WorldWideScience

Sample records for titanium aluminide weld

  1. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  2. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  3. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.P.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  4. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  5. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  6. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    Science.gov (United States)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron

  7. Environmental effects in titanium aluminide alloys

    International Nuclear Information System (INIS)

    Thompson, A.W.

    1991-01-01

    Environmental effects on titanium aluminide alloys are potentially of great importance for engineering applications of these materials, although little has been published to date on such effects. The primary emphasis in this paper is on hydrogen effects, with a brief reference to oxygen effects. Hydrogen is readily absorbed at elevated temperature into all the titanium aluminide compositions studied to date, in amounts as large as 10 at.%, and on cooling virtually all this hydrogen is precipitated as a hydride phase or phases. The presence of these precipitated hydride plates affects mechanical properties in ways similar to what is observed in other hydride forming materials, although effects per unit volume of hydride are not particularly severe in the titanium aluminides. Microstructure, and thus thermal and mechanical history, plays a major role in controlling the severity of hydrogen effects

  8. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  9. Shock response of a gamma titanium aluminide

    International Nuclear Information System (INIS)

    Shazly, Mostafa; Prakash, Vikas

    2008-01-01

    Potential use of γ-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys--the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8±0.09 GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied

  10. Creep deformation mechanisms in a γ titanium aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zakaria [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom); Ding, Rengen [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Martin, Nigel; Dixon, Mark [Rolls-Royce plc, P.O. Box 31, Derby DE248BJ (United Kingdom); Bache, Martin [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom)

    2016-09-15

    Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.

  11. Gamma titanium aluminide production using the Induction Skull Melting (ISM) process

    International Nuclear Information System (INIS)

    Reed, S.

    1995-01-01

    Since 1985, more than 2,000 titanium aluminide heats have been produced using the Induction Skull Melting (ISM) process. The history of ISM/Gamma production will be discussed in this paper. Gamma titanium aluminide processing with Induction Skull Melting offers many advantages over other types of reactive alloy melting methods. These advantages will be discussed as well as drawbacks. Also, potential markets and applications for ISM/Gamma will be presented

  12. Effects of thermomechanical processing on titanium aluminide strip cast by the melt overflow process

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, T.A. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Hackman, L.E. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Batawi, E. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland)); Peters, J.A. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland))

    1994-05-01

    The objective of this research project was to investigate the feasibility of producing titanium aluminide foils from direct cast strip using ribbon technology''s plasma melt overflow process. Niobium-modified Ti[sub 3]Al alloys were melted in a cold copper crucible using a transferred plasma arc and then direct cast into strip on a rotating chill roll.Samples cut from the as-cast Ti[sub 3]Al-Nb ([alpha][sub 2]) titanium aluminide strip were encapsulated into a pack. The packs were heated to the rolling temperature and then hot rolled at low strain rates. Foils 70 [mu]m (0.003 in) thick, having a uniform [alpha][sub 2]-B2 microstructure with oxygen contents as low as 900 wt.ppm were obtained after pack rolling. The strips and foils were characterized in terms of microstructure and chemical composition in the as-received, heat-treated and pack-rolled conditions.The results indicated that it was technically feasible to produce foils from direct cast titanium aluminide strip using pack-rolling technology. The advantage of this technology lies in its cost-effectiveness, since the relatively low cost direct-cast titanium aluminide strip was thermomechanically processed into foil with the desired microstructure without any intermediate processing steps. ((orig.))

  13. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder

    Science.gov (United States)

    Haun, Robert E.

    2017-12-01

    A historical look at the melt processing of gamma titanium aluminides is presented first, followed by recent advances in melting equipment design by Retech to produce 50-mm and 100-mm-diameter ingots up to 1000 mm long. Equipment design for the economical production of gamma titanium aluminide powder is then discussed. The focus in industry has shifted away from basic research to cost-effective production of these titanium alloys for aerospace and automotive engine applications.

  14. Joining of Gamma Titanium Aluminides

    National Research Council Canada - National Science Library

    Baeslack, William

    2002-01-01

    .... Although organized and presented by joining process, many of the observations made and relationships developed, particularly those regarding the weldability and welding metallurgy of gamma titanium...

  15. A comparative study on laser processing of commercially available titanium aluminide (TI-48AL-2CR-2NB) and in-situ alloying of titanium aluminide

    CSIR Research Space (South Africa)

    Hoosain, Shaik E

    2017-11-01

    Full Text Available Titanium aluminides (TiAl) are acknowledged as promising high temperature structural materials due to their high melting point, high strength to density, high elastic modulus and high creep strength. Due to their low ductility, it is difficult...

  16. Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, E. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia)]. E-mail: esah@fkm.utm.my; Suardi, K. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia); Ourdjini, A. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia)

    2005-04-25

    Intermetallic alloys based on gamma titanium aluminide are now regarded as promising candidates for high temperature applications such as for aerospace, marine and automotive engine components, due to their high specific strength and modulus. Their oxidation resistance is good, especially at intermediate and high temperature; oxidation resistance can be obtained up to 800 deg. C. One critical area of application is in combustion engines in aerospace vehicles such as hypersonic airplanes and high-speed civil transport airplanes. This entails the use of hydrogen as a fuel component and it has been widely reported by researchers that these materials exhibit corrosion in the form of environment embrittlement in the presence of hydrogen. A fair amount of research has been carried out to investigate the influence of hydrogen in {gamma}-titanium aluminide. Some researchers reported that {alpha}{sub 2} and lamellar phases had major influence in the susceptible of hydrogen to alloys, while hydrogen is too low to penetrate the {gamma}-phases. This research focused on the effect of different microstructures of {gamma}-titanium aluminide to the diffusion coefficient of hydrogen (D) and the corrosion product after hydrogen attack. Modification of {gamma}-titanium aluminide can be achieved by heat treatment of as-cast binary samples Ti-45% Al and Ti-48% Al. All samples were then subjected to corrosion attack under cathodically charged with galvanostatic mode for 6 h. The potential variation with time was monitored from these data the values of the diffusion coefficient of hydrogen (D) to {gamma}-titanium aluminide was obtained. D was calculated based on Fick's second Law. These results were compared with that obtained from micro-Vickers hardness profiling, which was measured at cross-section area per depth from the top corroded surface. The hardness values were calculated using the error function equation. An image analyzer; X-ray diffraction (XRD); scanning electron

  17. Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature

    International Nuclear Information System (INIS)

    Hamzah, E.; Suardi, K.; Ourdjini, A.

    2005-01-01

    Intermetallic alloys based on gamma titanium aluminide are now regarded as promising candidates for high temperature applications such as for aerospace, marine and automotive engine components, due to their high specific strength and modulus. Their oxidation resistance is good, especially at intermediate and high temperature; oxidation resistance can be obtained up to 800 deg. C. One critical area of application is in combustion engines in aerospace vehicles such as hypersonic airplanes and high-speed civil transport airplanes. This entails the use of hydrogen as a fuel component and it has been widely reported by researchers that these materials exhibit corrosion in the form of environment embrittlement in the presence of hydrogen. A fair amount of research has been carried out to investigate the influence of hydrogen in γ-titanium aluminide. Some researchers reported that α 2 and lamellar phases had major influence in the susceptible of hydrogen to alloys, while hydrogen is too low to penetrate the γ-phases. This research focused on the effect of different microstructures of γ-titanium aluminide to the diffusion coefficient of hydrogen (D) and the corrosion product after hydrogen attack. Modification of γ-titanium aluminide can be achieved by heat treatment of as-cast binary samples Ti-45% Al and Ti-48% Al. All samples were then subjected to corrosion attack under cathodically charged with galvanostatic mode for 6 h. The potential variation with time was monitored from these data the values of the diffusion coefficient of hydrogen (D) to γ-titanium aluminide was obtained. D was calculated based on Fick's second Law. These results were compared with that obtained from micro-Vickers hardness profiling, which was measured at cross-section area per depth from the top corroded surface. The hardness values were calculated using the error function equation. An image analyzer; X-ray diffraction (XRD); scanning electron microscope (SEM) and secondary ion mass

  18. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P., E-mail: thpfys@126.com [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L. [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qian, M., E-mail: ma.qian@rmit.edu.au [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, VIC 3001 (Australia)

    2015-06-11

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways.

  19. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  20. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  1. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  2. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    International Nuclear Information System (INIS)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V.

    2014-01-01

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb 2 Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure

  3. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu

    2014-11-15

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb{sub 2}Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure.

  4. Microstructures and superplasticity in near-gamma titanium aluminide alloys

    International Nuclear Information System (INIS)

    Bampton, C.C.; Martin, P.L.

    1993-01-01

    Microstructure control by thermomechanical processing in near-gamma titanium aluminide alloys has recently progressed to a point where the authors are able to reliably produce a wide range of microstructures in a single alloy. The authors are now studying the basic superplastic deformation microstructures. Correlations are made between microstructural details and flow stress, strain hardening, strain-rate hardening, necking, cavitation and failure. Special emphasis is given to the cavitation behavior since this phenomenon may constitute a major limitation to the useful application of superplastic forming for gamma TiAl structures

  5. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions

    International Nuclear Information System (INIS)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D.

    2007-01-01

    Corrosion resistance and galvanic coupling of Grade 2 commercially pure titanium in its welded and non-welded condition were systematically analyzed in LiBr solutions. Galvanic corrosion was evaluated through two different methods: anodic polarization (according to the Mixed Potential Theory) and electrochemical noise (using a zero-resistance ammeter). Samples have been etched to study the microstructure. The action of lithium chromate as corrosion inhibitor has been evaluated. Titanium and welded titanium showed extremely low corrosion current densities and elevated pitting potential values (higher than 1 V). The results of both methods, anodic polarization and electrochemical noise, showed that the welded titanium was always the anodic element of the pair titanium-welded titanium, so that its corrosion resistance decreases due to the galvanic effect

  6. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  7. Titanium Aluminide Scramjet Inlet Flap Subelement Benchmark Tested

    Science.gov (United States)

    Krause, David L.; Draper, Susan L.

    2005-01-01

    A subelement-level ultimate strength test was completed successfully at the NASA Glenn Research Center (http://www.nasa.gov/glenn/) on a large gamma titanium aluminide (TiAl) inlet flap demonstration piece. The test subjected the part to prototypical stress conditions by using unique fixtures that allowed both loading and support points to be located remote to the part itself (see the photograph). The resulting configuration produced shear, moment, and the consequent stress topology proportional to the design point. The test was conducted at room temperature, a harsh condition for the material because of reduced available ductility. Still, the peak experimental load-carrying capability exceeded original predictions.

  8. Friction Welding of Titanium and Carbon Steel

    OpenAIRE

    Atsushi, HASUI; Yoichi, KIRA; Faculty of Science and Technology, Keio University; Ishikawajima-Harima Heavy Industries, Co., Ltd.

    1985-01-01

    Titanium-steel is a combination of dissimilar materials, which are difficult to weld in general, owing to inevitable formation of brittle intermetallic compounds. A prominent feature of friction welding process is ability to weld dissimilar materials in many kinds of combinations. This report deals with friction weldabilily of pure titanium and S25C steel, which are 12 mm in diameter. Main results are summarized as follows; (1) Suitable welding conditions to obtain a sound weld, which has a j...

  9. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  10. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  11. Microstructural characterization of silicon added titanium aluminide

    International Nuclear Information System (INIS)

    Khan, A.N.

    2009-01-01

    Titanium aluminides intermetallic compounds have received great attention during the past decade, since they have the potential, in aircraft and automotive engines, to replace the high density Ni-base superalloys However, these intermetallics possess poor oxidation properties at high temperatures. Previous studies showed that protective alumina scale formation on gamma-TiAl can be obtained by small additions (around 2 at.%) of Ag. In the present study, a number of cast Ti-Al-Si alloys were investigated in relation to transient oxide formation in air at 1300 deg. C. After various oxidation times the oxide composition, microstructure and morphology were studied by combining a number of analysis techniques. The TiAl-Si alloys appear to form Al Ti and Si oxides. However, the formation of silicon oxide at the interface of base metal and scale slows down the oxidation rate significantly. (author)

  12. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au

    2015-04-17

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α{sub 2} grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method.

  13. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    International Nuclear Information System (INIS)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi

    2015-01-01

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α 2 grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method

  14. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    Science.gov (United States)

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  15. Interface-related deformation phenomena in intermetallic γ-titanium aluminides

    International Nuclear Information System (INIS)

    Appel, F.; Wagner, R.

    1993-01-01

    The development of titanium aluminides towards higher ductility concentrates on Ti-rich alloys which are composed of the intermetallic phases γ(TiAl) and α 2 (Ti 3 Al). The two phases form a lamellar microstructure with various types of interfaces. The deformation behaviour of these materials was investigated by compression tests, which were performed for different orientations of the interfacial boundaries with respect to the sample axis. With regard to the mechanical properties the structure of the interfaces and the micromechanisms of deformation were studied by conventional and high resolution electron microscopy. Accordingly, the interfacial boundaries impede the propagation of slip across the lamellae, leading to an athermal contribution to the flow stress. (orig.)

  16. Interface-related deformation phenomena in intermetallic γ-titanium aluminides

    Science.gov (United States)

    Appel, F.; Wagner, R.

    1993-01-01

    The development of titanium aluminides towards higher ductility concentrates on Ti-rich alloys which are composed of the intermetallic phases γ(TiAl) and α2(Ti3Al). The two phases form a lamellar microstructure with various types of interfaces. The deformation behaviour of these materials was investigated by compression tests, which were performed for different orientations of the interfacial boundaries with respect to the sample axis. With regard to the mechanical properties the structure of the interfaces and the micromechanisms of deformation were studied by conventional and high resolution electron microscopy. Accordingly, the interfacial boundaries impede the propagation of slip across the lamellae, leading to an athermal contribution to the flow stress.

  17. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  18. Relationship of interaction of titanium aluminides with alloying elements as a basis for design of high-temperature alloys and composites

    International Nuclear Information System (INIS)

    Povarova, K.B.; Bannykh, O.A.; Antonova, A.V.

    2002-01-01

    One analyzed the available ternary phase diagrams of Ti-Al-AE where AE - alloying metal or metalloid. Nature of interaction of titanium aluminides, in particular, α 2 -Ti 3 Al, γ-TiAl and TiAl 3 with alloying elements (AE) in the uninvestigated systems was hypothesized with regard to the available binary and ternary phase diagrams and data on electron structure of AE. One determined that structure of Ti-Al-AE ternary phase diagrams, namely, position of domains of γ-TiAl and α 2 -Ti 3 Al base solid solutions, nature of substitution for AE positions in Ti or Al sublattices and position of (α 2 +γ)/γ domain boundary were governed by likeness or difference of electron structure of AE and of the substituted metal (Ti or Al) in titanium aluminide lattice and by value of dimension factor (difference of atomic radii of Al and Ti or Al). One analyzed promises offered by application of solid solution alloying and microalloying of aluminides by I-VIII group metals of the Periodic System [ru

  19. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  20. All welded titanium condenser adopted in atomic power plants

    International Nuclear Information System (INIS)

    Iwai, Nagao; Itabashi, Yukihiko

    1980-01-01

    Condensers in power plants are shell-and-tube type heat exchangers. Most condensers use seawater as a coolant. Their tube and tube Sheets have usually been made of brass, which resists corrosion but cannot completely prevent it; as a result, tubes sometimes corrode or erode, allowing seawater to leak into the turbine cycle. As is well known, titanium has almost complete corrosion resistance against seawater; for this reason titanium tubes have replaced brass ones in some condensers operating in Europe and the USA. Even in such condensers, though, the tube plates have still been made of brass, tightly fitted to the titanium tubes, and it has proved impossible to eliminate seawater leakage at the junctions between tubes and tube Sheets. In order to eliminate such leakage completely, the tube Sheets must be made of titanium too, and the tubes and plates must be welded together. However, the welding of titanium requires an extremely celan atmosphere, a condition very difficult to fulfill at power plant construction sites, and the use of whole welded titanium tube condensers has long been considered a practical impossibility. Such all-titanium welded condensers have now been successfully constructed and installed in two 600 MW fossil power plants and one 1100 MW nuclear power plant. This paper describes the techniques used, add in addition reviews the various materials that have been used in condenser tubes. (author)

  1. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    Science.gov (United States)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  2. The dependence of tensile ductility on investment casting parameters in gamma titanium aluminides

    International Nuclear Information System (INIS)

    Raban, R.; Rishel, L.L.; Pollock, T.M.

    1999-01-01

    Plates of three gamma titanium aluminide alloys have been investment cast with a wide variety of casting conditions designed to influence cooling rates. These alloys include Ti-48Al-2Cr-2Nv, Ti-47Al-2Cr-2Nb+0.5at%B and Ti-45Al-2Cr-2Nb+0.9at%B. Cooling rates have been estimated with the use of thermal data from casting experiments, along with the UES ProCAST simulation package. Variations in cooling rate significantly influenced the microstructure and tensile properties of all three alloys

  3. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  4. Comparative evaluation of cyclic strength of welded joints of titanium alloys

    International Nuclear Information System (INIS)

    Grigor'yants, A.G.; Florinskij, Yu.B.; Moryakov, V.F.; Kvasha, Yu.N.

    1983-01-01

    Results of comparative study of cyclic strength of titanium alloy PT-3V, fused by three ways of welding, are presented. It is established that the use of laser welding promotes the formation of favourable structure of weld metal and HAZ (heat affected zone), characterized by the formation of dislocation barriers. The results obtained permit to recommend laser technique instead of traditional ways of welding during product manufacturing of titanium allo

  5. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  6. Laser beam welding of titanium additive manufactured parts

    OpenAIRE

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the layered manufacturing process. This study shows that due to these deficiencies more energy per unit weld length is required to obtain a similar keyhole geometry for titanium AM parts. It is also demon...

  7. Subminiature eddy-current transducers designed to study welded joints of titanium alloys

    Science.gov (United States)

    Malikov, V. N.; Dmitriev, S. F.; Katasonov, A. O.; Sagalakov, A. M.; Ishkov, A. V.

    2017-12-01

    Eddy current transducers (ECT) are used to construct a sensor for investigating titanium sheets connected by a welded joint. The paper provides key technical information about the eddy current transducer used and describes the procedure of measurements that makes it possible to control defects in welded joints of titanium alloys. It is capable of automatically changing the filtering cutoff frequency and operating frequency of the device. Experiments were conducted on welded VT1-0 titanium plates. The paper contains the results of these measurements. The dependence data facilitates the assessment of the quality of the welded joints and helps make an educated conclusion about welding quality.

  8. Distribution of temperature and deformations during resistance butt welding of uranium rods with titanium

    International Nuclear Information System (INIS)

    Tatarinov, V.R.; Krasnorutskij, V.S.

    1977-01-01

    Results are described on studying time-temperature and deformation parameters for resistance welding of uranium rods with titanium. It is shown that in the first period of welding (approximately 2/3 tsub(wel.)) the maxima of weld temperature and weld deformation deviate to titanium, and in the final period uranium deformation reaches the level of maximum lateral deformation of titanium. For faying surfaces with minimum weld deformation the joint cleaning of contaminants and oxides is insufficient, which results in lower weld quality

  9. Analysis of weld solidification cracking in cast nickel aluminide alloys

    International Nuclear Information System (INIS)

    Santella, M.L.; Feng, Z.

    1995-01-01

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni 5 Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results

  10. Microstructure evolution of electron beam welded Ti3Al-Nb joint

    International Nuclear Information System (INIS)

    Feng Jicai; Wu Huiqiang; He Jingshan; Zhang Bingang

    2005-01-01

    The microstructure evolution characterization in high containing Nb, low Al titanium aluminide alloy of electron beam welded joints was investigated by means of OM, SEM, XRD, TEM and microhardness analysis. The results indicated that the microstructure of the weld metal made with electron beam under the welding conditions employed in this work was predominantly metastable, retaining ordered β phase (namely B2 phase), and was independent of the welding parameters but independent of the size and the orientation of the weld solidification structures. As the heat input is decreased, the cellular structure zone is significantly reduced, and then the crystallizing morphology of fusion zone presented dendritically columnar structure. There existed grain growth coarsening in heat affected zone (HAZ) for insufficient polygonization. Both fusion zone (FZ) and the HAZ had higher microhardness than the base metal

  11. Microstructure evaluation and mechanical behavior of high-niobium containing titanium aluminides

    Science.gov (United States)

    Bean, Glenn Estep, Jr.

    Ti-Al-Nb-based alloys with gamma(TiAl)+sigma(Nb2Al) microstructure have shown promise for potential high temperature applications due to their high specific strength. Recent research has been aimed towards increasing strength and operating temperatures through microstructural refinement and control. Alloys with 10 - 30% sigma-phase have been investigated, exploring relationships between chemistry, microstructure development, and flow behavior. Alloys with composition Ti-45Al-xNb-5Cr-1Mo (where x = 15, 20, 25 at%) have been produced, characterized, and tested at high temperature under compression. Processing, microstructure and mechanical property relationships are thoroughly investigated to reveal a significant connection between phase stability, morphology and their resultant effects on mechanical properties. Phase transformation temperatures and stability ranges were predicted using the ThermoCalc software program and a titanium aluminide database, investigated through thermal analysis, and alloys were heat treated to develop an ultrafine gamma+sigma microstructure. It has been demonstrated that microstructural development in these alloys is sensitive to composition and processing parameters, and heating and cooling rates are vital to the modification of gamma+sigma microstructure in these alloys. Towards the goal of designing a high-Nb titanium aluminide with ultrafine, disconnected gamma+sigma morphology, it has been established that microstructural control can be accomplished in alloys containing 15-25at% Nb through targeted chemistry and processing controls. The strength and flow softening characteristics show strain rate sensitivity that is also affected by temperature. From the standpoint of microstructure development and mechanical behavior at elevated temperature, the most favorable results are obtained with the 20 at% Nb alloy, which produces a combination of high strength and fine disconnected gamma+sigma microstructure. Microstructural analysis reveals

  12. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  13. Custom-made laser-welded titanium implant prosthetic abutment.

    Science.gov (United States)

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  14. Nanostructure of vortex during explosion welding.

    Science.gov (United States)

    Rybin, V V; Greenberg, B A; Ivanov, M A; Patselov, A M; Antonova, O V; Elkina, O A; Inozemtsev, A V; Salishchev, G A

    2011-10-01

    The microstructure of a bimetallic joint made by explosion welding of orthorhombic titanium aluminide (Ti-30Al-16Nb-1Zr-1Mo) with commercially pure titanium is studied. It is found that the welded joint has a multilayered structure including a severely deformed zone observed in both materials, a recrystallized zone of titanium, and a transition zone near the interface. Typical elements of the transition zone-a wavy interface, macrorotations of the lattice, vortices and tracks of fragments of the initial materials-are determined. It is shown that the observed vortices are formed most probably due to local melting of the material near the contact surface. Evidence for this assumption is deduced from the presence of dipoles, which consist of two vortices of different helicity and an ultrafine duplex structure of the vortex. Also, high mixing of the material near the vortex is only possible by the turbulent transport whose coefficient is several orders of magnitude larger than the coefficient of atomic diffusion in liquids. The role played by fragmentation in both the formation of lattice macrorotations and the passage of coarse particles of one material through the bulk of the other is determined.

  15. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  16. On the characteristics and application of thin wall welded titanium tubes for heat transfer

    International Nuclear Information System (INIS)

    Nishimura, Takashi; Miyamoto, Yoshiyuki

    1985-01-01

    Because of the excellent corrosion resistance, thin wall welded titanium tubes have become to be used in large number as the heat transfer tubes of condensers and seawater desalting plants using seawater in place of conventional copper alloy tubes. Especially in nuclear power plants, the all titanium condensers using thin wall welded titanium tubes and titanium tube plates were adopted in the almost all plants under construction or expected to be constructed. In this report, the various characteristics of thin wall welded titanium tubes required for using them as heat transfer tubes, such as corrosion resistance, heat transfer characteristics, fatigue strength and expanding characteristics, are outlined, and the state of use is described. At first, relatively thick seamless titanium tubes were used for chemical industry, but thereafter, due to the advance of the mass production techniques, the welded titanium tubes of less than 0.7 mm thickness and high quality have become to be supplied at low cost. In 1969, titanium tubes were used for the first time in Japan for the air cooler in the condenser of Akita Power Station, Tohoku Electric Power Co., Inc. The features of titanium are small specific gravity, small linear expansion coefficient and small Young's modulus. (Kako, I.)

  17. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  18. R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines

    Science.gov (United States)

    1982-07-01

    conventional alpha beta titanium alloy in the beta processed condition. Figures 18a and 18b show the general features of phase arrangement, plates of the...sheet after various processes are shown in Figure 53. Welding was performed by a manual tungsten inert gas ( TIG ) technique in an argon-filled dry box... Processing studies continue to show that many of the methods of forging, joining, etc. developed for conventional titanium alloys can be applied to alpha

  19. Electrochemical heterogeneity and corrosion resistance of a welded titanium-zirconium joint

    International Nuclear Information System (INIS)

    Polyakov, S.G.; Goncharov, A.B.; Onoprienko, L.M.; Smiyan, O.D.

