch Based Bionanocomposites Containing Cellulose Nanowhiskers and Titanium Dioxide Nanoparticles: Study of Structure and Water Vapor Permeability

    Directory of Open Access Journals (Sweden)

    Nasrin Jamshidi Kaljahi

    2014-08-01

    Full Text Available The starch-based films have some disadvantages such as weak mechanical and poor water barrier properties that restrict their applications in food packaging. In the present research, to improve the properties of the starch films, a constant level of citric acid and polyvinyl alcohol (PVA (10% with different amounts of glycerol (GLY as a lubricating agent, crystal nanowhiskers (CNW and titanium dioxide (TiO2 nanoparticles were used together. Finally, the effects of these compounds on permeability properties of the obtained starch-based bionanocomposites were studied and their optimum values were determined by central composite design of response surface methodology (RSM. The results of X-Ray diffraction (XRD test showed that at low levels of TiO2 and CNW there was no diffractogram peak obtained. However, at high levels of TiO2 and CNW there emerged distinct and sharp peak which was attributed to greater crystalline region and probably non-homogeneity in particle distribution. The Fourier transmission infrared (FTIR data showed that addition of CNW and TiO2 increased hydrogen binding between the nanofillers and biopolymer matrix. The effects of TiO2 and CNW concentrations as quadratic and glycerol concentration as linear and quadratic were significant on water vapor permeability (WVP. The optimum levels of TiO2, CNW and GLY for obtaining minimum WVP corresponded to 0.118, 0.3 g and 1.06 mL, respectively.

  12. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions.

    Science.gov (United States)

    Li, Qian; Li, Ti; Liu, Chengmei; DeLoid, Glen; Pyrgiotakis, Georgios; Demokritou, Philip; Zhang, Ruojie; Xiao, Hang; McClements, David Julian

    Titanium dioxide (TiO 2 ) particles are used in some food products to alter their optical properties, such as whiteness or brightness. These additives typically contain a population of TiO 2 nanoparticles (d digestion through two physicochemical mechanisms: (i) a fraction of the lipase adsorbs to TiO 2 particle surfaces, thereby reducing the amount available to hydrolyze lipid droplets; (ii) some TiO 2 particles adsorb to the surfaces of lipid droplets, thereby reducing the lipid surface area exposed to lipase. The importance of these mechanisms was tested by passing protein-coated lipid droplets (2%, w/w) through the simulated GIT in the absence and presence of TiO 2 (0.5%, w/w) nanoparticles (18 nm) and fine particles (167 nm). Changes in particle characteristics (size, organization, and charge) and lipid digestion were then measured. Both TiO 2 nanoparticles and fine particles had little impact on the aggregation state and charge of the lipid droplets in the different GIT regions, as well as on the rate and extent of lipid digestion. This suggests that the theoretically predicted impact of particle size on lipid digestion was not seen in practice.

  13. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  14. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    International Nuclear Information System (INIS)

    Cendrowski, Krzysztof; Jedrzejczak, Malgorzata; Peruzynska, Magdalena; Dybus, Andrzej; Drozdzik, Marek; Mijowska, Ewa

    2014-01-01

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO 2 -MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO 2 and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO 2 –MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst

  15. Mediatorless Impedance Studies with Titanium Dioxide Conjugated Gold Nanoparticles for Hydrogen Peroxide Detection

    Directory of Open Access Journals (Sweden)

    Nur Hamidah Abdul Halim

    2017-09-01

    Full Text Available An impedimetric-based biosensor constructed using gold nanoparticles (AuNP entrapped within titanium dioxide (TiO2 particles for hydrogen peroxide (H2O2 detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb, which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD of 1 × 10−5 M without a redox mediator.

  16. Titanium dioxide induced inflammation in the small intestine

    Science.gov (United States)

    Nogueira, Carolina Maciel; de Azevedo, Walter Mendes; Dagli, Maria Lucia Zaidan; Toma, Sérgio Hiroshi; Leite, André Zonetti de Arruda; Lordello, Maria Laura; Nishitokukado, Iêda; Ortiz-Agostinho, Carmen Lúcia; Duarte, Maria Irma Seixas; Ferreira, Marcelo Alves; Sipahi, Aytan Miranda

    2012-01-01

    AIM: To investigate the effects of titanium dioxide (TiO2) nanoparticles (NPTiO2) and microparticles (MPTiO2) on the inflammatory response in the small intestine of mice. METHODS: Bl 57/6 male mice received distilled water suspensions containing TiO2 (100 mg/kg body weight) as NPTiO2 (66 nm), or MPTiO2 (260 nm) by gavage for 10 d, once a day; the control group received only distilled water. At the end of the treatment the duodenum, jejunum and ileum were extracted for assessment of cytokines, inflammatory cells and titanium content. The cytokines interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, tumor necrosis factor-α (TNF-α), intracellular interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue). CD4+ and CD8+ T cells, natural killer cells, and dendritic cells were evaluated in duodenum, jejunum and ileum samples fixed in 10% formalin by immunohistochemistry. The titanium content was determined by inductively coupled plasma atomic emission spectrometry. RESULTS: We found increased levels of T CD4+ cells (cells/mm2) in duodenum: NP 1240 ± 139.4, MP 1070 ± 154.7 vs 458 ± 50.39 (P < 0.01); jejunum: NP 908.4 ± 130.3, MP 813.8 ± 103.8 vs 526.6 ± 61.43 (P < 0.05); and ileum: NP 818.60 ± 123.0, MP 640.1 ± 32.75 vs 466.9 ± 22.4 (P < 0.05). In comparison to the control group, the groups receiving TiO2 showed a statistically significant increase in the levels of the inflammatory cytokines IL-12, IL-4, IL-23, TNF-α, IFN-γ and TGF-β. The cytokine production was more pronounced in the ileum (mean ± SE): IL-12: NP 33.98 ± 11.76, MP 74.11 ± 25.65 vs 19.06 ± 3.92 (P < 0.05); IL-4: NP 17.36 ± 9.96, MP 22.94 ± 7.47 vs 2.19 ± 0.65 (P < 0.05); IL-23: NP 157.20 ± 75.80, MP 134.50 ± 38.31 vs 22.34 ± 5.81 (P < 0.05); TNFα: NP 3.71 ± 1.33, MP 5.44 ± 1.67 vs 0.99 ± 019 (P < 0.05); IFNγ: NP 15.85 ± 9

  17. Efficacy of titanium dioxide nanoparticle spray to disinfect mobile phones used by endodontist: A bacteriological study.

    Science.gov (United States)

    Palaniswamy, Udayakumar; Habeeb, Aisha; Mohsin, Mohammed

    2018-01-01

    The objectives of this study were to determine the bacterial contamination of the mobile phones that were used by the endodontist in comparison with the general dentist and also to determine the usefulness of titanium dioxide nanospray (TiO 2 NS) in mobile phone decontamination. Samples from the 60 mobile phones were taken using moist sterile swabs before, 10 min, and 1 week after the use of TiO 2 NS. Before collection of the swabs, the participants' informed consent was obtained. Samples obtained were cultured on blood agar to identify bacterial isolates. All 60 mobile phone cultures were found to be culture positive. There was a significant reduction in the mean number of colony-forming units after decontamination with TiO 2 NS ( P mobile phones may act as an important source of nosocomial pathogens and TiO 2 NS would be an effective decontaminant. Therefore, it is important for dental professionals to practice routine mobile phone disinfection protocol to reduce the chances of occurrence of nosocomial infections.

  18. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Valkonen, Minna; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2014-12-18

    The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Junjie Qian

    2012-01-01

    Full Text Available Nitrogen-doped titanium dioxide (N-doped TiO2 photocatalyst was synthesized from nanotube titanic acid (denoted as NTA; molecular formula H2Ti2O5·H2O precursor via a hydrothermal route in ammonia solution. As-synthesized N-doped TiO2 catalysts were characterized by means of X-ray diffraction, transmission electron microscopy, diffuse reflectance spectrometry, X-ray photoelectron spectroscopy, electron spin resonance spectrometry and Fourier transform infrared spectrometry. It was found that nanotube ammonium titanate (NAT was produced as an intermediate during the preparation of N-doped TiO2 from NTA, as evidenced by the N1s X-ray photoelectron spectroscopic peak of NH4 + at 401.7 eV. The catalyst showed much higher activities to the degradation of methylene blue and p-chlorophenol under visible light irradiation than Degussa P25. This could be attributed to the enhanced absorption of N-doped TiO2 in visible light region associated with the formation of single-electron-trapped oxygen vacancies and the inhibition of recombination of photo-generated electron-hole pair by doped nitrogen.

  20. Titanium dioxide nanoparticle-induced cytotoxicity and the underlying mechanism in mouse myocardial cells

    Science.gov (United States)

    Zhou, Yingjun; Hong, Fashui; Wang, Ling

    2017-11-01

    Exposure to fine particulate matter (PM) is known to cause cardiovascular disease. While extensive research has focused on the risk of atmospheric PM to public health, particularly heart disease, limited studies to date have attempted to clarify the molecular mechanisms underlying myocardial cell damage caused by exposure to titanium dioxide nanoparticles (TiO2 NPs). Data from the current investigation showed that TiO2 NPs are deposited in myocardial mitochondria via the blood circulation accompanied by obvious ultrastructural changes and impairment of mitochondrial structure and function in mouse myocardial cells, including reduction in mitochondrial membrane potential and ATP production, aggravation of oxidative stress along with increased levels of reactive oxygen species, malondialdehyde and protein carbonyl, and decreased glutathione content and enzymatic activities, including superoxide dismutase and glutathione peroxidase. Furthermore, TiO2 NPs induced a significant decrease in the activities of complex I, complex II, complex III, complex IV, succinate dehydrogenase, NADH oxidase, Ca2+-ATPase, Na+/K+-ATPase, and Ca2+/Mg2+-ATPase, and upregulation of cytokine expression (including cytochrome c, caspase-3, and p-JNK) in mitochondria-mediated apoptosis while downregulating Bcl-2 expression in mouse myocardial cells. Our results collectively indicate that chronic exposure to TiO2 NPs induces damage in mitochondrial structure and function as well as mitochondria-mediated apoptosis in mouse myocardial cells, which may be closely associated with heart disease in animals and humans.

  1. Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm.

    Science.gov (United States)

    Kim, Chan-Hee; Lee, Eun-Song; Kang, Si-Mook; de Josselin de Jong, Elbert; Kim, Baek-Il

    2017-06-01

    The aim of this study was to determine the effect of titanium dioxide (TiO 2 ) photocatalysis induced by the application of clinically acceptable visible light at 405nm on the growth of Streptococcus mutans biofilms. S. mutans biofilms were grown on a hydroxyapatite (HA) disk and deposited in a rutile-type TiO 2 solution at a concentration of 0.1mg/mL. TiO 2 photocatalysis was measured for exposure to visible light (405nm) and ultraviolet (UV) light (254nm) produced by light-emitting diodes for 10, 20, 30, and 40min. After two treatments, the number of colonies formed in the final S. mutans biofilm on the HA disk were measured to confirm their viability, and the morphological changes of S. mutans were evaluated using scanning electronic microscopy. The bactericidal effects of 254- and 405-nm light resulted in > 5-log and 4-log reductions, respectively (p7-log reduction after 40min of treatment in both treatment groups relative to the control group. It was confirmed that the antibacterial effect could be shown by causing the photocatalytic reaction of TiO 2 in S. mutans biofilm even at the wavelength of visible light (405nm) as at the wavelength of ultraviolet light (254nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bioaccumulation, Subacute Toxicity, and Tissue Distribution of Engineered Titanium Dioxide Nanoparticles in Goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    Mehmet Ates

    2013-01-01

    Full Text Available The increased use of nanosized materials is likely to result in the release of these particles into the environment. It is, however, unclear if these materials are harmful to aquatic animals. In this study, the sublethal effects of exposure of low and high concentrations of titanium dioxide nanoparticles (TiO2 NPs on goldfish (Carassius auratus were investigated. Accumulation of TiO2 NPs increased from 42.71 to 110.68 ppb in the intestine and from 4.10 to 9.86 ppb in the gills of the goldfish with increasing exposure dose from 10 to 100 mg/L TiO2 NPs. No significant accumulation in the muscle and brain of the fish was detected. Malondialdehyde as a biomarker of lipid oxidation was detected in the liver of the goldfish. Moreover, TiO2 NPs exposure inhibited growth of the goldfish. Although there was an increase (8.1% in the body weights of the goldfish for the control group, in the low and high exposure groups 1.8% increase and 19.7% decrease were measured, respectively. The results of this study contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and highlight the importance of characterization of NPs in understanding their behavior, uptake, and effects in aquatic systems and in fish.

  3. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    Science.gov (United States)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  4. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications

    Directory of Open Access Journals (Sweden)

    C. C. Wachesk

    2016-01-01

    Full Text Available The physical and chemical characteristics of diamond-like carbon (DLC films make them suitable for implantable medical and odontological interests. Despite their good interactions with biological environment, incorporated nanoparticles can significantly enhance DLC properties. This manuscript studies the potential of titanium dioxide (TiO2 incorporated-DLC films in dental applications. In this scene, both osteoblasts attachment and spreading on the coatings and their corrosion characteristics in artificial saliva were investigated. The films were grown on 304 stainless steel substrates using plasma enhanced chemical vapor deposition. Raman scattering spectroscopy characterized the film structure. As the concentration of TiO2 increased, the films increased the osteoblast viability (MTT assay, becoming more thermodynamically favorable to cell spreading (WAd values became more negative. The increasing number of osteoblast nuclei indicates a higher adhesion between the cells and the films. The potentiodynamic polarization test in artificial saliva shows an increase in corrosion protection when TiO2 are present. These results show the potential use of TiO2-DLC films in implantable surfaces.

  5. A rapid tool for determination of titanium dioxide content in white chickpea samples.

    Science.gov (United States)

    Sezer, Banu; Bilge, Gonca; Berkkan, Aysel; Tamer, Ugur; Hakki Boyaci, Ismail

    2018-02-01

    Titanium dioxide (TiO 2 ) is a widely used additive in foods. However, in the scientific community there is an ongoing debate on health concerns about TiO 2 . The main goal of this study is to determine TiO 2 content by using laser induced breakdown spectroscopy (LIBS). To this end, different amounts of TiO 2 was added to white chickpeas and analyzed by using LIBS. Calibration curve was obtained by following Ti emissions at 390.11nm for univariate calibration, and partial least square (PLS) calibration curve was obtained by evaluating the whole spectra. The results showed that Ti calibration curve at 390.11nm provides successful determination of Ti level with 0.985 of R 2 and 33.9ppm of limit of detection (LOD) value, while PLS has 0.989 of R 2 and 60.9ppm of LOD. Furthermore, commercial white chickpea samples were used to validate the method, and validation R 2 for simple calibration and PLS were calculated as 0.989 and 0.951, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    International Nuclear Information System (INIS)

    Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J.

    2012-01-01

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO 2 ) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO 2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO 2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  7. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  8. Oriented epitaxial TiO2 nanowires for water splitting

    Science.gov (United States)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  9. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    Science.gov (United States)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  10. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake

    Science.gov (United States)

    MacNicoll, Alan; Kelly, Mick; Aksoy, Hatice; Kramer, Evelien; Bouwmeester, Hans; Chaudhry, Qasim

    2015-02-01

    Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO2) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO2 nano- or larger particles did not lead to any significant translocation of TiO2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO2 nanoparticles are likely to be excreted in the faeces.

  11. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake

    International Nuclear Information System (INIS)

    MacNicoll, Alan; Kelly, Mick; Aksoy, Hatice; Kramer, Evelien; Bouwmeester, Hans; Chaudhry, Qasim

    2015-01-01

    Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO 2 ) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO 2 nano- or larger particles did not lead to any significant translocation of TiO 2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO 2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO 2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO 2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO 2 nanoparticles are likely to be excreted in the faeces

  12. Nano-scale analysis of titanium dioxide fingerprint-development powders

    International Nuclear Information System (INIS)

    Reynolds, A J; Jones, B J; Sears, V; Bowman, V

    2008-01-01

    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles. Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO 2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO 2 particles and efficacy of print development.

  13. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Jiang N

    2016-09-01

    Full Text Available Nan Jiang,1,2 Pinggong Du,2 Weidong Qu,2 Lin Li,2 Zhonghao Liu,2 Songsong Zhu1 1State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 2Yantai City Stomatological Hospital, Yantai, People’s Republic of China Abstract: For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM, atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and

  14. Comparison of sunscreens Containing Titanium Dioxide Alone Or In Association With Cocoa, Murumuru Or Cupuaçu Butters

    Directory of Open Access Journals (Sweden)

    Andrea Marronato

    2016-12-01

    Full Text Available Ingredients of natural origin may represent alternatives for formulating sunscreens, without compromising their effectiveness. The literature has shown the antioxidant potential of compounds existing in murumuru (Astrocaryum murmuru, cupuaçu (Theobroma grandiflorum and cocoa (Theobroma cacao butters that recommends further investigation. The objectives of this research were: (1 to develop bioactive photoprotective formulations containing cocoa, murmuru or cupuaçu butters in association with a physical sunscreen (titanium dioxide (TiO2 and (2 determine the possible photoprotective activity of butters and their interactions with the sunscreen. Cocoa, cupuaçu and murumuru butter were individually associated to TiO2 in O / W emulsions. The anti-UVA and UVB efficacy in vitro was estimated by diffuse transmittance analysis in a Labsphere® UV2000S, using quartz plates and Transpore® tape to obtain the SPF (sun protection factor and critical wavelength. Photoprotective formulations containing titanium dioxide and bioactive butters were obtained using Aristoflex® AVC and triglycerides of caprylic capric acid (GTCC. The SPF of the samples containing only TiO2 and formulations containing cocoa, murumuru or cupuassu butters associated with TiO2 ranged from 4 to 5. The critical wavelength values for these formulations ranged from 383.0 to 386.7 nm. The results indicated no increase in the SPF value for formulations containing vegetable butters. The critical wavelength values indicated their potential to absorb part of the UVA radiation.

  15. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    International Nuclear Information System (INIS)

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Highlights: • TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L −1 . Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  16. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.

    Science.gov (United States)

    Jovanović, Boris; Cvetković, Vladimir J; Mitrović, Tatjana Lj

    2016-02-01

    The fruitfly, Drosophila melanogaster was exposed to the human food grade of E171 titanium dioxide (TiO2). This is a special grade of TiO2 which is frequently omitted in nanotoxicology studies dealing with TiO2, yet it is the most relevant grade regarding oral exposure of humans. D. melanogaster larvae were exposed to 0.002 mg mL(-1), 0.02 mg mL(-1), 0.2 mg mL(-1), and 2 mg mL(-1) of TiO2 in feeding medium, and the survival, fecundity, pupation time, and expression of genes involved in oxidative stress response were monitored. TiO2 did not affect survival but significantly increased time to pupation (p TiO2 was present in a significant amount in larvae, but was not transferred to adults during metamorphosis. Two individuals with aberrant phenotype similar to previously described gold nanoparticles induced mutant phenotypes were detected in the group exposed to TiO2. In general, TiO2 showed little toxicity toward D. melanogaster at concentrations relevant to oral exposure of humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  18. Hydrothermal growth of photoelectrochemically active titanium dioxide cauliflower-like nanostructures

    International Nuclear Information System (INIS)

    Pawar, Sachin A.; Devan, R.S.; Patil, D.S.; Burungale, V.V.; Bhat, T.S.; Mali, S.S.; Shin, S.W.; Ae, J.E.; Hong, C.K.; Ma, Y.R.; Kim, J.H.; Patil, P.S.

    2014-01-01

    Hierarchical titanium dioxide nanostructures have been synthesized by a simple and cost-effective hydrothermal deposition method onto the conducting glass substrates. In order to study the effect of titanium tetrachloride precursor quantity on the growth of TiO 2 ; the thin films of TiO 2 have been synthesized with the variations in the TiCl 4 from 0.4 mL to 1.0 mL at the interval of 0.2 mL. These films are characterized for their optical, structural, compositional, morphological properties using UV-vis spectrophotometer, Photoluminescence, X-ray Diffraction, High resolution transmission electron microscopy, X-ray Photoelectron Spectroscopy and Field Emission Scanning Electron Microscopy techniques. The optical band gap energy is found to increase from 2.74 to 3.06 eV with the increase in TiCl 4 quantities exhibiting a blue shift. XRD patterns show the formation of polycrystalline TiO 2 with the tetragonal crystal structure possessing rutile phase. Rise in the TiCl 4 quantity leads to the decrease in the particle size. The chemical composition and valence states of the constituent elements were analysed by XPS. FESEM images showed the formation of cauliflower-like structure at the highest TiCl 4 precursor quantity. The films were photoelectrochemically active with the maximum current density of 202 μA/cm 2 for the sample prepared at 1.0 mL

  19. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  1. OXIDACIÓN DE p -NITROFENOL USANDO TiO 2 -ADENOSINA MONOFOSFATO I OXIDATION OF p -NITROPHENOL USING TiO 2 -ADENOSIN MONOPHOSPHATE

    Directory of Open Access Journals (Sweden)

    Carlos F. Rivas

    2018-04-01

    Full Text Available The surface of TiO2 was modified with the nucleotides adenosine 3’-monophosphate (AMP’3 and Adenosine 5’-monophosphate (AMP’5. The adsorption of nucleotides was adjusted to Langmuir ́s adsorption model, determining that the optimal condition for TiO 2 modification was at neutral pH. UV-Visible Diffuse Reflectance and IR Attenuated Total Reflectance spectra show that the chemisorption of nucleotides take placed on TiO 2 anatase. The new catalysts (TiO 2 -nucleotide improved the photodegradation of p -nitrophenol in a wide range of pH as compared with the titanium dioxide precursor. Most photoactivity was generated by using the new photocatalytic in the degradation of p -nitrophenol at pH = 6, obtaining high values for the pseudo first order kinetic constant (0.0254 min -1 and 0.0244 min -1 for TiO 2 -AMP’3 and TiO 2 -AMP’5, respectively. For all pH, the trend obtained for the photodegradation was: TiO 2 -AMP ́3 @ TiO 2 -AMP’5 > TiO 2 . Langmuir-Hinshelwood kinetics shows that the contribution of the surface reac tion rate governs the oxidation of the contaminant.

  2. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  3. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Wils, Regitze Sølling

    2017-01-01

    Nanosized titanium dioxide (TiO2) has been investigated in numerous studies on genotoxicity, including comet assay endpoints and oxidatively damaged DNA in cell cultures and animal models. The results have been surprisingly mixed, which might be attributed to physico-chemical differences...... culture studies also demonstrate increased levels of oxidatively damaged DNA after exposure to TiO2. There are relatively few studies on animal models where DNA strand breaks and oxidatively damaged DNA have been tested with reliable methods. Collectively, this review shows that exposure to nanosized TiO2...... of the tested TiO2. In the present review, we assess the role of certain methodological issues and publication bias. The analysis shows that studies on DNA strand breaks without proper assay controls or very low intra-group variation tend to show statistically significant effects. Levels of oxidatively damaged...

  4. On reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1986-01-01

    The reaction between titanium polonides and carbon dioxide has been studied by comparing titanium polonide thermal resistance in vacuum and in carbon dioxide. The investigation has shown that titanium mono- and semipolonides fail at temperatures below 350 deg C. Temperature dependence of polonium vapor pressure prepared at failure of the given polonides is determined by the radiotensiometry in carbon dioxide. Enthalpy calculated for this dependence is close to the enthalpy of elementary polonium evaporation in vacuum

  5. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Matteo Crosera

    2015-08-01

    Full Text Available Titanium dioxide nanoparticles (TiO2NPs suspensions (concentration 1.0 g/L in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2 while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2. Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay, 3.8 × 10−5 M (AlamarBlue® assay, and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death. Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  6. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    Science.gov (United States)

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-07

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  7. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  8. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-01-01

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na 2 Ti 2 O 4 (OH) 2 nanotubes through hydrothermal oxidation in NaOH. Next, the Na 2 Ti 2 O 4 (OH) 2 nanotubes were converted to H 2 Ti 2 O 4 (OH) 2 nanotubes by ion exchange. Finally, the H 2 Ti 2 O 4 (OH) 2 nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na 2 Ti 2 O 4 (OH) 2 sheets, which exfoliate and spiral into nanotubes. The Na 2 Ti 2 O 4 (OH) 2 nanotubes are immersed in HCl solution to replace the Na + ions with H + ions. During the topotactic transformation of H 2 Ti 2 O 4 (OH) 2 nanotubes to anatase TiO 2 nanowires, the sheets made of edge bonded TiO 6 octahedra in the H 2 Ti 2 O 4 (OH) 2 nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO 2 nanowire films were suitable for use as dye-sensitized solar cell photoanodes

  9. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    Science.gov (United States)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  10. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  11. TiO(2)-graphene nanocomposite as high performace photocatalysts

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Popelková, Daniela; Vláčil, P.

    2011-01-01

    Roč. 115, č. 51 (2011), s. 25209-25218 ISSN 1932-7447 R&D Projects: GA MPO(CZ) FI-IM3/061; GA MPO FI-IM5/239 Institutional research plan: CEZ:AV0Z40320502 Keywords : titanium-dioxide * visible-light * doped TiO2 * degradation * graphene * oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 4.805, year: 2011

  12. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    Graphical abstract: - Highlights: • A novel Ag-loading and TiO 2 -coating technique was used to prepare samples. • The photocatalytic activity of the product was evaluated by removing of Rh B. • The as-synthesized samples showed an excellent photocatalytic activity. - Abstract: A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5–10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO 2 nanocrystals

  13. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications.

    Science.gov (United States)

    Farias, Emanuel Airton O; Dionisio, Natália A; Quelemes, Patrick V; Leal, Sergio Henrique; Matos, José Milton E; Silva Filho, Edson C; Bechtold, Ivan H; Leite, José Roberto S A; Eiras, Carla

    2014-02-01

    Composites prepared from polyaniline (PANI) and the ceramic technology of titanium dioxide (TiO2) have been proposed, however, the interaction of these materials with greater control of molecular arrangement becomes attractive in order to achieve properties not previously described or yet the optimization of those already reported. Therefore, in this study, thin hybrid films made of polyaniline (PANI), a conductive polymer, and the technological ceramic, titanium dioxide (TiO2), were prepared by the layer-by-layer (LbL) self-assembly technique. The films were characterized by cyclic voltammetry (CV), UV-VIS spectroscopy and atomic force microscopy (AFM). Aiming to improve the dispersion of the ceramic in the polymer matrix, the commercial surfactant, cetyl trimethylammonium bromide (CTAB), was used in the formation of the films. The best condition of deposition was found showing synergic interactions between the conjugated materials. The antibacterial activity of the PANI(TiO2)/CTAB films was studied and the obtained results suggest their use as antimicrobial coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Preparation and performance of photocatalytic TiO2 immobilized on palladium-doped carbon fibers

    International Nuclear Information System (INIS)

    Zhu Yaofeng; Fu Yaqin; Ni Qingqing

    2011-01-01

    Pd-modified carbon fibers (CFs) are obtained by a facile oxidation-reduction method and then dip-coated in a sol-gel of titanium dioxide (TiO 2 ) to form supported TiO 2 /Pd-CF photocatalysts. The morphology of the Pd-modified CFs and the amount Pd deposited are characterized by field emission scanning electron microscopy and atomic absorption spectrometry, respectively. X-ray diffraction is used to investigate the crystal structures of the TiO 2 photocatalyst. Acid orange II is used as a model contaminant to evaluate the photocatalytic properties of the photocatalyst under UV irradiation. TiO 2 /Pd-CF exhibits higher catalytic activity than TiO 2 /CF towards the degradation of acid orange II. Optimum photocatalytic performance and support properties are achieved when the Pd particle loading is about 10.8 mg/g.

  15. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  16. Antimicrobial and Barrier Properties of Bovine Gelatin Films Reinforced by Nano TiO2

    Directory of Open Access Journals (Sweden)

    R. Nassiri

    2013-11-01

    Full Text Available The effects of nano titanium dioxide incorporation were investigated on the water vaporpermeability, oxygen permeability, and antimicrobial properties of bovine gelatin films. The nano TiO2 (TiO2-N was homogenized by sonication and incorporated into bovine gelatin solutions at different concentrations(e.g. 1, 2, 3, and 5% w/w of dried gelatin. The permeability of the films to water vapor and oxygen wassignificantly decreased by incorporating of low concentration TiO2-N to gelatin solutions. TiO2-N gelatin filmsshowed an excellent antimicrobial activity against Staphylococcus aureus and Escherichia coli. Theseproperties suggest that TiO2-N has the potential as filler in gelatin-based films for using as an active packagingmaterials in pharmaceutical and food packaging industries.

  17. Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO 2

    Science.gov (United States)

    Song, Yan-Yan; Hildebrand, Helga; Schmuki, Patrik

    2010-02-01

    Experimental conditions were studied for optimized attachment of 3-aminopropyltriethoxysilane (APTES) onto amorphous, anatase and rutile titanium dioxide (TiO 2) surfaces. The attachment process and extent was characterized using X-ray photoelectron spectroscopy (XPS). In particular, the effect of attachment time, silane concentration, reaction temperature and the TiO 2 crystalline structure on the growth kinetics of the silane layers was studied. The measurements reveal that typically monolayers are more dense on amorphous than on crystalline TiO 2. The results show that critical experimental conditions exist where APTES attachment to the TiO 2 surface changes from a monolayer to a multilayer growth mode. The obtained results and parameters to produce optimized APTES layers are of a high practical relevance as APTES attachment often constitutes the initial step for organic modification of TiO 2 surface with biorelevant molecules such as proteins, enzymes or growth factors.

  18. One-Dimensional TiO2 Nanostructures as Photoanodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jie Qu

    2013-01-01

    Full Text Available Titanium dioxide (TiO2 is star materials due to its remarkable optical and electronic properties, resulting in various applications, especially in the fields of dye-sensitized solar cells (DSSCs. Photoanode is the most important part of the DSSCs, which help to adsorb dye molecules and transport the injected electrons. The size, structure, and morphology of TiO2 photoanode have been found to show significant influence on the photovoltaic performance of DSSCs. In this paper, we briefly summarize the synthesis and properties of one-dimensional (1D TiO2 nanomaterials (bare 1D TiO2 nanomaterial and 1D hierarchical TiO2 and their photovoltaic performance in DSSCs.

  19. Photocatalytic Study of New Immobilized TiO2 Technique Towards Degradation of Reactive Red 4 Dye

    Directory of Open Access Journals (Sweden)

    Ain S. K.

    2016-01-01

    Full Text Available The study on TiO2 for wastewater remediation has gained interest among researchers. However, the application of this photocatalyst is limited due to non-recyclability of conventional TiO2. Thus, immobilization technique has been developed to solve this issue. Hence, a comparison study between two types of immobilized photocatalysts namely titanium dioxide (TiO2 and TiO2 mixed with polyvinyl alcohol (PVA has been conducted in this work to observe the significant effect of PVA polymer in photocatalysis reaction of reactive red 4 (RR4 dye. Double sided adhesive tape (DSAT was used as thin layer binder in this immobilization system. The result shows that the photocatalytic performance of TiO2-PVA/DSAT was higher than that of TiO2/DSAT under both normal UV and visible light irradiations due to the conjugated unsaturated polymer from PVA serve as electron donor for TiO2 thus increase the photocatalysis process. Besides, TiO2-PVA/DSAT was also found to possess much better adhesion strength to the support material compared to TiO2/DSAT. Based on the findings, this TiO2 immobilization system is expected to be beneficial in the industrial wastewater treatment. Thus, further study to improve the photocatalytic activity of this immobilized TiO2 will be in our future work.

  20. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  1. Physical-chemical properties of nanocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and titanium dioxide nanoparticles

    Science.gov (United States)

    Braga, Natália F.; da Silva, Ana Paula; Moraes Arantes, Tatiane; Lemes, Ana Paula; Cristovan, Fernando Henrique

    2018-01-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was reinforced with titanium dioxide (TiO2) in concentrations of 1.0%, 2.5% and 5.0% (m/m) to produce nanocomposites by the solvent casting technique. TiO2 was synthesized by a hydrothermal treatment to produce nanoparticles. The nanostructure of the nanoparticles was studied by x-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The XRD confirmed TiO2 crystalline nanoparticles, with a mixture of anatase and rutile phases. Through TEM analysis, the formation of TiO2 nanorod agglomerates with an average diameter and length of 40 and 12 nm, respectively, was observed. The thermal and mechanical properties of the pure PHBV and nanocomposite films were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis. The DSC analysis showed that the glass transition temperature decreased with the inclusion of TiO2 in the PHBV matrix in relation to pure PHBV. The results of biodegradation assays for the PHBV and nanocomposites in an aqueous medium and in soil showed morphological and structural changes for all samples, indicating a high biodegradation rate for this material. The most important conclusion is that the biodegradation of the PHBV was not affected by the addition of nanoparticles, thus enabling the use of nanocomposites in applications requiring biodegradable materials.

  2. Fabrication of hydrophobic surface of titanium dioxide films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    More, A.M.; Gunjakar, J.L.; Lokhande, C.D.; Joo, Oh Shim

    2009-01-01

    Titanium dioxide (TiO 2 ) films were fabricated on fluorine doped tin oxide (FTO) coated glass substrate using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption and contact angle measurement were applied to study the structural, surface morphological, optical and surface wettability properties of the as-deposited and annealed TiO 2 films. The X-ray diffraction studies revealed both as-deposited and annealed TiO 2 films are amorphous. Irregular shaped spherical grains of random size and well covered to the fluorine doped tin oxide coated glass substrates were observed from SEM studies with some cracks after annealing. The optical band gap values of virgin TiO 2, annealed, methyl violet and rose bengal sensitized TiO 2 were found to be 3.6, 3.5, 2.87 and 2.95 eV, respectively. Surface wettability studied in contact with liquid interface, showed hydrophobic nature as water contact angles were greater than 90 deg. The adsorption of dyes, as confirmed by the photographs, is one of the prime requirements for dye sensitized solar cells (DSSC).

  3. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation

    Directory of Open Access Journals (Sweden)

    A. Rosales

    2018-03-01

    Full Text Available Use of silicon dioxide (SiO2 and titanium dioxide (TiO2 have been widely investigated individually in coatings technology, but their combined properties promote compatibility for different innovative applications. For example, the photocatalytic properties of TiO2 coatings, when exposed to UV light, have interesting environmental applications, such as air purification, self-cleaning and antibacterial properties. However, as reported in different pilot projects, serious durability problems, associated with the adhesion between the substrate and TiO2, have been evidenced. Thus, the aim of this work is to synthesize SiO2 together with TiO2 to increase the durability of the photocatalytic coating without affecting its photocatalytic potential. Therefore, synthesis using sonochemistry, synthesis without sonochemistry, physical characterization, photocatalytic evaluation, and durability of the SiO2, SiO2@TiO2 and TiO2 coatings are presented. Results indicate that using SiO2 improved the durability of the TiO2 coating without affecting its photocatalytic properties. Thus, this novel SiO2@TiO2 coating shows potential for developing long-lasting, self-cleaning and air-purifying construction materials.

  4. Formation of TiO2 domains in Poly (9-vinylcarbazole) thin film by hydrolysis-condensation of a metal alkoxide

    International Nuclear Information System (INIS)

    Barlier, V.; Bounor-Legare, V.; Alcouffe, P.; Boiteux, G.; Davenas, J.

    2007-01-01

    New organic-inorganic hybrid thin films based on Poly (9-vinylcarbazole) (P9VK) and Dioxide titanium (TiO 2 ) bulk-heterojunction were obtained by a hydrolysis-condensation (H-C) process of titanium (IV) isopropoxide in thin film. The TiO 2 distribution in the film was investigated by scanning electron microscopy. The results indicated that homogeneous TiO 2 particles around 100 nm were formed on the surface of the polymer thin film. Photoluminescence spectroscopy has been used to study the charge transfer efficiency in the photoactive layer and results were compared with a simplest elaboration route, the dispersion of TiO 2 anatase in a P9VK solution before spin coating. Results showed that TiO 2 elaborated by H-C exhibits a competitive quenching effect with TiO 2 anatase

  5. Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS.