    1992-01-01

    The electrochemical behavior and corrosion resistance of various welded joints of zirconium alloy N-2.5 with commercial titanium VT1 made by the argon-arc method are studied. Electrochemical heterogeneity is studied by measuring the distribution of potentials over the surface, galvanic currents, and recording of polarization curves for different zones of a welded joint in 5% sulfuric acid solution at 340 K. It is established that electrochemical heterogeneity of the zones of an N-2.5 + VT1 welded joint leads to acceleration of the cathodic process in a welded joint and the anodic process along the fusion line from the titanium direction where the greatest hydrogenation of the metal and corrosion damage is correspondingly observed

  20. Radiographic testing methods for welds of thin titanium plates and thin wall tubes

    International Nuclear Information System (INIS)

    1984-01-01

    This standard stipulates the testing method by X-ray radiography for the welded parts of titanium plates and titanium tubes with thickness not exceeding 8 mm. The other items than those stipulated here shall be in accordance with JIS Z 3107-1973 ''Testing method by radiography for the welded part of titanium and method of grade classification of radiographs''. As the photographing method of radiographs, the performance of the equipment and materials for testing, the direction of X-ray irradiation, the thickness of parent materials and welds, the use of penetrameters, the arrangement for photographing, the requirement for radiographs and the observation of radiographs are specified. The X-ray apparatuses, photo-sensitive materials and the tools for photographing and observation must be such that the radiographs clearly showing the defects in the welds being tested can be taken or observed. The JIS Z 3107 is insufficient for the test of thin materials like titanium, therefore, this standard was set down. As the thickness of welds, the thickness of parent materials was taken. In this standard, the titanium penetrameters were adopted because they can be made and they conform to practical state. If magnified photographing is carried out with microfocus X-ray apparatuses, precise photographing can be made. (Kako, I.)

  1. The effects of zirconium and carbon on the hot cracking resistance of iron aluminides. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering; David, S.A. [Oak Ridge National Lab., TN (United States)

    1998-02-01

    Iron aluminides have been of interest for about 60 years because of their good high temperature strengths (below 600{degrees}C) and excellent oxidation and sulfidation resistance, as well as their relatively low cost and conservation of strategic elements. These advantageous properties have driven the development of iron aluminides as potential structural materials. However, the industrial application of iron aluminides has been inhibited because of a sharp reduction in strength at temperatures higher than 600{degrees}C and low ductility at ambient temperatures due to hydrogen embrittlement. Oak Ridge National Laboratory has shown in recent years that room temperature properties of alloys containing 28% Al (all compositions are in atomic percent unless otherwise noted) can be improved through thermomechanical processing and alloying. Iron aluminides must have good weldability if they are to be used as structural materials. A coarse fusion zone microstructure is formed when iron aluminides are welded, increasing their susceptibility to cold cracking in water vapor. A recent study at Colorado School of Mines has shown that refining the fusion zone microstructure by weld pool oscillation effectively reduces cold cracking. Weld pool inoculation has been shown to refine fusion zone microstructures, but coarse carbide distribution caused this approach to reducing cold cracking to be ineffective.

  2. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    Science.gov (United States)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  3. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  4. On the texture of spray formed gamma titanium aluminide

    International Nuclear Information System (INIS)

    Staron, P.; Bartels, A.; Brokmeier, H.-G.; Gerling, R.; Schimansky, F.P.; Clemens, H.

    2006-01-01

    Spray forming is an attractive processing route for titanium aluminides that combines advantages both of ingot and powder metallurgy. Spray formed deposits were produced using the electrode induction melting gas atomization technique. The texture of a spray formed Ti-48.9 at.% Al deposit in the as-sprayed state and after isothermal forging as well as after isothermal forging and a subsequent stress relief heat treatment was analysed by means of neutron diffraction. The spray formed deposit was found to have a very weak -fibre texture with a maximum pole density of 1.12 multiples of random distribution. After isothermal forging of cylinders to 77% reduction at an initial strain rate of 2 x 10 -3 s -1 at 1150 deg. C, a band of orientations from to with a maximum close to was found. A Zener-Hollomon parameter of 12.6 is estimated, which indicates that during isothermal forging dynamic recrystallization is governed by nucleation of new grains. A subsequent stress relief treatment at 1030 deg. C for 2 h caused additional grain growth, after which the maximum pole density is increased from 3.3 to 3.8 times random

  5. Benchmark Testing of the Largest Titanium Aluminide Sheet Subelement Conducted

    Science.gov (United States)

    Bartolotta, Paul A.; Krause, David L.

    2000-01-01

    To evaluate wrought titanium aluminide (gamma TiAl) as a viable candidate material for the High-Speed Civil Transport (HSCT) exhaust nozzle, an international team led by the NASA Glenn Research Center at Lewis Field successfully fabricated and tested the largest gamma TiAl sheet structure ever manufactured. The gamma TiAl sheet structure, a 56-percent subscale divergent flap subelement, was fabricated for benchmark testing in three-point bending. Overall, the subelement was 84-cm (33-in.) long by 13-cm (5-in.) wide by 8-cm (3-in.) deep. Incorporated into the subelement were features that might be used in the fabrication of a full-scale divergent flap. These features include the use of: (1) gamma TiAl shear clips to join together sections of corrugations, (2) multiple gamma TiAl face sheets, (3) double hot-formed gamma TiAl corrugations, and (4) brazed joints. The structural integrity of the gamma TiAl sheet subelement was evaluated by conducting a room-temperature three-point static bend test.

  6. Effect of laser welding on the titanium ceramic tensile bond strength

    Directory of Open Access Journals (Sweden)

    Rodrigo Galo

    2011-08-01

    Full Text Available Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. OBJECTIVE: The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3 conditions was also studied. MATERIAL AND METHODS: Forty CpTi cylindrical rods (3 mm x 60 mm were cast and divided into 2 groups: with laser welding (L and without laser welding (WL. Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm; B - Al2O3 (180 µm; C - Al2O3 (110 µm; D - Al2O3 (50 µm. Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05. RESULTS: Significant differences were found among all subgroups (p<0.05. The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa and LD (24.02 MPa, respectively. CONCLUSION: Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  7. Dependence of fracture toughness of molybdenum laser welds on dendritic spacing and in situ titanium additions

    International Nuclear Information System (INIS)

    Jellison, J.L.

    1979-01-01

    The fracture toughness of molybdenum welds has been improved by in situ gettering of oxygen by means of physically deposited titanium. The addition of titanium suppressed brittle intergranular fracture. Pulsed laser welds (both Nd:YAG and CO 2 ) exhibited superior toughness to that of continuous wave CO 2 laser welds. Also, welds of vacuum arc remelted grades were tougher than those of sintered molybdenum. However, weld toughness could not be correlated with either oxygen or carbon content

  8. Metallurgy and deformation of electron beam welded similar titanium alloys

    Science.gov (United States)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  9. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors

    International Nuclear Information System (INIS)

    Sabol, G.P.; Barry, R.F.

    1987-01-01

    A process is described for forming seamless tubing of a material selected from zirconium, zirconium alloys, titanium, and titanium alloys, from welded precursor tubing of the material, having a heterogeneous structure resulting from the welding thereof. The process consists of: heating successive axial segments of the welded tubing, completely through the wall thereof, including the weld, to uniformly transform the heterogeneous, as welded, material into the beta phase; quenching the beta phase tubing segments, the heating and quenching effected sufficiently rapid enough to produce a fine sized beta grain structure completely throughout the precursor tubing, including the weld, and to prevent growth of beta grains within the material larger than 200 micrometers in diameter; and subsequently uniformly deforming the quenched precursor tubing by cold reduction steps to produce a seamless tubing of final size and shape

  10. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  11. The effect of aluminium on the creep behavior of titanium aluminide alloys

    International Nuclear Information System (INIS)

    Nandy, T.K.; Mishra, R.S.; Gogia, A.K.; Banerjee, D.

    1995-01-01

    Small increases in the Al content of Ti 3 Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior. The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep (∼370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD o in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content

  12. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Ceylan, A.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Medina, F.; Collins, S.; Wicker, R.B.

    2010-01-01

    Intermetallic, γ-TiAl, equiaxed, small-grain (∼2 μm) structures with lamellar γ/α 2 -Ti 3 Al colonies with average spacing of 0.6 μm have been fabricated by additive manufacturing using electron beam melting (EBM) of precursor, atomized powder. The residual microindentation (Vickers) hardness (HV) averaged 4.1 GPa, corresponding to a nominal yield strength of ∼1.4 GPa (∼HV/3), and a specific yield strength of 0.37 GPa cm 3 g -1 (for a density of 3.76 g cm -3 ), in contrast to 0.27 GPa cm 3 g -1 for EBM-fabricated Ti-6Al-4V components. These results demonstrate the potential to fabricate near net shape and complex titanium aluminide products directly using EBM technology in important aerospace and automotive applications.

  13. A Stochastic Reliability Model for Application in a Multidisciplinary Optimization of a Low Pressure Turbine Blade Made of Titanium Aluminide

    OpenAIRE

    Dresbach,Christian; Becker,Thomas; Reh,Stefan; Wischek,Janine; Zur,Sascha; Buske,Clemens; Schmidt,Thomas; Tiefers,Ruediger

    2016-01-01

    Abstract Currently, there are a lot of research activities dealing with gamma titanium aluminide (γ-TiAl) alloys as new materials for low pressure turbine (LPT) blades. Even though the scatter in mechanical properties of such intermetallic alloys is more distinctive as in conventional metallic alloys, stochastic investigations on γ -TiAl alloys are very rare. For this reason, we analyzed the scatter in static and dynamic mechanical properties of the cast alloy Ti-48Al-2Cr-2Nb. It wa...

  14. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  15. Laser beam welding of titanium additive manufactured parts

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the

  16. Titanium 1990: Products and applications; Proceedings of the International Conference, Buena Vista, FL, Sept. 30-Oct. 3, 1990. Vols. 1 and 2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference on Ti-based products and their applications discusses Ti alloy products and applications in China and the USSR, the use of IMI 834 in aircraft engines, Ti-6Al-4V forgings with enhanced fatigue resistance, hydrogen embrittlement of titanium aluminides, cold-rolled Ti alloy foils, Ti alloy multiwall structures, leading-edge erosion of large Ti alloy blades, a novel Cu-Fe-Ti alloy, anodization of Ti for space applications, Ti alloy property improvement via ion implantation, and Co-W-Ti alloy electroplating. Also discussed are the backbone-process fabrication of Ti heat-exchanger tubes, fiber-delivery laser welding of Ti alloy tubing, a novel low-alloy/high-strength Ti composition, the weldability of titanium aluminide, the casting of dental Ti crowns, isothermal forging of Ti-alloy surgical implants, high-speed heat treatment for Ti alloys, cold-roll extrusion of Ti-6Al-4V cylinders, temperature profiles in Ti sponge production, and the superplasticity of eutectoidally decomposed Ti alloys

  17. Modeling of laser welding of steel and titanium plates with a composite insert

    Science.gov (United States)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  18. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    Science.gov (United States)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-12-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  19. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  20. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  1. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  2. Methods for improving weld strength of two-phase titanium alloys

    International Nuclear Information System (INIS)

    Zamkov, V.N.; Kushnirenko, N.A.; Topol'ski , V.F.; Khorev, A.I.

    1980-01-01

    The methods for improving the strength and impact toughness of welded joints of two-phase α+β martensitic titanium alloys (VT14, VT6, VT6S, VT23, VT22) are discussed. Thermal hardening of of welded joints under conditions recommended for the basic metal is shown to lead to the decrease of their ductibility. It has been established that the high quality of welded joints is obtained by the usage of the additional wire of Ti-Al-Mo-V-Nb-Zr-Re system in heat treatment under optimum conditions, in particular, after the low-temperature aging

  3. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  4. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.

    Science.gov (United States)

    Harrison, William; Abdallah, Zakaria; Whittaker, Mark

    2014-03-14

    Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component's service life and to quantify the effects of creep on fatigue life. The theta (θ) projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  5. Effects of stress concentrations on the fatigue life of a gamma based titanium aluminide

    International Nuclear Information System (INIS)

    Trail, S.J.; Bowen, P.

    1995-01-01

    S-N curves for a gamma based titanium aluminide alloy of composition Ti-47.2Al-2.1Mn-1.9Nb(at.%)+2TiB 2 (wt.%) have been used to define fatigue life. Effects of residual stress, stressed volume, loading ratio, loading mode, elevated temperature and surface roughness have been considered. Residual tensile stresses and micro-cracking are introduced by Electro Discharge Machining and the fatigue life is reduced slightly compared with polished samples. Notched fatigue tests show a significant notch strengthening effect which increases with increasing stress concentration factor. The fracture surfaces of specimens tested at room temperature reveal fully brittle failure mechanisms and no evidence of stable crack growth is observed. The fatigue life appears, therefore, to be determined predominantly by the number of cycles to crack initiation. At the elevated temperature of 830 C, evidence for some stable fatigue crack growth has been found. Probable sites for crack initiation are addressed

  6. Superfluid He testing of titanium-stainless steel transitions fabricated by explosive welding

    International Nuclear Information System (INIS)

    Budagov, Yu.; Sabirov, B.; Shirkov, G.

    2009-01-01

    An experimental setup was constructed to test in liquid He bimetallic (titanium-stainless steel) tube joints which were manufactured by an explosive welding method. The leak levels of the samples tested at room temperature 7.5·10 -10 and 7.5·10 -9 Torr·1/s at 77 K, correspondingly, measured at FNAL (Batavia, USA) after the thermocycling have coincided with the earlier results obtained at JINR (Dubna, Russia) and INFN (Pisa, Italy) data for the same samples. For the liquid helium test the tubes were welded in pairs by their titanium ends. At the room temperature the leak level of the three tested samples was 4.9·10 -10 Torr·l/s. At the first cryogenic tests (4-6 K) one of the samples manifested a leak. The investigation will be continued since the explosive welding seems to be a very perspective new generation technology

  7. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Karpagaraj, A.; Siva shanmugam, N., E-mail: nsiva@nitt.edu; Sankaranarayanasamy, K.

    2015-07-29

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

  8. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    International Nuclear Information System (INIS)

    Karpagaraj, A.; Siva shanmugam, N.; Sankaranarayanasamy, K.

    2015-01-01

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity

  9. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  10. Experimental Study on Influence of Process Variables on Crater Dimensions in Micro- EDM of γ-Titanium Aluminide

    International Nuclear Information System (INIS)

    Mitra, S.; Paul, G.; Sarkar, S.; Nagahanumaiah

    2011-01-01

    In the present work the effect of different dielectric mediums in micro-EDM of γ-Titanium Aluminide alloy have been investigated. Experiments were conducted both in the absence (dry conditions) and in presence of dielectric (EDM oil).Circular craters were produced both in the presence and absence of dielectric fluid using varying micro-EDM process variables i.e. open circuit voltage, discharge capacitance, pulse frequency and pulse-on-time. Over cut was measured from optical microscope images using Image Analyzer software. Influences of process variables and optimal conditions for minimum over cut on crater dimensions were investigated. ANOVA test which shows that capacitance of RC circuit contributes significantly in crater formation followed by pulse frequency. Optical photographs exhibit that over cut are less in air medium compared to oil medium.

  11. Hot workability of γ + α2 titanium aluminide: Development of processing map and constitutive equations

    International Nuclear Information System (INIS)

    Gupta, R.K.; Narayana Murty, S.V.S.; Pant, Bhanu; Agarwala, Vijaya; Sinha, P.P.

    2012-01-01

    Highlights: ► Deformation studies of five TiAl alloys carried out through processing map. ► DRX domain and superplastic domain identified in power efficiency map. ► Safe working zone for alloys found at 1223–1423 K at strain rates (10 −2 –10 −3 s −1 ). ► Strain rate sensitivity, activation energy, Zener Hollomon parameter (Z) are obtained. ► Constitutive equations derived and verified. DRX grain size correlated with Z. - Abstract: Gamma titanium alumindes are intermetallics, which have very narrow working range. Hot isothermal working is the most suitable process for hot working of alloy. Accordingly, hot isothermal compression test is carried out on reaction synthesized and homogenized titanium aluminide alloys at different temperatures and strain rates using Gleeble thermomechanical simulator. Three alloys of Ti48Al2Cr2Nb0.1B (atom%) have been used in the study. Stress–strain data obtained from the test has been used to construct processing map, which indicates the safe and unsafe working zone. Strain rate sensitivity and Zener–Hollomon parameter has been calculated. Further, constitutive equations have been generated and verified. It is found that alloy has good workability in the temperature range of 1223–1423 K at strain rates of 0.01–0.001 s −1 . In this range of parameters, the alloys nearly follow the constitutive equations.

  12. Process for optimizing titanium and zirconium additions to aluminum welding consumables

    International Nuclear Information System (INIS)

    Dvornak, M.J.; Frost, R.H.

    1992-01-01

    This patent describes a process for manufacturing an aluminum welding consumable. It comprises: creating an aluminum melt; adding to the aluminum melt solid pieces of a master alloy, comprising aluminum and a weld-enhancing additive to form a mixture, wherein the weld-enhancing additive being a material selected from the group consisting of titanium and zirconium, so that the weld-enhancing additive exists in the alloy prior to addition to the melt in the form of intermetallic particles relatively large in size and small in number, and after addition to the melt the weld-enhancing additive exists in the form of fractured intermetallic particles of refined size having dissolved fractured interfaces, casting the mixture into a chill mold to form an ingot; reducing the ingot to rods of rough wire dimension by cold rolling; annealing the reduced rods; and drawing the rods into wire

  13. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  14. Microstructural evolution of fusion zone in laser beam welds of pure titanium

    International Nuclear Information System (INIS)

    Liu, H.; Nakata, K.; Zhang, J.X.; Yamamoto, N.; Liao, J.

    2012-01-01

    Microstructural evolution of fusion zone in laser beam welds of pure titanium was studied by means of electron backscattering diffraction. The microstructural evolution is strongly affected by the β → α transformation mechanism dependent on the cooling rate during phase transformation. The long-range diffusional transformation mainly occurs in the fusion zone at the low cooling rate, and the massive transformation dominantly takes place at the high cooling rate. For this reason, the grain morphologies probably change from the granular-like to columnar-like grains with the cooling rate increasing. - Highlights: ► Microstructures of fusion zone in laser beam welds of pure titanium are studied. ► Increasing cooling rate changes grain morphology from granular to columnar one. ► Final microstructures depend on the β→α transformation mechanisms.

  15. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  16. Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.

    Science.gov (United States)

    Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S

    2009-12-01

    The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.

  17. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  18. Rate of fatigue crack growth in residual stress fields of welded titanium joints with different contents of embrittling impurities

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Pokrovskij, V.V.; Yarusevich, V.L.; Mikhajlov, V.I.; Sher, V.A.

    1990-01-01

    Resistance to fatigue crack growth (FCG) has been studied in welded joints of structural titanium alloys contaminated by embrittling impurities. Besides, effect of crack closing has been taken into account what makes it possible to determine the effective coefficient of the stress intensity. The rate of fatigue crack growth is proved to considerably depend on the value and direction of residual stresses. The rate dependence of FCG in welded joints of structural titanium alloys on the swing of effective coefficient of stress intensity is invariant to the value and direction of weld residual stresses

  19. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    Science.gov (United States)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material

  20. HCP to FCT + precipitate transformations in lamellar gamma-titanium aluminide alloys

    Science.gov (United States)

    Karadge, Mallikarjun Baburao

    Fully lamellar gamma-TiAl [alpha2(HCP) + gamma(FCT)] based alloys are potential structural materials for aerospace engine applications. Lamellar structure stabilization and additional strengthening mechanisms are major issues in the ongoing development of titanium aluminides due to the microstructural instability resulting from decomposition of the strengthening alpha 2 phase. This work addresses characterization of multi-component TiAl systems to identify the mechanism of lamellar structure refinement and assess the effects of light element additions (C and Si) on creep deformation behavior. Transmission electron microscopy studies directly confirmed for the first time that, fine lamellar structure is formed by the nucleation and growth of a large number of basal stacking faults on the 1/6 dislocations cross slipping repeatedly into and out of basal planes. This lamellar structure can be tailored by modifying jog heights through chemistry and thermal processing. alpha 2 → gamma transformation during heating (investigated by differential scanning calorimetry and X-ray diffraction) is a two step process involving the formation of a novel disordered FCC gamma' TiAl [with a(gamma') = c(gamma)] as an intermediate phase followed by ordering. Addition of carbon and silicon induced Ti2AlC H-type carbide precipitation inside the alpha2 lath and Ti 5(Al,Si)3 zeta-type silicide precipitation at the alpha 2/gamma interface. The H-carbides preserve alpha2/gamma type interfaces, while zeta-silicide precipitates restrict ledge growth and interfacial sliding enabling strong resistance to creep deformation.

  1. Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool

    International Nuclear Information System (INIS)

    Zhang Yu; Sato, Yutaka S.; Kokawa, Hiroyuki; Park, Seung Hwan C.; Hirano, Satoshi

    2008-01-01

    In the present study, friction stir welding was applied to commercial purity titanium using a polycrystalline cubic boron nitride tool, and microstructure and hardness in the weld were examined. Additionally, the microstructural evolution during friction stir welding was also discussed. The stir zone consisted of fine equiaxed α grains surrounded by serrate grain boundaries, which were produced through the β → α allotropic transformation during the cooling cycle of friction stir welding. The fine α grains caused higher hardness than that in the base material. A lath-shaped α grain structure containing Ti borides and tool debris was observed in the surface region of the stir zone, whose hardness was the highest in the weld

  2. Mechanical evaluation of linear friction welds in titanium alloys through indentation experiments

    International Nuclear Information System (INIS)

    Corzo, M.; Casals, O.; Alcala, J.; Mateo, A.; Anglada, M.

    2005-01-01

    This article shows the results of a project that focuses on the characterization of the weld interface region of dissimilar joints between titanium alloys for aeronautical applications, specifically Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-2Sn-4Zr-2Mo. The uniaxial flow stress and hardening response of the material containing the weld were analyzed following the finite elements simulations and mathematical formulations to correlate hardness and the amount of pile-up and sinking-in phenomena around sharp indenters with uniaxial mechanical properties. This allows to accurately stablishing the influence that welding process has on the mechanical response of the parts. Tests performed on these friction-welded specimens showed that the fine grained microstructures in the welds exhibited better properties than the base materials. (Author) 12 refs

  3. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes

    International Nuclear Information System (INIS)

    Kruzic, J.J.; Campbell, J.P.; Ritchie, R.O.

    1999-01-01

    Most evaluations of the fracture and fatigue-crack propagation properties of γ+α 2 titanium aluminide alloys to date have been performed using standard large-crack samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller ( 5 mm) and (c ≅ 25--300 microm) cracks in a γ-TiAl based alloy, of composition Ti-47Al-2Nb-2Cr-0.2B (at.%), specifically for duplex (average grain size approximately17 microm) and refined lamellar (average colony size ≅150 microm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance

  4. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  5. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-01-01

    Aluminum 1060 and titanium alloy Ti–6Al–4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: ► FSW with cutting pin was successfully employed to form Al/Ti lap joint. ► Swirl-like structures formed due to mechanical mixing were found at the interface. ► High-strength joints fractured at Al suffered thermal cycle were produced.

  6. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  7. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 10-year follow-up study.

    Science.gov (United States)

    Ortorp, Anders; Jemt, Torsten

    2006-01-01

    Long-term follow-up studies for more than 5 years are not available on laser-welded titanium frameworks. To report and compare 10-year data on implant-supported prostheses in the edentulous mandible provided with laser-welded titanium frameworks and conventional gold alloy frameworks. Altogether, 155 patients were consecutively treated with prostheses at abutment level with two generations of fixed laser-welded titanium frameworks (test groups). A control group of 53 randomly selected patients with conventional gold alloy castings was used for comparison. Clinical and radiographic 10-year data were collected for the three groups. All patients followed-up for 10 years (n=112) still had fixed prostheses in the mandible (cumulative success rate [CSR] 100%). The overall 10-year cumulative success rate (CSR) was 92.8 and 100.0% for titanium and gold alloy frameworks, respectively. Ten-year implant cumulative survival rate (CSR) was 99.4 and 99.6% for the test and control groups, respectively. Average 10-year bone loss was 0.56 (SD 0.45) mm for the titanium group and 0.77 (SD 0.36) mm for the control group (p screw components were below 3%. Excellent overall long-term results with 100% CSR could be achieved with the present treatment modality. Fractures of the metal frames and remade prostheses were more common for the laser-welded titanium frameworks, and the first generation of titanium frameworks worked poorly when compared with gold alloy frameworks during 10 years (p < 0.05). However, on average more bone loss was observed for implants supporting gold alloy frameworks during 10 years. The reasons for this difference are not clear.

  8. Precipitation-strengthening effects in iron-aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; McKamey, C.G.; Goodwin, G.M. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this work is to produce precipitation to improve both high-temperature strength and room-temperature ductibility in FeAl-type(B2 phase) iron-aluminides. Previous work has focused on primarily wrought products, but stable precipitates can also refine the grain size and affect the properties of as-cast and/or welded material as well. New work began in FY 1994 on the properties of these weldable, strong FeAl alloys in the as-cast condition. Because the end product of this project is components for industry testing, simpler and better (cheaper, near-net-shape) processing methods must be developed for industrial applications of FeAl alloys.

  9. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  10. Characterization for solidification and phase transformations of pure-titanium steel weld metal with time-resolved X-ray diffraction system

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Komizo, Yu-ichi; Nishino, Fumihiro; Ikeda, Masahiko

    2007-01-01

    Understanding and controlling solidification and phase transformation process of weld metal is essential for forming the microstructure with superior mechanical property. Recent evolution of analysis technique makes for solidification and phase transformation process to be in-situ analyzed, in direct and reciprocal lattice space. In the present work, unidirectional-solidification and phase transformation in the weld metal of commercial pure-titanium in Gas Tungsten Arc welding was in-situ observed by using Time-Resolved X-Ray Diffraction system with two-dimensional pixel detector. An undulator beam was used as a probe. Larger diffraction area could be detected in the time-resolution of 0.05 seconds, in unidirectional solidification and subsequent phase transformation process of pure-titanium weld metal. Furthermore, the microstructure formation during β-α phase transformation was in situ observed with High temperature Laser Scanning Confocal Microscopy. The crystal configurations in unidirectional solidification of weld metal and rapid change of phase ratio in reconstructive phase transformation were clearly analyzed. (author)

  11. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2017-02-01

    Full Text Available Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM, an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  12. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting.

    Science.gov (United States)

    Mohammad, Ashfaq; Alahmari, Abdulrahman M; Mohammed, Muneer Khan; Renganayagalu, Ravi Kottan; Moiduddin, Khaja

    2017-02-21

    Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  13. Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes

    International Nuclear Information System (INIS)

    Palanivel, R.; Dinaharan, I.; Laubscher, R.F.

    2017-01-01

    Friction welding process has been applied to join Grade 2 titanium alloy tubes of outer diameter 60 mm and wall thickness 3.9 mm. In this research work, five different friction times (24, 28, 32, 36 and 40 s) were used to evaluate the ultimate tensile strength (UTS) and microstructure of welded tubes. Recording of the process parameters during welding was done. Optical microscopy, electron back scattered diffraction and transmission electron microscopy were used to study the microstructure. The results showed that the friction time had a significant influence on the microstructure and UTS. The rate of deformation increased with friction time and refined the grains in the weld zone. Coarse grain structure was observed from the center of the weld zone towards the flash. Identical grain structure was observed in the heat affected zone (HAZ) and the parent metal. It was found that a maximum joint efficiency of 98.3% was achieved at a friction time of 32 s.The details of microhardness, failure location and fracture surface of the welded tubes were reported.

  14. Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, R., E-mail: rpalanivelme@gmail.com; Dinaharan, I., E-mail: dinaweld2009@gmail.com; Laubscher, R.F., E-mail: rflaubscher@uj.ac.za

    2017-02-27

    Friction welding process has been applied to join Grade 2 titanium alloy tubes of outer diameter 60 mm and wall thickness 3.9 mm. In this research work, five different friction times (24, 28, 32, 36 and 40 s) were used to evaluate the ultimate tensile strength (UTS) and microstructure of welded tubes. Recording of the process parameters during welding was done. Optical microscopy, electron back scattered diffraction and transmission electron microscopy were used to study the microstructure. The results showed that the friction time had a significant influence on the microstructure and UTS. The rate of deformation increased with friction time and refined the grains in the weld zone. Coarse grain structure was observed from the center of the weld zone towards the flash. Identical grain structure was observed in the heat affected zone (HAZ) and the parent metal. It was found that a maximum joint efficiency of 98.3% was achieved at a friction time of 32 s.The details of microhardness, failure location and fracture surface of the welded tubes were reported.

  15. The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys

    Science.gov (United States)

    Gosslar, D.; Günther, R.

    2014-02-01

    γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.

  16. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Linden, B; Jemt, T

    1999-01-01

    The purpose of this study was to report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks and to compare their performance with that of prostheses provided with conventional cast frameworks. On a routine basis, a consecutive group of 824 edentulous patients were provided with fixed prostheses supported by implants in the edentulous mandible. In addition to conventional gold-alloy castings, patients were at random provided with 2 kinds of laser-welded titanium frameworks. In all, 155 patients were included in the 2 titanium framework groups. A control group of 53 randomly selected patients with conventional gold-alloy castings was used for comparison. Clinical and radiographic 5-year data was collected for the 3 groups. All followed patients still had fixed prostheses in the mandible after 5 years. The overall cumulative success rates were 95.9% and 99.7% for titanium-framework prostheses and implants, respectively. The corresponding success rates for the control group were 100% and 99.6%, respectively. Bone loss was 0.5 mm on average during the 5-year follow-up period. The most common complications for titanium frameworks were resin or tooth fractures, gingival inflammation, and fractures of the metal frames (10%). One of the cast frameworks fractured and was resoldered. Loose and fractured implant screw components were few (laser-welded titanium frameworks seem to be a viable alternative to conventional castings in the edentulous mandible.

  17. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    Science.gov (United States)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  18. Processing and application properties of silicon-doped titanium aluminides; Formgebungs- und Anwendungseigenschaften silizidhaltiger TiAl-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Fanta, G. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2001-07-01

    Submicrocrystalline intermetallic/ceramic composites based on the system Ti-Al-Si are prepared by mechanical alloying and subsequent powder consolidation. Finely dispersed silicides prevent coarsening of the {gamma}-TiAl matrix during hot-forming. Therefore, the deformation temperatures can be reduced by about 200 C compared to conventional titanium aluminides. After a subsequent coarsening heat treatment, creep properties comparable to those of conventional TiAl based alloys (1.10{sup -9} s{sup -1} at 700 C) are achieved. This study demonstrates that microstructure design allows for favorable processing properties without compromises regarding the desired application properties. (orig.) [German] Zur Untersuchung des technischen Anwendungspotenzials submikrokristalliner Werkstoffe werden silizidhaltige {gamma}-TiAl-Basislegierungen durch Hochenergiemahlen und heissisostatisches Pressen hergestellt. Bei der industriellen Formgebung ermoeglicht die durch Silizide stabilisierte feine Mikrostruktur eine deutliche Temperaturabsenkung von 200 C im Vergleich zu den fuer Titanaluminide ueblichen Prozesstemperaturen. Nach einer anschliessend durchgefuehrten Gefuegeumwandlung werden Kriechgeschwindigkeiten gemessen, die mit 1.10{sup -9} s{sup -1} bei 700 C im Bereich der Werte schmelzmetallurgisch hergestellter TiAl-Legierungen liegen. Eine gezielte Mikrostrukturgestaltung ermoeglicht somit eine deutliche Verbesserung der Umformeigenschaften unter Beibehaltung der guenstigen Eigenschaften fuer Hochtemperaturanwendungen. (orig.)

  19. Fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite

    International Nuclear Information System (INIS)

    Wang, P.C.; Jeng, S.M.; Yang, J.M.; Russ, S.M.

    1996-01-01

    The fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite under low cycle fatigue loading at room temperature was investigated. The fatigue test was conducted under a load-controlled mode with a load ratio (R) of 0.1, a frequency of 10 Hz, and a maximum applied stress ranging from 600 to 945 MPa. The stiffness reduction as well as the evolution of microstructural damage which includes matrix crack length, matrix crack density and interfacial debonding length as a function of fatigue cycles, and applied stresses were measured. An analytical model and a computer simulation were also developed to predict the residual stiffness and the post-fatigued tensile strength as a function of microstructural damage. Finally, a steady-state crack growth model proposed by Marshall et al. was used to predict the interfacial frictional stress and the critical crack length. Correlation between the theoretical predictions and experimental results were also discussed

  20. Understanding the mechanical response of built-up welded beams made from commercially pure titanium and a titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Patnaik, Anil K., E-mail: Patnaik@uakron.edu [Department of Civil Engineering, The University of Akron, Akron, OH 44325 (United States); Poondla, Narendra [Department of Civil Engineering, The University of Akron, Akron, OH 44325 (United States); Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Menzemer, Craig C. [Department of Civil Engineering, The University of Akron, Akron, OH 44325 (United States); Srivatsan, T.S. [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States)

    2014-01-10

    During the last two decades, titanium has gradually grown in stature, strength and significance to take on the recognition of being a modern and high performance metal that is noticeably stronger and concurrently lighter than the most widely chosen and used steels in a spectrum of industrial applications. Technological innovations have necessitated reduction of part weight, cost and lead time, including concurrent enhancement of performance of structural parts and components made using titanium and its alloys. This has provided the impetus to develop economically viable structural design methodologies and specifications, while at the same time bringing forth innovative and economically affordable manufacturing and fabricating techniques with the primary purpose of both producing and promoting the use of cost-effective titanium structures. The experimental results of a recent study on built-up welded beams are presented in this paper with the primary objective of enabling design, facilitating fabrication, and implementation of large structural members for potential applications in the structural and defense-industry.

  1. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  2. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  3. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  4. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  5. PRODUCTION OF METAL CHEMICAL WELDING ADDITIVE WITH NANODISPERSED PARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2013-12-01

    Full Text Available When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material, which is powdered by modifying chemical additive of titanium dioxide (TiO₂ in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity.

  6. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  7. Recommendations and Requirements for Welding and Inspection of Titanium Piping for U.S. Navy Surface Ship Applications

    National Research Council Canada - National Science Library

    Wells, Michael

    1999-01-01

    The information contained in this report is intended to assist both Navy and shipyard/contractor personnel engaged in the welding and inspection of commercially pure titanium seawater piping systems for U.S. Navy surface ships...

  8. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (I) - Effect of Type and Flow Rate of Shielding Gases on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    In this study, welding of pure titanium was carried out by using a continuous wave fiber laser with a maximum output of 6.3 kW. Because brittle regions form easily in titanium as a result of oxidation or nitriding, the weld must be protected from the atmosphere by using an appropriate shielding gas. Experiments were performed by changing the type and the flow rate of shielding gases to obtain the optimal shielding condition, and the weldability was then evaluated. The degree of oxidation and nitriding was distinguished by observing the color of beads, and weld microstructure was observed by using an optical microscope and a scanning electron microscope. The mechanical properties of the weld were examined by measuring hardness. When the weld was oxidized or nitrified, the bead color was gray or yellow, and the oxygen or nitrogen content in the bead surface and overall weld tended to be high, as a result of which the hardness of the weld was thrice that of the base metal. A sound silvery white bead was obtained by using Ar as the shielding gas.

  9. Effect of zirconium addition on welding of aluminum grain refined by titanium

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Aluminum and its alloys solidify in large grains columnar structure which tends to reduce their mechanical behaviour and surface quality. Therefore, they are industrially grain refined by titanium or titanium + boron. Furthermore, aluminum oxidizes in ordinary atmosphere which makes its weldability difficult and weak. Therefore, it is anticipated that the effect of addition of zirconium at a weight percentages of 0.1% (which proved to be an effective grain refiner on the weldability of aluminum grain refined by Ti) is worthwhile investigating. This formed the objective of this research work. In this paper, the effect of zirconium addition at a weight percentage of 0.1%, which corresponds to the peritctic limit on the aluminum-zirconium phase diagram, on the weldability of aluminum grain refined by Ti is investigated. Rolled sheets of commercially pure aluminum, Al grain refined Ti of 3 mm thickness were welded together using Gas Tungsten Arc Welding method (GTAW), formerly known as TIG. A constant air gap was maintained at a constant current level, 30 ampere AC, was used because it removes the oxides of the welding process under the same process parameters. Metallographic examination of weldments of the different combinations of aluminum and its microalloys at the heat affected zone, HAZ, and base metal was carried out and examined for width, porosity, cracks and microhardness. It was found that grain refining of commercially pure aluminum by Ti resulted in enhancement of its weldability. Similarly, addition of zirconium to Al grain refined by Ti resulted in further enhancement of the weldment. Photomicrographs of the HAZ regions are presented and discussed. (author)

  10. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    Science.gov (United States)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  11. FEATURES OF WELDED TITANIUM STRUCTURE ELEMENT DESTRUCTION (RIBBED PANELS UNDER VIBRATION LOADS

    Directory of Open Access Journals (Sweden)

    Mr. Pavel V. Bakhmatov

    2016-12-01

    Full Text Available The article presents data on the experimental studies results of welded ribbed panel vibration load of the BT-20 titanium alloy. It was established that in the areas of attachment, there is elevated dynamic alternating stress, which in combination with the "hard" of the sample holder creates favorable conditions for the emergence and development of fatigue cracks, and stress concentrators greatly reduce the time before the formation of the hearth destruction. An exception in these zones of superficial defects do not affect the nature and kinetics of destruction. Construction of titanium alloys made in the application of gas-laser cutting blanks for optimal regimes in the technical environment of nitrogen and subsequent heat treatment on vibration reliability is not inferior to design, made by traditional technology.

  12. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  13. Iron aluminide composites

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1999-01-01

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB 2 , and ZrB 2 . In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructures, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength of elevated temperatures (1,073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a rule of mixtures. Interestingly, sufficiently thin (<1 microm) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminides, environmental embrittlement is dramatically reduced in iron aluminide composites

  14. TIG welding of pure titanium with an TiAl6V4 alloy; Schweissen von technisch reinem Titan. WIG-Schweissen mit der Titanlegierung TiAl6V4

    Energy Technology Data Exchange (ETDEWEB)

    Karaaslan, A. [Techn. Univ. Yildiz (Turkey). Sektion fuer Metallurgie und Werkstofftechnik

    2004-07-01

    The present contribution describes the Tig welding process of pure Titanium with an high strength Titanium Aluminium alloy. The characterization of the metallurgical properties of the welds was carried out by hardness measurements and by tensile testing. Parallel to the results of light microscopic investigations of the microstructure the metallurgical and physical background will be highlighted. (orig.)

  15. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  16. Investigation of Iron Aluminide Weld Overlays

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.B.; Levin, B.F.; Marder, A.R.

    1999-08-02

    Conventional fossil fired boilers have been retrofitted with low NO(sub)x burners in order for the power plants to comply with new clean air regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion typically has been enhanced resulting in premature tube failure. To protect the existing panels from accelerated attack, weld overlay coatings are typically being applied. By depositing an alloy that offers better corrosion resistance than the underlying tube material, the wastage rates can be reduced. While Ni-based and stainless steel compositions are presently providing protection, they are expensive and susceptible to failure via corrosion-fatigue due to microsegregation upon solidification. Another material system presently under consideration for use as a coating in the oxidation/sulfidation environments is iron-aluminum. These alloys are relatively inexpensive, exhibit little microsegregation, and show excellent corrosion resistance. However, their use is limited due to weldability issues and their lack of corrosion characterization in simulated low NO(sub)x gas compositions. Therefore a program was initiated in 1996 to evaluate the use of iron-aluminum weld overlay coatings for erosion/corrosion protection of boiler tubes in fossil fired boilers with low NO(sub)x burners. Investigated properties included weldability, corrosion behavior, erosion resistance, and erosion-corrosion performance.

  17. Microcracking and macroscopic failure in intermetallic titanium aluminides; Mikrorissbildung und makroskopisches Versagen in intermetallischen Titanaluminiden

    Energy Technology Data Exchange (ETDEWEB)

    Wiesand-Valk, B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2000-07-01

    This paper deals with the correlations between microstructural disorder, that means statistical distribution of phases and local material properties, and macroscopic failure of disordered multiphase materials. On a microscopic level the microstructural disorder leads to randomly distributed local damage before failure (in brittle materials to microcracks) and eventually to localisation of damage. On a macroscopic level the value and scatter of fracture strength and its dependence on specimen size are essentially determined by the microstructural disorder. The failure behaviour is treated by using the discrete chain-of-bundles-model, which treats the details of the microstructure not explicitly but as locally distributed fluctuations of characteristical material parameters. The model has been verified by comparing with experimental results for four intermetallic titanium aluminides and its validity has been demonstrated. (orig.) [German] Die Arbeit behandelt die Zusammenhaenge zwischen der Stochastizitaet des Gefueges, das heisst, einer statistischen Verteilung von Phasen und lokalen Materialeigenschaften und dem makroskopischen Versagen von ungeordneten mehrphasigen Werkstoffen. Auf mikroskopischer Ebene fuehrt die Stochastizitaet des Gefueges vor dem Versagen zu lokalen Schaedigungen (in sproeden Werkstoffen zu Mikrorissen) und schliesslich (abhaengig vom Grad der Unordnung) zur Lokalisierung des Bruchgeschehens. Makroskopisch werden die Groesse und Streuung von Bruchfestigkeitswerten und ihre Probengroessenabhaengigkeit durch die mikrostrukturelle Unordnung wesentlich bestimmt. Dieses Versagensverhalten wird in dem diskreten Chain-of-Bundles-Modell beschrieben, das die Details der Mikrostruktur nicht explizit sondern als lokale statistische Schwankungen von charakteristischen Werkstoffparametern erfasst. Am Beispiel von vier ausgewaehlten Titan-Aluminiden wird das Modell validiert und verifiziert. (orig.)

  18. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  19. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding

    International Nuclear Information System (INIS)

    Liu, Chuan; Zhang, Jianxun; Wu, Bing; Gong, Shuili

    2012-01-01

    Highlights: → After less materials removal from the top, stresses on the bottom remain unchanged. → The transverse stress within the weld decreases significantly with material removal. → Local material removal does not influence the longitudinal stress significantly. -- Abstract: The stress modification after material removal from a 50 mm thick titanium alloy plate jointed by electron beam welding (EBW) was investigated through the finite element method (FEM). The welding experiment and milling process were carried out to experimentally determine the stresses induced by EBW and their modification after local material removal. The modification of as-welded stresses due to the local material removal method and the whole layer removal method was discussed with the finite element analysis. Investigated results showed that with less materials removal from the top, the stresses on the bottom surface remain almost unchanged; after material removal from the top and bottom part, the transverse stress on the newly-formed surface decreases significantly as compared to the as-welded stresses at the same locations; however, the stress modification only occurs at the material removal region in the case of local region removal method; the longitudinal stress decreases with the whole layer removal method while remains almost unchanged with the local region removal method.

  20. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  1. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  2. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    International Nuclear Information System (INIS)

    Kim, Jong Do; Kim, Ji Sung

    2016-01-01

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output

  3. Evaluation of the microstructure and microhardness of laser-fabricated titanium aluminate coatings

    CSIR Research Space (South Africa)

    Tlotleng, M

    2016-10-01

    Full Text Available Titanium aluminide intermetallics are very brittle at room temperature, hence they are challenging to fabricate even by conventional manufacturing techniques such as casting and forging. The production of TiAl from elemental powders using industrial...

  4. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels

    International Nuclear Information System (INIS)

    Perry, N.

    2000-06-01

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  5. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process

    International Nuclear Information System (INIS)

    Robert, Y.

    2007-09-01

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  6. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  7. Improvements in and relating to welding

    International Nuclear Information System (INIS)

    Taylor, B.D.

    1979-01-01

    This invention concerns apparatus for use in welding, particularly welding which must be effected in a predetermined, for example, inert atmosphere, e.g. the welding of reactive materials such as zircaloy, titanium, magnesium, aluminium, etc. (U.K.)

  8. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    Science.gov (United States)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  9. Development of iron aluminides

    International Nuclear Information System (INIS)

    McKamey, C.G.; Viswanathan, S.; Goodwin, G.M.; Sikka, V.K.

    1994-01-01

    Recent studies demonstrating that improved engineering ductility (to 10-15% in Fe 3 Al) can be achieved in wrought Fe 3 Al-based iron aluminide alloys through control of composition and microstructure are discussed. Accompanying this improvement has been an increased understanding of the causes for ambient temperature embrittlement in this system. Because of these advances, iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. The understanding and control of cast structures are important steps in making iron-aluminide alloys viable engineering materials. This includes understanding the various components of cast structure, their evolution, their properties, their behavior during further processing, and, finally, their effect on mechanical properties. The first phase of the study of cast Fe 3 Al-based alloys characterized the various components of the cast structure in the FA-129 alloy, while the current phase of the research involves characterizing the as-cast mechanical properties of Fe 3 Al-based alloys. The investigation of the room temperature mechanical properties of as-cast Fe 3 Al, including tensile tests in air, oxygen, and water vapor environments is described. Studies have begun to refine the grain size of the cast structure. An investigation of the effect of environmental hydrogen embrittlement on the weldability of wrought alloys was also initiated during this period with the aim of understanding the role of environment in the cold-cracking of iron aluminides

  10. Laser and electron beam welding of Ti-alloys: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cam, G; Santos, J.F. dos; Kocak, M [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    The welding of titanium alloys must be conducted in completely inert or vacuum environments due to the strong affinity of titanium to oxygen. Residual stresses in titanium welds can greatly influence the performance of a fabricated aerospace component by degrading fatigue properties. Moreover, distortion can cause difficulties in the final assembly and operation of high-tolerance aerospace systems. Power beam welding processes, namely laser and electron beam welding, offer remarkable advantages over conventional fusion welding processes and have a great potential to produce full-penetration, single-pass autogenous welds with minimal component distortion due to low heat input and high reproducibility of joint quality. Moreover, electron beam welding process, which is conducted in a vacuum chamber, inherently provides better atmospheric protection. Although considerable progress has been made in welding of titanium alloys by power beam processes, there is still a lack of a complete set of mechanical properties data of these joints. Furthermore, the problem of solid-state cracking in fusion welding of {gamma}-TiAl intermetallic alloys due to their low ductility is still to be overcome. The purpose of this literature review is to outline the progress made in this area and to provide basic information for the Brite-Euram project entitled assessment of quality of power beam weld joints ``ASPOW``. (orig.) 31 refs.

  11. A comparison of laser-welded titanium and conventional cast frameworks supported by implants in the partially edentulous jaw: a 3-year prospective multicenter study.

    Science.gov (United States)

    Jemt, T; Henry, P; Lindén, B; Naert, I; Weber, H; Bergström, C

    2000-01-01

    The purpose of this prospective multicenter study was to evaluate and compare the clinical performance of laser-welded titanium fixed partial implant-supported prostheses with conventional cast frameworks. Forty-two partially edentulous patients were provided with Brånemark system implants and arranged into 2 groups. Group A was provided with a conventional cast framework with porcelain veneers in one side of the jaw and a laser-welded titanium framework with low-fusing porcelain on the other side. The patients in group B had an old implant prosthesis replaced by a titanium framework prosthesis. The patients were followed for 3 years after prosthesis placement. Clinical and radiographic data were collected and analyzed. Only one implant was lost, and all prostheses were still in function after 3 years. The 2 framework designs showed similar clinical performance with few clinical complications. Only one abutment screw (1%) and 9 porcelain tooth units (5%) fractured. Four prostheses experienced loose gold screws (6%). In group A, marginal bone loss was similar for both designs of prostheses, with a mean of 1.0 mm and 0.3 mm in the maxilla and mandible, respectively. No bone loss was observed on average in group B. No significant relationship (P > 0.05) was observed between marginal bone loss and placement of prosthesis margin or prosthesis design. The use of laser-welded titanium frameworks seems to present similar clinical performance to conventional cast frameworks in partial implant situations after 3 years.

  12. Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Lin, H.-T.; Wereszczak, A.A.