    Science.gov (United States)

    Taboada-López, María Vanesa; Iglesias-López, Sara; Herbello-Hermelo, Paloma; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-08-14

    Applicability of single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) using dwell times equal to or shorter than 100 μs has been tested for assessing titanium dioxide nanoparticles (TiO 2 NPs) in bivalve mollusks. TiO 2 NPs isolation from fresh mollusk tissues was achieved by ultrasound assisted enzymatic hydrolysis procedure using a pancreatin/lipase mixture. Optimum extraction conditions imply ultrasonication (60% amplitude) for 10 min, and 7.5 mL of a solution containing 3.0 g L -1 of pancreatin and lipase (pH 7.4). The developed method was found to be repeatable (repeatability of 17% for the over-all procedure, TiO 2 NPs concentration of 5.33 × 10 7  ± 8.89 × 10 6 , n = 11), showing a limit of detection of 5.28 × 10 6 NPs g -1 , and a limit of detection in size of 24.4-30.4 nm, based on the 3σ criteria, and on the 3σ/5 σ criteria, respectively. The analytical recovery within the 90-99% range (use of TiO 2 NPs standards of 50 nm at 7 and 14 μg L -1 as Ti). Several bivalve mollusks (clams, cockles, mussels, razor clams, oysters and variegated scallops) were analyzed for total titanium (ICP-MS after microwave assisted acid digestion), and for TiO 2 NPs by the proposed method. TiO 2 NPs concentrations were within the 2.36 × 10 7 -1.25 × 10 8 NPs g -1 range, and the most frequent sizes were from 50 to 70 nm. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Precipitated nanosized titanium dioxide for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, S.A. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine); Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Lisnycha, T.V. [Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Chernukhin, S.I. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine)

    2011-02-15

    Two types of titanium dioxide samples precipitated from aqueous solutions of titanium tetrachloride are investigated. Crystalline materials are obtained by means of neutralization of TiCl{sub 4} with the solution of an alkali metal hydroxide. The change of the order of mixing leads to amorphous materials. The evolution of the samples upon the thermal treatment is characterized using XRD, SEM, TEM and porosity studies. The application of crystalline TiO{sub 2} as an electrode material in lithium-ion 2016 sample cells enable one to yield specific currents up to 3350 mA g{sup -1}. On the other hand, the thermal treatment of initially amorphous materials does not lead to complete crystallization, and the presence of amorphous TiO{sub 2} is well seen as the so-called capacity behavior of cyclic voltammetry curves. (author)

  7. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  8. Studies on the mechanism of printing film-coated tablets containing titanium dioxide in the film by using UV laser irradiation.

    Science.gov (United States)

    Kato, Yoshiteru; Nakashima, Yasuhiko; Shino, Naoki; Sasaki, Koichi; Hosokawa, Akihiro; Ishihara, Hiroshi

    2010-04-01

    The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm. Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy. In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2). It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.

  9. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  10. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    Science.gov (United States)

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  11. Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice.

    Science.gov (United States)

    Rizk, Maha Z; Ali, Sanaa A; Hamed, Manal A; El-Rigal, Nagy Saba; Aly, Hanan F; Salah, Heba H

    2017-06-01

    The toxic impact of titanium dioxide nanoparticles (TiO 2 NPs) on human health is of prime importance owing to their wide uses in many commercial industries. In the present study, the effect of different doses and exposure time durations of TiO 2 NPs (21nm) inducing oxidative stress, biochemical disturbance, histological alteration and cytogenetic aberration in mice liver and bone marrow was investigated. Different doses of (TiO 2 NPs) (50, 250 and 500mg/kg body weight) were each daily intrapertioneally injected to mice for 7, 14 and 45days. Aspartate and alanine aminotransferases (AST &ALT), gamma glutamyl transpeptidase (GGT), total protein, total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and nitric oxide (NO) levels were measured. The work was extended to evaluate the liver histopathological pattern and the chromosomal aberration in mice spinal cord bone marrow. The results revealed severe TiO 2 NPs toxicity in a dose and time dependent manner with positive correlation (r=0.98) for most investigated biochemical parameters. The same observation was noticed for the histological analysis. In case of cytogenetic study, chromosomal aberrations were demonstrated after injection of TiO 2 NPs with 500mg/kg b. wt. for 45days. In conclusion, the selected biochemical parameters and the liver architectures were influenced with dose and time of TiO 2 NPs toxicity, while the genetic disturbance started at the high dose of exposure and for long duration. Further studies are needed to fulfil the effect of TiO 2 NPs on pharmaceutical and nutritional applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  13. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  14. Nano-titanium dioxide modulates the dermal sensitization potency of DNCB

    Directory of Open Access Journals (Sweden)

    Hussain Salik

    2012-05-01

    Full Text Available Abstract We determined the ability of a model nanoparticle (NP (titanium dioxide, TiO2 to modulate sensitization induced by a known potent dermal sensitizer (dinitrochlorobenzene using a variant of the local lymph node assay called lymph node proliferation assay. BALB/c mice received sub-cutaneous injections of vehicle (2.5 mM sodium citrate, TiO2 NPs (0.004, 0.04 or 0.4 mg/ml or pigment particles (0.04 mg/ml both stabilized in sodium citrate buffer at the base of each ear (2x50μl, before receiving dermal applications (on both ears of 2,4-Dinitrochlorobenzene (DNCB (2x25μl of 0.1% or its vehicle (acetone olive oil – AOO (4:1 on days 0, 1 and 2. On day 5, the stimulation index (SI was calculated as a ratio of 3HTdR incorporation in lymphocytes from DNBC-treated mice and AOO-treated controls. In a second experiment the EC3-value for DNCB (0 to 0.1% was assessed in the absence or presence of 0.04 mg/ml TiO2. In a third experiment, the lymphocyte subpopulations and the cytokine secretion profile were analyzed after TiO2 (0.04 mg/ml and DNCB (0.1% treatment. Injection of NPs in AOO-treated control mice did not have any effect on lymph node (LN proliferation. DNCB sensitization resulted in LN proliferation, which was further increased by injection of TiO2 NPs before DNCB sensitization. The EC3 of DNCB, with prior injection of vehicle control was 0.041%, while injection with TiO2 decreased the EC3 of DNCB to 0.015%. TiO2 NPs pre-treatment did not alter the lymphocyte subpopulations, but significantly increased the level of IL-4 and decreased IL-10 production in DNCB treated animals. In conclusion, our study demonstrates that administration of nano-TiO2 increases the dermal sensitization potency of DNCB, by augmenting a Th2 response, showing the immunomodulatory abilities of NPs.

  15. Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity

    Science.gov (United States)

    Seeley, Zachary Mark

    Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average

  16. Enhanced Performance of Nanoporous Titanium Dioxide Solar Cells Using Cadmium Sulfide and Poly(3-hexylthiophene Co-Sensitizers

    Directory of Open Access Journals (Sweden)

    Murugathas Thanihaichelvan

    2017-09-01

    Full Text Available This work reports the effect of co-sensitization of nanoporous titanium dioxide using Cadmium Sulfide (CdS and poly(3-hexylthiophene (P3HT on the performance of hybrid solar cells. CdS nanolayer with different thicknesses was grown on Titanium Dioxide (TiO2 nanoparticles by chemical bath deposition technique with varying deposition times. Both atomic force microscopy (AFM and UV–Vis–NIR spectroscopy measurements of TiO2 electrode sensitized with and without CdS layer confirm that the existence of CdS layer on TiO2 nanoparticles. AFM images of CdS-coated TiO2 nanoparticles show that the surface roughness of the TiO2 nanoparticle samples decreases with increasing CdS deposition times. Current density–voltage and external quantum efficiency (EQE measurements were carried out for corresponding solar cells. Both short circuit current density (JSC and fill factor were optimized at the CdS deposition time of 12 min. On the other hand, a steady and continuous increment in the open circuit voltage (VOC was observed with increasing CdS deposition time and increased up to 0.81 V when the deposition time was 24 min. This may be attributed to the increased gradual separation of P3HT and TiO2 phases and their isolation at the interfaces. The higher VOC of 0.81 V was due to the higher built-in voltage at the CdS–P3HT interface when compared to that at the TiO2–P3HT interface. Optimized nanoporous TiO2 solar cells with CdS and P3HT co-sensitizers showed external quantum efficiency (EQE of over 40% and 80% at the wavelengths corresponding to strong absorption of the polymer and CdS, respectively. The cells showed an overall average efficiency of over 2.4% under the illumination of 70 mW/cm2 at AM 1.5 condition.

  17. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles

    International Nuclear Information System (INIS)

    Mankidy, Bijith D; Joseph, Babu; Gupta, Vinay K

    2013-01-01

    Converting carbon dioxide (CO 2 ) to hydrocarbons that can be used as fuels is beneficial from both environmental and economic points of view. In this study, nanoparticles are designed to enhance the photoreduction of CO 2 on a titanium dioxide (TiO 2 ) catalyst. An increase in catalytic activity is reported when silver (Ag), platinum (Pt) or bimetallic Ag–Pt and core–shell Ag@silica (SiO 2 ) nanoparticles are used with the TiO 2 semiconductor catalyst. Nanoparticles with different elemental composition or geometrical structure facilitate successive photo-excitation steps—generation, transport, storage and interfacial transfer of electrons and holes. Results show that while the addition of either type of nanoparticles augments product formation rates, bimetallic co-catalysts improve product selectivity. When both bimetallic co-catalysts and Ag@SiO 2 nanoparticles are used in combination, product yields are enhanced more than seven fold in comparison to native TiO 2 and high selectivity for methane (CH 4 ) is observed. When the bimetallic Ag–Pt co-catalysts are tuned, a selectivity of CH 4 of approximately 80%, as compared to 20% with only TiO 2 , can be achieved. (paper)

  18. TiO2 nanotube-based dye solar cell research in South Africa

    CSIR Research Space (South Africa)

    Cummings, F

    2009-10-01

    Full Text Available Vertically orientated titanium dioxide (TiO2) nanotubes hold great potential for application in dye-sensitized solar cells (DSCs) as they provide an unscathed, one-dimensional transport route for photo-generated charge carriers, thereby increasing...

  19. PCDDs, PCDFs, and PCBs co-occurrence in TiO2 nanoparticles

    NARCIS (Netherlands)

    Ctistis, Georgios; Schön, Peter; Bakker, Wouter; Luthe, Gregor

    2016-01-01

    In the present study, we report on the co-occurrence of persistent organic pollutants (POPs) adsorbed on nanoparticular titanium dioxide (TiO2). We report on the finding of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) on the

  20. Fabrication and characterization of uniform TiO2 nanotube arrays by ...

    Indian Academy of Sciences (India)

    Titanium dioxide (TiO2) has been widely investigated as a key material for ... photonic crystals, catalysis, photocatalysis (Livraghi et al. 2005) and ... As a catalyst and/or catalyst support, .... of XRD analysis is supported by the Raman spectra of.

  1. TiO2 aerogel–metal organic framework nanocomposite: a new class ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... titanium dioxide in association with a monolayer of dye molecules is .... Zn–MOF has not affected the anatase phase formation of. TiO2 crystals ..... [15] Xin X, Scheiner M, Ye M and Lin Z 2011 Langmuir 27 14594. [16] Kim B ...

  2. ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode

    Indian Academy of Sciences (India)

    Abstract. Electrical analysis of Al/p-Si Schottky diode with titanium dioxide (TiO2) thin film was performed at ..... This work was partially supported by The Management Unit of Scientific Research Project of Bozok University and Hitit. University.

  3. The Effect of Deposition on Electrochemical Impedance Properties of TiO2/FTO Photoanodes.

    Czech Academy of Sciences Publication Activity Database

    Balkan, T.; Guler, Z.; Morozová, Magdalena; Dytrych, Pavel; Šolcová, Olga; Sarac, A.S.

    2016-01-01

    Roč. 36, 1-4 (2016), s. 102-111 ISSN 1385-3449 Grant - others:STRC(TR) TBAG 111T051 Institutional support: RVO:67985858 Keywords : nanofiber * titanium dioxide (TiO2) * electrochemical impedance spectroscopy Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.238, year: 2016

  4. Synthesis of nanocrystalline TiO 2 thin films by liquid phase ...

    Indian Academy of Sciences (India)

    A transparent, high purity titanium dioxide thin film composed of densely packed nanometer sized grains has been successfully deposited on a glass substrate at 30°C from an aqueous solution of TiO2–HF with the addition of boric acid as a scavenger by liquid phase deposition technique. From X-ray diffraction ...

  5. [Influence of titanium dioxide activated under visible light on survival of mold fungi].

    Science.gov (United States)

    Kądziołka, Daria; Rokicka, Paulina; Markowska-Szczupak, Agata; Morawski, Antoni W

    2018-01-01

    In public and residential buildings, fungi are usually found in the dust or growing on building materials medium such. It has been known that a number of their spores may contaminate the indoor environment and deteriorate air quality in accommodation spaces. Previously designed air cleaning systems do not guarantee a complete removal of agents harmful to humans and animals. Therefore, there is a great need to develop a new solution to remove molds from indoor air. In recent years, photocatalysis based on titanium dioxide (TiO2) has been proposed as an effective method for air pollutants removal. The aim of the study was to determine the effect of TiO2 activated under artificial sun light (UV-VIS - ultraviolet - visible spectroscopy) on survival of fungi Penicillium chrysogenum and Aspergillus niger. The commercial P 25 (Aeroxide P 25, Evonik, Germany) and nitrogen modified titanium dioxide (N-TiO2) were used. The microbiological study was performed using Penicillium chrysogenum and Aspergillus niger fungi. The survival of fungi was determined on the basis of changes in their concentration. It was found that N-TiO2 has a stronger antifungal activity against P. chrysogenum and A. niger than P 25. For N-TiO2, the complete elimination of molds was possible after 3 h under artificial solar light activation. The minimal concentration of photocatalyst was 0.01 g×dm-3 (P. chrysogenum) and 0.1 g×dm-3 (A. niger). The nitrogen modification of titanium dioxide produced expected results and N-TiO2 presented good antifungal activity. The findings of the presented investigation can lead to the development of air filter to be used for removal of harmful agents (including molds) from indoor environment. Med Pr 2018;69(1):59-65. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Role of Carnosine and Melatonin in Ameliorating Cardiotoxicity of Titanium Dioxide Nanoparticles in the Rats

    Directory of Open Access Journals (Sweden)

    Nouf Al-Rasheed

    2015-08-01

    Full Text Available The aim of this work was to study the possible cardiotoxicity of two different doses of 50 nm nano titanium dioxide (n-TiO2 and the possible modulating effects of the use of two natural antioxidants carnosine and melatonin. The results showed that TiO2- NPs produced deleterious effects on rat cardiac tissue as confirmed by the increased levels of serum myoglobin, troponin-T and CK-MB. Increased levels of serum Inflammatory markers represented by the tumor necrosis factor alpha (TNF-α and Interleukin-6 (IL-6 was also noticed. Caspase3 and IGg were elevated compared to the control group in a dose dependant manner. treatment of the rats with Carnosine or melatonin. along with TiO2- NPs administration significantly improved most of the elevated biochemical markers. It was concluded that the use of Carnosine or melatonin could play a beneficial role against deleterious effects of TiO2- NPs

  7. Sensitivity of bacteria to photoactivated titanium dioxide in comparison with UV irradiation

    International Nuclear Information System (INIS)

    Kersters, Ilse; De Keyser, Tilly; Verstraete, Willy

    1998-01-01

    Titanium dioxide was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed with cultures of Aeromonas hydrophila AWWX1 and Pseudomonas fluorescens R 2 f to evaluate the disinfection capabilities of the reactor. Although a decrease in viable counts was observed with long-wavelength (λ=370 nm) irradiated TiO 2 pellets, direct UV 254 irradiation seems a superior technology for the disinfection of transparent potable water since the viable counts of the test strains declined stronger (2-5 logs) and faster (20x) in UV 254 -treated water than in photoactivated TiO 2 -treated water. Outdoor tests conducted in the summer noonday sun showed that the viable counts of Aeromonas hydrophila AWWX1 decreased strongly (ca 5 log units) in transparent and turbid water samples (750 NTU) exposed to natural sunlight (47,000 lux). The addition of TiO 2 to the solar irradiated waters did not influence the die-off of the strain. These observations indicate that the photocatalytic approach does not offer real prospects as an alternative technology for the disinfection of drinking water. (author)

  8. Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media

    Directory of Open Access Journals (Sweden)

    Verónica Freyre-Fonseca

    2016-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NP are possible carcinogenic materials (2B-IARC and their toxicity depends on shape, size, and electrical charge of primary NP and on the system formed by NP media. The aim of this work was to characterize agglomerates of three TiO2 NP by evaluating their morphometry, stability, and zeta potential (ζ in liquid media and their changes with time. Sizes of agglomerates by dynamic light scattering (DLS resulted to be 10–50 times larger than those obtained by digital image analysis (DIA given the charged zone around particles. Fractal dimension (FD was highest for agglomerates of spheres and belts in F12K, and in E171 in FBS media. E171 and belts increased FD with time. At time zero, using water as dispersant FD was larger for agglomerates of spheres than for of E171. Belts suspended in water had the smallest values of circularity (Ci which was approximately unchanged with time. All dispersions had ζ values around −30 mV at physiological pH (7.4 and dispersions of NP in water and FBS showed maximum stability (Turbiscan Lab analysis. Results help in understanding the complex NP geometry-size-stability relationships when performing in vivo and in vitro environmental-toxicity works and help in supporting decisions on the usage of TiO2 NP.

  9. Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Jain, Rajeev; Nayak, Arunima; Agarwal, Shilpi; Shrivastava, Meenakshi

    2011-01-01

    The removal of the dye-tartrazine by photodegradation has been investigated using titanium dioxide surface as photocatalyst under UV light. The process was carried out at different pH, catalyst dose, dye concentration and effects of the electron acceptor H 2 O 2 . It was found that under the influence of TiO 2 as catalyst, the colored solution of the dye became colorless and the process followed a pseudo first order kinetics. The optimum conditions for the degradation of dye were 6 x 10 -5 M dye concentration, pH of 11, and 0.18 mg/L of catalyst dose. In order to evaluate the effect of electron acceptor, the effect of H 2 O 2 on the degradation process was also monitored and it was found that the hydroxyl radical formation and retardation of electron-hole recombination took place simultaneously. The adsorption studies of tartrazine at various dose of TiO 2 followed the Langmuir isotherm trend. In order to determine the quality of waste water, Chemical Oxygen Demand (COD) measurements were carried out both before and after the treatment and a significant decrease in the values was observed, implying good potential of this technique to remove tartrazine dye from aqueous solutions. Research highlights: →Degradation efficiency increases with increase in catalyst concentration. →Adsorption of tartrazine on TiO 2 followed the Langmuir isotherm. →The photocatalytic kinetics follows first order.

  10. Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles.