    2006-11-30

    Mechanical responses of three gamma titanium aluminides (TiAls) (denoted as Alloy A, Alloy B and Alloy C) subjected to dynamic scratching were studied by using a single-grit pendulum (rotating) scratch tester. The maximum depth of groove was {approx} 0.07 mm, and the scratch velocity was {approx} 1.0 m/s. Normal and tangential forces were monitored. The material removal mechanisms were examined using a scanning electron microscope (SEM) and the scratches were measured by using a laser profilometer. The mechanical properties of the tested TiAls were characterized by the instantaneous specific energy, scratch resistance and scratch hardness as related to the groove depth. Extensive thermal softening was observed in the dynamic scratch test of the TiAls, which facilitated both the detachment of developing chips and pile-up of material on side ridges. Sizable fractures were observed in the transverse direction in the tested TiAls; these fractures tended to participate in the chip formation, depending on the microstructure of the TiAl and the size of the scratch groove. Specific energy and scratch hardness are depth-dependent to various degrees for the TiAls tested. The material removal might be subjected to different mechanisms, but the overall material response can be effectively characterized by the HEM (Hwang, Evans and Malkin) model and the PSR (proportional specimen resistance) model. The depth-independent specific energy and scratch hardness can be used to screen candidate materials for the applications that are scratch-dominated versus impact-dominated. Among the three tested TiAls, the TiAl with larger colony or grain size exhibits a stronger capability of energy dissipation during material removal (higher depth-independent specific energy), while the TiAl with smaller colony size shows a higher resistance to indentation (higher depth-independent scratch hardness). The observations and conclusions in this study can serve as a base line for the further

  13. Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [ORNL; Lin, Hua-Tay [ORNL; Wereszczak, Andrew A [ORNL

    2006-11-01

    Mechanical responses of three gamma titanium aluminides (TiAls) (denoted as Alloy A, Alloy B and Alloy C) subjected to dynamic scratching were studied by using a single-grit pendulum (rotating) scratch tester. The maximum depth of groove was ~ 0.07 mm, and the scratch velocity used was ~ 1.0 m/s. Normal and tangential forces were monitored. The material removal mechanisms were examined using a scanning electron microscope (SEM) and the scratches were measured by using a laser profilometer. The mechanical properties of the tested TiAls were characterized by the instantaneous specific energy, scratch resistance and scratch hardness as related to the depth of groove. Extensive thermal softening was observed in the dynamic scratch of the tested TiAls, which facilitated both the detachments of developing chips and the pile-ups of materials on side ridges. Sizable fractures were observed in the transverse direction on the tested TiAls; these fractures tended to participate in the chip formation, depending on the microstructure of the TiAl and the size of the scratch groove. Specific energy and scratch hardness are depth-dependent to various degrees for the tested TiAls. The materiel removal might be subjected to different mechanisms, but the overall response of materials can be effectively characterized by the HEM (Hwang, Evans and Malkin) model and the PSR (proportional specimen resistance) model. The obtained depth-independent specific energy and scratch hardness can be used to screen the candidate materials for the specific purpose depending on whether the application is scratch-dominant or impact-dominant. Among the three tested TiAls, the TiAl with larger colony or grain size exhibits a stronger capability of energy dissipation in the material loss or material removal (higher depth-independent specific energy), while the TiAl with smaller colony size show a higher resistance against the indentation (higher depth-independent scratch hardness). The observations and

  14. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  15. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  16. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  17. Welding superalloy sheet for superconducting cable jackets

    International Nuclear Information System (INIS)

    Summers, L.T.; Strum, M.J.; Morris, J.W. Jr.

    1983-08-01

    Autogenous gas tungsten arc welds produced in A-286 exhibit significantly lower yield and ultimate tensile strengths than comparably heat-treated base metal. Deformation in the aged weld metal is highly localized and delineates the dendritic microstructure. The observed mechanical properties are caused by the formation of precipitate-free regions located at the dendrite cores. These regions form as the result of titanium segregation during weld pool solidification which yields dendrite cores sufficiently lean in titanium as to prevent nucleation of the hardening phase

  18. Testing of the Structure and Mechanical Properties of Technical Titanium Joints

    Directory of Open Access Journals (Sweden)

    Bogumił Wronka

    2013-01-01

    Full Text Available The aim of the research was the titanium pipeline welding technology. The transformations of this material due to the influence of thermal welding were analysed. The basic purpose was to evaluate the properties of titanium joint areas. Pipe joints of various thicknesses were welded by means of TIG argon arc welding while applying the optimum and reduced gas flow intensities. The structure and mechanical properties of these joints were tested. Different test results were obtained for joints welded in these two conditions. Recommendations concerning the welding technology and the heat treatment of joints after welding were presented.

  19. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  20. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    Science.gov (United States)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  1. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  2. Mondani intraoral welding: historical process and main practical applications.

    Science.gov (United States)

    Dal Carlo, L; Pasqualini, M E; Mondani, P M; Rossi, F; Moglioni, E; Shulman, M

    2017-01-01

    The intraoral welder was invented by Dr. Pierluigi Mondani during the early 70’s to weld titanium needle implants to a titanium bar in patient’s mouth and to load them immediately by means of resin prosthesis. The clinical use documented dates back to 1972. Over the years, many practical applications have been added to the initial one, which have expanded the use of this device. In this scientific work, main applications are described. The aim of the work was to trace the historical process of intra-oral welding according to Mondani and describe the main practical applications. Intra-oral welding is a process introduced by dr. Pier Luigi Mondani of Genova (Italy) which allows to firmly conjoin titanium implants of any shape by means of a titanium bar or also directly between them in the mouth during surgery. The immediate stabilization achieved by intraoral welding increases implants success rate, allows immediate loading even in situations of bone atrophy, saves implants that are running into failure, re-evaluates fractured implants, allows to stabilize submerged implants postponing prosthesis management, allows to achieve efficient rehabilitation protocols to deal with difficult cases. The 40-years’ experience with intra-oral welding described in this article, confirms the ease of use and efficiency in providing immediate stabilization of titanium implants of all types.

  3. Titanium Brazing for Structures and Survivability

    National Research Council Canada - National Science Library

    Doherty, Kevin J; Tice, Jason R; Szewczyk, Steven T; Glide, Gary A

    2007-01-01

    .... While welding is the typical joining method for titanium, vacuum brazing is an option in areas that are difficult to access for welding as well as areas near other nonmetallic materials, such as ceramics...

  4. A Stochastic Reliability Model for Application in a Multidisciplinary Optimization of a Low Pressure Turbine Blade Made of Titanium Aluminide

    Directory of Open Access Journals (Sweden)

    Christian Dresbach

    Full Text Available Abstract Currently, there are a lot of research activities dealing with gamma titanium aluminide (γ-TiAl alloys as new materials for low pressure turbine (LPT blades. Even though the scatter in mechanical properties of such intermetallic alloys is more distinctive as in conventional metallic alloys, stochastic investigations on γ -TiAl alloys are very rare. For this reason, we analyzed the scatter in static and dynamic mechanical properties of the cast alloy Ti-48Al-2Cr-2Nb. It was found that this alloy shows a size effect in strength which is less pronounced than the size effect of brittle materials. A weakest-link approach is enhanced for describing a scalable size effect under multiaxial stress states and implemented in a post processing tool for reliability analysis of real components. The presented approach is a first applicable reliability model for semi-brittle materials. The developed reliability tool was integrated into a multidisciplinary optimization of the geometry of a LPT blade. Some processes of the optimization were distributed in a wide area network, so that specialized tools for each discipline could be employed. The optimization results show that it is possible to increase the aerodynamic efficiency and the structural mechanics reliability at the same time, while ensuring the blade can be manufactured in an investment casting process.

  5. Process of forming niobium and boron containing titanium aluminide

    International Nuclear Information System (INIS)

    Huang, S.C.

    1992-01-01

    This patent describes a method of forming a composition of titanium, aluminum, niobium, and boron of higher ductility comprising casting the following approximate composition: Ti 34-50.5 Al 43-48 Nb 6-16 B 0.5-2.0 and thermomechanically working the cast composition

  6. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A. [and others

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  7. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    Science.gov (United States)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  8. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  9. Corrosion performance of iron aluminides in fossil energy environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  10. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  11. Titanium Brazing for Structures and Survivability

    Science.gov (United States)

    2007-05-01

    first method ( Weld +HIP) was a tungsten inert gas ( TIG ) weld around the exterior of the Ti- 6Al-4V blocks followed by hot isostatic pressing (HIP) at...beam welding plus hot isostatic pressing (E-beam+HIP) process in the encapsulation of a ceramic within a titanium structure. The testing of the...different joining methods highlighted some definite candidates for the replacement of the E-beam+HIP process , such as the Weld +HIP, and demonstrated

  12. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  13. Abnormal microstructure in the weld zone of linear friction welded Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy joint and its influence on joint properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenya, E-mail: liwy@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Suo, Juandi; Ma, Tiejun; Feng, Yan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Kim, KeeHyun [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2014-04-01

    A detailed investigation on an unexpected abnormal microstructure formed near the weld line in the linear friction welded Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy joint had been performed. Microstructure observations with the help of optical microscope, electron backscatter diffraction and transmission electron microscope with an energy dispersive X-ray spectroscopy were conducted to determine the compositions and phases near the weld line. The results indicate that the abnormal microstructure may be obtained at a low friction pressure and consists of α phase in the form of spherical particles. Tensile strength and fracture characteristics were also examined to clarify the influence of α grains. It is found that the tensile strength is only about 49% of the parent material. The explanation to the formation of spherical α is that lamellar α breaks up, spheroidizes and coalesces to form bigger particles by squeezing out the softer intergranular β phase. The effect of post-weld heat treatment (PWHT) was also investigated to optimize the joint microstructure and mechanical properties. The results suggest that the defects still exist after PWHT, and consequently the appropriate process parameters should be used to achieve a good weld.

  14. Effect of hydrogen oxygen and nitrogen, on the tendency of welded joints of titanium alloys to moderate failure

    International Nuclear Information System (INIS)

    Gorshkov, A.I.; Matyushin, B.A.

    1976-01-01

    The admissible limits have been defined of gaseous impurities content in the metal of welded joints of titanium alloys, with due accout for the phase composition and alloying system. The proposed procedure of testing disk specimens most adequately simulates the behavior of welded joints in full-scale strures. The tests lasting 2.5 to 3 years permit to consider the effect of temporal processes (hydrogen diffusion, relaxation of stresses, phase transformations, etc.) on the durability of a weld. The hydrogen content in the metal of welded joints of OT4 alloy should not exceed 0.008%, that of VT14 alloy should not exceed 0.008%, and that of VT20 alloy should not exceed 0.015% (at an oxygen content of no more than 0.15% and a nitrogen content of no more than 0.03%), the oxygen content being 0.25%, 0.2% and 0.2%, respectxvely (at a hydrogen content of no more than 0.008% and a nitrogen of no more than 0.03%), ;nd the nitrogen content being 0.1%, 0.06% and 0.08%, respectively (at hydrogen content of no more than 0.008% and an oxygen content of no more than 0.15%

  15. Compatibility of aluminide-coated Hastelloy x and Inconel 617 in a simulated gas-cooled reactor environment

    International Nuclear Information System (INIS)

    Chin, J.; Johnson, W.R.; Chen, K.

    1982-03-01

    Commercially prepared aluminide coatings on Hastelloy X and Inconel 617 substrates were exposed to controlled-impurity helium at 850 0 and 950 0 C for 3000 h. Optical and scanning electron (SEM) microscopy, electron microprobe profiles, and SEM X-ray mapping were used to evaluate and compare exposed and unexposed control samples. Four coatings were evaluated: aluminide, aluminide with platinum, aluminide with chromium, and aluminide with rhodium. With extended time at elevated temperature, nickel diffused into the aluminide coatings to form epsilon-phase (Ni 3 Al). This diffusion was the primary cause of porosity formation at the aluminide/alloy interface

  16. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites

    International Nuclear Information System (INIS)

    Smith, P.R.; Graves, J.A.; Rhodes, C.G.

    1994-01-01

    The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (''neat'') and unidirectional ''SCS-6'' reinforced panels. Microstructure of the Ti-24Al-11Nb matrix consisted of ordered Ti 3 Al (α 2 ) + disordered beta (β), while the Ti-21Al-22Nb matrix contained three phases: α 2 , ordered beta (β 0 ), and ordered orthorhombic (O). Fiber/matrix interface reaction zone growth kinetics at 982 C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0 + α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermomechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α 2 + β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis

  17. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  18. Trial manufacturing of titanium-carbon steel composite overpack

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Chiba, Takahiko; Tanai, Kenji

    1999-11-01

    This paper reports the results of design analysis and trial manufacturing of full-scale titanium-carbon steel composite overpacks. The overpack is one of the key components of the engineered barrier system, hence, it is necessary to confirm the applicability of current technique in their manufacture. The required thickness was calculated according to mechanical resistance analysis, based on models used in current nuclear facilities. The Adequacy of the calculated dimensions was confirmed by finite-element methods. To investigate the necessity of a radiation shielding function of the overpack, the irradiation from vitrified waste has been calculated. As a result, it was shown that shielding on handling and transport equipment is a more reasonable and practical approach than to increase thickness of overpack to attain a self-shielding capability. After the above investigation, trial manufacturing of full-scale model of titanium-carbon steel composite overpack has been carried out. For corrosion-resistant material, ASTM Grade-2 titanium was selected. The titanium layer was bonded individually to a cylindrical shell and fiat cover plates (top and bottom) made of carbon steel. For the cylindrical shell portion, a cylindrically formed titanium layer was fitted to the inner carbon steel vessel by shrinkage. For the flat cover plates (top and bottom), titanium plate material was coated by explosive bonding. Electron beam welding and gas metal arc welding were combined to weld of the cover plates to the body. No significant failure was evident from inspections of the fabrication process, and the applicability of current technology for manufacturing titanium-carbon steel composite overpack was confirmed. Future research and development items regarding titanium-carbon steel composite overpacks are also discussed. (author)

  19. Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing

    International Nuclear Information System (INIS)

    Sridharan, Niyanth; Wolcott, Paul; Dapino, Marcelo; Babu, S.S.

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique. In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system. The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys. It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface.

  20. In-depth study of the mechanical properties for Fe_3Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    International Nuclear Information System (INIS)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-01-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe_3Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe_3AlC_0_._5 precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  1. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  2. Effect of flux powder SiO2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    optimal weld pool geometry in the tungsten inert gas (TIG) welding of ..... Flux assisted gas tungsten arc and laser welding of titanium with cryolite containing fluxes: arc spectroscopy and corrosion resistance studies, Welding Journal, Vol.

  3. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  4. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  5. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  6. Titanium Metal Powder Production by the Plasma Quench Process

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  7. Numerical modelling of the tilt casting processes of titanium alumindes

    OpenAIRE

    Wang, Hong

    2008-01-01

    This research has investigated the modelling and optimisation of the tilt casting process of Titanium Aluminides (TiAl). This study is carried out in parallel with the experimental research undertaken in IRC at the University of Birmingham. They propose to use tilt casting inside a vacuum chamber and attempt to combine this tilt casting process with Induction Skull Melting (ISM). A totally novel process is developing for investment casting, which is suitable for casting gamma TiAl.\\ud \\ud As ...

  8. Controlling fundamentals in high-energy high-rate pulsed power materials processing of powdered tungsten, titanium aluminides, and copper-graphite composites. Final technical report, 1 Jun 87-31 Aug 90

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Bourell, D.L.; Eliezer, Z.; Weldon, W.F.

    1990-10-01

    This study was conducted to determine the controlling fundamentals in the high-energy high-rate (1 MJ in 1s) processing of metal powders. This processing utilizes a large electrical current pulse to heat a pressurized powder mass. The current pulse was provided by a homopolar generator. Simple short cylindrical shapes were consolidated so as to minimize tooling costs. Powders were subjected to current densities of 5 kA/cm2 to 25 kA/cm2 under applied pressures ranging from 70 MPa to 500 MPa. Disks with diameters of 25 mm to 70 mm, and thicknesses of 1 mm to 10 mm were consolidated. Densities of 75% to 99% of theoretical values were obtained in powder consolidates of tungsten, titanium aluminides, copper-graphite, and other metal-ceramic composites. Extensive microstructural characterization was performed to follow the changes occuring in the shape and microstructure of the various powders. The processing science has at its foundation the control of the duration of elevated temperature exposure during powder consolidation.

  9. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy

    Science.gov (United States)

    Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz

    2016-01-01

    The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.

  10. Dependence of fracture toughness of molybdenum laser welds on processing parameters and in-situ oxygen gettering

    International Nuclear Information System (INIS)

    Pope, L.E.; Jellison, J.L.

    1980-01-01

    Fracture toughness properties have been determined for laser welds in different grades of molybdenum. The fracture toughness of welds in sintered molybdenum was consistently less than the fracture toughness of welds in vacuum arc remelted molybdenum. These differences cannot be attributed to oxygen content, since the oxygen level was nominally the same for all grades of molybdenum examined in this program. Alloy additions of titanium by means of physically deposited coatings significantly improved the fracture toughness of welds in sintered molybdenum, whereas titanium additions to welds in vacuum arc remelted molybdenum decreased the fracture toughness slightly. Pulsed laser welds exhibited fine columnar structures and, in the case of sintered molybdenum, superior fracture toughness when compared with continuous wave laser welds. 6 figures, 3 tables

  11. Finite element simulation of laser transmission welding of dissimilar ...

    African Journals Online (AJOL)

    user

    materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.

  12. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    Science.gov (United States)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  13. Titanium 󈨠: Science and Technology. Proceedings of a Symposium Sponsored by the Titanium Committee of the Minerals, Metals and Materials Structural Metals Division Held at the World Titanium Conference (7th) in San Diego, California on June 29-July 2, 1992. Volume 2

    Science.gov (United States)

    1993-01-01

    the TIG Welding of Commercially Pure Titanium Sheet ........................................................... 1,601 M.F. Gittos and M.M. Scott An...the welding current and the plasma gas flow rate are such that the plasma penetrates completely through the workpiece ( keyhole technique). A double...necessary. The maximum weldable thickness in keyhole welding was 18 mm. However, penetration became less regular. The optimum welding conditions with a 16 mm

  14. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  15. Microstructure and oxidation performance of a γ–γ′ Pt-aluminide ...

    Indian Academy of Sciences (India)

    Microstructure and oxidation performance of a –' Pt-aluminide bond coat on directionally solidified superalloy CM-247LC ... Keywords. Platinum aluminide bond coat; coating; cyclic oxidation; superalloy; microstructure. ... Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India ...

  16. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  17. Copper welding in solid phase; Svarka medi v tverdoj faze

    Energy Technology Data Exchange (ETDEWEB)

    Avagyan, V Sh

    1993-12-31

    An analysis of the publications on the technology of diffusion welding of copper in solid phase is carried out. The aspects of diffusion welding of copper with silver, aluminium, nickels, chromium, titanium, stainless steel and refractory metals are considered 35 refs.

  18. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    Science.gov (United States)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best

  19. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  20. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  1. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    Science.gov (United States)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  2. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  3. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  4. Mechanical Behavior of Commercially Pure Titanium Weldments at Lower Temperatures

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Xavier, X. Roshan

    2018-05-01

    Commercially pure titanium is used for low-temperature applications due to good toughness attributed to single-phase microstructure (α). Electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes have been used for welding two grades of commercially pure titanium (Grade 2 and Grade 4). Martensitic microstructure is found to be finer in the case of EBW joint as compared to GTAW joint due to faster rate of cooling in the former process. Weldments have been characterized to study the mechanical behavior at ambient (298 K) and cryogenic temperatures (20 and 77 K). Strength of weldments increases with the decrease in temperature, which is found to be more prominent in case of Grade 4 titanium as compared to Grade 2. Weld efficiency of Grade 4 is found to be higher at all the temperatures (ambient, 77 and 20 K). However, ultimate tensile strength/yield strength ratio is higher for Grade 2 as compared to Grade 4. % Elongation is found to increase/retained at cryogenic temperatures for Grade 2, and it is found to decrease for Grade 4. Electron backscattered diffraction analysis and transmission electron microscopy of deformed samples confirmed the presence of extensive twinning in Grade 2 and the presence of finer martensitic structure in Grade 4. Fractography analysis of tested specimens revealed the presence of cleavage facets in Grade 4 and dimples in specimens of Grade 2. Higher strength in Grade 4 is attributed to higher oxygen restricting the twin-assisted slip, which is otherwise prominent in Grade 2 titanium.

  5. Mechanical behaviour of Astm A 297 grade Hp joints welded using different processes

    International Nuclear Information System (INIS)

    Emygdio, Paulo Roberto Oliveira; Zeemann, Annelise; Almeida, Luiz Henrique de

    1996-01-01

    The influence of different arc welding processes on mechanical behaviour was studied for cast heat resistant stainless steel welded joints, in the as welded conditions. ASTM A 297 grade HP with niobium and niobium/titanium additions were welded following three different welding procedures, using shielded metal arc welding gas tungsten arc welding and plasma arc welding, in six welded joints. The welded joint mechanical behaviour was evaluated by ambient temperature and 870 deg C tensile tests; and creep tests at 900 deg C and 50 MPa. Mechanical test results showed that the welding procedure qualification following welding codes is not suitable for high temperature service applications. (author)

  6. Mechanical properties and microstructure of laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: ahc215@lehigh.edu [Institute for Metal Forming, Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States); Pasang, T. [Department of Mechanical Engineering, Auckland University of Technology, Auckland (New Zealand); Ventura, A.; Misiolek, W.Z. [Institute for Metal Forming, Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States)

    2016-04-29

    Room temperature tensile properties and microhardness of a laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy sheet were examined and correlated to the microstructure evolution across the weld. Tensile testing integrated with the optical image correlation Instron® system indicated that the average yield strength (YS), ultimate tensile strength (UTS), and total elongation of the weldment were respectively 88%, 87%, and 69% of the corresponding base material (BM) values. Electron probe microanalysis (EPMA) demonstrated a uniform distribution of the main alloying elements across the weld. The hardness raised increasingly from the BM toward the heat affected zone (HAZ) and the fusion zone (FZ) due to mainly a higher α volume fraction in HAZ and acicular α′ martensite formation in the FZ. Because of the higher hardness of the HAZ and FZ, a higher YS for the weldment relative to the BM would be expected. However, the lower YS as well as the lower UTS of the weldment can be explained by presence of some porosity and underfill in the FZ. The lower total elongation of the weldment compared to the BM can be related to the higher hardness of the HAZ and FZ.

  7. Mechanical properties and microstructure of laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy

    International Nuclear Information System (INIS)

    Chamanfar, A.; Pasang, T.; Ventura, A.; Misiolek, W.Z.

    2016-01-01

    Room temperature tensile properties and microhardness of a laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy sheet were examined and correlated to the microstructure evolution across the weld. Tensile testing integrated with the optical image correlation Instron® system indicated that the average yield strength (YS), ultimate tensile strength (UTS), and total elongation of the weldment were respectively 88%, 87%, and 69% of the corresponding base material (BM) values. Electron probe microanalysis (EPMA) demonstrated a uniform distribution of the main alloying elements across the weld. The hardness raised increasingly from the BM toward the heat affected zone (HAZ) and the fusion zone (FZ) due to mainly a higher α volume fraction in HAZ and acicular α′ martensite formation in the FZ. Because of the higher hardness of the HAZ and FZ, a higher YS for the weldment relative to the BM would be expected. However, the lower YS as well as the lower UTS of the weldment can be explained by presence of some porosity and underfill in the FZ. The lower total elongation of the weldment compared to the BM can be related to the higher hardness of the HAZ and FZ.

  8. Microstructural effects on the creep and crack propagation behaviors of γ-Ti aluminide alloy

    International Nuclear Information System (INIS)

    Lupinc, V.; Onofrio, G.; Nazmy, M.; Staubli, M.

    1999-01-01

    Gamma titanium aluminides class of materials possess several unique physical and mechanical properties. These characteristics can be attractive for specific industrial applications. By applying different heat treatment schedules one can change the microstructural features of this class of materials. In the present investigation, two heat treatment schedules were used to produce two different microstructures, duplex (D) and nearly lamellar (NL) in the cast and HIP'ed Ti-47Al-2W-0.5Si alloy. The tensile strength and creep behavior, in the 700--850 C temperature range, of this alloy have been determined and correlated to the corresponding microstructures. In addition, the fatigue crack propagation behavior in this alloy has been studied at different temperatures. The results on the creep behavior showed that the alloy with nearly lamellar microstructure has a strongly improved creep strength as compared with that of the duplex microstructure

  9. Effect of current pulsing on tensile properties of titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Jayabalan, V.; Balasubramanian, M.

    2008-01-01

    Titanium and its alloys have been considered as one of the best engineering metals for industrial applications. This is due to the excellent combination of properties such as elevated strength to weight ratio, high toughness, excellent resistance to corrosion and good fatigue properties make them attractive for many industrial applications. Recently, considerable research has been performed on pulsed current gas tungsten arc welding process and reported advantages include improved bead contour, lower heat input requirements, reduced residual stresses and distortion. Metallurgical advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, reduced width of heat affected zone, etc. All these factors will help in improving the mechanical properties. Hence, in this investigation an attempt has been made to study the effect of pulsed current gas tungsten arc welding parameters on Ti-6Al-4V titanium alloy

  10. Effect of current pulsing on tensile properties of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com

    2008-07-01

    Titanium and its alloys have been considered as one of the best engineering metals for industrial applications. This is due to the excellent combination of properties such as elevated strength to weight ratio, high toughness, excellent resistance to corrosion and good fatigue properties make them attractive for many industrial applications. Recently, considerable research has been performed on pulsed current gas tungsten arc welding process and reported advantages include improved bead contour, lower heat input requirements, reduced residual stresses and distortion. Metallurgical advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, reduced width of heat affected zone, etc. All these factors will help in improving the mechanical properties. Hence, in this investigation an attempt has been made to study the effect of pulsed current gas tungsten arc welding parameters on Ti-6Al-4V titanium alloy.

  11. Titanium application to power plant condensers

    International Nuclear Information System (INIS)

    Itoh, H.

    1987-01-01

    Recently, the growth of operating performance and construction plan of titanium-tubed condensers in thermal and unclear power plants has been very impressive. High-quality, thinner welded titanium tubes used for cooling tubes, matching design specifications of condensers, have been stably supplied through mass production. It now can be said that various technical problems for titanium-tubed condensers have been solved, but data on operating performance in large-scale commercial plants are still scarce, and site-by-site information needs be exchanged more frequently and on a larger scale. Projects to replace existing condenser cooling tubes with those of corrosion-resistant titanium have been actively furthered, with the only remaining barrier to full employment being cost effectiveness. It is hoped that condenser and tube manufacturers will conduct more joint value analyses

  12. Zirconium influence on microstructure of aluminide coatings ...

    Indian Academy of Sciences (India)

    Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel .... of hydrogen gas into CVD reactor, where nickel samples .... presence of three phases: β-NiAl, γ -Ni3Al and γ-Ni(Al).

  13. Effect of microalloying on precipitate evolution in ferritic welds and implications for toughness

    International Nuclear Information System (INIS)

    Narayanan, Badri K.; Kovarik, L.; Sarosi, Peter M.; Quintana, Marie A.; Mills, M.J.

    2010-01-01

    Ferritic weld metal deposited with a self-shielded arc-welding process has intentional additions of aluminum, magnesium, titanium and zirconium. This results in a complex precipitation process that has been characterized with a combination of electron microscopy techniques. This work indicates that the formation of a spinel oxide is critical for the nucleation of nitrides of zirconium and titanium and prevents the agglomeration of aluminum rich oxides and the formation of large aluminum nitrides. High-resolution transmission electron microscopy has been used to characterize the core/shell structure of the precipitates with microalloying additions. Thermodynamic modeling of the precipitate formation during solidification is consistent with the microstructural observations. The evolution of precipitate formation is critical to limit large inclusions and improve weld metal toughness.

  14. The keyhole GTAW technology: a new welding technology joining quality and productivity

    International Nuclear Information System (INIS)

    Le Port, P.; Laugier, M.; Scandella, F.; Lawrjaniec, D.; Boucher, Ch.

    2006-01-01

    This paper is a literature review regarding the keyhole GTAW technology, which has been developed and first used for industrial applications in Australia. The process enables single pass welding of a wide range of materials including stainless steels, titanium and nickel alloys, up to 12 mm thick. Process parameters (welding current, arc voltage, travel speed, the type of shielding gas and tungsten electrode dimensions) are discussed with regards to keyhole formation and stability. A comparison between standard GTAW and keyhole GTAW is provided for the welding of 12 mm thick stainless steel and titanium, showing the substantial increase in productivity that can be achieved with this new technology. Institut de Soudure has taken part in a European project aimed at assessing the possibilities of the keyhole GTAW technology. (authors)

  15. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  16. Development of procedure using plasma welding process to produce 125I seeds

    International Nuclear Information System (INIS)

    Feher, Anselmo

    2006-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer, is a problem of public health in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing 125 I radioisotope are implanted in the prostate. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed 125 I. The plasma arc welding is one of the viable techniques for the sealing process. The equipment used in this technique is less costly than in other processes. The main objective of this work was the development and the validation of the welding procedure using plasma welding process and the elaboration of a sealing routine according to Good Manufacturing Practices. The development of this work has presented the following phases: cut and cleaning of the titanium material, determination of the welding parameters, development of a device for holding the titanium tube during the welding process, validation of sealed sources according to ISO 2919 Sealed Radioactive Sources - General Requirements and Classification, leakage test according to ISO 9978 Sealed Radioactive Sources - Leakage Test Methods and metallographic assays. The developed procedure, to seal 125 I seeds using plasma welding process, has shown to be efficient, satisfying all the established requirements of ISO 2919. The results obtained in this work have given the possibility to establish a routine production process according to the orientations presented in resolution RDC number 59 - Good Manufacturing Practices do Medical Products of the ANVISA - Brazilian Nacional Agency of Sanitary Surveillance. (author)

  17. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    International Nuclear Information System (INIS)

    Mazumder, B.; Yu, X.; Edmondson, P.D.; Parish, C.M.; Miller, M.K.; Meyer, H.M.; Feng, Z.

    2016-01-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  18. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, B., E-mail: mazumderb@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Yu, X.; Edmondson, P.D.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Meyer, H.M.; Feng, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-02-15

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  19. Microstructural characteristics and effects of TC4 titanium alloy processed by using friction stir welding

    Directory of Open Access Journals (Sweden)

    Bo LI

    2016-02-01

    Full Text Available Friction stir welding technique is used for the processing of TC4 titanium alloy under protective atmosphere, and it results with good formability. The research focues on the evolution mechanisms of α+β dual phase microstructure in stirred zone and the effects of processing parameters on structures hardness. The results show that with optimized technological parameters, stir zone structure experiences the α/β transformation, and finally changes to the α+β duplex structure which is based on the β phase. After mixing head leaves and the structure cools, the precipitated lamellar α phase is among and/or within-regions. Grain refining of α+β dual phase is obvious. The shortened α/β lamellar spacing distance may improve the strengthening effect of the α+β duplex phase and enhance the hardness of the stir zone. The increasing of the tool rotation speed could coarsen β-regions, while the increasing of the travel speed could help reduce the α phase ratio and generate needle-type Martensites.

  20. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process; Simulation numerique du soudage du TA6V par laser YAG impulsionnel: caracterisation experimentale et modelisation des aspects thermomecanique associees a ce procede

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Y

    2007-09-15

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  1. Development and prevention of porosity in the fusion welding of thick titanium alloys

    International Nuclear Information System (INIS)

    Kulikov, F.R.; Redchits, V.V.; Khokhlov, V.V.

    1975-01-01

    This article describes the results of experimental investigations of the mechanics of formation of porosity in electron-beam welding, single-pass and multipass welding in argon with a consumable and non-consumable electrode, and also in the electroslag welding of alloys VT14 and VT22 from 10 to 60mm thick. It was established that nuclei of gas phase form at the moment of fusion of the edges of the parts being welded, the end surfaces of which have machining defects. The weld metal porosity can be prevented by: careful machining of the faying surfaces of the parts to be welded immediately before welding; the use of welding conditions ensuring long pool existence time, sufficient for hydrogen bubbles to float up and escape; intensification of the weld pool degassing process by using fluxes based on metal fluorides and chlorides, applied to the ends of the root part of the faying edges, and on the filler wire; reduction of the gas pressure in the beam channel by making gas-escape paths

  2. The structure of Ti-Ta welded joint and microhardness distribution over the cross section

    Science.gov (United States)

    Fomin, Aleksandr A.; Koshuro, Vladimir A.; Egorov, Ivan S.; Shelkunov, Andrey Yu.; Zakharevich, Andrey M.; Steinhauer, Natalia N.; Rodionov, Igor V.

    2018-04-01

    In order to create highly efficient medical systems and measuring biosensors, an approach is frequently used, in which the constructive basis of the product is made of a high-strength biocompatible material (titanium, stainless steel), and the functional layer is made of a more expensive metal (Ta, Zr, Au, Pt, etc.) or ceramics (Ta2O5, ZrO2, CaTiO3, etc.). For a strong connection, e.g. titanium with tantalum, it is proposed to use diffusion butt welding. The heat generated by passing electric current (I is not less than 1.95-2.05 kA, P - not less than 9 kW, t = 250-1000 ms) and applied pressure (30-50 MPa) ensure an integral connection. To improve the quality of the joint, i.e. to exclude cracks and tightness, it is necessary to choose the right combination of the thickness of the welded parts. It was established that when titanium (2 mm thick) and tantalum (0.1-0.5 mm) are combined, a better Ti-Ta welded joint is formed when tantalum foil is used (0.5 mm). Here the distribution of hardness over the cross section of the sample, including the welding areas, is uniform and has no extremely high residual stresses of the tensile type.

  3. Feasibility of correlating V-Cr-Ti alloy weld strength with weld chemistry. CRADA final report

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Odom, R.W.

    1998-06-01

    The mechanical properties of refractory metals such as vanadium are determined to a large extent by the interstitial impurities in the alloy. In the case of welding, interstitial impurities are introduced in the welding process from the atmosphere and by dissolution of existing precipitates in the alloy itself. Because of the necessity of having an ultra-pure atmosphere, a vacuum chamber or a glove box is necessary. In the V-Cr-Ti system, the titanium serves as a getter to control the concentration of oxygen and nitrogen in solid solution in the alloy. In this project the secondary ion mass spectrometry (SIMS) technique was used to detect, measure, and map the spacial distribution of impurity elements in welds in the alloy V-4Cr-4Ti. An attempt was then made to correlate the concentrations and distributions of the impurities with mechanical properties of the welds. Mechanical integrity of the welds was determined by Charpy V-notch testing. Welds were prepared by the gas-tungsten-arc (GTA) method. Charpy testing established a correlation between weld impurity concentration and the ductile to brittle transition temperature (DBTT). Higher concentrations of oxygen resulted in a higher DBTT. An exception was noted in the case of a low-oxygen weld which had a high hydrogen concentration resulting in a brittle weld. The concentrations and distributions of the impurities determined by SIMS could not be correlated with the mechanical properties of the welds. This research supports efforts to develop fusion reactor first wall and blanket structural materials

  4. Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Gloc, Michal, E-mail: michalgloc@wp.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland); Wachowski, Marcin [Military University of Technology in Warsaw, Faculty of Mechanical Engineering (Poland); Plocinski, Tomasz; Kurzydlowski, Krzysztof Jan [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2016-06-25

    Explosive welding is a solid state welding process that is used for the metallurgical joining of two or more dissimilar metals. In this process, forces of controlled detonations are utilized to accelerate one metal plate into another. As a result, an atomic bond is created. It is considered as a cold-welding process since it allows metals to be joined without losing their pre-bonding properties. The metal plates are joined under the influence of very high pressure which causes local plastic deformation and grain refining at the bond interface. Moreover, between the parent and flyer plate some local melting zones are formed. The explosively cladded steel plates are used in the chemical, petrochemical and nuclear industry due to their good corrosion resistance and mechanical properties. In this work, microstructural and chemical analyses of clad plates obtained by the explosive method are presented. The clad plates studied were made of titanium grade 1 explosively bonded with a thin layer of st52-3N low alloy steel. The microstructure was evaluated using light (LM) and scanning electron microscopes (SEM), while chemical composition was assessed using energy dispersive spectroscopy (EDS). It was found that the bond area had different microstructure, chemical composition and microhardness than the bonded materials. In the junction between the base steel and the cladding, a strongly defected transient zone with altered chemical composition in comparison with the bonded metals was revealed. - Highlights: • Explosive welding as an effective method for joining similar or dissimilar metals. • Slip brands, elongated grains and twins correlated with high plastic deformations. • Investigations of the local melted zones, formed at the interface of the clads. • Mechanical properties connected with microstructural changes and deformation.

  5. Titanium condenser tubes--problems and their solutions for wider application to large surface condensers

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M

    1978-01-01

    To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.

  6. Study of physicochemical processes and parameters of regime of diffusion brazing of niobium with titanium, zirconium and vanadium

    International Nuclear Information System (INIS)

    Grishin, V.L.; Lashko, S.V.

    1986-01-01

    Physicochemical processes at diffusion brazing of niobium with titanium, zirconium and vanadium, producing continious series of solid solutions with niobium are studied. Diffusion coefficients, time of isothermal crystallization of soldered welds, as well as the duration of homogenized thermal treatment of soldered welds necessary to provide the given temperature of weld unsoldering

  7. Chemical vapor deposition of aluminide coatings on iron, nickel and superalloys

    International Nuclear Information System (INIS)

    John, John T.; De, P.K.; Dubey, Vivekanand; Srinivasa, Raman

    2009-08-01

    Aluminide coatings are a class of intermetallic coatings applied on nickel and cobalt base superalloys and steels to protect them from different forms of environmental degradation at high temperatures. In this report a CVD system that can produce the aluminide coatings on iron, nickel and nickel base alloys has been described and the result of chemical vapor deposition of aluminide coatings on iron specimens, their characterization, and property evaluation have been presented. The CVD system consists of an AlCl 3 bath, a stainless steel retort as a hot-wall reacto, cold traps and vacuum system. Aluminium chloride vapor was carried in a stream of hydrogen gas at a flow rate of 150 SCCM (standard cubic centimeter per minute) into the CVD reactor maintained in the temperature range of 1173 - 1373 K and at a pressure of 1.33 kPa (10 Torr). Aluminum deposition takes place from aluminium subchlorides produced by reaction between AlCl 3 and pure aluminum kept in the CVD reactor. The aluminum diffuses into the iron samples and iron aluminide phases are formed at the surface. The coatings were shining bright and showed good adherence to the substrate. The coatings consisted of FeAl phase over a wide range of experimental conditions. The growth kinetics of the coating followed a parabolic rate law and the mean activation energy was 212 ±16 kJ/mol. Optical microscopic studies on the transverse section of the coating showed that the aluminide coating on iron consisted of two layers. The top layer had a thickness in the range of 20-50 μm, and the under layer had thickness ranging from 35 to 250 μm depending on coating temperature in two hours. The thickness of the aluminide layer increased with coating duration and temperature. Electron microprobe studies (EPMA) showed that the aluminum concentration decreased steadily as distance from the surface increased. TEM studies showed that the outer most layer had a B2 order (of the FeAl phase), which extended even into the under

  8. The welding of alloy 800

    International Nuclear Information System (INIS)

    Ward, M.; Norman, P.L.

    1975-01-01

    This paper reviews the technical literature published on the welding of alloy 800. Much of this work has been carried out using the Varestraint and Gleeble tests to investigate the susceptibility of the alloy and of high nickel consumables to hot-cracking. Inspite of much reported work, it is pointed out that many years of experience in the use of alloy 800 shows it to be readily weldable without any major problems occurring due to hot-cracking. The elements investigated include titanium, aluminium, sulphur, phosphorus and carbon, and the effects of these elements are discuused in terms of their effects on the hot-ductility curves obtained by Gleeble testing. Conclusions reached by various researchers state that the individual effects of the above five elements may be masked by other unknown factors. It is concluded that with correct welding procedures alloy 800 can be welded without cracking problems even with high heat input welding processes using either high-nickel filler wires or a matching electrode. Matching composition filler wires have been used with success but none are at present available commercially. (author)

  9. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  10. Strength of joints made of BT16 alloy produced by diffusion welding

    International Nuclear Information System (INIS)

    Kazakov, N.F.; Mashkova, N.A.; Varyanitsa, V.Yu.; Ermakova, N.V.; Fedorova, O.V.

    1984-01-01

    Strength characteristics of samples prepared by diffusion welding have been estimated for determination of optimum conditions for producing welded joints. It is shown that the joint strength ultimate plasticity and character of the joint fracture should be necessarily taken into accoUnt for choice of the optimum welding regime of homogeneous materials. The following regime is optimum for the titanium VT16 alloy: 1170 K welding temperature, 2 h duration of hold-up at the maximum temperature; 8 MPa pressure. A necessity of recrystallization annealing after welding is demonstrated. The annealing regime is as follows: 1070 K temperature; 60 min hold-up time. This treatment permits to reduce the grain size from the first point to the eighth one

  11. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  12. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  13. Titanium alloys. Advances in alloys, processes, products and applications

    International Nuclear Information System (INIS)

    Blenkinsop, P.A.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in 'older' alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments are underway aimed at specific engineering and process requirements, both in the aerospace and non-aerospace sectors. Both the advanced high temperature and conventional alloy developments are considered, before the paper goes on to assess the potential of new processes and products, like spray-forming, metal matrix composites and shaped-plate rolling. (orig.)

  14. Improvement in properties of welded joints of titanium alloy VT22 by thermocyclic treatment

    International Nuclear Information System (INIS)

    Lyasotskaya, V.S.; Kulikov, F.R.; Kirillov, Yu.G.; Ravdonikas, N.Yu.

    1983-01-01

    The results of investigations of the thermocyclic treatment (TCT) effect on the structure and properties of butt welded joints of tubes (with external diameter 180 mm and wall thickness 20-25 mm) of the VT22 alloy are presented. Welded joints have been obtained by means of multipassing automatic argon-arc (ARAW) and electron-beam (ELB) welding. It is shown that TCT of welded joints of the VT22 alloy results in formation in all zones of substructure with disperse precipitations of α-phase which is analogous to the structure of near welded seam zone metal immediately after welding. As a result of TCT and subsequent TT of welded joints poligonization and recrystallization processes of α- and #betta#-phases, changes in parameters of structural components and thin phase structure take place. TCT with strengthening TT or annealing leads to strength increase, while TCT with annealing besides that improves placticity and impact strength of the VT22 alloy welded joints

  15. The oxidation of aluminide diffusion coatings containing platinum used for the protection of IN738 superalloy

    International Nuclear Information System (INIS)

    Hanna, M.D.; Haworth, C.W.

    1993-01-01

    Aluminide coatings, as used for the protection against oxidation of most nickel-base superalloy components in modern jet engines, have been formed by a diffusion process on IN738 to give a coating that is essentially NiAl containing Al-rich precipitates. Aluminide coatings containing platinum have also been produced by initially depositing a thin layer (several microns thick) of Pt on the superalloy prior to the aluminisation process. Depending upon the details of the processing (such as the thickness of the Pt or the Al flux during the diffusion process) the structure of the coating on being formed was essentially either PtAl/sub 2/, PtAl or NiAl, or a mixture of these phases, but after some hours heat treatment at a high temperature (equivalent to service) was converted to either NiAl (containing Pt), or PtAl (containing Ni) or a mixture of PtAl and NiAl. The oxidation rate of these coatings at different temperatures between 800 and 1000 deg. C was studied using an automatic recording micro-balance and compared with the oxidation rate of a simple aluminide coating and of uncoated IN738. Further longer-term oxidation tests, including cyclic tests, were also undertaken. The Pt containing coatings gave approximately the same performance, and some were slightly better than the simple aluminide coatings, (and much better than the uncoated IN738). Both sections through the oxidised surface of the Al/sub 2/O/sub 3/ scale formed on the coatings were examined using optical microscopy and the SEM. The coating/scale interface on the platinum aluminide was seen to be slightly convoluted. It was more adherent and showed less tendency to spall than that formed on the simple aluminide coating. (author)

  16. Ion-plasma diffusion aluminide coatings for gas turbine blades (structure and properties)

    International Nuclear Information System (INIS)

    Muboyadzhyan, S.A.; Budinovskij, S.A.; Terekhova, V.V.

    2003-01-01

    A consideration is given to the ion-plasma method of heart resisting alloy diffusion coating with alloyed aluminides offering some advantages over routine techniques. Specific features of ion-plasma diffusion coatings production at the surface of heart resisting alloys using one- and multistage techniques are studied. The process of formation of coatings (Al-Si-Y, Al-Si-Ni-B, Al-Si-Cr-Y) along with coating effects on long-term heat resistance of nickel base alloys (ZhS6U, VZhL12U, ZhS26VNK) is investigated. The advantages of the new method of diffusion aluminide coatings are reported [ru

  17. Deformation behaviour of {gamma}+{alpha}{sub 2} Ti aluminide processed through reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K., E-mail: rohitkumar_gupta@vssc.gov.in [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Pant, Bhanu [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Kumar, Vinod [SAIL-RDCIS, Ranchi (India); Agarwala, Vijaya [Indian Institute of Technology, Roorkee 247 667 (India); Sinha, P.P. [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India)

    2013-01-01

    {gamma}+{alpha}{sub 2} titanium aluminide alloys made through reaction synthesis have been used for deformation study. Hot isothermal compression test is carried out to study the deformation characteristics of the alloys using Gleeble thermomechanical simulator. Three alloys based on Ti48Al2Cr2Nb0.1B (at%) are tested at different temperatures and at different strain rates. True stress-true strain plots are analyzed along with analysis of tested specimens. Tested specimens are observed under optical and electron microscopes. Presence of various deformation morphologies and phases were confirmed. Microhardness evaluation and transmission electron microscopic examination are used to confirm the presence of different phases. It is found that dynamic recrystallization is mainly playing role in deformation of these alloys. Presence of dynamically recrystallized (DRX) grains and lamellar microstructures is confirmed at the intergranular area and inside the grains, respectively. A nucleation model is suggested for DRX and lamellar grain nucleation during deformation. Attempt has been made to quantify the presence of various phases through optical microscopy. Hot workability map is also suggested on the basis of microstructural and visual observation of compression tested specimens.

  18. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-04-01

    Full Text Available Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  19. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  20. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  1. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels; Etude et developpement des flux solides en vue d'application en soudage ATIG applique au titane et ses alliages ainsi qu'aux aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Perry, N

    2000-06-15

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  2. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  3. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  4. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Science.gov (United States)

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  5. Simulation of uranium aluminide dissolution in a continuous aluminum dissolver system

    International Nuclear Information System (INIS)

    Evans, D.R.; Farman, R.F.; Christian, J.D.

    1990-01-01

    This paper reports on the Idaho Chemical Processing Plant (ICPP) which recovers highly-enriched uranium (uranium that contains at least 20 atom percent 235 U) from spent nuclear reactor fuel by dissolution of the fuel elements and extraction of the uranium from the aqueous dissolver product. Because the uranium is highly-enriched, consideration must be given to whether a critical mass can form at any stage of the process. In particular, suspended 235 U-containing particles are of special concern, due to their high density (6.8 g/cm 3 ) and due to the fact that they can settle into geometrically unfavorable configurations when not adequately mixed. A portion of the spent fuel is aluminum-alloy-clad uranium aluminide (UAl 3 ) particles, which dissolve more slowly than the cladding. As the aluminum alloy cladding dissolves in mercury-catalyzed nitric acid, UAl 3 is released. Under standard operating conditions, the UAl 3 dissolves rapidly enough to preclude the possibility of forming a critical mass anywhere in the system. However, postulated worst-case abnormal operating conditions retard uranium aluminide dissolution, and thus require evaluation. To establish safety limits for operating parameters, a computerized simulation model of uranium aluminide dissolution in the aluminum fuel dissolver system was developed

  6. A Review on the Properties of Iron Aluminide Intermetallics

    Directory of Open Access Journals (Sweden)

    Mohammad Zamanzade

    2016-01-01

    Full Text Available Iron aluminides have been among the most studied intermetallics since the 1930s, when their excellent oxidation resistance was first noticed. Their low cost of production, low density, high strength-to-weight ratios, good wear resistance, ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore, iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications, such as brake disks for windmills and trucks, filtration systems in refineries and fossil power plants, transfer rolls for hot-rolled steel strips, and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i alloy composition; (ii microstructure; and (iii number (type of defects on the thermo-mechanical properties. Additionally, environmental degradation of the alloys, consisting of hydrogen embrittlement, anodic or cathodic dissolution, localized corrosion and oxidation resistance, in different environments should be well known. Recently, some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements, environmental items and crystal structure on the deformation behavior of alloys. In this paper, we will review the extensive work which has been done during the last decades to address each of the points mentioned above.