    Science.gov (United States)

    Wormington, Alexis M; Coral, Jason; Alloy, Matthew M; Delmarè, Carmen L; Mansfield, Charles M; Klaine, Stephen J; Bisesi, Joseph H; Roberts, Aaron P

    2017-06-01

    Nano-titanium dioxide (TiO 2 ) is the most widely used form of nanoparticles in commercial industry and comes in 2 main configurations: rutile and anatase. Rutile TiO 2 is used in ultraviolet (UV) screening applications, whereas anatase TiO 2 crystals have a surface defect that makes them photoreactive. There are numerous reports in the literature of photo-induced toxicity to aquatic organisms following coexposure to anatase nano-TiO 2 and UV. All natural freshwater contains varying amounts of natural organic matter (NOM), which can drive UV attenuation and quench reactive oxygen species (ROS) in aquatic ecosystems. The present research examined how NOM alters the photo-induced toxicity of anatase nano-TiO 2 . Daphnia magna neonates were coexposed to NOM and photoexcited anatase nano-TiO 2 for 48 h. Natural organic matter concentrations as low as 4 mg/L reduced anatase nano-TiO 2 toxicity by nearly 100%. These concentrations of NOM attenuated UV by <10% in the exposure system. However, ROS production measured using a fluorescence assay was significantly reduced in a NOM concentration--dependent manner. Taken together, these data suggest that NOM reduces anatase nano-TiO 2 toxicity via an ROS quenching mechanism and not by attenuation of UV. Environ Toxicol Chem 2017;36:1661-1666. © 2016 SETAC. © 2016 SETAC.

  11. Titanium Dioxide Nanoparticles as Radiosensitisers: An In vitro and Phantom-Based Study.

    Science.gov (United States)

    Youkhana, Esho Qasho; Feltis, Bryce; Blencowe, Anton; Geso, Moshi

    2017-01-01

    Objective: Radiosensitisation caused by titanium dioxide nanoparticles (TiO 2 -NPs) is investigated using phantoms (PRESAGE ® dosimeters) and in vitro using two types of cell lines, cultured human keratinocyte (HaCaT) and prostate cancer (DU145) cells. Methods: Anatase TiO 2 -NPs were synthesised, characterised and functionalised to allow dispersion in culture-medium for in vitro studies and halocarbons (PRESAGE ® chemical compositions). PRESAGE ® dosimeters were scanned with spectrophotometer to determine the radiation dose enhancement. Clonogenic and cell viability assays were employed to determine cells survival curves from which the dose enhancement levels "radiosensitisation" are deduced. Results: Comparable levels of radiosensitisation were observed in both phantoms and cells at kilovoltage ranges of x-ray energies (slightly higher in vitro) . Significant radiosensitisation (~67 %) of control was also noted in cells at megavoltage energies (commonly used in radiotherapy), compared to negligible levels detected by phantoms. This difference is attributed to biochemical effects, specifically the generation of reactive oxygen species (ROS) such as hydroxyl radicals ( • OH), which are only manifested in aqueous environments of cells and are non-existent in case of phantoms. Conclusions: This research shows that TiO 2 -NPs improve the efficiency of dose delivery, which has implications for future radiotherapy treatments. Literature shows that Ti 2 O 3 -NPs can be used as imaging agents hence with these findings renders these NPs as theranostic agents.

  12. Classification of titanium dioxide; Clasificacion del dioxido de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Garcia C, R.M.; Maya M, M.E. [Secretaria de Hacienda y Credito Publico de Mexico, Mexico (Mexico); Ita T, A. De [Universidad Autonoma Metropolitana Azcapotzalco, Mexico (Mexico); Palacios G, J. [Instituto Politecnico Nacional (Mexico)

    2002-07-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO{sub 2}. The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  13. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Andrea León

    2017-01-01

    Full Text Available The aim of this study was to prepare a novel targeting drug delivery system for 2-Methoxyestradiol (2ME in order to improve the clinical application of this antitumor drug. It is based in nanoparticles (NPs of titanium dioxide (TiO2 coated with polyethylene glycol (PEG and loaded with 2ME. A complete IR and Raman characterization have been made to confirm the formation of TiO2–PEG–2ME composite. Vibrational modes have been assigned for TiO2, PEG, and 2ME and functionalized TiO2–PEG and TiO2–PEG–2ME. The observed variation in peak position of FTIR and Raman of each for these composites has been elucidated in terms of intermolecular interactions between PEG–2ME and TiO2, obtaining step-by-step the modification processes that were attributed to the conjugation of PEG and 2ME to TiO2 NPs. Modifying TiO2 NPs with PEG loaded with the 2ME drug revealed that the titanium dioxide nanocarrier possesses an effective adsorption capability, and we discuss their potential application as a system of drug delivery.

  14. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles.

    Science.gov (United States)

    Warheit, D B; Brown, S C; Donner, E M

    2015-10-01

    Data generated using standardized testing protocols for toxicity studies generally provide reproducible and reliable results for establishing safe levels and formulating risk assessments. The findings of three OECD guideline-type oral toxicity studies of different duration in rats are summarized in this publication; each study evaluated different titanium dioxide (TiO2) particles of varying sizes and surface coatings. Moreover, each study finding demonstrated an absence of any TiO2 -related hazards. To briefly summarize the findings: 1) In a subchronic 90-day study (OECD TG 408), groups of young adult male and female rats were dosed with rutile-type, surface-coated pigment-grade TiO2 test particles (d50 = 145 nm - 21% nanoparticles by particle number criteria) by oral gavage for 90 days. The no-adverse-effect level (NOAEL) for both male and female rats in this study was 1000 mg/kg bw/day, the highest dose tested. The NOAEL was determined based on a lack of TiO2 particle-related adverse effects on any in-life, clinical pathology, or anatomic/microscopic pathology parameters; 2) In a 28-day repeated-dose oral toxicity study (OECD TG 407), groups of young adult male rats were administered daily doses of two rutile-type, uncoated, pigment-grade TiO2 test particles (d50 = 173 nm by number) by daily oral gavage at a dose of 24,000 mg/kg bw/day. There were no adverse effects measured during or following the end of the exposure period; and the NOAEL was determined to be 24,000 mg/kg bw/day; 3) In an acute oral toxicity study (OECD TG 425), female rats were administered a single oral exposure of surface-treated rutile/anatase nanoscale TiO2 particles (d50 = 73 nm by number) with doses up to 5000 mg/kg and evaluated over a 14-day post-exposure period. Under the conditions of this study, the oral LD50 for the test substance was >5000 mg/kg bw. In summary, the results from these three toxicity studies - each with different TiO2 particulate-types, demonstrated an absence of

  15. TiO2 Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Saera Jin

    2017-10-01

    Full Text Available TiO2 nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs, which exhibited a power conversion efficiency of 1.11% under back illumination.

  16. Molecular and physiological responses to titanium dioxide ...

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  17. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  18. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    Science.gov (United States)

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  20. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  1. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    Science.gov (United States)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  2. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics

    International Nuclear Information System (INIS)

    Carvalho, Karina Penedo; Martins, Nathalia Balthazar; Ribeiro, Ana Rosa Lopes Pereira; Lopes, Taliria Silva; Sena, Rodrigo Caciano de; Sommer, Pascal; Granjeiro, José Mauro

    2016-01-01

    Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions’ nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO_2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30–150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO_2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO_2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco’s modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO_2–NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.

  4. Influence of shape and dispersion media of titanium dioxide nanostructures on microvessel network and ossification.

    Science.gov (United States)

    Freyre-Fonseca, Verónica; Medina-Reyes, Estefany I; Téllez-Medina, Darío I; Paniagua-Contreras, Gloria L; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Delgado-Buenrostro, Norma L; Flores-Flores, José O; López-Villegas, Edgar O; Gutiérrez-López, Gustavo F; Chirino, Yolanda I

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO 2 NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research. Then, it has been difficult to establish a straight statement about TiO 2 NPs toxicity since route of exposure and shapes of nanoparticles play an important role in the effects. In this study we aimed to investigate the effect of three different types of TiO 2 NPs (industrial, food-grade and belts) dispersed in fetal bovine serum (FBS) and saline solution (SS) on microvessel network, angiogenesis gene expression and femur ossification using a chick embryo model after an acute exposure of NPs on the day 7 after eggs fertilization. Microvascular density of chorioallantoic membrane (CAM) was analyzed after 7days of NPs injection and vehicles induced biological effects per se. NPs dispersed in FBS or SS have slight differences in microvascular density, mainly opposite effect on angiogenesis gene expression and no effects on femur ossification for NPs dispersed in SS. Interestingly, NPs shaped as belts dramatically prevented the alterations in ossification induced by FBS used as vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impact of titanium dioxide on androgen receptors, seminal vesicles and thyroid hormones of male rats: possible protective trial with aged garlic extract.

    Science.gov (United States)

    Abu Zeid, E H; Alam, R T M; Abd El-Hameed, N E

    2017-06-01

    The aim of this study was to evaluate the effect of titanium dioxide (TiO 2 ), a widely produced and consumed pigment in various food products, on the post-natal development of male albino rat seminal vesicle and thyroid hormones, as well as to evaluate the ameliorative effect of aged garlic extract (AGE) on TiO 2 -induced alterations. Forty male rat pups (3 weeks old) were divided into four equal groups. The 1st group received distilled water orally (control group), 2nd group was given 2 ml kg -1 AGE, 3rd group was administered TiO 2 (5 g kg -1 BW) day after day for 65 days, and the 4th group administered AGE 6 hr prior to TiO 2 gavage. TiO 2 -exposed rats showed nonsignificant changes in the serum testosterone, TSH, T 3 and T 4 , while serum glucose showed a significant decrease. Androgen receptor (AR) mRNA expression was significantly down-regulated and weak signal of AR immune labelling. Histopathologically, the epithelium cell lining of seminal vesicles showed focal areas of necrosis and fibrous tissue with the prominent fibrous stroma of the atrophied glands. Meanwhile, AGE supplementation ameliorated the deleterious effects of TiO 2 intoxication through protecting the tissues from oxidative stress caused by TiO 2 . In summary, oral administration of TiO 2 resulted in abnormal developmental events in male rat seminal vesicle and AGE able to reduce TiO 2 toxicity. © 2016 Blackwell Verlag GmbH.

  6. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity

    International Nuclear Information System (INIS)

    Janus, M.; Choina, J.; Morawski, A.W.

    2009-01-01

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO 2 (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 o C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm -1 attributed to the bending vibrations of NH 4 + and at 1535 cm -1 associated with NH 2 groups or NO 2 and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO 2 surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO 2 was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO 2 /N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO 2 and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO 2 by Langmuir model. The presence of nitrogen at the surface of TiO 2 significantly increased adsorption capacity of TiO 2 as well as OH· radicals formation under visible radiation.

  7. Sunscreens with Titanium Dioxide (TiO2) Nano-Particles : A Societal Experiment

    NARCIS (Netherlands)

    Jacobs, J.F.; Van de Poel, I.; Osseweijer, P.

    2010-01-01

    The risks of novel technologies, such as nano(bio)technology cannot be fully assessed due to the existing uncertainties surrounding their introduction into society. Consequently, the introduction of innovative technologies can be conceptualised as a societal experiment, which is a helpful approach

  8. Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the "relative deposition index": Evidence for clearance through microvasculature

    Directory of Open Access Journals (Sweden)

    Gehr Peter

    2007-08-01

    Full Text Available Abstract Background Translocation of nanoparticles (NP from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2 NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions. Methods Rat lungs exposed to an aerosol containing TiO2 NP were prepared for light and electron microscopy at 1 h and at 24 h after exposure. Numbers of TiO2 NP associated with each compartment were counted using energy filtering transmission electron microscopy. Compartment size was estimated by unbiased stereology from systematically sampled light micrographs. Numbers of particles were related to compartment size using a relative deposition index and chi-squared analysis. Results Nanoparticle distribution within the four compartments was not random at 1 h or at 24 h after exposure. At 1 h the connective tissue was the preferential target of the particles. At 24 h the NP were preferentially located in the capillary lumen. Conclusion We conclude that TiO2 NP do not move freely between pulmonary tissue compartments, although they can pass from one compartment to another with relative ease. The residence time of NP in each tissue compartment of the respiratory system depends on the compartment and the time after exposure. It is suggested that a small fraction of TiO2 NP are rapidly transported from the airway lumen to the connective tissue and subsequently released into the systemic circulation.

  9. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    Science.gov (United States)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  10. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    International Nuclear Information System (INIS)

    Bu Qian; Lin Hongjun; Xu Youzhi; Cao Zhixing; Zhou Tian; Zhao Yinglan; Yan Guangyan; Cen Xiaobo; Deng Pengchi; Peng Feng; Xue Aiqin; Wang Yanli

    2010-01-01

    As titanium dioxide nanoparticles (TiO 2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO 2 NPs (dosed at 0.16, 0.4 and 1 g kg -1 , respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1 H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO 2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO 2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO 2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO 2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  11. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    Science.gov (United States)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  12. Interaction of titanium and vanadium with carbon dioxide under heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskij, V.Ya.; Lyapunov, V.P.; Radomysel'skij, I.D.

    1986-01-01

    The methods of gravitmetric and X-ray phase analysis as well as analysis of composition of gases in the heating chamber have been used to investigate the mechanism of titanium and vanadium interaction with carbon dioxide in the 300-1000 deg C temperature range. The analogy of mechanisms of the interaction of titanium and vanadium with carbon dioxide in oxides production on the metal surface with subsequent carbidizing treatment at temperatures above 800 deg C is shown. Temperature limits of material operation on the base of titanium or vanadium in carbon dioxide must not exceed 400 or 600 deg C, respectively

  13. Study of the effect of Titanium dioxide nano particle size on efficiency of the dye-sensitized Solar cell using natural Pomegranate juice

    Directory of Open Access Journals (Sweden)

    A Behjat

    2015-01-01

    Full Text Available Dye-sensitized solar cell (DSSC using natural Pomegranate juice as dye-sensitizeris fabricated and characterized. DSSCS consist of a working electrode, a redox electrolyte containing iodide and tri-iodide ions and a counter electrode. A nanocrystalline TiO2 semiconductor with a wide band-gap coated with a monolayer dye-sensitizer is used as working electrode. The effect of titanium dioxide (TiO2 nanoparticle size on efficiency of the DSSC based Pomegranate juice as a sensitizer is studied. For monolayer structure, we used two sizes of TiO2 nanoparticle (25 nm and 100 nm and a mixture of these two sizes. The highest efficiency of 0.61% was obtained with mixture of 25 and 100 nm TiO2 nano-particles in working electrode. For double-layer structure, we used 100 and 400 nm size TiO2 particles as light-scattering. The best efficiency was obtained using 400 nm TiO2 as light-scattering particles.

  14. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells

    Science.gov (United States)

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  15. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Directory of Open Access Journals (Sweden)

    Niska K

    2015-02-01

    Full Text Available Karolina Niska,1 Katarzyna Pyszka,1 Cecylia Tukaj,2 Michal Wozniak,1 Marek Witold Radomski,3–5 Iwona Inkielewicz-Stepniak1 1Department of Medical Chemistry, 2Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland; 3School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland; 4Kardio-Med Silesia, 5Silesian Medical University, Zabrze, Poland Abstract: Titanium dioxide (TiO2 nanoparticles (NPs are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•- generation, superoxide dismutase (SOD activity and protein level, sirtuin 3 (SIR3 protein level, correlation between manganese (Mn SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1 cellular uptake of NPs; (2 increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3 ultrastructure changes; (4 decreased SOD and ALP activity; (5 decreased protein levels of SOD1, SOD2, and SIR3; (6 decreased total antioxidant capacity; (7 increased O2•- generation; and (8 enhanced lipid peroxidation (malondialdehyde level. The linear relationship between the protein level of MnSOD and SIR3 and between O2•- content and SIR3 protein level was observed. Importantly, the cytotoxic

  17. Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites.

    Science.gov (United States)

    Rajakumar, Govindasamy; Rahuman, Abdul Abdul; Roopan, Selvaraj Mohana; Chung, Ill-Min; Anbarasan, Karunanithi; Karthikeyan, Viswanathan

    2015-02-01

    Titanium dioxide nanoparticles (TiO2 NPs) are considered to be among the best photocatalytic materials due to their long-term thermodynamic stability, strong oxidizing power, and relative non-toxicity. Nano-preparations with TiO2 NPs are currently under investigation as novel treatments for acne vulgaris, recurrent condyloma acuminata, atopic dermatitis, hyperpigmented skin lesions, and other non-dermatologic diseases. The present study was to investigate the acaricidal and larvicidal activity of synthesized TiO2 NPs utilizing leaf aqueous extract of Mangifera indica L. (Anacardiaceae) against hematophagous parasites. The anti-parasitic activity of TiO2 NPs against the larvae of Rhipicephalus (Boophilus) microplus, Hyalomma anatolicum anatolicum and Haemaphysalis bispinosa (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, and Culex quinquefasciatus (Diptera: Culicidae) were assessed. The green synthesized TiO2 NPs were analyzed by UV-Vis, FTIR, X-ray diffraction (XRD), AFM, SEM, and TEM. The XRD analysis of synthesized TiO2 NPs revealed the dominant peak at 2θ value of 27.81 which matched the 110 crystallographic plane of the rutile structure indicating the crystal structure. The FTIR spectra exhibited a prominent peak at 3,448 cm(-1) and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. The SEM images of TiO2 NPs displayed spherical, oval in shape, individual, and some in aggregates. Characterization of the synthesized TiO2 NPs using AFM offered three-dimensional visualization and uneven surface morphology. The TEM micrograph showed agglomerates, round and slight elongation with an average size of 30 ± 5 nm. The maximum efficacy was observed in synthesized TiO2 NPs against the larvae of R. microplus, Hyalomma anatolicum anatolicum, Haemaphysalis bispinosa, A. subpictus, and Culex quinquefasciatus with LC50 value of 28.56, 33.17, 23.81, 5.84, and 4.34 mg/L, respectively. In the present study, a novel

  18. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population.

    Science.gov (United States)

    Rompelberg, Cathy; Heringa, Minne B; van Donkersgoed, Gerda; Drijvers, José; Roos, Agnes; Westenbrink, Susanne; Peters, Ruud; van Bemmel, Greet; Brand, Walter; Oomen, Agnes G

    2016-12-01

    Titanium dioxide (TiO 2 ) is commonly applied to enhance the white colour and brightness of food products. TiO 2 is also used as white pigment in other products such as toothpaste. A small fraction of the pigment is known to be present as nanoparticles (NPs). Recent studies with TiO 2 NPs indicate that these particles can have toxic effects. In this paper, we aimed to estimate the oral intake of TiO 2 and its NPs from food, food supplements and toothpaste in the Dutch population aged 2 to over 70 years by combining data on food consumption and supplement intake with concentrations of Ti and TiO 2 NPs in food products and supplements. For children aged 2-6 years, additional intake via ingestion of toothpaste was estimated. The mean long-term intake to TiO 2 ranges from 0.06 mg/kg bw/day in elderly (70+), 0.17 mg/kg bw/day for 7-69-year-old people, to 0.67 mg/kg bw/day in children (2-6 year old). The estimated mean intake of TiO 2 NPs ranges from 0.19 μg/kg bw/day in elderly, 0.55 μg/kg bw/day for 7-69-year-old people, to 2.16 μg/kg bw/day in young children. Ninety-fifth percentile (P95) values are 0.74, 1.61 and 4.16 μg/kg bw/day, respectively. The products contributing most to the TiO 2 intake are toothpaste (in young children only), candy, coffee creamer, fine bakery wares and sauces. In a separate publication, the results are used to evaluate whether the presence of TiO 2 NPs in these products can pose a human health risk.

  19. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice.

    Science.gov (United States)

    Zhang, Lu; Xie, Xingxing; Zhou, Yigang; Yu, Dainan; Deng, Yu; Ouyang, Jiexiu; Yang, Bei; Luo, Dan; Zhang, Dalei; Kuang, Haibin

    2018-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have recently found applications in a wide variety of consumer goods. TiO 2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO 2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. The objective of this study was to investigate the effects of maternal exposure of TiO 2 NPs on the placentation. Mice were administered TiO 2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO 2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1 , Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA markedly decreased in TiO 2 NP treated placentas. Furthermore, TiO 2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. Gestational exposure to TiO 2 NPs

  20. Electrochemical study of RuO2 and/or TiO2 pyrolytic films on titanium in the range of voltage corresponding to water stability

    International Nuclear Information System (INIS)

    Barral, Gerard

    1988-01-01

    This research thesis can be considered as a preliminary part of the investigation of electrocatalytic properties of ruthenium and titanium dioxides. It proposes a presentation of electrochemical properties of interfaces between these oxides and the aqueous electrolyte in a voltage range corresponding to thermodynamic stabilities of water and dioxides. After a bibliographical study of methods of preparation of these materials and on the influence of the preparation mode on their physical characteristics and transient electrochemical behaviours, the author reports a detailed study of the hydrogen atom electro-sorption reaction. He discusses the variation of the main electrostatic characteristics of the space charge layer of various semiconducting phases with respect to the initial electric potential between the ends of this layer. He reports the experimental study of electrodes with porous ruthenium and / or titanium dioxides formed by pyrolysis or co-pyrolysis of chlorides of these metals [fr

  1. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Directory of Open Access Journals (Sweden)

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  2. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Gurr, J.-R.; Wang, Alexander S.S.; Chen, C.-H.; Jan, K.-Y.

    2005-01-01

    Ultrafine titanium dioxide (TiO 2 ) particles have been shown to exhibit strong cytotoxicity when exposed to UVA radiation, but are regarded as a biocompatible material in the absence of photoactivation. In contrast to this concept, the present results indicate that anatase-sized (10 and 20 nm) TiO 2 particles in the absence of photoactivation induced oxidative DNA damage, lipid peroxidation, and micronuclei formation, and increased hydrogen peroxide and nitric oxide production in BEAS-2B cells, a human bronchial epithelial cell line. However, the treatment with anatase-sized (200 and >200 nm) particles did not induce oxidative stress in the absence of light irradiation; it seems that the smaller the particle, the easier it is for the particle to induce oxidative damage. The photocatalytic activity of the anatase form of TiO 2 was reported to be higher than that of the rutile form. In contrast to this notion, the present results indicate that rutile-sized 200 nm particles induced hydrogen peroxide and oxidative DNA damage in the absence of light but the anatase-sized 200 nm particles did not. In total darkness, a slightly higher level of oxidative DNA damage was also detected with treatment using an anatase-rutile mixture than with treatment using either the anatase or rutile forms alone. These results suggest that intratracheal instillation of ultrafine TiO 2 particles may cause an inflammatory response

  3. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    Science.gov (United States)

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  4. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  5. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Xu, Youbao; Li, Juan; Jian, Zhiqin; Yu, Suhua; Zhang, Yongcai; Hu, Xiaoya; Dionysiou, Dionysios D.

    2015-01-01

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO 2 -NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO 2 -NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO 2 -NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M −1 cm −2 . The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO 2 -NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  6. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    Directory of Open Access Journals (Sweden)

    Hadi Nur

    2007-01-01

    Full Text Available Stannic oxide-titanium dioxide (SnO2–TiO2 coupled semiconductor photocatalyst loaded with polyaniline (PANI, a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic activity was observed in the case of PANI-SnO2–TiO2 compared to PANI-TiO2, SnO2–TiO2, and TiO2. A higher photocatalytic activity in the oxidation of 1-octene on PANI-SnO2–TiO2 than SnO2–TiO2, PANI-TiO2, and TiO2 can be considered as an evidence of enhanced charge separation of PANI-SnO2–TiO2 photocatalyst as confirmed by photoluminescence spectroscopy. It suggests that photoinjected electrons are tunneled from TiO2 to SnO2 and then to PANI in order to allow wider separation of excited carriers.

  7. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  8. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  9. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  10. The recovery of 99Mo from solutions of irradiated Uranium using a column with nanoparticles of Titanium Dioxide

    International Nuclear Information System (INIS)

    Androne, G. E.; Petre, M.; Lazar, C. G.

    2016-01-01

    Molyibdenum-99 (T½ = 66.02 h) decays by beta emission to 99 Tcm (T½ = 6.02 h). The latter nuclide is used in many nuclear medicine applications. The 99 Mo is produced from irradiated high (HEU) or low (LEU) enriched uranium. In this work a sensitive and selective method for recovering Mo from uranium solution, using a column with titanium dioxide nanoparticles, is developed. The titanium dioxide (TiO 2 ) nanoparticles were synthesized via sol-gel method using titanium tetra-chloride as starting material and urea as a reacting medium. A 40 ml uranium solution containing 450 g/L uranyl nitrate, 1 M HNO 3 , and 4 mg Mo was loaded on a column containing 6 g of TiO 2 sorbent at 75°C. After loading, the column was washed with 1 M HNO 3 and H 2 O. Mo was stripped from the column with 0.1 M NaOH at 25°C. The ICP-MS results indicate that 80-95% of the initial mass of Mo was loaded on the column, and 90-94% of this quantity was recovered in the strip fraction. (authors)

  11. Sol-gel synthesis of TiO2-SiO2 photocatalyst for β-naphthol photodegradation

    International Nuclear Information System (INIS)

    Qourzal, S.; Barka, N.; Tamimi, M.; Assabbane, A.; Nounah, A.; Ihlal, A.; Ait-Ichou, Y.

    2009-01-01

    Silica gel supported titanium dioxide particles (TiO 2 -SiO 2 ) prepared by sol-gel method was as photocatalyst in the degradation of β-naphthol in water under UV-illumination. The prepared sample has been characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The supported catalyst had large surface area and good sedimentation ability. The photodegradation rate of β-naphthol under UV-irradiation depended strongly on adsorption capacity of the catalyst, and the photoactivity of the supported catalyst was much higher than that of the pure titanium dioxides. The experiments were measured by high performance liquid chromatography (HPLC). The photodegradation rate of β-naphthol using 60% TiO 2 -SiO 2 particles was faster than that using TiO 2 'Degussa P-25', TiO 2 'PC-50' and TiO 2 'Aldrich' as photocatalyst by 2.7, 4 and 7.8 times, respectively. The kinetics of photocatalytic β-naphthol degradation was found to follow a pseudo-first-order rate law. The effect of the TiO 2 loading on the photoactivity of TiO 2 -SiO 2 particles was also discussed. With good photocatalytic activity under UV-irradiation and the ability to be readily separated from the reaction system, this novel kind of catalyst exhibited the potential effective in the treatment of organic pollutants in aqueous systems.

  12. Luminescent Study of the Binding Interaction on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone with Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Pushpam, S.; Yamini, D.; Ramakrishnan, V.

    2014-07-01

    The photophysical properties of 1,4-dihydroxy-2,3-dimethyl-9,10-anthroquinone (DHDMAQ) in the absence and presence of titanium dioxide (TiO2) nanoparticles have been studied using UV-visible absorption spectroscopy and steady-state fluorescence spectroscopy. The fluorescence intensity of the DHDMAQ decreases as the concentration of TiO2 nanoparticles increases. The quenching is characterized by a Stern-Volmer plot, which displays a positive deviation from linearity. This could be explained by static quenching models. The Stern-Volmer quenching constant, association constant, and binding constant have been calculated. The distance between DHDMAQ and TiO2 nanoparticles has also been evaluated using Forster's theory of non-radiative energy transfer.

  13. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Science.gov (United States)

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  14. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    Science.gov (United States)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  15. Data on rhizosphere pH, phosphorus uptake and wheat growth responses upon TiO2 nanoparticles application

    Directory of Open Access Journals (Sweden)

    Rafia Rafique

    2018-04-01

    Full Text Available In this study, the data sets and analyses provided the information on the characterization of titanium dioxide nanoparticles (TiO2 NPs, and their impacts on rhizosphere pH, and soil-bound phosphorus (P availability to plants together with relevant parameters. For this purpose, wheat (Triticum aestivum L. was cultivated in the TiO2 NPs amended soil over a period of 60 days. After harvesting, the soil and plants were analyzed to examine the rhizosphere pH, P availability in rhizosphere soil, uptake in roots and shoots, biomass produced, chlorophyll content and translocation to different plant parts monitored by SEM and EDX techniques in response to different dosages of TiO2 NPs. The strong relationship can be found among TiO2 NPs application, P availability, and plant growth. Keywords: Rhizosphere pH, TiO2 NPs nanoparticles, Wheat, Phosphorus, Uptake

  16. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  17. Sorption kinetics of cesium on hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Altas, Y.; Tel, H.; Yaprak, G.

    2003-01-01

    Two types of hydrous titanium dioxide possessing different surface properties were prepared and characterized to study the sorption kinetics of cesium. The effect of pH on the adsorption capacity were determined in both type sorbents and the maximum adsorption percentage of cesium were observed at pH 12. To elucidate the kinetics of ion-exchange reaction on hydrous titanium dioxide, the isotopic exchange rates of cesium ions between hydrous titanium dioxides and aqueous solutions were measured radiochemically and compared with each other. The diffusion coefficients of Cs + ion for Type1 and Type2 titanium dioxides at pH 12 were calculated as 2.79 x 10 -11 m 2 s -1 and 1.52 x 10 -11 m 2 s -1 , respectively, under particle diffusion controlled conditions. (orig.)

  18. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  19. Surface Properties of Titanium dioxide and its Structural Modifications by Reactions with Transition Metals

    Science.gov (United States)

    Halpegamage, Sandamali

    Surfaces of metal oxides play a vital role in many technologically important applications. The surfaces of titanium dioxide, in particular, show quite promising properties that can be utilized in solid-state gas sensing and photocatalysis applications. In the first part of this dissertation we investigate these properties of TiO2 surfaces through a vigorous surface scientific approach. In the second part, we investigate the possibilities of modifying the TiO2 surfaces by depositing multi-component transition metal oxide monolayers so that the properties of bare TiO2 surface can be influenced in a beneficial way. For instance, via formation of new surface sites or cations that have different valance states, the chemisorption and catalytic properties can be modified. We use sophisticated experimental surface science techniques that are compatible with ultra-high vacuum technology for surface characterization. All the experimental results, except for the photocatalysis experiments, were compared to and verified by supporting DFT-based theoretical results produced by our theory collaborators. TiO2 based solid-state gas sensors have been used before for detecting trace amounts of explosives such as 2,4-dinitrololuene (DNT), a toxic decomposition product of the explosive 2,4,6-trinitrotoluene (TNT) that have very low vapor pressure. However, the adsorption, desorption and reaction mechanism were not well- understood. Here, we investigate 2,4-DNT adsorption on rutile-TiO2(110) surface in order to gain insight about these mechanisms in an atomistic level and we propose an efficient way of desorbing DNT from the surface through UV-light induced photoreactions. TiO2 exists in different polymorphs and the photocatalytic activity differs from one polymorph to another. Rutile and anatase are the most famous forms of TiO2 in photocatalysis and anatase is known to show higher activity than rutile. The photoactivity also varies depending on the surface orientation for the same

  20. Effects of Titanium Dioxide Nanoparticles on the Synthesis of Fibroin in Silkworm (Bombyx mori).

    Science.gov (United States)

    Ni, Min; Li, FanChi; Tian, JiangHai; Hu, JingSheng; Zhang, Hua; Xu, KaiZun; Wang, BinBin; Li, YangYang; Shen, WeiDe; Li, Bing

    2015-08-01

    Silkworm (Bombyx mori) is an economically important insect, and its silk production capacity largely depends on its ability to synthesize fibroin. While breeding of B. mori varieties has been a key strategy to improve silk production, little improvement of B. mori silk production has been achieved to date. As a result, the development of sericulture economy has not progressed well, pointing to the need of new ways for improvement of B. mori silk production. Titanium dioxide nanoparticles (TiO2 NPs), a food additive widely used for livestock, have been shown to promote animal growth and increase the protein synthesis in animals. However, no studies on effect of TiO2 NPs on fibroin synthesis in B. mori have been available. In this study, the differential expression profiles of genes and proteins in the silk gland of B. mori fed without or with TiO2 NPs (5 μg ml(-1)) were analyzed and compared using digital gene expression (DGE), reverse transcription quantitative polymerase chain reaction (RT-qPCR), semi-qPCR, and Western blot analysis. The effects of TiO2 NPs feeding on the activity of proteases in the midgut and the synthesis and transportation of amino acids in hemolymph were also investigated. DGE analyses showed that among a total of 4,741 genes detected, 306 genes were differentially expressed after the TiO2 NPs feeding, of which 137 genes were upregulated whereas 169 genes were downregulated. 106 genes were shown to be involved in fibroin synthesis, of which 97 genes, including those encoding cuticular protein glycine-rich 10, serine protease inhibitor 28, aspartate aminotransferase, lysyl-tRNA synthetase, and splicing factor arginine/serine-rich 6, and silk gland factor-1 (SGF-1), were upregulated with the maximum induction of 8.52-folds, whereas nine genes, including those encoding aspartylglucosaminidase, the cathepsin L in Tribolium castaneum, and similar to SPRY domain-containing SOCS box protein 3, were downregulated with the maximum reduction of 8

  1. Correlation of lattice distortion with photocatalytic activity of titanium dioxide

    International Nuclear Information System (INIS)

    Wang Xia; Shui Miao; Li Rongsheng; Song Yue

    2008-01-01

    The photocatalytic activity of titanium dioxide dispersions on X-3B pigment degradation has been investigated. A variety of factors that would influence the photocatalytic activity such as crystallite size, lattice distortion, and anatase content are discussed in detail. It is found that lattice distortion is the most important one among these factors and is expected to inhibit the hole and electron pair recombination. It determines, to some extent, the photocatalytic efficiency of titanium dioxide dispersions

  2. Obtainment of TiO2 powders solar cells photo electrodes dye sensitized

    International Nuclear Information System (INIS)

    Forbeck, Guilherme; Folgueras, Marilena V.; Chinelatto, Adilson L.

    2012-01-01

    Titanium dioxide in its polymorphic anatase phase, presents interesting properties for solar cells photo electrodes dye sensitized such as the forbidden energy band, high refractive index and high constant dielectric. In this study, powders of nanometric titanium dioxide were produced with predominantly the anatase phase and high surface area. We used the sol-gel method, and titanium tetraisopropoxide as a precursor, which was hydrolyzed in nitric acid solution. The obtained powder was heated to 450 ° C, varying the time for each lot (0, 20 or 120 minutes). The powders were characterized by X-ray diffraction, atomic force microscopy and surface area analysis. For all lots nanosized crystallites predominated. It was observed that in the batch with 120min heating an increase rutile content. The TiO 2 with 20min heating showed high surface area, greater than that of TiO 2 as taken reference

  3. Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial.

    Science.gov (United States)

    Castro, Margarida; Nogueira, Verónica; Lopes, Isabel; Vieira, Maria N; Rocha-Santos, Teresa; Pereira, Ruth

    2018-05-12

    This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO 2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.

  4. Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide.

    Science.gov (United States)

    Calza, Paola; Zacchigna, Dario; Laurenti, Enzo

    2016-12-01

    In this paper, the removal of three common dyes (orange I, orange II, and methylorange) and of the anticonvulsant drug carbamazepine from aqueous solutions by means of enzymatic and photocatalytic treatment was studied. Soybean peroxidase (SBP) was used as biocatalyst, both free in solution and immobilized on silica monoliths, and titanium dioxide as photocatalyst. The combination of the two catalysts led to a faster (about two to four times) removal of all the orange dyes compared to the single systems. All the dyes were completely removed within 2 h, also in the presence of immobilized SBP. As for carbamazepine, photocatalytic treatment prevails on the enzymatic degradation, but the synergistic effect of two catalysts led to a more efficient degradation; carbamazepine's complete disappearance was achieved within 60 min with combined system, while up to 2 h is required with TiO 2 only.

  5. Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment

    Science.gov (United States)

    Xu, Fei; Wang, Can; Xiao, Kemeng; Gao, Yufeng; Zhou, Tong; Xu, Heng

    2018-05-01

    An activated carbon (AC) coated with tungstic acid (WO3)/titanium dioxide (TiO2) nanocomposites photocatalytic material (ACWT) combined with Three-phase Fluidized Bed (TFB) was investigated for human excrement wastewater treatment. Under the ultraviolet (UV) and fluorescent lamp illumination, the ACWT had shown a good performance on chemical oxygen demand (COD) and total nitrogen (TN) removal but inefficient on ammonia nitrogen (NH3-N) removal. Optimized by Taguchi method, COD and TN removal efficiency was up to 88.39% and 55.07%, respectively. Among all the parameters, the dosage of ACWT had the largest contribution on the process. Bacterial community changes after treatment demonstrated that this photocatalytic system had a great sterilization effect on wastewater. These results confirmed that ACWT could be applied for the human excrement wastewater treatment.

  6. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    Science.gov (United States)

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation.