  7. Simulation of explosive welding with ANFO mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, A.A. Akbari; Burley, Stephen J.; Al-Hassani, S.T.S. [Department of Mechanical, Aerospace and Manufacturing Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Byers Brown, W. [Mass Action Research Consultancy, Devonshire House, 14 Corbar Road, Buxton, SK17 6RQ (United Kingdom)

    2004-06-01

    The work described here arose from a study into explosive welding. As part of that study, the impact velocity of stainless steel and titanium plates to grazing detonation of ANFO/perlite, the velocity of detonation were measured. Computer simulation required a new model which copes with an equation of state of low explosives. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. The use of titanium alloys for dynamic risers: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Torster, F.; Kocak, M.; Santos, J.F. dos [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung; Hutt, G. [Stolt Comex Seaway Ltd., Aberdeen, (Scotland)

    1997-12-31

    The main topic of this short literature review is to describe the material related aspects concerning the production and purpose of flexible titanium risers for offshore oil and gas production. Metallurgy and alloying of titanium are briefly introduced. The review concentrates on the materials properties that are relevant for the intended use in marine environment. The focus is put on {alpha}+{beta} Ti-alloys, because earlier investigations have shown that this alloy family is the most suitable one for this purpose. Further topics which are taken into account are welding processes for titanium, weld properties and aspects of the associated weld defects as well. This literature review has been carried out at GKSS-Forschungszentrum Geesthacht GmbH within the framework of the project `Titanium Risers for Deepwater Developments (contract nr. OG/175/95), supported by the THERMIE-JOULE Programme of the European Commission. The project consortium is formed by Stolt Comex Seaway Ltd. (UK), Seaflex AS (Norway) and GKSS (Germany). (orig.) [Deutsch] Die vorliegende kurze Literaturrecherche befasst sich vorrangig mit den materialbezogenen Aspekten der Produktion und des Einsatzes von flexiblen `Risern` aus Titanlegierungen fuer die Oel- und Gasfoerderung auf See. Die Metallurgie und das Legieren von Titan werden kurz vorgestellt. Die Recherche konzentriert sich im weiteren auf die Materialeigenschaften, die fuer den vorgesehenen Einsatz in mariner Umgebung von besonderer Bedeutung sind. In erster Linie wird dabei auf {alpha}+{beta}-Titanlegierungen eingegangen, da vorausgegangene Untersuchungen gezeigt haben, dass diese Legierungsfamilie die guenstigsten Eigenschaften fuer das vorgesehene Einsatzgebiet aufweist. Im weiteren werden die Schweissprozesse, die bei Titanlegierungen eingesetzt werden, vorgestellt und die Eigenschaften und moeglichen Schweissfehler der hergestellten Schweissverbindungen gegenuebergestellt. Diese Literaturrecherche wurde im GKSS-Forschungszentrum im

  9. Aluminide Coating on Stainless Steel for Nuclear Reactor Application: A Preliminary Study

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Zaifol Samsu; Yusof Abdullah; Muhamad Daud

    2015-01-01

    Stainless steels have been used as structural materials in the nuclear reactor since its first generation. Stainless steels type 304 and 316 are commonly used in structural components. Since the first generation materials, improvements were made on Stainless steels. This includes addition of stabilizing elements and by modification of metallurgical structure. This study investigates the formation of aluminide coating on Stainless steels by diffusion to help improve corrosion resistance. Stainless steels type 304 and 316 substrates were immersed in molten aluminium at 750 degree Celsius for 5 minutes. Interaction between molten aluminium and solid to form the outer aluminide coating by hot dipped aluminizing is studied. (Author)

  10. Effect of cerium addition on the corrosion behaviour of carbon-alloyed iron aluminides

    International Nuclear Information System (INIS)

    Sriram, S.; Balasubramaniam, R.; Mungole, M.N.; Bharagava, S.; Baligidad, R.G.

    2006-01-01

    The effect of Ce addition on the microstructure and corrosion behavior of carbon-alloyed iron aluminides Fe-20.0Al-2.0C, Fe-18.5Al-3.6C and Fe-19.2Al-3.3C-0.07Ce (in at.%) has been studied. The potentiodynamic polarization behaviour of the alloys was evaluated in freely aerated 0.25 mol/l H 2 SO 4 . A 0.05% C steel was used for comparison purposes. All the alloys exhibited active-passive behaviour in the acidic solution. The addition of Ce destroyed passivity as indicated by lower breakdown potentials in polarization studies. This has been related to the finer distribution of the carbides in the microstructure. Corrosion rates were evaluated by immersion testing. The iron aluminide with Ce addition exhibited a lower corrosion rate compared to the aluminides without Ce addition. This has been attributed to modifications in surface film with Ce addition. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to localized galvanic corrosion due to the presence of carbides in the microstructure

  11. Feasibility of long-life and corrosion-resistant canister with titanium cladding

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Tokiwai, Moriyasu; Saegusa, Toshiari

    2008-01-01

    In order to store nuclear spent fuels for a long term, we propose the concept of stainless steel canister with titanium cladding. The stainless canister is first brazed to titanium plates, and then the brazed joints are covered with other titanium plates. A MIG brazing for titanium and stainless steel was demonstrated with a brazing metal of Cu-1Mn-3Si alloy (MG960). JIS G 0601 shear strength, tensile shear stress and peel strength tests are conducted for the optimized MIG brazing conditions. These results showed the MIG brazing specimens possess adequate structural strength. After the salt spray test on the basis of JIS Z 2371, there were no pitting and general corrosions on a TIG welding specimen between titanium plates. The corrosion resistance is therefore, sufficiently high. Manufacturing cost estimation suggests that the titanium cladding concept is feasible thereby using 1-mm-thick titanium plates to reduce the material cost. In addition to this concept, we propose another concept of the canister by using titanium-stainless steel cladding plates to reduce a number of brazing joints. (author)

  12. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels; Etude et developpement des flux solides en vue d'application en soudage ATIG applique au titane et ses alliages ainsi qu'aux aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Perry, N

    2000-06-15

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  13. Influence of different tightening forces before laser welding to the implant/framework fit.

    Science.gov (United States)

    da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César

    2009-06-01

    The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.

  14. New technology for production of granular adding material with nanomodifying additives for steel arc welding

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2016-12-01

    Full Text Available The chemical analysis of metal seam showed that introduction of titanium dioxide with MCA intensifies transition of Al2O3 from slag into metal pool and provides double concentration of titanium in the seam compared to the one which appears in the interaction of bathtub with melted flux AH-47 without TiO2 additives. The presence of oxides of titanium and aluminium of endogenous origin in the melt leads to formation of refractory particles with the center of TiO2 and Al2O3 in it. These particles are the centers of crystallization in the tail part of the molten pool and they remain in seam metal in the form of evenly distributed fine nonmetallic inclusions, which have crystallographic affinity with a matrix (α-iron. That provides the fine-grained seam structure with the raised and stable strength characteristics. This article compares the existing and developed technologies for production of MCA. The granulometric analysis of the powder TiO2 has demonstrated that when MCA is processed in the planetary mill, particles of titanium dioxide are crushed to a nanodimensional order. It is shown that the preparation of MCA in high-energy planetary mill (due to double increase of durability in coupling of the modifier with granulate provides its stable structure, increases the cold resistance (20–25% and stability of strength characteristics along the length of welded seam. Metalgraphic researches determined that the fine-grained structure which linear size of grain is twice smaller than the one obtained in the old technology welding is formed in a seam. However the direct introduction of nanomodifiers in a molten pool through the flux or an electrode wire is not efficient because of their deactivation and high temperature in welding zone. Therefore it was offered to use modifiers in the mix with the cooling macroparticles in case of automatic welding of a bridge metalware under flux using metalchemical additive (MCA. The MCA consists of a chopped

  15. A study on the role of diboride in the heterogeneous nucleation of aluminium

    International Nuclear Information System (INIS)

    Suarez, O. M.

    2004-01-01

    The intangible role of titanium and aluminium diboride in the nucleation of aluminium was re-examined. Two different techniques, complemented with scanning electron microscopy, allowed determining the stability of the diboride in the presence of titanium tri aluminides and liquid aluminium phases. Through rapid scintillated quenching the high temperature diboride were retained and studied. Then, in a diffusion couple, the reactivity of such diboride was tested in contact with pure titanium tri aluminide. It is proposed that a ternary diboride acts as the main catalytic particle in the crystallization of aluminium alloys with refined grains. (Author) 27 refs

  16. Formed electroslag welded joint from austenitic steel 18/10 CrNi

    International Nuclear Information System (INIS)

    Jilek, L.; Kusak, L.; Martinak, A.

    1987-01-01

    The electroslag welded joint from titanium stabilized steel 18/10 CrNi of 150 mm in thickness showed positive results for both nondestructive and destructive testing. Czechoslovak flux VUZ-4F and the optimized welding mode were completely proven. The weldment was subject to deformation by forging with a removal of 20 to 50% and to bending deformation. A 40% to 50% deformation was necessary for breaking the coarse-grain casting structure. The bending deformation resulted in breaking the coarse-grain casting structure in the entire cross-section, it was, however, only acting in a narrow band corresponding to the largest curvature. At the same time, the heat affected zone decayed. Following heat treatment, especially forming, the delta ferrite content in the weld metal decreased, the mechanical properties of the weld metal and the welded joint following welding and heat treatment showed a relatively large scatter. Forming reduced the scatter and improved plastic properties. Machining within 40 and 50% resulted in good echogenicity of the welded joint in ultrasound testing. The welded joint showed equal properties as the base material of the weldment. (author). 15 figs., 2 tabs., 16 refs

  17. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Howell, C.R. [Oak Ridge National Lab., TN (United States); Hall, F.; Valykeo, J. [Hoskins Mfg. Co., Hamburg, MI (United States)

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  18. Advances in stainless steel welding for elevated temperature service

    International Nuclear Information System (INIS)

    Goodwin, G.M.; Cole, N.C.; King, R.T.; Slaughter, G.M.

    1975-10-01

    An extensive program to characterize the microstructures and determine the mechanical properties of stainless steel welds is described. The amount, size, shape, and general distribution of ferrite in the weld metal was studied. The effects of electrode coatings on creep-rupture properties were determined as were the influences of slight differences in analyzed contents of carbon, silicon, phosphorus, sulfur, and boron. Using the above information, a superior commercially produced electrode was formulated which took advantage of chemical control over boron, titanium, and phosphorus. This electrode produced deposits exhibiting superior mechanical properties and it was successfully utilized to fabricate a large nuclear reactor vessel

  19. Numerical study of crucial parameters in tilt casting for titanium aluminides

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2011-08-01

    Full Text Available Numerical modeling of the tilt casting process for TiAl alloys was investigated to achieve a tranquil mould filling and TiAl castings free of defects. Titanium alloys are very reactive in molten state, so they are widely melted in cold crucible, e.g. the Induction Skull Melting (ISM furnace. Then the crucible holding the molten metal together with the mould is rotated to transfer the metal into the mould — ISM+ tilt casting. This paper emphasizes the effect of crucial parameters on mould filling and solidification of the castings during tilt casting. All crucial parameters, such as rotation rate, rotation profile, venting, initial mould temperature, casting orientation, feeder design, change of radius in 'T' junction and mould insulation have been discussed using numerical modeling data. Simulations were performed using a 3D CFD code PHYSICA implemented with front tracking, heat transfer algorithms and a turbulence model (which accounts for an advancing solid front.

  20. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  1. Characterisation of fume from hyperbaric welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, John A S; Semple, Sean [Environmental and Occupational Medicine, University of Aberdeen (United Kingdom); Duffin, Rodger [ELEGI Colt Laboratory, University of Edinburgh (United Kingdom); Kelly, Frank [Lung Biology Group, Kings College, University of London (United Kingdom); Seldmann, Joerg; Raab, Andrea, E-mail: j.a.ross@abdn.ac.u [Trace Element Speciation Laboratory, University of Aberdeen (United Kingdom)

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  2. Synthesis mechanism of an Al-Ti-C grain refiner master alloy prepared by a new method

    Science.gov (United States)

    Zhang, B. Q.; Lu, L.; Lai, M. O.; Fang, H. S.; Ma, H. T.; Li, J. G.

    2003-08-01

    The mechanisms of in-situ synthesis of an Al-Ti-C grain-refiner master alloy, prepared by adding a powder mixture of potassium titanium fluoride and carbon into an aluminum melt, have been systematically studied. It was found that vigorous reactions occurred at the initial stage of reaction and then slowed down. After about 20 minutes, the reactions, which led the formation of blocky titanium aluminides and submicron titanium carbides in the aluminum matrix, appeared to reach completion. Potassium titanium fluoride reacted with aluminum and carbon at 724 °C and 736 °C, respectively, resulting in the formation of titanium aluminides and titanium carbides in the aluminum matrix as well as in the formation of a low-melting-point slag of binary potassium aluminofluorides. The reaction between potassium titanium fluoride and carbon is believed to be the predominant mechanism in the synthesis of TiC by this method.

  3. The Effect of Nitrogen and Titanium on the Toughness of High Strength Saw Weld Deposits

    Science.gov (United States)

    1989-05-12

    2.3 CCT diagram for typical SAW steel welds [8]. 26 Figure 2.4 Oxygen and nitrogen levels expected from several arc 31 welding processes [10]. Figure...alloyed ferritic weld metal such formation is achieved if the CCT diagram is displaced towards longer times. However, it is worth noting that too large...dilution and cooling rate [5]. In this context, the CCT diagram is often used to denote the transformations that occur in weld metal samples which

  4. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voděrová

    2013-07-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  5. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voderova

    2013-05-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  6. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    Science.gov (United States)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  7. Stress relief cracking by relaxation in austenitic stainless steels welded junctions; Fissuration differee par relaxation des jonctions soudes en aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Allais, L.; Auzoux, Q.; Chabaud-Reytier, M

    2003-07-01

    During service at high temperature (450 to 650 C), austenitic stainless steels are well known to present a risk of cracking near the welded junctions for times under the service life. This intergranular cracking in affected zones has been identified on titanium stabilized steels and is known as relief cracking by relaxation or reheat cracking. In order to control this cracking of welded junctions on titanium stabilized stainless steel AISI 321, a simulation of the affected zone has been realized. The results have been extended to non stabilized steels. (A.L.B.)

  8. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  9. Effects of Mars Atmosphere on Arc Welds: Phase 2

    Science.gov (United States)

    Courtright, Z. S.

    2018-01-01

    Gas tungsten arc welding (GTAW) is a vital fusion welding process widely used throughout the aerospace industry. Its use may be critical for the repair or manufacture of systems, rockets, or facilities on the Martian surface. Aluminum alloy AA2219-T87 and titanium alloy Ti-6Al-4V butt welds have been investigated for weldability and weld properties in a simulated Martian gas environment. The resulting simulated Martian welds were compared to welds made in a terrestrial atmosphere, all of which used argon shielding gas. It was found that GTAW is a process that may be used in a Martian gas environment, not accounting for pressure and gravitational effects, as long as adequate argon shielding gas is used to protect the weld metal. Simulated Martian welds exhibited higher hardness in all cases and higher tensile strength in the case of AA2219-T87. This has been attributed to the absorption of carbon into the fusion zone, causing carbide precipitates to form. These precipitates may act to pin dislocations upon tensile testing of AA2219-T87. Dissolved carbon may have also led to carburization, which may have caused the increase in hardness within the fusion zone of the welds. Based on the results of this experiment and other similar experiments, GTAW appears to be a promising process for welding in a Martian gas environment. Additional funding and experimentation is necessary to determine the effects of the low pressure and low gravity environment found on Mars on GTAW.

  10. Influence of laser-welding and electroerosion on passive fit of implant-supported prosthesis.

    Science.gov (United States)

    Silva, Tatiana Bernardon; De Arruda Nobilo, Mauro Antonio; Pessanha Henriques, Guilherme Elias; Mesquita, Marcelo Ferraz; Guimaraes, Magali Beck

    2008-01-01

    This study investigated the influence of laser welding and electroerosion procedure on the passive fit of interim fixed implant-supported titanium frameworks. Twenty frameworks were made from a master model, with five parallel placed implants in the inter foramen region, and cast in commercially pure titanium. The frameworks were divided into 4 groups: 10 samples were tested before (G1) and after (G2) electroerosion application; and another 10 were sectioned into five pieces and laser welded before (G3) and after (G4) electroerosion application. The passive fit between the UCLA abutment of the framework and the implant was evaluated using an optical microscope Olympus STM (Olympus Optical Co., Tokyo, Japan) with 0.0005mm of accuracy. Statistical analyses showed significant differences between G1 and G2, G1 and G3, G1 and G4, G2 and G4. However, no statistical difference was observed when comparing G2 and G3. These results indicate that frameworks may show a more precise adaptation if they are sectioned and laser welded. In the same way, electroerosion improves the precision in the framework adaptation.

  11. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  12. Corrosion resistant properties and weldabilities of ASTM Grade 12 titanium alloy

    International Nuclear Information System (INIS)

    Tsumori, Yoshikatsu; Itoh, Hideo

    1988-01-01

    Plates, sheets, bars, wires and thinner seam-welded tubings were manufactured from large-scaled ingot of ASTM Grade 12 alloy (Ti-0.8Ni-0.3Mo). The processability of G-12 alloy has proved almost similar to that of conventional commercially pure titanium grades. It has been clarified that the G-12 alloy showed several advantageous features: Chlorides-Crevice corrosion resistance of the alloy was almost equals to G-7 and Pd0/TiO 2 coated titanium, and the maximum allowable stress was able to be designed higher than that of commercially pure titanium. This alloy has been in applications also offers where such environments as seawater, brines and moist chlorine, various oil refinery and chemical industries, and others. (author)

  13. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    Science.gov (United States)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  14. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  15. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  16. Advances of orbital gas tungsten arc welding for Brazilian space applications – experimental setup

    Directory of Open Access Journals (Sweden)

    José A. Orlowski de Garcia

    2010-08-01

    Full Text Available The present work describes details of the several steps of the technology involved for the orbital Gas Tungsten Arc Welding (GTAW process of pure commercially titanium tubes. These pieces will be used to connect the several components of the propulsion system of the China-Brazilian Satellite CBERS, and is part of the Brazilian aerospace industry development. The implantation involved the steps of environment control; cut and facing of the base metal; cleaning procedures; piece alignment; choice of the type, geometry and installation of the tungsten electrode; system for the pressure of the purge gas; manual tack welding; choice of the welding parameters; and, finally, the qualification of welding procedures. Three distinct welding programs were studied, using pulsed current with increasing speed, continuous current and pulsed current with decreasing amperage levels. The results showed that the high quality criteria required to the aerospace segment is such that usual welding operations must be carefully designed and executed. The three welding developed programs generated welds free of defects and with adequate morphology, allowing to select the condition that better fits the Brazilian aerospace segment, and to be implanted in the welding of the CBERS Satellite Propulsion System.

  17. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    International Nuclear Information System (INIS)

    Ray, S.; Sarker, B.; Bhattacharya, S.

    1989-01-01

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties. Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 μm average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste

  18. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  19. The influence of screw type, alloy and cylinder position on the marginal fit of implant frameworks before and after laser welding.

    Science.gov (United States)

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-04-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.

  20. Synthesis and characterisation of pack cemented aluminide coatings on metals

    International Nuclear Information System (INIS)

    Houngninou, C.; Chevalier, S.; Larpin, J.P.

    2004-01-01

    The exposition of metallic materials to high temperature environments leads to their corrosion because of oxidation or sulphidation. One way to protect such materials is to produce an Al 2 O 3 layer which needs to be continuous enough to limit diffusion of oxygen or metallic elements, and withstand this corrosion. Since a few years, it has been proved that aluminide compounds are one of the most effective materials to achieve this goal. Indeed, they possess sufficient Al and many beneficial mechanical properties when exposed to high temperature conditions to make possible the formation of a protective Al 2 O 3 scale. This study is aimed at the elaboration of iron, nickel and molybdenum aluminides by modification of the surface of the base materials by a pack cementation process. The as-cemented alloys were analysed by means of SEM coupled with EDX and by XRD. Cross-section examinations showed, in each case, a progressive diffusion of aluminium through the substrates. The diffusion thickness layer was more or less important depending on the base material and on the coating conditions

  1. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  2. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  3. A Comparative Study on the Laser Welding of Ti6Al4V Alloy Sheets in Flat and Horizontal Positions

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2017-04-01

    Full Text Available Laser welding has been increasingly utilized to manufacture a variety of components thanks to its high quality and speed. For components with complex shapes, the welding position needs be continuously adjusted during laser welding, which makes it necessary to know the effects of the welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and horizontal welding positions were studied comparatively in the laser welding of Ti6Al4V titanium alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the flat welding position led to better weld profiles, less process porosity than that of the horizontal welding position, which resulted from the different actions of gravity on the molten weld metals and the different escape routes for pores under different welding positions. Although undercuts showed no association with the fracture positions and tensile strengths of the welds, too much porosity in horizontal laser welds led to significant decreases in the strengths and specific elongations of welds. Higher laser powers and travel speeds were recommended, for both flat and horizontal welding positions, to reduce weld porosity and improve mechanical properties.

  4. The keyhole GTAW technology: a new welding technology joining quality and productivity; Le procede K-TIG: une nouvelle technologie de soudage combinant qualite et productivite

    Energy Technology Data Exchange (ETDEWEB)

    Le Port, P.; Laugier, M.; Scandella, F.; Lawrjaniec, D. [Institut de Soudure, 57 - Yutz (France); Boucher, Ch. [Institut de Soudure, 93 - Villepinte (France)

    2006-05-15

    This paper is a literature review regarding the keyhole GTAW technology, which has been developed and first used for industrial applications in Australia. The process enables single pass welding of a wide range of materials including stainless steels, titanium and nickel alloys, up to 12 mm thick. Process parameters (welding current, arc voltage, travel speed, the type of shielding gas and tungsten electrode dimensions) are discussed with regards to keyhole formation and stability. A comparison between standard GTAW and keyhole GTAW is provided for the welding of 12 mm thick stainless steel and titanium, showing the substantial increase in productivity that can be achieved with this new technology. Institut de Soudure has taken part in a European project aimed at assessing the possibilities of the keyhole GTAW technology. (authors)

  5. The feasibility of welding irradiated materials

    Science.gov (United States)

    Lin, H. T.; Chin, B. A.

    1991-03-01

    Helium was implanted into solution-annealed (SA) 316 stainless steel, 20% cold-worked (CW) 316 stainless steel and titanium-modified Primary Candidate Alloy (PCA) through tritium decay to levels ranging from 0.18 to 256 appm. Full penetration welds were then made on helium-doped materials using gas tungsten arc welding (GTAW) under fully constrained conditions. Intergranular heat-affected zone (HAZ) cracking was observed in all of the materials containing greater than 1 appm He. Electron microscopy showed that the HAZ cracking originated from the growth and coalescence of grain boundary (GB) helium bubbles. Bubble growth kinetics in the HAZ is explained by stress-enhanced diffusive cavity growth. Results suggest that the propensity for HAZ cracking can be reduced by the pre-existing cold-worked structure and by finely-distributed MC precipitates that refine the distribution of helium bubbles and minimize the flow of vacancies in grain boundaries.

  6. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    International Nuclear Information System (INIS)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R.

    2011-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  7. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  8. The use of titanium for condenser tube bundles

    International Nuclear Information System (INIS)

    Dobrovitch, N.

    2002-01-01

    In a power plant, the condenser is a strategic heat exchanger with regards to the efficiency of the steam turbine and its reliability guarantees the performance and continuous operation of the plant. Until the early 1980's, copper alloys were routinely used in condenser tubes, thanks to their high heat transfer rates. Yet numerous problems arose from the use of this material, such as stress cracking corrosion, ammoniacal corrosion, fouling, erosion, dezincification, abrasion, erosion-corrosion,... and lately the problem of inadequateness of copper with nuclear steam generators (in nuclear power plant the abrasion problem of the copper alloy tubes created a deposit problem in the steam generator conducting to the replacement of all the condensers). The trend was then to consider new tube materials, such stainless steel and titanium, firstly for particular operating conditions and now for most of the projects, with several objectives, such as: 1) improve the reliability (titanium in particular can bring major improvements such as higher water velocities promoting better heat coefficients, excellent resistance to abrasion, erosion and corrosion thereby improving resistance to fouling; 2) find more cost-effective solutions. The first investment is higher but money is saved on maintenance costs and on time reliability of the material. Titanium tube manufacturing has greatly evolved for the last 20 years. Tubes are mostly welded tubes from ASTM SB 338 grade 1 made on a continuous manufacturing line. All manufacturing operations (welding, annealing, non-destructive testing) are fully automated to produce high quality tubes in large quantities. The most common way to attach tubes to a tubesheet is to roller expand them. (A.C.)

  9. In situ x-ray diffraction of an arc weld showing the phase transformations of Ti and Fe as a function of position in the weld performed at a synchrotron

    International Nuclear Information System (INIS)

    Wong, J.; Elmer, J.W.; Waide, P.A.