    Science.gov (United States)

    Pinto, A Viviana; Deodato, Elder L; Cardoso, Janine S; Oliveira, Eliza F; Machado, Sérgio L; Toma, Helena K; Leitão, Alvaro C; de Pádula, Marcelo

    2010-06-01

    Although titanium dioxide (TiO(2)) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO(2) is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO(2)-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO(2) associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO(2) plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO(2) protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO(2) plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO(2) plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    International Nuclear Information System (INIS)

    Pinto, A. Viviana; Deodato, Elder L.; Cardoso, Janine S.; Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K.; Leitao, Alvaro C.; Padula, Marcelo de

    2010-01-01

    Although titanium dioxide (TiO 2 ) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO 2 is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO 2 -UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO 2 associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO 2 plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO 2 protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO 2 plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO 2 plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  9. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    Science.gov (United States)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  10. Effective Carbon Dioxide Photoreduction over Metals (Fe-, Co-, Ni-, and Cu- Incorporated TiO2/Basalt Fiber Films

    Directory of Open Access Journals (Sweden)

    Jeong Yeon Do

    2016-01-01

    Full Text Available Mineralogical basalt fibers as a complementary adsorbent were introduced to improve the adsorption of CO2 over the surfaces of photocatalysts. TiO2 photocatalysts (M-TiO2 incorporated with 5.0 mol.% 3d-transition metals (Fe, Co, Ni, and Cu were prepared using a solvothermal method and mixed with basalt fibers for applications to CO2 photoreduction. The resulting 5.0 mol.% M-TiO2 powders were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence, Brunauer, Emmett, and Teller surface area, and CO2-temperature-programmed desorption. A paste composed of two materials was coated and fixed on a Pyrex plate by a thermal treatment. The 5.0 mol.% M-TiO2/basalt fiber films increased the adsorption of CO2 significantly, indicating superior photocatalytic behavior compared to pure TiO2 and basalt fiber films, and produced 158~360 μmol gcat-1 L−1 CH4 gases after an 8 h reaction. In particular, the best performance was observed over the 5.0 mol.% Co-TiO2/basalt fiber film. These results were attributed to the effective CO2 gas adsorption and inhibition of photogenerated electron-hole pair recombination.

  11. Role of Platinum Deposited on TiO2 in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Luma M. Ahmed

    2014-01-01

    Full Text Available Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100. The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, atomic force microscopy (AFM, and UV-visible diffuse spectrophotometry (UV-Vis. XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.

  12. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  13. Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite

    Directory of Open Access Journals (Sweden)

    H. Karyab

    2016-08-01

    Full Text Available Background: Petroleum hydrocarbons are the most important pollutants which threat human health and aquatics. Adsorbents are one of the common equipment in water pollution management; however, their applications have been associated with limitations. Objective: To evaluate the potential of polypropylene/titanium dioxide Nano-composite in adsorption of light petroleum hydrocarbons from water sources. Methods: This experimental study was conducted at school of health, Qazvin University of Medical Sciences in 2014-15. Activation of polypropylene fibers, with 1 cm length and 300 microns diameters, was achieved with wet heating. To synthesize of nano-composite the fibers were coated with nano-titanium dioxide with 20 nm diameter. The sonication was performed at 26 kHz and 100 W of power in 40ºc. The morphology of the fractured surfaces of impact specimens was examined by FESEM. The adsorption rate of petrol and gasoline, as surrogate of TPH, was evaluated in different retention time within polyamide mesh aperture diameter of 250 nm. Average of TPH adsorbing, per unit weight of adsorbent, were analyzed with analysis of variance and Scheffe post hoc tests. Findings: The FESEM micrographs showed that the dispersion of the nano-Tio2 particles was relatively good and only few aggregations exist. The maximum adsorption capacity of petrol and gasoline was obtained in 30 minute. The adsorption rate of gasoline was 6.49±0.10 g/g and oil was 7.01±0.13 g/g. Conclusion: According to the results and in comparison with commercial imported adsorbents, the synthesized Nano-composite had favorable performance. The results show that the polypropylene/Tio2 Nano-composite can be used effectively in light petroleum hydrocarbons removal from polluted water sources.

  14. Effects of titanium dioxide nanoparticles derived from ...

    Science.gov (United States)

    Increased manufacture of TiO2 nano-products has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO2 nanoparticles derived from consumer products as opposed to industrial TiO2 NPs warrants examination in exploring the significance of their release and resultant impacts on the environment. To this end we examined the significance of the release of these particles and their toxic effect on the marine diatom algae Thalassiosira pseudonana. Our results indicate that nano-TiO2 sunscreen and toothpaste exhibit more toxicity in comparison to industrial TiO2, and inhibited the growth of the marine diatom Thalassiosira pseudonana. This inhibition was proportional to the exposure time and concentrations of nano-TiO2. Our findings indicate a significant effect, and therefore further research is warranted in evaluation and assessment of the toxicity of modified nano-TiO2 derived from consumer products and their physicochemical properties. Submit to journal Environmental Science and Pollution Research.

  15. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    Science.gov (United States)

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  16. Photocatalytic inactivation of bacteria from spoiled raw chicken carcasses in aqueous suspensions by TiO2 nanoparticles

    Science.gov (United States)

    Bacterial spoilage is a major cause of reduced shelf life of fresh poultry; therefore, decreasing contamination by spoilage bacteria could increase the shelf life of these products. Titanium dioxide (TiO2) nanoparticles in the presence of UVA light possess antibacterial activities towards several ba...

  17. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    Science.gov (United States)

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  18. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  19. [Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium].

    Science.gov (United States)

    Zhang, Zichuan; Zhang, Pei

    2015-07-01

    To evaluate the influence of TiO(2)-SiO(2)-SnOx nano-coatings with different firing temperatures on the bond strength of low-fusing dental porcelain to pure titanium. The surface of pure titanium was coated uniformly with TiO(2)-SiO(2)-SnOx nano-coatings by solution-gelatin (Sol-Gel) technology and then fired at 300 °C (group A) or 750 °C (group B) for 1 h. The specimens without any coatings were the control group (group C). There were 10 specimens in each group. Dental porcelain was sintered on the surface of titanium specimens. Surface roughness and contact angle of the coatings were also detected. The titanium-porcelain bond strength was investigated according to YY 0621-2008 standards using three-point flexure bond test. The phase composition of the TiO(2)-SiO(2)-SnOx nano-coatings was characterized by X-ray diffraction(XRD). The interface of titanium-porcelain and TiO(2)-SiO(2)-SnOx nano-coatings were observed using scanning electron microscope (SEM). No rutile phase was found in these specimens of group A and group B. The surface roughness of group A, B, C was (0.97 ± 0.06), (0.99 ± 0.03), (0.96 ± 0.07) µm, respectively. No significant difference was found among the three groups. Compared with that of group C (64.37° ± 3.01°), contact angles detected in group A (52.04° ± 3.15°) and group B (85.27° ± 4.17°) were significantly different (P porcelain in group A [(35.66 ± 2.65) MPa] was significantly increased compared with those in group B [(26.18 ± 2.22) MPa] and group C [(31.66 ± 3.52) MPa]. SEM photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain sintering showed that TiO(2)-SiO(2)-SnOx nano-coatings in group A were compact and homogeneous with petty cracks and those in group B was loose and arranged disorderly. TiO(2)-SiO(2)-SnOx nano-coating fired at 300 °C is significantly effective in improving the titanium-porcelain bond strength.

  20. Versatility of Evaporation-Induced Self-Assembly (EISA Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2014-03-01

    Full Text Available Evaporation-Induced Self-Assembly (EISA method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs, photocatalytic degradation of organics and splitting of water, and batteries.

  1. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Science.gov (United States)

    Niska, Karolina; Pyszka, Katarzyna; Tukaj, Cecylia; Wozniak, Michal; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts. PMID:25709434

  2. Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA)

    International Nuclear Information System (INIS)

    Alberton, J; Martelli, S M; Soldi, V; Fakhouri, F M

    2014-01-01

    Polylactic acid (PLA) has been larger used in biomedical field due to its low toxicity and biodegradability. The aim of this study was to produce PLLA nanocomposites, by melt extrusion, containing Halloysite nanotubes (HNT) and/or titanium dioxide (TiO 2 ) nanoparticles. Immediately after drying, PLLA was mechanically homogenized with the nanofillers and then melt blended using a single screw extruder (L/D = 30) at a speed of 110 rpm, with three heating zones in which the following temperatures were maintained: 150, 150 and 160°C (AX Plasticos model AX14 LD30). The film samples were obtained by compression molding in a press with a temperature profile of 235 ± 5°C for 2.5 min, after pressing, films were cooled up to room temperature. The mechanical tests were performed according to ASTM D882-09 and the water vapor permeability (WVP) was measured according to ASTM E-96, in triplicate. The tensile properties indicated that the modulus was improved with increased TiO 2 content up to 1g/100g PLLA. The Young's modulus (YM) of the PLA was increased from 3047 MPa to 3222 MPa with the addition of 1g TiO 2 /100g PLLA. The tensile strength (TS) of films increases with the TiO 2 content. In both cases, the YM and TS are achieved at the 1% content of TiO 2 and is due to the reinforcing effect of nanoparticles. Pristine PLA showed a strain at break (SB) of 3.56%, while the SB of nanocomposites were significant lower, for instance the SB of composite containing 7.5 g HNT/100g PLLA was around 1.90 %. The WVP of samples was increased by increasing the nano filler content. It should be expected that an increase of nanofiller content would decrease the mass transfer of water molecules throughout the samples due to the increase in the way water molecules will have to cross to permeate the material. However, this was not observed. Therefore, this result can be explained considering the molecular structure of both fillers, which contain several hydroxyl groups in the surface

  3. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  4. Adsorption of carbon dioxide on TEPA-modified TiO_2/titanate composite nano-rods

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Michalkiewicz, Beata; Wrobel, Rafal J.; Mozia, Sylwia; Pirog, Ewa; Usiak-Nejman, Ewelina K.; Serafin, Jaroslaw; Morawski, Antoni W.; Narkiewicz, Urszula

    2017-01-01

    A titanate-TiO_2 composite was obtained through hydrothermal treatment of TiO_2 in KOH solution. The presence of a titanate phase was confirmed by X-ray diffraction (XRD), whereas scanning electron microscopy (SEM) measurements showed the porous nano-rod structure of the material. The obtained nano-rods were treated with tetra-ethylene-pentamine (TEPA). Such synthesized sorbents were applied for CO_2 removal. The CO_2 capacity under a pressure of 1 bar and at 80 C was 0.47, 0.34, and 3.11 mmol.g"-"1 for the starting TiO_2, the titanate-TiO_2 composite and the TEPA-titanate-TiO_2 composite (27.4 wt% of TEPA), respectively. The experimental isotherms of CO_2 were analysed using the Langmuir, Freundlich, Sips, Toth, Unilan, Redlich-Peterson, Radke-Prausnitz, Dubinin-Radushkevich, Temkin and Pyzhev, and Jovanovich models. The error sums of squares (SSR) function was used to test the fit of the models. The analysis revealed that the Sips isotherm is the best-fitting model for the CO_2 adsorption on the starting TiO_2, whereas the Freundlich equation should be used to describe the CO_2 adsorption isotherm on the titanate-TiO_2 composite. The CO_2 adsorption on the TEPA-modified sorbents was proposed to be described using the Sips isotherm for physical sorption and the modified Sips model for chemical sorption. The calculated isosteric heat of adsorption was found to be E46 kJ mol"-"1, which is about two times higher than the heat of CO_2 absorption in liquid TEPA reported in the literature (i.e. E85 kJ.mol"-"1). Therefore, it was concluded that the TEPA-titanate-TiO_2 composite is an attractive alternative for liquid amines due to the lower energy of regeneration in the sorption-desorption process. The material was proved to be stable during multiple sorption-desorption cycles. Moreover, its thermal stability up to 150 C was confirmed by thermogravimetric analysis (TGA). All these features make it a promising alternative for sorbents based on liquid amines. (authors)

  5. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    Science.gov (United States)

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  6. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  7. ALMA observations of TiO2 around VY Canis Majoris

    Science.gov (United States)

    De Beck, E.; Vlemmings, W.; Muller, S.; Black, J. H.; O'Gorman, E.; Richards, A. M. S.; Baudry, A.; Maercker, M.; Decin, L.; Humphreys, E. M.

    2015-08-01

    Context. Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2 has been detected only in the complex environment of the red supergiant VY CMa. Aims: We aim to constrain the distribution and excitation of TiO2 around VY CMa in order to clarify its role in dust formation. Methods: We analyse spectra and channel maps for TiO2 extracted from ALMA science verification data. Results: We detect 15 transitions of TiO2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. An accelerating bipolar-like structure is found, oriented roughly east-west, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. Conclusions: We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa. Appendix A is available in electronic form at http://www.aanda.org

  8. NOx photocatalytic degradation on gypsum plates modified by TiO2-N,C photocatalysts

    Directory of Open Access Journals (Sweden)

    Janus Magdalena

    2015-09-01

    Full Text Available In presented studies the photocatalytic decomposition of NOx on gypsum plates modified by TiO2-N,Cphotocatalysts were presented. The gypsum plates were obtained by addition of 10 or 20 wt.% of different types of titanium dioxide, such as: pure TiO2 and carbon and nitrogen co-modified TiO2 (TiO2-N,C to gypsum. TiO2-N,C photocatalysts were obtained by heating up the starting TiO2 (Grupa Azoty Zakłady Chemiczne Police S.A in the atmosphere of ammonia and carbon at the temperature: 100, 300 i 600ºC. Photocatalyst were characterized by FTIR/DRS, UVVis/DR, BET and XRD methods. Moreover the compressive strength tests of modified gypsum were also done. Photocatalytic activity of gypsum plates was done during NOx decomposition. The highest photocatalytic activity has gypsum with 20 wt.% addition of TiO2-N,C obtained at 300ºC.

  9. W-doped TiO2 photoanode for high performance perovskite solar cell

    International Nuclear Information System (INIS)

    Liu, Jinwang; Zhang, Jing; Yue, Guoqiang; Lu, Xingwei; Hu, Ziyang; Zhu, Yuejin

    2016-01-01

    Titanium dioxide (TiO 2 ) with dispersed W-doping shows its capability for efficient electron collection from perovskite to TiO 2 in perovskite solar cell. The conduction band (CB) of TiO 2 moves downward (positive shift) with increasing the tungsten (W) content, which enlarges the energy gap between the CB of TiO 2 and the perovskite. Thus, the efficiency of electron injection from perovskite to TiO 2 is increased. Due to the increased electron injection, W-doped TiO 2 (≤0.2% W content) enhances the short-circuit photocurrent (J sc ) of perovskite solar cell and improves the performance of perovskite solar cell. Perovskite solar cell with 0.1% W-doped photoanode obtains the highest power conversion efficiency (η = 10.6%), which shows enhancement by 13% in J sc and by 17% in η, as compared with the undoped TiO 2 perovskite solar cell.

  10. The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films

    Directory of Open Access Journals (Sweden)

    Kristina BOČKUTĖ

    2013-09-01

    Full Text Available Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, scanning electron microscopy (SEM and atomic force microscopy (AFM. Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1805

  11. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    Directory of Open Access Journals (Sweden)

    Jun Ho Ji

    2015-01-01

    Full Text Available Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2. The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD.

  12. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  13. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  14. Low-Temperature Reverse Microemulsion Synthesis, Characterization, and Photocatalytic Performance of Nanocrystalline Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Liu

    2012-01-01

    Full Text Available Nanocrystalline titanium dioxide (TiO2 was synthesized in microemulsions by using cetyltrimethylammonium bromide (CTAB as surfactant. In order to investigate the crystal transformation and photoactivity at low temperature, the as-prepared precipitates were aged at 65°C or calcined at various temperatures. Analyses using powder X-ray diffraction (XRD and Fourier transform infrared microscopy (FT-IR showed that precursors without aging or calcination were noncrystal and adsorbed by surfactant. After aging for 6 h, the amorphous TiO2 began to change into anatase. The obtained catalysts, which were synthesized in microemulsions with weight ratios of n-hexanol/CTAB/water as 6 : 3 : 1 and calcined at 500°C, presented the highest photocatalytic degradation rate on methyl orange (MO, while the catalysts, which were aged at 65°C for 90 h, also exhibited an outstanding photocatalytic performance and a little higher than that of the commercial titania photocatalyst Degussa P25.

  15. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  16. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  17. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Emanuel Airton O.; Dionisio, Natália A.; Quelemes, Patrick V. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Leal, Sergio Henrique [CCNH, UFABC, Santo André, SP 09210-170 (Brazil); Matos, José Milton E.; Filho, Edson C. Silva [Laboratório Interdisciplinar de Materiais Avançados, LIMAv, CCN, UFPI, Teresina, PI 64049-550 (Brazil); Bechtold, Ivan H. [Departamento de Física — UFSC, Florianópolis, SC 88040-900 (Brazil); Leite, José Roberto S.A. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: carla.eiras.ufpi@gmail.com [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAv, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2014-02-01

    Composites prepared from polyaniline (PANI) and the ceramic technology of titanium dioxide (TiO{sub 2}) have been proposed, however, the interaction of these materials with greater control of molecular arrangement becomes attractive in order to achieve properties not previously described or yet the optimization of those already reported. Therefore, in this study, thin hybrid films made of polyaniline (PANI), a conductive polymer, and the technological ceramic, titanium dioxide (TiO{sub 2}), were prepared by the layer-by-layer (LbL) self-assembly technique. The films were characterized by cyclic voltammetry (CV), UV–VIS spectroscopy and atomic force microscopy (AFM). Aiming to improve the dispersion of the ceramic in the polymer matrix, the commercial surfactant, cetyl trimethylammonium bromide (CTAB), was used in the formation of the films. The best condition of deposition was found showing synergic interactions between the conjugated materials. The antibacterial activity of the PANI(TiO{sub 2})/CTAB films was studied and the obtained results suggest their use as antimicrobial coatings. - Highlights: • Nanocomposite films of PANI and TiO2 prepared by the LbL technique • Ceramic dispersion in PANI improved with CTAB for antimicrobial applications. • Optimized film deposition for synergic interactions of the conjugated materials • Antibacterial activity of the films suggests their use as antimicrobial coatings.

  18. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  19. Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced nephrotoxicity in animals. However, the nephrotoxic multiple molecular mechanisms are not clearly understood. Methods Mice were exposed to 2.5, 5 and 10 mg/kg TiO2 NPs by intragastric administration for 90 consecutive days, and their growth, element distribution, and oxidative stress in kidney as well as kidney gene expression profile were investigated using whole-genome microarray analysis technique. Results Our findings suggest that TiO2 NPs resulted in significant reduction of renal glomerulus number, apoptosis, infiltration of inflammatory cells, tissue necrosis or disorganization of renal tubules, coupled with decreased body weight, increased kidney indices, unbalance of element distribution, production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse kidney tissue. Furthermore, microarray analysis showed significant alterations in the expression of 1, 246 genes in the 10 mg/kg TiO2 NPs-exposed kidney. Of the genes altered, 1006 genes were associated with immune/inflammatory responses, apoptosis, biological processes, oxidative stress, ion transport, metabolic processes, the cell cycle, signal transduction, cell component, transcription, translation and cell differentiation, respectively. Specifically, the vital up-regulation of Bcl6, Cfi and Cfd caused immune/ inflammatory responses, the significant alterations of Axud1, Cyp4a12a, Cyp4a12b, Cyp4a14, and Cyp2d9 expression resulted in severe oxidative stress, and great suppression of Birc5, Crap2, and Tfrc expression led to renal cell apoptosis. Conclusions Axud1, Bcl6, Cf1, Cfd, Cyp4a12a, Cyp4a12b, Cyp2d9, Birc5, Crap2, and Tfrc may be potential biomarkers of kidney toxicity caused by TiO2 NPs exposure. PMID:23406204

  20. Chemical and electrochemical synthesis of nano-sized TiO2 anatase for large-area photon conversion

    International Nuclear Information System (INIS)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A.

    2006-01-01

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO 2 particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO 2 (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO 2 with anatase-phase as well. (authors)

  1. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  2. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning

    Czech Academy of Sciences Publication Activity Database

    Motola, M.; Satrapinskyy, L.; Roch, T.; Šubrt, Jan; Kupčík, Jaroslav; Klementová, Mariana; Jakubičková, M.; Peterka, F.; Plesch, G.

    2017-01-01

    Roč. 287, JUN (2017), s. 59-64 ISSN 0920-5861. [European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA) /9./. Strasbourg, 13.06.2016-17.06.2016] R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Titanium mesh * Anatase nanotubes array * Liquid state deposition * NOx removal * Photocatalysis Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  3. Study on Gas Sensing Performance of TiO2 Screen Printed Thick Films

    Directory of Open Access Journals (Sweden)

    C. G. DIGHAVKAR

    2009-02-01

    Full Text Available Titanium dioxide (TiO2 thick films were prepared on alumina substrate by using screen printing technique. After preparation, the films were fired at temperature range 600 -1000 ºC for two hour. Morphological, compositional and structural properties of the film samples were performed by means of several techniques, including scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDS, X-ray diffraction techniques. We explore the various gases to study the sensing performance of the TiO2 thick films. The maximum response was reported to film fired at 800 0C for LPG gas at 350 0C operating temperature.

  4. Production and Characterization of TiO2 Nanofilms for Hemocompatible and Photocatalytic Applications

    Science.gov (United States)

    Schvezov, C. E.; Vera, M. L.; Schuster, J. M.; Rosenberger, M. R.

    2017-10-01

    Titanium dioxide (TiO2) coatings are currently produced for hemocompatible and photocatalytic applications by using two techniques: sol-gel and anodic oxidation. In this review, the research advances on TiO2 nanofilms produced with these techniques are presented, with a focus on different aspects such as process parameters, morphology, roughness, crystal structure, adhesion, wear and erosion resistance, corrosion resistance, hemocompatibility, toxicity, plaque and bacterial adhesion, and heterogeneous photocatalysis of immobilized porous material. This review was presented at the 3rd Pan American Materials Congress at the 2017 TMS Annual Meeting and Exhibition in San Diego, California, USA.

  5. Nanoimprinted distributed feedback lasers comprising TiO2 thin films

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Leung, Michael C.

    2013-01-01

    Design guidelines for optimizing the sensing performance of nanoimprinted second order distributed feedback dye lasers are presented. The guidelines are verified by experiments and simulations. The lasers, fabricated by UV-nanoimprint lithography into Pyrromethene doped Ormocomp thin films on glass......, have their sensor sensitivity enhanced by a factor of up to five via the evaporation of a titanium dioxide (TiO2) waveguiding layer. The influence of the TiO2 layer thickness on the device sensitivity is analyzed with a simple model that accurately predicts experimentally measured wavelength shifts...

  6. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya; Yang, Yang; Khan, Jafar I.; Alarousu, Erkki; Guo, Zaibing; Zhang, Xixiang; Zhang, Qiang; Mohammed, Omar F.

    2014-01-01

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  7. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  8. Pro-inflammatory adjuvant properties of pigment-grade titanium dioxide particles are augmented by a genotype that potentiates interleukin 1β processing.

    Science.gov (United States)

    Riedle, Sebastian; Pele, Laetitia C; Otter, Don E; Hewitt, Rachel E; Singh, Harjinder; Roy, Nicole C; Powell, Jonathan J

    2017-12-08

    Pigment-grade titanium dioxide (TiO 2 ) particles are an additive to some foods (E171 on ingredients lists), toothpastes, and pharma-/nutraceuticals and are absorbed, to some extent, in the human intestinal tract. TiO 2 can act as a modest adjuvant in the secretion of the pro-inflammatory cytokine interleukin 1β (IL-1β) when triggered by common intestinal bacterial fragments, such as lipopolysaccharide (LPS) and/or peptidoglycan. Given the variance in human genotypes, which includes variance in genes related to IL-1β secretion, we investigated whether TiO 2 particles might, in fact, be more potent pro-inflammatory adjuvants in cells that are genetically susceptible to IL-1β-related inflammation. We studied bone marrow-derived macrophages from mice with a mutation in the nucleotide-binding oligomerisation domain-containing 2 gene (Nod2 m/m ), which exhibit heightened secretion of IL-1β in response to the peptidoglycan fragment muramyl dipeptide (MDP). To ensure relevance to human exposure, TiO 2 was food-grade anatase (119 ± 45 nm mean diameter ± standard deviation). We used a short 'pulse and chase' format: pulsing with LPS and chasing with TiO 2 +/- MDP or peptidoglycan. IL-1β secretion was not stimulated in LPS-pulsed bone marrow-derived macrophages, or by chasing with MDP, and only very modestly so by chasing with peptidoglycan. In all cases, however, IL-1β secretion was augmented by chasing with TiO 2 in a dose-dependent fashion (5-100 μg/mL). When co-administered with MDP or peptidoglycan, IL-1β secretion was further enhanced for the Nod2 m/m genotype. Tumour necrosis factor α was triggered by LPS priming, and more so for the Nod2 m/m genotype. This was enhanced by chasing with TiO 2 , MDP, or peptidoglycan, but there was no additive effect between the bacterial fragments and TiO 2 . Here, the doses of TiO 2 that augmented bacterial fragment-induced IL-1β secretion were relatively high. In vivo, however, selected intestinal cells appear

  9. The influence of material type and composition of TiO2- ZnO on manufacturing of paste for the application of DSSC

    Science.gov (United States)

    Retnaningsih, L.; Muliani, L.; Aggraini, P. N.; Hidayat, J.

    2016-11-01

    Research, fabrication and material selection for the application of Dye- sensitized solar cell (DSSC) has been performed on glass FTO (Flour Tin Oxide). The material is used in the form of TiO2 paste, TiO2 powder and ZnO powder. Dye-sensitized solar cell (DSSC), is a fotoelektrokimia-based solar cells where the absorption process light done by the dye molecules and the process of separation of inorganic semiconductor materials by charge of Titanium dioxide (TiO2) and Zinc oxide (ZnO). The purpose of this research is to know the exact composition of TiO2 and ZnO materials in order to produce the best efficiency with DSSC. On this research was done making prototype dye-sensitized solar cell using dye Z 907, and semiconductor nanoparticles TiO2 and ZnO powder that is made into a paste by mixing different composition in two variations of samples: A = ZnO (powder) + 40% TiO2 (powder) and B = 60% TiO2 (powder) (40%) + TiO2 (pasta) 60%. The second variation of this high efficiency is value at sample B i.e. TiO2 (powder) + 40% TiO2 (paste) of 60%.

  10. The influence of material type and composition of TiO2- ZnO on manufacturing of paste for the application of DSSC

    International Nuclear Information System (INIS)

    Retnaningsih, L.; Muliani, L.; Aggraini, P. N.; Hidayat, J.

    2016-01-01

    Research, fabrication and material selection for the application of Dye- sensitized solar cell (DSSC) has been performed on glass FTO (Flour Tin Oxide). The material is used in the form of TiO 2 paste, TiO 2 powder and ZnO powder. Dye-sensitized solar cell (DSSC), is a fotoelektrokimia-based solar cells where the absorption process light done by the dye molecules and the process of separation of inorganic semiconductor materials by charge of Titanium dioxide (TiO 2 ) and Zinc oxide (ZnO). The purpose of this research is to know the exact composition of TiO 2 and ZnO materials in order to produce the best efficiency with DSSC. On this research was done making prototype dye-sensitized solar cell using dye Z 907, and semiconductor nanoparticles TiO 2 and ZnO powder that is made into a paste by mixing different composition in two variations of samples: A = ZnO (powder) + 40% TiO 2 (powder) and B = 60% TiO 2 (powder) (40%) + TiO 2 (pasta) 60%. The second variation of this high efficiency is value at sample B i.e. TiO 2 (powder) + 40% TiO 2 (paste) of 60%. (paper)

  11. Carbon Dioxide Induced Alkene Extrusion from Bis(pentamethylcyclopentadienyl)titanium(III) Alkyls

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1987-01-01

    Reaction of titanium(III) alkyls, (η5-C5Me5)2TiR (R = Et or Prn), in toluene solution with CO2 proceeds at room temperature with formation of the titanium formate (η5-C5Me5)2TiO2CH, and the corresponding alkene (ethene or propene).

  12. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Birte Mull

    2017-01-01

    Full Text Available Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2 is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO. TiO2 coated with different GO amounts (0.75%–14% were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples.

  13. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization

    Science.gov (United States)

    Pishkar, Negin; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-06-01

    Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process.

  14. Application of the UV laser printing technique to soft gelatin capsules containing titanium dioxide in the shells.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2012-03-01

    The purpose of this study was to examine application of ultraviolet (UV) laser irradiation to printing soft gelatin capsules containing titanium dioxide (TiO(2)) in the shells and to study effect of UV laser power on the color strength of printing on the soft gelatin capsules. Size 6 Oval type soft gelatin capsules of which shells contained 0.685% TiO(2) and 0.005% ferric dioxide were used in this study. The capsules were irradiated pulsed UV laser at a wavelength 355 nm. The color strength of the printed capsules was determined by a spectrophotometer as total color difference (dE). The soft gelatin capsules which contained TiO(2) in the shells could be printed gray by the laser. Many black particles, which were associated with the printing, were formed at the colored parts of the shells. It was found that there were two inflection points in relationship between output laser energy of a pulse and dE. Below the lower point, the capsules were not printed. From the lower point to the upper point, the capsules were printed gray and total color difference of the printing increased linearly in proportion with the output laser energy. Beyond the upper point, total color difference showed saturation because of micro-bubbles formation at the laser irradiated spot. Soft gelatin capsules containing TiO(2) in the shells could be performed stable printing using the UV laser printing technique. Color strength of the printing could be controlled by regulating the laser energy between the two inflection points.

  15. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    International Nuclear Information System (INIS)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y.; Awitor, O.K.; Bonnemoy, F.; Bonnet, J.L.; Bohatier, J.

    2011-01-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  16. Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S.

    2009-01-01

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO 2 /mPMMA) microspheres. The TiO 2 /mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO 2 /mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO 2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO 2 /mPMMA microspheres are observed as 2.21 m 2 /g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO 2 /mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO 2 /mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO 2 /mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented

  17. Mini Review of TiO2 -Based Multifunctional Nanocomposites for Near-Infrared Light-Responsive Phototherapy.

    Science.gov (United States)

    Wang, Meifang; Hou, Zhiyao; Al Kheraif, Abdulaziz A; Xing, Bengang; Lin, Jun

    2018-06-25

    Phototherapy with the properties of specific spatial/temporal selectivity and minimal invasiveness has been acknowledged as one of the most promising cancer therapy types. Among all the photoactive substance for phototherapy, titanium dioxide (TiO 2 ) nanomaterials are paid more and more attention due to their outstanding photocatalytic properties, prominent biocompatibility, and excellent chemical stability. However, the wide bandgap (3.0-3.2 eV) of TiO 2 limits its absorption only to the ultraviolet (UV) light region. For a long time, UV light-stimulated TiO 2 was applied in the phototherapy researches of tumors located in the skin layer, while it is unsatisfactory for most deep-tissue tumors. Due to the maximum penetration into tissue existing in the near-infrared (NIR) region, how to use NIR light to trigger photochemical reaction of TiO 2 remains a big challenge. In this review, two strategies to develop and construct NIR-triggered TiO 2 -based nanocomposites (NCs) for phototherapy are summarized, and the relevant mechanism and background knowledge of TiO 2 -based phototherapy are also given in order to better understand the application value and current situation of TiO 2 in phototherapy. Finally, the challenges and research directions of TiO 2 in the future clinic phototherapy application are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  19. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2

    Directory of Open Access Journals (Sweden)

    A. R. Zanatta

    2017-07-01

    Full Text Available Titanium-dioxide (TiO2 is a low-cost, chemically inert material that became the basis of many modern applications ranging from, for example, cosmetics to photovoltaics. TiO2 exists in three different crystal phases − Rutile, Anatase and, less commonly, Brookite − and, in most of the cases, the presence or relative amount of these phases are essential to decide the TiO2 final application and its related efficiency. Traditionally, X-ray diffraction has been chosen to study TiO2 and provides both the phases identification and the Rutile-to-Anatase ratio. Similar information can be achieved from Raman scattering spectroscopy that, additionally, is versatile and involves rather simple instrumentation. Motivated by these aspects this work took into account various TiO2 Rutile+Anatase powder mixtures and their corresponding Raman spectra. Essentially, the method described here was based upon the fact that the Rutile and Anatase crystal phases have distinctive phonon features, and therefore, the composition of the TiO2 mixtures can be readily assessed from their Raman spectra. The experimental results clearly demonstrate the suitability of Raman spectroscopy in estimating the concentration of Rutile or Anatase in TiO2 and is expected to influence the study of TiO2-related thin films, interfaces, systems with reduced dimensions, and devices like photocatalytic and solar cells.

  20. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    Science.gov (United States)

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  1. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro.

    Science.gov (United States)

    Tsuchiya, Shuhei; Sugimoto, Keisuke; Kamio, Hisanobu; Okabe, Kazuto; Kuroda, Kensuke; Okido, Masazumi; Hibi, Hideharu

    2018-01-01

    Surface modification of titanium dioxide (TiO 2 ) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO 2 implants. There were four experimental groups. Alkali-treated TiO 2 samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO 2 implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO 2 samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO 2 implants placed on rat femur bones were analyzed for bone-implant contact by histological methods. Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants. TiO 2 implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.

  2. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  3. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  4. Challenges associated with performing environmental research on titanium dioxide nanoparticles in aquatic environments

    Science.gov (United States)

    There are challenges associated with performing research on titanium dioxide NPs in aquatic environments particularly marine systems. A critical focus for current titanium dioxide NP research in aquatic environments needs to be on optimizing methods for differentiating naturally...

  5. Synthesis and photocatalytic activity for TiO2 nanoparticles as air purification

    Directory of Open Access Journals (Sweden)

    Haider Adawiya

    2018-01-01

    Full Text Available In the present work, titanium dioxide (TiO2 nanoparticles (NP’s were prepared using sol-gel process from Titanium Tetrachloride (TiCl4 as a precursor with calcinations at two temperatures (500 and 900 °C. The effect of calcinations temperatures on the structural, optical, morphological and Root Mean Square (roughness properties were investigated by means of Scanning Electron Microscopy, X-ray Diffraction (XRD, and Atomic Force Microscopy (AFM. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. A thin layer of photocatalytic TiO2 powder was deposited on glass substrate in order to investigate the self-cleaning effect of TiO2 nanoparticles in indoor and outdoor applications. Ultra-hydrophilicity was assessed by measuring the contact angle and it evaluated photolysis properties through the degradation of potassium permanganate (KMnO4 under direct sunlight. XRD analysis indicated that the structure of TiO2 was anatase at 500 °C and rutile at 900 °C calcination temperatures. As the calcination temperature increases, the crystallinity is improved and the crystallite size becomes larger. Coated films of TiO2 made the has permeability, low water contact angle and good optical activity. These are properties essential for the application of the surface of the self-cleaning. The final results illustrate that titanium dioxide can be used in the build materials to produce coated surfaces in order to minimize air pollutants that are placed in microbiologically sensitive circumference like hospitals and the food factory.

  6. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Ali M. A. Abdul Amir AL-Mokaram

    2017-05-01

    Full Text Available The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2 has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV. The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS. The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  7. Fenton reagent and titanium dioxide nanoparticles as antifungal agents to control leaf spot of sugar beet under field conditions

    Directory of Open Access Journals (Sweden)

    Hamza Amany

    2016-07-01

    Full Text Available In this study, foliar sprays of Fenton solutions (Fenton reaction, Fenton-like reaction and Fenton complex, titanium dioxide (TiO2 and the recommended fungicide (chlorothalonil were estimated in the control of sugar beet leaf spot caused by Cercospora beticola under field conditions in two growing seasons. In addition, the impacts of these treatments on some crop characters (leaf dry weight, root fresh weight, soluble solid content, sucrose content and purity of sugar were examined. Biochemical and histological changes in the livers and kidneys of treated rats compared to an untreated control were utilized to assess the toxicity of the examined curative agents. Overall, chlorothalonil and Fenton complex were the most effective treatments for disease suppression in both tested seasons followed by Fenton-like reagent, Fenton’s reagent and TiO2, respectively. Growth and yield characters of treated sugar beet significantly increased in comparison to an untreated control. There were mild or no (biochemical and histological changes in the livers and kidneys of treated rats compared to the control. Fenton solutions and TiO2 may offer a new alternative for leaf spot control in sugar beet.

  8. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    Science.gov (United States)

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Preparation, Characterization and Analysis of Fouling Mechanisms of TiO2- Embedded PVDF Membranes

    Directory of Open Access Journals (Sweden)

    Yoones Jafarzadeh

    2017-01-01

    Full Text Available Titanium dioxide (TiO2-embedded polyvinylidene fluoride (PVDF mixed matrix membranes were prepared through a nonsolvent induced phase separation (NIPS method. The structure of the membranes was characterized by FESEM, EDX, water drop contact angle measurement, pure water flux and mean pore radius analysis. The results showed that the prepared membranes had asymmetric structures with macro-voids and the presence of TiO2 nanoparticles increased the size of macro-voids. Moreover, pure water flux increased from 41 kg/m2h to 162 kg/m2h the content of TiO2 nanoparticles increased from 1 wt% to 5 wt% as embedded membrane. The contact angle dropped from 100° for 1 wt% TiO2- embedded membrane to 69° for 5 wt% TiO2-embedded membrane, showing that the hydrophilicity of membranes increased by addition of inorganic TiO2 nanoparticles. The fouling behavior oftheprepared mixed matrix membranes was studied in filtration process of 1% humic acid solution. The results showed that fouling resistance of the membranes increased with higher content of TiO2 nanoparticles. The results of classic fouling modeling of membranes showed that for 2 and 5 wt% TiO2-embedded membranes the best fit of the data occurred with the intermediate blockage model whereas cake formation model was the dominant mechanism for other membranes. Moreover, the analysis of fouling mechanisms by combined models showed that cake filtration-intermediate blockage model was in good agreement with the experimental data for all membranes. Finally, the results showed that the rejection of membranes increased with the addition of TiO2 nanoparticles, and then decreased.