    1994-01-01

    The synchrotron x-ray source provides a unique opportunity to observe open-quotes in-situclose quotes processes. The formation of the open-quotes short-livedclose quotes intermediate species, Ta 2 C, during the combustion synthesis of TaC, has been observed and reported by monitoring the Bragg diffraction peaks of the reactants and products. Similarly, the synthesis of the ferroelectric material, BaTiO 3 , and subsequent phase transformation from cubic to tetragonal have also been investigated. These experiments would not have been possible without the high incident x-ray flux available at a synchrotron source. The physical and mechanical properties of a weld join are highly independent upon the thermal history of the weld. Factors such as grain size, which increases with annealing, influence the tensile strength of the weld. This work presents the results of an investigation of the phase changes in two materials, titanium and stainless steel, which occur during the welding process. 4 refs., 3 figs

  10. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    Science.gov (United States)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  11. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  12. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  13. A non-conventional technique for evaluating welded joints based on the electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.G.; Sorger, G., E-mail: telmo.santos@fct.unl.pt, E-mail: lgs18243@campus.fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Vilaca, P., E-mail: pedro.vilaca@aalto.fi [Aalto Univ., Dept. of Engineering Design and Production, School of Engineering, Aalto (Finland); Miranda, R., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2015-01-15

    Recent studies showed that electrical conductivity is a valuable technique to identify the different zones of solid-state welded joints with a good correlation with the microstructure and hardness. This is a relevant result since this technique is fast and, in some cases, non destructive, The concept was applied to other welding processes such as the ones involving fusion to a wide range of materials, For this, a comprehensive study was performed using friction stir welding, tungsten inert gas (TlG) and gas metal arc (MAG) welding processes in either bead on plate or butt joints in: carbon steel, magnesium and titanium, Eddy current nondestructive testing (NDT) was used to measure the electrical conductivity at different depths in transverse sections of the processed materials. The profiles were compared to the hardness profiles in the same sections. As a result, a correlation was observed in most materials welded by solid state and by fusion processes. The variation of the electrical conductivity closely follows that measured in the hardness. Another interesting conclusion is that, even for fusion welding of carbon steels, the technique has potential to complement the hardness measurements and microstructural observations, allowing the identification of the distinct zones of welds in materials commonly used in industry. (author)

  14. Thermo-mechanical fatigue behaviour of the near-{gamma}-titanium aluminide alloy TNB-V5 under uniaxial and multiaxial loading

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, Stephen Peter

    2009-12-19

    With increasing environmental awareness and the general need to economise on the use of fossil fuels, there is growing pressure for industry to produce lighter, more efficient, gas turbine engines. One such material that will help to achieve these improvements is the intermetallic gamma titanium aluminide ({gamma}-TiAl) alloy. At only half the density of current nickel-based superalloys its weight saving capability is highly desirable, however, its mechanical properties have not yet been fully explored especially, when it is to be considered for structural components in aeronautical gas turbine engines. Critical components in these engines typically experience large variations in temperatures and multiaxial states of stress under non-isothermal conditions. These stress states are known as tri-axial thermo-mechanical fatigue (TMF). The work presented here investigates the effects these multi-axial stresses, have on a {gamma}-TiAl, (Ti-45Al-5Nb-0.2B-0.2C) alloy under TMF conditions. The uniaxial, torsional and axialtorsional TMF behaviour of this {gamma}-TiAl alloy have been examined at 400 - 800 C with strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted at both thermomechanical in-phase (IP) and out-of-phase (OP). Selected tests additionally contained a 180 seconds hold period. Fatigue lifetimes are strongly influenced by the strain amplitude, a small increase in amplitude reduces the lifetime considerably. The uniaxial IP tests showed significantly longer fatigue lifetimes than of all the tests performed. Torsional loading although have shorter fatigue lifetimes than the uniaxial IP loading they have longer fatigue lifetimes than the uniaxial OP loading. The non-proportional axial-torsional 90 degree OP test is most damaging which resulted in a shorter lifetime than the uniaxial OP test with the same Mises equivalent mechanical strain amplitude. A hold period at maximum temperatures reduced the lifetime for all tests regardless of the temperature

  15. Fabrication of Miniature Titanium Capsule for Brachytherapy Sources Using Tungsten Inert Gas Method

    International Nuclear Information System (INIS)

    Naghdi, R.; Sheibani, Sh.; Tamizifar, M.

    2013-01-01

    The capsules containing radioactive materials as brachytherapy sources are used for implanting into some target organs for malignant disorders treatments, such as prostate, eyes, and brain cancers. The conventional method for sealing the tubes is to weld them using a laser beam which is now a part of tube melting methods (self welding). The purpose of this study was to seal miniature titanium tubes containing radioactive materials in the form of capsules. This study introduced a new method based on melting process. A piece of commercially pure titanium grade 2 in the form of disk was used for the experiment. The sample was melted at the top of the tube by a Tungsten Inert Gas welding device for a short time duration. After completion of the melting, the disk in the form of a drop was mixed with a small part of it and both were solidified and hence closed the tube. We evaluated the tubes for the metallurgical properties and seal process which took place by Tungsten Inert Gas in different zones, including the heat affected zone, fusion zone, and interface of the joint of the drop to the tube. Finally, the produced samples were tested according to the ISO2919 and ISO9978 and the results confirmed the Disk and Tungsten Inert Gas procedure.

  16. Mechanical properties of Fe3Al-based alloys with addition of carbon, niobium and titanium

    International Nuclear Information System (INIS)

    Zhang Zhengrong; Liu Wenxi

    2006-01-01

    Several Fe 3 Al-based iron aluminides with the addition of alloying elements carbon, niobium and titanium were produced by vacuum induction melting (VIM) and hot spinning forging. Analytic techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used in studying the microstructure and fracture manner of these alloys. The results show that due to the addition of alloying elements, the superlattice dislocations tend towards multiple slipping, leaving behind on their slip plane ribbons of square-shaped slip-induced antiphase boundaries. The elongation of Fe 3 Al in tension at room temperature increased to about 10% by the addition of suitable alloying elements, the usage of thermo-mechanical processing that has the function of refining grains and substructures, and subsequent annealing

  17. The feasibility of welding of irradiated materials

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.; Auburn Univ., AL

    1989-01-01

    Helium was implanted into solution-annealed (SA) 316 stainless steel, 20% cold-worked (CW) 316 stainless steel and titanium-modified Primary Candidate Alloy (PCA) through tritium decay to levels ranging from 0.18 to 256 appm. Full penetration welds were then made on helium-doped materials using gas tungsten arc welding (GTAW) under fully constrained conditions. Intergranular heat-affected zone (HAZ) cracking was observed in all of the materials containing greater than 1 appm He. Electron microscopy showed that the HAZ cracking originated from the growth and coalescence of grain boundary (GB) helium bubbles. Bubble growth kinetics in the HAZ is explained by stress-enhanced diffusive cavity growth. Results suggest that the propensity for HAZ cracking can be reduced by the preexisting cold-worked structure and by finely-distributed MC precipitates that refine the distribution of helium bubbles and minimize the flow of vacancies in grain boundaries. 16 refs., 3 figs

  18. Mitigation of sensitisation effects in unstabilised 12%Cr ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Warmelo, Martin van; Nolan, David; Norrish, John

    2007-01-01

    Sensitisation in the heat-affected zones of ferritic stainless steel welds is typically prevented by stabilisation of the parent material with titanium or niobium, and suitable design of the overall composition to produce a suitably high ferrite factor. However, such alloy modification has proven to be economically unviable for thick gauge (>10 mm) plate products and therefore unstabilised 12%Cr (3CR12) material is still currently being used for heavy gauge structural applications in many parts of the world. The aim of the current work was to review the mechanisms responsible for sensitisation in these unstabilised ferritic stainless steels, and to characterise the sensitisation effects arising from multipass welding procedures. The objective was to determine the influence of welding parameters, and thereby to recommend mitigating strategies. Two particular sensitisation modes were found to occur in the current work, although only one was predominant and considered problematic from a practical perspective. It was found that with proper positioning of weld capping runs and control of weld overlap, it is possible to ensure that sensitising isotherms remain buried beneath the parent surface, and so reduce harmful corrosion effects

  19. Evaluation of the feasibility of joining titanium alloy to heavymet tungsten alloy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-07

    Information is presented on a program to select and evaluate methods of brazing and/or explosively welding Ti-6Al-4V titanium alloy to Heavymet, a tungsten-base metal containing up to about 20% alloying elements (nickel, copper, etc.) to improve its ductility and other mechanical properties. Designs permitting the reliable production of joints between these base metals were of interest too. While this investigation was primarily concerned with an engineering study of the problems associated with joining these base metals in the required configuration, limited experimental studies were conducted also. The joining methods are reviewed individually. Recommendations for developing a viable titanium-tungsten joining procedure are discussed.

  20. Evaluation of the feasibility of joining titanium alloy to heavymet tungsten alloy

    International Nuclear Information System (INIS)

    1978-01-01

    Information is presented on a program to select and evaluate methods of brazing and/or explosively welding Ti-6Al-4V titanium alloy to Heavymet, a tungsten-base metal containing up to about 20% alloying elements (nickel, copper, etc.) to improve its ductility and other mechanical properties. Designs permitting the reliable production of joints between these base metals were of interest too. While this investigation was primarily concerned with an engineering study of the problems associated with joining these base metals in the required configuration, limited experimental studies were conducted also. The joining methods are reviewed individually. Recommendations for developing a viable titanium-tungsten joining procedure are discussed

  1. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  2. 3D Multiphysical Modelling of Fluid Dynamics and Mass Transfer in Laser Welding of Dissimilar Materials

    Directory of Open Access Journals (Sweden)

    Jiazhou Wu

    2018-06-01

    Full Text Available A three-dimensional multiphysical transient model was developed to investigate keyhole formation, weld pool dynamics, and mass transfer in laser welding of dissimilar materials. The coupling of heat transfer, fluid flow, keyhole free surface evolution, and solute diffusion between dissimilar metals was simulated. The adaptive heat source model was used to trace the change of keyhole shape, and the Rayleigh scattering of the laser beam was considered. The keyhole wall was calculated using the fluid volume equation, primarily considering the recoil pressure induced by metal evaporation, surface tension, and hydrostatic pressure. Fluid flow, diffusion, and keyhole formation were considered simultaneously in mass transport processes. Welding experiments of 304L stainless steel and industrial pure titanium TA2 were performed to verify the simulation results. It is shown that spatters are shaped during the welding process. The thickness of the intermetallic reaction layer between the two metals and the diffusion of elements in the weld are calculated, which are important criteria for welding quality. The simulation results correspond well with the experimental results.

  3. External attachment of titanium sheathed thermocouples to zirconium nuclear fuel rods for the loss-of-fluid-test (LOFT) Reactor

    International Nuclear Information System (INIS)

    Welty, R.K.

    1980-01-01

    A welding process to attach titanium sheathed thermocouples to the outside of the zircaloy clad fuel rods has been developed. A laser beam was selected as the optimum welding process because of the extremely high energy input per unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. Irradiation tests showed no degradation of thermocouples or weld structure. Fast thermal cycle and heater rod blowdown reflood tests were made to subject the weldments to high temperatures, high pressure steam, and fast water quench cycles. From the behavior of these tests, it was concluded that the attachment welds would survive a series of reactor safety tests. 2 refs

  4. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  5. Oxidation-sulfidation behavior of Ni aluminide in oxygen-sulfur mixed-gas atmospheres

    International Nuclear Information System (INIS)

    Natesan, K.

    1988-01-01

    Oxidation-sulfidation studies were conducted with sheet samples of nickel aluminide, containing 23.5 at. % Al, 0.5 at. % Hf, and 0.2 at. % B, in an annealed condition and after preoxidation treatments. Continuous weight-change measurements were made by a thermogravimetric technique in exposure atmospheres of air, a low-pO/sub 2/ gas mixture, and low-pO/sub 2/ gas mixtures with several levels of sulfur. The air-exposed specimens developed predominantly nickel oxide; the specimen exposed to a low-pO/sub 2/ environment developed an aluminum oxide scale. As the sulfur content of the gas mixture increased, the alumina scale exhibited spallation and the alloy tended to form nickel sulfide as the reaction phase. The results indicated that the sulfidation reaction of nickel aluminide specimens (both bare and preoxidized) was determined by the rate of transport of nickel from the substrate through the scale to the gas/alumina scale interface, the mechanical integrity of the oxide scale, and the H/sub 2/S concentration in the exposure environment

  6. Development of procedure using plasma welding process to produce {sup 125}I seeds; Desenvolvimento de procedimento utilizando processo de soldagem plasma para confeccao de sementes de {sup 125}I

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo

    2006-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer, is a problem of public health in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing {sup 125}I radioisotope are implanted in the prostate. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed {sup 125}I. The plasma arc welding is one of the viable techniques for the sealing process. The equipment used in this technique is less costly than in other processes. The main objective of this work was the development and the validation of the welding procedure using plasma welding process and the elaboration of a sealing routine according to Good Manufacturing Practices. The development of this work has presented the following phases: cut and cleaning of the titanium material, determination of the welding parameters, development of a device for holding the titanium tube during the welding process, validation of sealed sources according to ISO 2919 Sealed Radioactive Sources - General Requirements and Classification, leakage test according to ISO 9978 Sealed Radioactive Sources - Leakage Test Methods and metallographic assays. The developed procedure, to seal {sup 125}I seeds using plasma welding process, has shown to be efficient, satisfying all the established requirements of ISO 2919. The results obtained in this work have given the possibility to establish a routine production process according to the orientations presented in resolution RDC number 59 - Good Manufacturing Practices do Medical Products of the ANVISA - Brazilian Nacional Agency of Sanitary Surveillance. (author)

  7. High-velocity-oxidation performance of metal-chromium-aluminum (MCrAl), cermet, and modified aluminide coatings on IN-100 and type VIA alloys at 1093 C

    Science.gov (United States)

    Deadmore, D. L.

    1974-01-01

    Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.

  8. Welding of Invar Fe-36 Ni Alloy used for tooling of composite materials

    International Nuclear Information System (INIS)

    Corbacho, J.L.; Suarez, J.C.; Molleda, F.

    1997-01-01

    Invar alloy has been used for a long time almost exclusively for the manufacturing of high precision devices. Recently, however, new structural uses, such as bulky composite tooling for aerospace industry, have forced to reconsider all the welding procedures previously used. The aim of this research work is to get some insight into several of the problems of welding of invar, while proposing solutions concerned with experience or actual uses. Several issues have been considered, such as precautions with regards the purity of the inert shielding gas and the absence of residues on the surface, role of the titanium added with the filler metal, sensitivity of the alloy to reheat cracking, existence of precipitates and inclusions, etc. The presence of a characteristic banding on the weld pool, its origin and incidence on joint's properties have been also investigated. (Author) 28 refs

  9. Optimization of laboratory hot rolling of brittle Fe-40at.%Al-Zr-B aluminide

    Czech Academy of Sciences Publication Activity Database

    Schindler, I.; Hadasik, E.; Kopeček, Jaromír; Kawulok, P.; Fabík, R.; Opěla, P.; Rusz, S.; Kawulok, R.; Jabłońska, M.

    2015-01-01

    Roč. 60, č. 3 (2015), s. 1693-1701 ISSN 1733-3490 R&D Projects: GA ČR(CZ) GAP107/10/0438 Institutional support: RVO:68378271 Keywords : iron aluminides * EBSD * textures * modelling Subject RIV: JG - Metallurgy Impact factor: 1.090, year: 2014

  10. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  11. Titanium condenser tubes. Problems and their solution for wider application to large surface condensers. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, S; Nagata, K; Nanba, K; Shimono, M [Sumitomo Light Metal Industries Ltd., Tokyo (Japan)

    1977-06-01

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack on copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection was observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling.

  12. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  13. External attachment of titanium sheathed thermocouples to zirconium nuclear fuel rods for the LOFT reactor

    International Nuclear Information System (INIS)

    Welty, R.K.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a Subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, has developed a welding process to attach titanium sheathed thermocouples to the outside of the zircaloy clad fuel rods. The fuel rods and thermocouples are used to test simulated loss-of-coolant accident (LOCA) conditions in a pressurized water reactor (LOFT Reactor, Idaho National Laboratory). A laser beam was selected as the optimum welding process because of the extremely high energy input per unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A commercial pulsed laser and energy control system was installed along with specialized welding fixtures. Laser room facility requirements and tolerances were established. Performance qualifications, and detailed welding procedures were also developed. Product performance tests were conducted to assure that engineering design requirements could be met on a production basis

  14. Development and production of nuclear valves. Forging and welding. Pt. 2

    International Nuclear Information System (INIS)

    Bernal Castro, J.B.; Perez, J.C.; Labonia, R.N.

    1987-01-01

    The first part of this work deals with the obtainment of the austenitic stainless steel DIN 1.4541 (AISI 321) stabilized titanium for Atucha II nuclear valves. The second part presented herein, continued with the development process and part of the production of the bodies' forging and valves leads. This development has been also carried out in the country and a detailed set up of the process with its corresponding Inspection and Assay Program was needed. The last part of this stage has been initiated at the welding process, so it was necessary to develop specific welding procedures to qualify them and use the equipment specially applied to this requirement. The set of assays and criteria certification for the qualifications is presented. (Author)

  15. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    Science.gov (United States)

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  16. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  17. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  18. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  19. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  20. Numerical simulation of linear fiction welding (LFW) processes

    Science.gov (United States)

    Fratini, L.; La Spisa, D.

    2011-05-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  1. Numerical simulation of linear fiction welding (LFW) processes

    International Nuclear Information System (INIS)

    Fratini, L.; La Spisa, D.

    2011-01-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  2. SLAM: a fast high volume additive manufacturing concept by impact welding; application to Ti6Al4V alloy

    NARCIS (Netherlands)

    Wentzel, C.M.; Carton, E.P.; Kloosterman, A.

    2006-01-01

    Against the manufacturing requirement for both lower lead time and reduced machining time for titanium components, a new concept was conceived assembling sheet material and other stock into semi finished parts by (explosive) impact welding. It is believed that this concept (which we named SLAM)

  3. Design and properties of advanced {gamma}(TiAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appel, F; Clemens, H; Oehring, M [Institute for Materials Research, GKSS Research Centre, Max-Planck-Strasse, D-21502 Geesthacht (Germany)

    2001-07-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  4. Design and properties of advanced γ(TiAl) alloys

    International Nuclear Information System (INIS)

    Appel, F.; Clemens, H.; Oehring, M.

    2001-01-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  5. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  6. Investigation and Optimization of Disk-Laser Welding of 1 mm Thick Ti-6Al-4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2015-01-01

    Full Text Available Ti-6Al-4V joints are employed in nuclear engineering, civil industry, military, and space vehicles. Laser beam welding has been proven to be promising, thanks to increased penetration depth and reduction of possible defects of the welding bead; moreover, a smaller grain size in the fusion zone is better in comparison to either TIG or plasma arc welding, thus providing an increase in tensile strength of any welded structures. In this frame, the regression models for a number of crucial responses are discussed in this paper. The study has been conducted on 1 mm thick Ti-6Al-4V plates in square butt welding configuration; a disk-laser source has been used. A three-level Box-Behnken experimental design is considered. An optimum condition is then suggested via numerical optimization with the response surface method using desirability functions with proper weights and importance of constraints. Eventually, Vickers microhardness testing has been conducted to discuss structural changes in fusion and heat affected zone due to welding thermal cycles.

  7. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    Science.gov (United States)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  8. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A. I. O.

    2013-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1 percentage (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Tau i+Beta on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Tau i+Beta or Zr resulted in enhancement of the weldment. (author)

  9. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A I O

    2014-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment

  10. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T P; Tchizhik, A A; Chavchanidze, N N [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1999-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  11. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  12. Thermo-mecano-metallurgical modelling of welding: application to welded joints in nuclear power plants

    International Nuclear Information System (INIS)

    Cosimo, Alejandro

    2014-01-01

    The Thermo-Mecano-Metallurgical (TMM) modelling of welding is considered in this thesis, where the high non-linearity and the multiphysics character of the problem makes necessary to study different areas of Computational Mechanics. Each of the main problems, specifically the thermal, the mechanical and the metallurgical problems, are separately investigated. In the context of Computational Welding Mechanics (CWM), their coupling is solved by means of a staggered approach making the hypothesis that they are weakly-coupled. In the case of the thermal problem, the primary complication is stated by the solid/liquid phase change. Classical formulations dealing with the solution of this problem suffer from instabilities associated to the discontinuity of the temperature gradient at the phase change boundary. This issue is studied in this work by considering an enriched finite element formulation with the ability of representing the gradient discontinuity inside finite elements. It is remarked that the proposed method avoids the use of an auxiliary equation to determine the enrichment position, which is common for level set formulations. The mechanical behaviour of bodies during solidification is revisited and implemented as part of the Finite Element (FE) framework OOFELIE. When possible, microstructure evolution must be considered in order to correctly predict Weld Residual Stresses (WRS). In this context, the implementation of a particular model for predicting microstructure evolution comes in association with the restriction that it can be applied to a reduced number of materials. In order to deal with this issue, the conception of a computational tool flexible enough to describe a wide range of materials is undertaken. Additionally, a model describing the Titanium alloy Ti6Al4V is particularly considered. The high computational cost of welding problems is addressed by means of the formulation of Hyper-Reduced Order Models (HROMs), and the parallelization of the FE

  13. Mars Atmosphere Effects on Arc Welds: Phase 1

    Science.gov (United States)

    Courtright, Z. S.

    2016-01-01

    NASA has been unprecedented in achieving its goals related to space exploration and furthering the understanding of our solar system. In keeping with this trend, NASA's current mission is to land a team of astronauts on Mars and return them safely to Earth. In addition to comprising much of the structure and life support systems that will be brought to Mars for the habitat and vehicle, titanium and aluminum can be found and mined on Mars and may be used when building structures.Where metals are present, there will be a need for welding capabilities. For welds that need to be made quickly and are located far from heavy resistance or solid state welding machinery, there will be a need for basic arc welding. Arc welding has been a major cornerstone of manufacturing throughout the 20th century, and the portability and capability of gas tungsten arc welding (GTAW) will be necessary for repair, manufacturing, and survival on Mars. The two primary concerns for welding on Mars are that the Martian atmosphere contains high levels of carbon dioxide (CO2), and the atmospheric pressure is much lower than it is on Earth. The high levels of CO2 in the Martian atmosphere may dissociate and produce oxygen in the arc and therefore increase the risk of oxidation. For simplification, atmospheric pressure will not be taken into account for this experiment. For survival on Mars during this mission, the life support and water filtration systems must be kept operational at all times. In order to ensure that water filtration systems can be repaired in the event of an emergency, it is very important to have the capability to weld. The Orion capsule and Mars lander must also remain operational throughout the duration of the mission to ensure the safe return of the astronauts on the mission to Mars. A better understanding of welding in a Mars environment is important to ensure that repair welds are possible if the Orion capsule/Mars lander or water filtration system is damaged at any point

  14. Mechanical Behavior of Advanced Aerospace Materials

    National Research Council Canada - National Science Library

    Ashbaugh, Noel

    1997-01-01

    .... For a gamma titanium aluminide alloy, the coarse and refined lamellar materials with colony sizes equal to 700 and 280 micrometers, respectively, have substantially greater crack growth resistance...

  15. Effects of Heat Input on the Mechanical and Metallurgical Characteristics of Tig Welded Incoloy 800Ht Joints

    Directory of Open Access Journals (Sweden)

    Kumar S. Arun

    2017-09-01

    Full Text Available This study focuses on the effect of heat input on the quality characteristics of tungsten inert arc gas welded incoloy 800HT joints using inconel-82 filler wire. Butt welding was done on specimens with four different heat inputs by varying the process parameters like welding current and speed. The result indicated that higher heat input levels has led to the formation of coarser grain structure, reduced mechanical properties and sensitization issues on the weldments. The formation of titanium nitrides provided resistance to fracture and increased the tensile strength of the joints at high temperatures. Further aging was done on the welded sample at a temperature of 750°C for 500 hours and the metallographic result showed formation of carbides along the grain boundaries in a chain of discrete and globular form which increased the hardness of the material. The formation of spinel NiCr2O4 provided oxidation resistance to the material during elevated temperature service.

  16. Covalent bonding and band-gap formation in ternary transition-metal di-aluminides: Al4MnCo and related compounds

    International Nuclear Information System (INIS)

    Krajci, M.; Hafner, J.

    2002-01-01

    In this paper we extend our previous study of the electronic structure of and bonding mechanism in transition-metal (TM) di-aluminides to ternary systems. We have studied the character of the bonding in Al 4 MnCo and related TM di-aluminides in the C11 b (MoSi 2 ) and C54 (TiSi 2 ) crystal structures. A peculiar feature of the electronic structure of these TM di-aluminides is the existence of a semiconducting gap at the Fermi level. In our previous work we predicted a gap in Al 2 TM compounds where the TM atoms have eight valence electrons. Here we demonstrate that the semiconducting gap does not disappear if the TM sites are occupied by two different TMs, provided that the electron-per-atom ratio is conserved. Such a replacement substantially increases the class of possibly semiconducting TM di-aluminides. Substitution for 3d TMs of 4d or 5d TMs enhances the width of the gap. From the analysis of the charge density distribution and the crystal orbital overlap population, we conclude that the bonding between atoms has dominantly covalent character. This is confirmed not only by the enhanced charge density halfway between atoms, but also by the clear bonding-antibonding splitting of the electronic states. If the gaps between split states that correspond to all bonding configurations in the crystal have a common overlap at the Fermi level, the intermetallic compound becomes a semiconductor. However, the results of the total-energy calculations suggest that the existence of a band gap does not necessarily imply a stable structure. Strong covalent bonds can exist also in Al-TM structures where no band gap is observed. (author)

  17. Management of the acceptance process of RTR aluminide type spent fuel

    International Nuclear Information System (INIS)

    Auziere, P.; Thomasson, J.