  10. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO_2-HNTs nanocomposites

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Yu, Zongxue; Zhan, Yingqing; Ma, Lan; Zhang, Lei

    2016-01-01

    Highlights: • A novel TiO_2-HNTs/PVDF ultrafiltration membrane was prepared. • TiO_2 dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO_2-HNTs. • TiO_2-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO_2-HNTs) composites into the PVDF matrix. The effects of TiO_2-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO_2 was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO_2-HNTs. The pure water flux of 3%TiO_2-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO_2/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO_2-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  11. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles

    Science.gov (United States)

    Elsayed, M. A.; Gobara, Mohamed

    2016-08-01

    HCl-doped polyaniline (HCl-PANI) and titanium dioxide decorated with polyaniline (TiO2-decorated PANI) with different TiO2:PANI ratios were chemically prepared and utilized for the removal of tartrazine (TZ) dye from a synthetic aqueous solution. The mechanism of preparation of the sample suggested that aniline was adsorbed on the TiO2 surface before the polymerization process took place. Samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. The results showed that HCl-PANI and TiO2-decorated PANI have an amorphous structure. The thermal stability of the prepared samples was characterized using thermo-gravimetric (TG) analysis. HCl-PANI is stable up to 200 °C and the relative weight per cent of PANI in the TiO2-decorated PANI was 20, 25, 40 and 45%. The removal activity of TiO2-decorated PANI via TZ azo dye was investigated under UV light irradiations and compared with HCl-PANI and TiO2 particles. The results indicated the superiority of the TiO2-decorated PANI over pure HCl-PANI and TiO2. However, the excessive PANI percentage tends to form a relatively thick layer, and even aggregates on the surface of TiO2. This hinders the migration of excited electrons from the outer PANI layer to the inner TiO2 particles, which consequently leads to a decrease in the removal efficiency. A possible mechanism for the removal oxidative degradation is also mentioned.

  12. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water

    International Nuclear Information System (INIS)

    Suryaman, Dhanus; Hasegawa, Kiyoshi

    2010-01-01

    We investigated biological, photocatalytic, and combination of biological and photocatalytic treatments in order to remove a mixture of 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol in tap water (total: 100 mg L -1 , each: 25 mg L -1 ). The removal of chlorinated phenols was conducted with a flow biological treatment and a circulative flow photocatalytic treatment under black light and sunlight irradiations integrated with titanium dioxide separation and reuse. The combined biological-photocatalytic treatment significantly shortened the degradation and mineralization time of both the biological treatment and the photocatalytic treatment. The removed chlorophenols per hour by the combined biological-photocatalytic treatment was 25.8 mg h -1 , whereas by the combined photocatalytic-biological treatment was 10.5 mg h -1 . After a large portion of biodegradable 2-chlorophenol and 2,4-dichlorophenol, and around half amount of slightly biodegradable 2,4,5-trichlorophenol were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant pentachlorophenol, and biodegradation products were completely removed by the subsequent photocatalytic treatment. Since titanium dioxide particles in tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined treatment can be operated by integrating with the titanium dioxide separation and reuse. The TiO 2 particles were recovered and reused at least three times without significantly decreasing the removal efficiency.

  13. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    Science.gov (United States)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  14. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  15. Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n- (n=1-10) Using Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Zhai, Hua-jin; Wang, Lai S.

    2007-01-01

    TiO2 is a wide-band gap semiconductor and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties

  16. Superhydrophilicity of TiO2 nano thin films

    International Nuclear Information System (INIS)

    Mohammadizadeh, M.R.; Ashkarran, A.A.

    2007-01-01

    Full text: Among the several oxide semiconductors, titanium dioxide has a more helpful role in our environmental purification due to its photocatalytic activity, photo-induced superhydrophilicity, and as a result of them non-toxicity, self cleaning, and antifogging effects. After the discovery of superhydrophilicity of titanium dioxide in 1997, several researches have been performed due to its nature and useful applications. The superhydrophilicity property of the surface allows water to spread completely across the surface rather than remains as droplets, thus making the surface antifog and easy-to-clean. The distinction of photo-induced catalytic and hydrophilicity properties of TiO 2 thin films has been accepted although, the origin of hydrophilicity property has not been recognized completely yet. TiO 2 thin films on soda lime glass were prepared by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550 C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166 nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O∼0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV/Vis. spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450 C calcination temperature, where the film is converted to a superhydrophilic surface after 10 minutes under 2mW/cm 2 UV irradiation. TiO 2 thin film on Si(111), Si(100), and quartz substrates needs less time to be converted to

  17. Preparation and characterization of phase-pure anatase and rutile TiO2 powder by new chemistry route

    International Nuclear Information System (INIS)

    Pereira, E. A.; Montanhera, M.A.; Paula, F.R.; Spada, E.R.

    2014-01-01

    Titanium dioxide (TiO 2 ) is used in a wire range applications such as photocatalysis and sensor device. In this work is shown a new and effective method for the preparation of TiO 2 nanocrystalline in the crystallographic forms, anatase and rutile. The method involves dissolving the TiOSO 4 powder in H 2 O 2 solution and thermal treatment of amorphous precipitate. The technique of X-ray diffraction was used to follow the structure evolution of amorphous precipitate. Pure anatase structure and rutile are obtained at 600 deg C and 1000 deg C with a grain size estimated 24 and 55 nm respectively. TiO 2 nanoparticles is a promising alternative of the low cost whose potential for solar cells deserve a careful evaluation, especially in hybrid solar cells that employs TiO 2 as electron acceptor and as transport channels. (author)

  18. Structural, Optical, Morphological and Elemental Analysis on Sol-gel Synthesis of Ni Doped TiO2 Nanocrystallites

    Directory of Open Access Journals (Sweden)

    T. Sakthivel

    2017-06-01

    Full Text Available Pure and Ni doped titanium dioxide nanoparticles were successfully synthesized by sol-gel method and characterized usingXRD, UV-Visible, FTIR, FESEM and EDS techniques. XRD pattern confirms the formation of tetragonal TiO2. The absorbance spectra of pure and Ni doped TiO2 showed absorption spectrum at ultra-violet region due to electronic transition between bonding and anti-bonding orbital (π-π•. Bandgap energy of Ni doped TiO2 decreased to 2.5 eV when compared to pure TiO2 (3.39 eV. FESEM study reveals agglomerated spherical shaped morphology. The functional groups of the prepared samples were identified using FTIR spectroscopy and the elemental analysis was further supported with EDS analysis.

  19. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  20. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  1. Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Selvakumar, M.; Bhat, D. Krishna

    2012-01-01

    Highlights: ► Nanostructure TiO 2 has been prepared by a microwave assisted synthesis method. ► Microwave irradiation was varied with time duration on the formation of nanoparticles. ► TiO 2 -activate carbon show very good specific capacitance for supercapacitor. ► Electrochemical properties were studied on electroanalytical techniques. - Abstract: Electrochemical properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO 2 nano particles synthesized by a microwave method have been determined. The TiO 2 /activated carbon nanocomposite electrode with a composition of 1:3 showed a specific capacitance 92 Fg −1 . The specific capacitance of the electrode decreased with increase in titanium dioxide content. The p/p symmetrical supercapacitor fabricated with TiO 2 /activated carbon composite electrodes showed a specific capacitance of 122 Fg −1 . The electrochemical behavior of the neat TiO 2 nanoparticles has also been studied for comparison purpose. The galvanostatic charge–discharge test of the fabricated supercapacitor showed that the device has good coulombic efficiency and cycle life. The specific capacitance of the supercapacitor was stable up to 5000 cycles at current densities of 2, 4, 6 and 7 mA cm −2 .

  2. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  3. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  4. Experimental measurement and modelling of reactive species generation in TiO2 nanoparticle photocatalysis.

    Science.gov (United States)

    Turolla, Andrea; Piazzoli, Andrea; Budarz, Jeffrey Farner; Wiesner, Mark R; Antonelli, Manuela

    2015-07-01

    The generation of reactive species in titanium dioxide (TiO 2 ) nanoparticle photocatalysis was assessed in a laboratory scale setup, in which P25 Aeroxide TiO 2 suspensions were photoactivated by means of UV-A radiation. Photogenerated holes and hydroxyl radicals were monitored over time by observing their selective reaction with probe compounds, iodide and terephthalic acid, respectively. TiO 2 aggregate size and structure were characterized over the reaction time. Reactive species quenching was then described by a model, accounting for radiative phenomena, TiO 2 nanoparticle aggregation and kinetic reactions. The interaction between iodide and photogenerated holes was influenced by iodide adsorption on TiO 2 surface, described by a Langmuir-Hinshelwood mechanism, whose parameters were studied as a function of TiO 2 concentration and irradiation time. Iodide oxidation was effectively simulated by modelling the reaction volume as a completely stirred two-dimensional domain, in which irradiation phenomena were described by a two-flux model and the steady state for reactive species was assumed. The kinetic parameters for iodide adsorption and oxidation were estimated and successfully validated in a different experimental setup. The same model was adapted to describe the oxidation of terephthalic acid by hydroxyl radicals. The kinetic parameters for terephthalic acid oxidation were estimated and validated, while the issues in investigating the interaction mechanisms among the involved species have been discussed. The sensitivity of operating parameters on model response was assessed and the most relevant parameters were highlighted.

  5. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  6. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wang, Wei; Xie, Yibing; Du, Hongxiu; Xia, Chi; Wang, Yong; Tian, Fang

    2014-01-01

    A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO 2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM −1 cm −2 , and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication. (author)

  7. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Freyre-Fonseca, Verónica [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Doctorado en Ciencias en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CP 11340 México, DF (Mexico); Delgado-Buenrostro, Norma L. [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Flores-Flores, José O. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria AP 70-186, CP 04510 México, DF (Mexico); Gutiérrez-López, Gustavo F. [Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, CP 11340 México, DF (Mexico); Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M. [Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando 22, Tlalpan, CP 14080 México, DF (Mexico); and others

    2015-01-15

    Titanium dioxide nanoparticles (TiO{sub 2} NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO{sub 2} NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO{sub 2}-B) using TiO{sub 2} spheres (TiO{sub 2}-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm{sup 2}) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO{sub 2}-B effect on agglomerates size, cell size and granularity than TiO{sub 2}-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO{sub 2}-SP and TiO{sub 2}-B, respectively; TiO{sub 2}-SP and TiO{sub 2}-B induced 23% and 70% cell size decrease, respectively, whilst TiO{sub 2}-SP and TiO{sub 2}-B induced 7 and 14-fold of granularity increase. NO{sub x} production was down-regulated (31%) by TiO{sub 2}-SP and up-regulated (70%) by TiO{sub 2}-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO{sub 2}-SP exposed cells while TiO{sub 2}-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO{sub 2}-B had higher proliferative potential than TiO{sub 2}-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm{sup 2}) to titanium dioxide nanoparticles (TiO{sub 2}-NPs) shaped as spheres (TiO{sub 2

  8. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Directory of Open Access Journals (Sweden)

    Jiaoping Cai

    2015-02-01

    Full Text Available A new titanium dioxide (TiO2 slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs. The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  9. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Science.gov (United States)

    Cai, Jiaoping; Chen, Zexiang; Li, Jun; Wang, Yan; Xiang, Dong; Zhang, Jijun; Li, Hai

    2015-02-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ˜63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ˜0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  10. Titanium dioxide enrichment of sialic acid-containing glycopeptides

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Lendal, Sara E; Larsen, Martin Røssel

    2011-01-01

    the glycosylation site of N-linked sialylated glycoproteins. The method relies on the specificity of titanium dioxide affinity chromatography to isolate sialic acid-containing glycopeptides. After enzymatic release of the glycans, the enriched sialylated glycopeptides are analyzed by mass spectrometry...

  11. High-pressure behavior of nano titanium dioxide

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong

    2002-01-01

    Nanocrystalline rutile Titanium dioxide has been studied by X-ray diffraction at ambient temperature up to 47.4 GPa. The material is found to transform to the monoclinic baddeleyite structure between 20 and 30 GPa, which is higher than the corresponding pressure range for bulk material. Upon deco...

  12. Characterization of biodegradable polycaprolactone containing titanium dioxide micro and nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Govorčin Bajsić, E.; Ocelić Bulatović, V.; Šlouf, Miroslav; Šitum, Ana

    2014-01-01

    Roč. 8, č. 7 (2014), s. 536-540 ISSN 2010-376X R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : morphology * polycaprolactone * thermal properties Subject RIV: EA - Cell Biology http://waset.org/Publication/characterization-of-biodegradable-polycaprolactone-containing-titanium-dioxide-micro-and-nanoparticles/9998694

  13. Study of effect of chromium on titanium dioxide phase transformation ...

    Indian Academy of Sciences (India)

    Administrator

    Study of effect of chromium on titanium dioxide phase transformation by A Bellifa (pp 669–677). Figure S1. Structural ... 4 × 1⋅9486; 2 × 1⋅9799. Octahedral packing. 2 × 2 shared edges. 8 free edges. 3 shared edges. 4 corners. 5 free edges. 2 parallel shared edges. 2 corners. 10 free edges. O. O. Coordination scheme.

  14. Nanomaterial Case Studies: Nanoscale Titanium Dioxide (External Review Draft)

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental asses...

  15. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  16. Detection of titanium particles in human liver and spleen and possible health implications

    NARCIS (Netherlands)

    Heringa, M.B.; Peters, R.J.B.; Bleys, R.L.A.W.; Lee, van der M.K.; Tromp, P.C.; Kesteren, van P.C.E.; Eijkeren, van J.C.H.; Undas, A.K.; Oomen, A.G.; Bouwmeester, H.

    2018-01-01

    Background: Titanium dioxide (TiO2) is produced at high volumes and applied in many consumer and food products. Recent toxicokinetic modelling indicated the potential of TiO2 to accumulate in human liver and spleen upon daily oral exposure, which is not routinely investigated in chronic animal

  17. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  18. Determination of Lead and Cadmium in cow’s Milk and Elimination by Using Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Haniyeh Moallem Bandani

    2016-10-01

    Full Text Available Background and Objectives: Heavy metals such as cadmium and lead are the most important toxins spreading through various ways like water, soil, and air in nature and easily enter human food chain. It is essential to determine the cumulative and harmful effects of these metals in nutrients, especially in cow milk because it is a unique source of food for all ages and it contains both essential and nonessential trace elements. Materials and Methods: A total of 100 milk samples were directly collected from healthy cows in Zabol located on east of Iran. The samples were tested to determine lead and cadmium residues. The rates of the heavy metals were determined using a Rayleigh atomic absorption spectrum equipped with hollow cathode lamps (HCL at 283.3 nm for lead (Pb and at 228.8 nm for cadmium (Cd. By using the photo-catalytic titanium dioxide nanoparticles, these toxic metals were removed. Results: The mean ± SD of the concentration of lead and cadmium in raw milk were 9.175± 2.5 and 4.557 ± 1.081 ppb, respectively. Also, the P-values of Kalmogorov– Smiranov test for lead and cadmium were respectively 0.057 ppb (P>0.05 and 0.435 ppb (P>0.05. TiO2 nanoparticles were used to eliminate and remove lead and cadmium in milk samples. The results showed that there was a significant difference between lead and cadmium contents before and after adding TiO2 nanoparticles (P<0.05. Conclusions: According to results of this study, there was a very low amount of toxic metals. So, it seems that it is not necessary to use TiO2 in milk samples but these days it used frequently as an additive to some samples like milk to remove these pollutants. Keywords: lead, cadmium, milk, atomic absorption spectroscopy, TiO2 nanoparticles

  19. Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma

    International Nuclear Information System (INIS)

    Asanuma, T.; Matsutani, T.; Liu, C.; Mihara, T.; Kiuchi, M.

    2004-01-01

    Titanium dioxide (TiO 2 ) thin films were deposited on unheated quartz (SiO 2 ) substrates in 'pure oxygen' plasma by reactive radio-frequency (rf) magnetron sputtering. The structural and optical properties of deposited films were systematically studied by changing the deposition parameters, and it was very recently found that crystalline TiO 2 films grew effectively in pure O 2 atmosphere. For TiO 2 films deposited at a rf power P rf of 200 W, x-ray diffraction patterns show the following features: (a) no diffraction peak was observed at a total sputtering pressure p tot of 1.3 Pa; (b) rutile (110) diffraction was observed at 4.0 Pa, (c) the dominant diffraction was from anatase (101) planes, with additional diffraction from (200), under p tot between 6.7 and 13 Pa. For the deposition at 140 W, however, crystalline films with mixed phases were observed only between 4.0 and 6.7 Pa. The peaks of both the deposition rate and the anatase weight ratio for the films produced at 140 W were found at p tot of approximately 6.7 Pa. This suggests that the nucleation and growth of TiO 2 films were affected by the composition, density, and kinetic energy of the particles impinging on the substrate surface. The optical absorption edge analysis showed that the optical band gap E g and the constant B could sensitively detect the film growth behavior, and determine the film structure and optical absorption. The change in the shape of the fundamental absorption edge is considered to reflect the variation of density and the short-range structural modifications

  20. Imprinting on empty hard gelatin capsule shells containing titanium dioxide by application of the UV laser printing technique.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru; Terada, Katsuhide

    2014-08-01

    The purpose of this study was to examine the application of ultraviolet (UV) laser irradiation to printing hard gelatin capsule shells containing titanium dioxide (TiO2) and to clarify how the color strength of the printing by the laser could be controlled by the power of the irradiated laser. Hard gelatin capsule shells containing 3.5% TiO2 were used in this study. The capsules were irradiated with pulsed UV laser at a wavelength of 355 nm. The color strength of the printed capsule was determined by a spectrophotometer as total color difference (dE). The capsules could be printed gray by the UV laser. The formation of many black particles which were agglomerates of oxygen-defected TiO2 was associated with the printing. In the relationship between laser peak power of a pulse and dE, there were two inflection points. The lower point was the minimal laser peak power to form the black particles and was constant regardless of the dosage forms, for example film-coated tablets, soft gelatin capsules and hard gelatin capsules. The upper point was the minimal laser peak power to form micro-bubbles in the shells and was variable with the formulation. From the lower point to the upper point, the capsules were printed gray and the dE of the printing increased linearly with the laser peak power. Hard gelatin capsule shells containing TiO2 could be printed gray using the UV laser printing technique. The color strength of the printing could be controlled by regulating the laser energy between the two inflection points.