    2002-01-01

    A wide range of Research Test Reactor aluminide type spent fuel is already received for treatment conditioning at the La Hague reprocessing complex. Such a diversity calls for an utmost attention to be paid to all safety-related systems and technical aspects, to all regulatory and administrative constraints. Despite of such multiple data inputs and rigid constraints, a close cooperation between the Research Reactor operator and COGEMA enables to reach adequate and cost effective solutions also relevant to spent fuel having had an uneven history. The acceptance process is primarily based on the client descriptive data and status declaration issued by the Research Reactor (RR) operator under QA. This acceptance process is a key step, to be keenly scheduled as it is directly interactive with the RR evacuation plans and the La Hague industrial plant program. It is also governed by the reviews conducted by the French Safety Authority and generally translated into operational authorisations. Concerned by maintaining high safety standards, reliable and proven operational levels of its nuclear services performed in the La Hague facilities COGEMA includes, all through this acceptance process, the operating, regulatory and administrative requirements. This paper sets forth an overview of the approach implemented in the COGEMA organisation for the management of the acceptance process of RTR aluminide type spent fuel. (author)

  18. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Kang, B.S. [West Virginia Univ., Morgantown, WV (United States)

    1998-07-27

    Iron aluminides have excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperatures with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides has been undertaken. The modeling and the experimental work connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component has been on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}Al and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}Al. These calculations include lattice relaxation effects which are quite large for one of the two types of iron sites. This has significant implications for vacancy clustering effects with consequences for hydrogen diffusion. Indeed, the ab-initio-based estimate of the divacancy binding energy indicates a likely tendency toward such clustering for iron vacancies on the sites with large lattice relaxation. The experimental work has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior.

  19. Effect of grit blasting on the thermal cycling behavior of diffusion aluminide/YSZ TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com; Huang, Guanghong; He, Limin; Mu, Rende; Wang, Kai; Dai, Jianwei

    2014-02-15

    Highlights: • TBCs including of CVD NiAl bond coat and EB-PVD YSZ ceramic coating with and without grit blasting process. • Grain boundary ridges are the sites for spallation damage initiation in aluminide/YSZ TBCs. • Ridges are removed, and no cavity formation and this damage initiation mode are suppressed. • Damage initiation and progression occurs at the bond coat to TGO interface leading to a buckling failure behavior. -- Abstract: Thermal barrier coating system (TBCs) including of chemical vapor deposited NiAl bond coat and electron beam physical vapor deposited Y{sub 2}O{sub 3}–stabilized-ZrO{sub 2} (YSZ) ceramic coating with and without grit blasting process were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors of these coatings were studied in detail. Grain boundary ridges form on the surface of aluminide bond coat prior to the deposition of the ceramic coating by EB-PVD, which are shown to be the sites for spallation damage initiation in aluminide/YSZ TBCs. When these ridges are removed, there is no cavity formation and this damage initiation mode is suppressed. Damage initiation and progression occurs at the bond coat to TGO interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface with additional cycling. From the result of thermal cycling, an averaged four folds lifetime improvement can be achieved with samples after grit blasting of bond coat surface as compared with those samples existence in ridges on the bond coats’ surface.

  20. Life Prediction Methodologies for Aerospace Materials

    National Research Council Canada - National Science Library

    Ashbaugh, N

    2001-01-01

    The understanding of the effect of material defects, i.e., inclusions and grain size variances, on tensile and fatigue behavior, specifically initiation, in wrought gamma titanium aluminides was improved...

  1. Power characteristics of the metal compounds formation process during the friction stir welding

    Directory of Open Access Journals (Sweden)

    Rzaev Radmir

    2017-01-01

    Full Text Available An influence of the power characteristics on the formation process of the uniform metals compound during the welding with friction stirringis being examined in this article.A dependency between the machine-tool engine power input and the instrument tilt during the FSW for the aluminum alloy AD31, copper alloy M1, titanium alloy OT4-1 and steel St-3 low-alloyed has been explored. A question of the stabilization of power consumption process while the establishment of superplastic condition of welded metal during the FSW has also been reviewed. A dependency revealed between the power characteristics, the geometry of the formation, the rotation speeds, the longitudinal displacement of the tool and its dimensions for fixed values of the parameters during the FSW.

  2. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    Science.gov (United States)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  3. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  4. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  5. Life Prediction Methodologies for Aerospace Materials

    National Research Council Canada - National Science Library

    Ashbaugh, N

    2000-01-01

    .... For a gamma titanium aluminide alloy, the coarse and refined lamellar materials with colony sizes equal to 700 and 280 m, respectively, have substantially greater crack growth resistance than does...

  6. Study of stress relief cracking in titanium stabilized austenitic stainless steel

    International Nuclear Information System (INIS)

    Chabaud-Reytier, M.

    1999-01-01

    The heat affected zone (HAZ) of titanium stabilised austenitic stainless steel welds (AISI 321) may exhibit a serious form of intercrystalline cracking during service at high temperature. This type of cracking, called 'stress relief cracking', is known to be due to work hardening but also to ageing: a fine and abundant intragranular Ti(C,N) precipitation appears near the fusion line and modifies the mechanical behaviour of the HAZ. This study aims to better know the accused mechanism and to succeed in estimating the risk of such cracking in welded junctions of 321 stainless steel. To analyse this embrittlement mechanism, and to assess the lifetime of real components, different HAZ are simulated by heat treatments applied to the base material which is submitted to various cold rolling and ageing conditions in order to reproduce the HAZ microstructure. Then, we study the effects of work hardening and ageing on the titanium carbide precipitation, on the mechanical (tensile and creep) behaviour of the resulting material and on its stress relief cracking sensitivity. It is shown that work hardening is the main parameter of the mechanism and that ageing do not favour crack initiation although it leads to titanium carbide precipitation. The role of this precipitation is also discussed. Moreover, a creep damage model is identified by a local approach to fracture. Materials sensitive to stress relief cracking are selected. Then, creep tests are carried out on notched bars in order to quantify the intergranular damage of these different materials; afterwards, these measurements are combined with calculated mechanical fields. Finally, it is shown that the model gives good results to assess crack initiation for a compact tension (CT) specimen during relaxation tests, as well as for a notched tubular specimen tested at 600 deg. C under a steady torque. (author)

  7. Influence of explosive welding parameters on properties of bimetal Ti-carbon steel

    Directory of Open Access Journals (Sweden)

    Prazmowski Mariusz

    2017-01-01

    Full Text Available Explosion welding of metals is a process of great technological significance in terms of modern metal composites manufacturing possibilities Nevertheless, selecting welding parameters is not an easy task. This paper assesses the effect of various values of distance of sheets on the quality of the bond zone in titanium (Ti Gr.1 - carbon steel (P355GH structure. The research was carried out for initial state bonds i.e. immediately following explosion welding. The results of mechanical and structural investigations were presented. In order to determine changes in the value of strengthening, microhardness tests of both the weld and the joined plates were performed. Performed metallographic analysis shows that the standoff distance affects the quality of the bond zone boundary. Smaller distance promotes the formation of waves with lower parameters (of length and height, whereas greater distances allow forming the bond of a more pronounced, repetitive wavy character, however, increasing the quantity of the fusion zone at the same time. Also, the initial distance between the materials to be joined makes for the strengthening in the areas adjacent to bond boundary. The results received allowed to conclude that for the assumed parameters it is possible to obtain Ti -carbon steel bi-metal with properties meeting the standard’s requirements.

  8. Laser beam welding of NiTi-shape memory alloys; Laserstrahl-Schweissen von NiTi-Formgedaechtnislegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, T.

    1996-04-01

    Using a Nd:YAG laser, the weldability of binary nickel-titanium shape memory alloys containing 50.0 and 48.5 at.-% Ti respectively was investigated. By tensile tests within a temperature range of -80 C to +200 C the mechanical properties of the laser welded joints were examined. Changes in the transformation behaviour were detected by calorimetric measurements (DSC method). The stress-strain behaviour was attributed to the microstructure of the welds, revealed by optical microscopy and transmission electron microscopy (TEM). Using a scanning electron microscope (SEM), the mechanisms of failure were examined. Joints of the martensitic Ti-rich alloy were brittle, showing an ultimate tensile strength of 600 MPa, corresponding to half of the value of the base material. The reduction in strength was explained by the formation of Ti{sub 2}Ni precipitations along grain boundaries in the weld. Since the welds still exhibited twin deformation, pseudoplastic strains of 7% were achieved. Ultimate strength data showed a very low scatter. Therefore it was possible to use the shape memory effect up to a strain of 6% without failure. After a total elongation to 6% strain, the laser welded joints showed a free recovery with an amnesia of 0.3%. The shape memory effect was shown to be retained in the laser welded joints. 154 refs.

  9. In vitro infrared thermography assessment of temperature peaks during the intra-oral welding of titanium abutments

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Sighinolfi, Gianluca; Merla, Arcangelo; Piattelli, Adriano

    2012-07-01

    Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.

  10. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  11. Recommendations and Requirements for Welding and Inspection of Titanium Piping for U.S. Navy Surface Ship Applications

    Science.gov (United States)

    1999-09-01

    The same general relationship is true for mixtures of argon and helium.) Argon is also more readily available and less costly than helium... true square-edge to assure proper inert gas shielding during welding. Perpendicularity of the edges should be maintained within 5 degrees. All clamps...toes. A horoscope is not required for internal inspection of inaccessible backside pipe welds. The acceptance criteria for color inspection and

  12. Cost-Effective Powder Metallurgy TiAl-Based Components For Aerospace Use, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma titanium aluminide (TiAl) alloys with their low density (~3.9g/cm3), good elevated temperature strength, stiffness, creep resistance and acceptable burn and...

  13. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    International Nuclear Information System (INIS)

    Vannod, J.; Bornert, M.; Bidaux, J.-E.; Bataillard, L.; Karimi, A.; Drezet, J.-M.; Rappaz, M.; Hessler-Wyser, A.

    2011-01-01

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  14. Hydrogen permeation rate reduction by post-oxidation of aluminide coatings on DIN 1.4914 martensitic steel (MANET)

    International Nuclear Information System (INIS)

    Perujo, A.; Sample, T.

    1996-01-01

    In a previous work, it has been shown that lower aluminium content aluminide, having the same permeation rate reduction as the higher aluminium content, exhibited a lower hardness and greater ductility and therefore greater crack resistance than the higher aluminium content. In this work we combine this characteristic with a post-oxidation to obtain a further deuterium permeation reduction. The post-oxidation was performed in air at 1023 K for 15 h and at 1223 K for 10 h and 1 h. The maximum deuterium permeation rate reduction obtained is very moderate (maximum of a factor 500 for 1 h at 1223 K) as compared to that of the non-oxidised aluminide specimen (two orders of magnitude) and is constant in the temperature range studied (573-800 K). This method has the technological appeal of using air rather than the controlled environment used by other authors. (orig.)

  15. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  16. Joining of dissimilar metals by diffusion bonding. Titanium alloy with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Akca, Enes [International Univ. of Sarajevo (Bosnia and Herzegovina). Research and Development Center; International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering; Gursel, Ali [International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2017-05-01

    This paper presents a novel diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy at 520, 560, 600 and 640 C for 30, 45 and 60 minutes under argon gas shielding without the use of interlayer. The approach is to overcome the difficulties in fusion welding of dissimilar alloys. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. Processed samples were metallographically prepared, optically examined followed by Vickers microhardness test and subjected to tensile test in order to determine joint strength. Scanning electron microscopy and energy dispersive spectroscopy were used in this work to investigate the compositional changes across the joint region. Elemental composition of the region has been successfully defined between titanium alloy and aluminum. The maximum tensile strength was obtained from the samples bonded at the highest temperatures of 600 and 640 C.

  17. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    Science.gov (United States)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-03-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized-β grains.

  18. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    Science.gov (United States)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  19. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  20. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu

    2014-01-01

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  1. Effect of surface microgeometry on the physical contact formation during pressure welding

    Energy Technology Data Exchange (ETDEWEB)

    Karakozov, E S; Grigor' evskii, V I; Orlova, L M

    1976-01-01

    Methods are discussed to analyse both qualitatively and quantitatively the physical contact formation depending upon a microprotrusion height in case of pressure welding. For this purpose VT14 two-phase titanium alloy and in some cases OT4 alloy (for comparison) have been used. Those alloys are of a fine-grained polyhedral structure with a grain size of 8-10 ..mu..m for OT4 alloy and 2-3 ..mu..m for VT14 alloy. The tests have been performed with round specimens with a dia. of 16 mm and a height of 30 mm. The contact surface of one of the samples has been polished, that of the other one had triangular notched microprotrusions with a constant angle ..beta.. equalling 15 deg and a pitch varying in different samples. The specimens have been butt-welded. The surface of the contact formed has been assessed after a break-down of welded joints depending upon the imprint area of the specimen with a polished surface. An assessment of the physical contact surface as well as fractographic and metallographic studies of the break-down surface have been performed with MMI-2, MBS-2 and MIM-8 microscopes. The paper describes results of studies at a welding temperature of 850-950 deg C, with a duration of 20 min specific pressure of 0.2 kgf/sq.mm.

  2. Effect of surface microgeometry on the physical contact formation during pressure welding

    International Nuclear Information System (INIS)

    Karakozov, Eh.S.; Grigor'evskij, V.I.; Orlova, L.M.

    1976-01-01

    Methods are discussed to analyse both qualitatively and quantitatively the physical contact formation depending upon a microprotrusion height in case of pressure welding. For this purpose VT14 two-phase titanium alloy and in some cases OT4 alloy (for comparison) have been used. Those alloys are of a fine-grained polyhedral structure with a grain size of 8-10 μm for OT4 alloy and 2-3 μm for VT14 alloy. The tests have been performed with round specimens with a dia. of 16 mm and a height of 30 mm. The contact surface of one of the samples has been polished, that of the other one had triangular notched microprotrusions with a constant angle β equalling 15 deg and a pitch varying in different samples. The specimens have been butt-welded. The surface of the contact formed has been assessed after a break-down of welded joints depending upon the imprint area of the specimen with a polished surface. An assessment of the physical contact surface as well as fractographic and metallographic studies of the break-down surface have been performed with MMI-2, MBS-2 and MIM-8 microscopes. The paper describes results of studies at a welding temperature of 850-950 deg C, with a duration of 20 min specific pressure of 0.2 kgf/sq.mm

  3. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling

    Science.gov (United States)

    Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.

    2018-04-01

    The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.

  4. Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route

    International Nuclear Information System (INIS)

    Chatterjee, Subhranshu; Sinha, Arijit; Das, Debdulal; Ghosh, Sumit; Basumallick, Amitava

    2013-01-01

    Iron aluminide particulate reinforced aluminium composites were prepared by a simple liquid metal stir casting route. The particulate intermetallic reinforcements were formed by in-situ reaction between molten aluminium and a rotating mild steel stirrer at 800 °C. X-ray diffraction studies were carried out to identify the types of iron aluminide particulates present in the as cast composite. Compositional variations of the composite samples were estimated with the aid of energy dispersive spectroscopy. The microstructural features of the composite were studied with respect to different heat treatment schedules and deformation conditions. Microhardness and nanoindentation measurements were also carried out to assess the micromechanical behaviour e.g., hardness and elastic modulus in micrometric length scale of the composite samples. Tensile tests and fractographic analysis were performed to estimate the mechanical properties and determine the mode of failure of the samples. The microstructure and mechanical properties of the composite samples were correlated and discussed

  5. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  6. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  7. Faults of solid-phase welding in titanium joints and their effect on strength

    International Nuclear Information System (INIS)

    Matyushkin, B.A.; Redchits, V.V.

    1982-01-01

    A possibility of the usage of thermal arc energy for the determination of the kinetics of solid-phase joint formation of the VT20 titanium alloy is found out experimentally. Positive action of diffusion annealing upon mechanical properties. of solid-phase joints is explained by the defect elimination

  8. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  9. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  10. Briquetting of titanium shavings with using of short electrical pulses

    International Nuclear Information System (INIS)

    Abramova, K.B.; Samujlov, S.D.; Filin, Yu.A.

    1998-01-01

    It is proposed and tested a new technology of briquetting of metallic shavings. The technology includes pressing of shavings with comparatively low pressure and processing it by means of short pulse of high density electrical current. Strength of the briquette arrears as a result of the sport electric welding of the contacts between the shaving particles. The technology permits: to produce firm briquettes from the shavings or other scrap of any metal or alloy, for example from titanium; to produce briquettes practically of any porosity; to decrease the compression and abandon heating almost for high-strength alloy in comparison with existing methods [ru

  11. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  12. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    Science.gov (United States)

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (Pzirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  14. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    International Nuclear Information System (INIS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-01-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 μm spot diameter. It was revealed that a 45 μm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 μm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam

  15. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  16. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  17. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  18. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  19. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  20. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  1. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  2. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  3. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  4. Crystal structure of τ5–TiNi2−xAl5 (x = 0.48) and isotypic {Zr,Hf}Ni2−xAl5−y

    Czech Academy of Sciences Publication Activity Database

    Khan, A.U.; Buršík, Jiří; Grytsiv, A.; Pomjakushin, V.; Effenberger, H.; Rogl, P.

    2011-01-01

    Roč. 19, č. 10 (2011), s. 1340-1347 ISSN 0966-9795 Institutional research plan: CEZ:AV0Z20410507 Keywords : titanium nickel aluminides * ternary alloy system * microstructure Subject RIV: BJ - Thermodynamics Impact factor: 1.649, year: 2011

  5. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  6. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  7. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  8. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  9. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    International Nuclear Information System (INIS)

    J. I. Cole; J. F. Jue

    2006-01-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted

  10. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  11. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  12. Microstructure and hot corrosion behaviors of two Co modified aluminide coatings on a Ni-based superalloy at 700 °C

    International Nuclear Information System (INIS)

    Fan, Q.X.; Jiang, S.M.; Yu, H.J.; Gong, J.; Sun, C.

    2014-01-01

    Highlights: • Microstructures of two Co modified NiAl coatings have been studied. • The addition of Co improves the corrosion resistance in sulfate salts at 700 °C. • For the sulfide and its eutectic of Co are more stable than those of Ni. • In chloride salts coating with medium Co content has best corrosion resistance. - Abstract: Two Co modified aluminide coatings with different Co contents were prepared by pack cementation process and above-the-pack process. The hot corrosion tests of the two coatings were performed in mixed salts of 75 wt.% Na 2 SO 4 + 25 wt.% K 2 SO 4 and 75 wt.% Na 2 SO 4 + 25 wt.% NaCl at 700 °C, with a simple aluminide coating as the reference coating. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) with energy dispersive X-ray spectrometer (EDS) were used to characterize the coatings and the corrosion scales. Results indicate that the addition of Co improves the hot corrosion resistance of the simple aluminide coating in the mixed sulfate salts, for the sulfide as well as its eutectic of cobalt are more stable, and possess higher melting points than those of nickel. While in the mixed salt containing chloride, the coating with medium Co content possesses the best corrosion resistance, primarily because the nitrides formed in the deposition process deteriorate the corrosion resistance of the coating with highest Co content

  13. Microstructure and hot corrosion behaviors of two Co modified aluminide coatings on a Ni-based superalloy at 700 °C

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.X., E-mail: qxfan@imr.ac.cn; Jiang, S.M., E-mail: smjiang@imr.ac.cn; Yu, H.J.; Gong, J.; Sun, C.

    2014-08-30

    Highlights: • Microstructures of two Co modified NiAl coatings have been studied. • The addition of Co improves the corrosion resistance in sulfate salts at 700 °C. • For the sulfide and its eutectic of Co are more stable than those of Ni. • In chloride salts coating with medium Co content has best corrosion resistance. - Abstract: Two Co modified aluminide coatings with different Co contents were prepared by pack cementation process and above-the-pack process. The hot corrosion tests of the two coatings were performed in mixed salts of 75 wt.% Na{sub 2}SO{sub 4} + 25 wt.% K{sub 2}SO{sub 4} and 75 wt.% Na{sub 2}SO{sub 4} + 25 wt.% NaCl at 700 °C, with a simple aluminide coating as the reference coating. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) with energy dispersive X-ray spectrometer (EDS) were used to characterize the coatings and the corrosion scales. Results indicate that the addition of Co improves the hot corrosion resistance of the simple aluminide coating in the mixed sulfate salts, for the sulfide as well as its eutectic of cobalt are more stable, and possess higher melting points than those of nickel. While in the mixed salt containing chloride, the coating with medium Co content possesses the best corrosion resistance, primarily because the nitrides formed in the deposition process deteriorate the corrosion resistance of the coating with highest Co content.

  14. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  15. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  16. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  17. Development of various welding techniques for refractory and reactive metals and alloys

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.

    2016-01-01

    Nuclear Fuel Complex (NFC), Hyderabad, India with its excellent manufacturing facilities, produces nuclear fuel and structural components for nuclear reactors. NFC has taken up the challenging job of production of various critical components made out of refractory and reactive metals and alloys for nuclear and aerospace applications as an indigenization import substitute program. Refractory metals are prime candidates for many high temperature aerospace components because of refractory metal's high melting points and inherent creep resistance. The use of refractory metals is often limited because of their poor room temperature properties, inadequate oxidation resistance at elevated temperatures, difficulties associated with joining or welding etc. These advanced materials demand stringent requirement with respect to chemistry, dimensional tolerances, mechanical and metallurgical properties. This paper discusses in detail various welding techniques adopted in NFC for refractory and reactive metals and alloys such as Nb, Zr, Ti, Ta, Zircaloy, Titanium-half alloy etc. to manufacture various components and assemblies required for nuclear and aerospace applications

  18. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  19. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  20. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  1. Implant-supported titanium prostheses following augmentation procedures: a clinical report.

    Science.gov (United States)

    Knabe, C; Hoffmeister, B

    2003-03-01

    This report describes a novel technique for fabricating retrievable implant-supported titanium (Ti) prostheses in patients requiring a comprehensive treatment plan involving the combined efforts of maxillofacial surgery and implant prosthodontics. Following bone graft reconstructive surgery and implant placement prosthetic treatment was initiated by inserting ITI-Octa abutments. An impression was made, and a framework was fabricated by fusing Ti-cast frameworks to prefabricated titanium copings by laser-welding. This was followed by veneering or fabrication of a removable denture with Ti metal re-enforcement. Favourable clinical results have been achieved using these screw-retained Ti implant-supported restorations for patients treated with reconstructive bone graft-surgery, with clinical observation periods ranging from three to four years. The present observations suggest that these screw-retained implant-supported Ti prostheses may be a meaningful contribution to implant prosthodontics, facilitating retrievable restorations of optimum biocompatibility, good marginal precision and with a good esthetic result. However, controlled clinical studies are needed to establish the long-term serviceability of these Ti restorations.

  2. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  3. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  4. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2015-03-01

    Full Text Available The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Ti–6Al–4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Ti–6Al–4V and SS304L into which pure oxygen free copper (OFC was introduced as interlayer were investigated. Box–Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Ti–6Al–4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  5. The Effects of Oxidation-Induced Failures on Thermal Barrier Coatings with Platinum Aluminide and NiCoCrAlY Bond Coats

    National Research Council Canada - National Science Library

    Yanar, N

    2001-01-01

    ...) deposited via electron beam vapor deposition (EBPVD). This TBC was deposited on both platinum aluminide and NiCoCrA1Y bond coats which in turn were deposited on superalloy substrates of Rare N5...

  6. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  7. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  8. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  9. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  10. Surface grinding of intermetallic titanium aluminides

    CERN Document Server

    Gröning, Holger Andreas

    2014-01-01

    A deductive kinematic model of creep-feed and speed-stroke grinding processes is developed to identify possibilities to reduce the energy introduced into the workpiece. By computer tomography analysis and tactile measurements of the grinding wheel the pore volume and the static cutting edge number are determined and included in the model. Based on the kinematic model and the grinding wheel characteristics an analytical evaluation of the specific grinding energy for speed-stroke and creep-feed grinding is carried out. The deducted process design is evaluated in experimental investigations. The

  11. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  12. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  13. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  14. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  15. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    negative Cauchy, for example, in the case of titanium aluminides ... bounded BOPs theory (Nguyen-Manh et al 2000; Pettifor ..... Figure 4. γ-surface for (111) plane in mJ/m2: (a) surface plot and (b) contour plot. ..... bonding in layered materials.

  16. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    Czech Academy of Sciences Publication Activity Database

    Hasegawa, M.; Nomura, T.; Haga, H.; Dlouhý, Ivo; Fukutomi, H.

    2014-01-01

    Roč. 105, č. 11 (2014), s. 1075-1083 ISSN 1862-5282 Institutional support: RVO:68081723 Keywords : titanium aluminides * phase transformation * microstructure Subject RIV: JG - Metallurgy Impact factor: 0.639, year: 2014 http://www.hanser-elibrary.com/doi/abs/10.3139/146.111115

  17. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  18. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  19. Evaluation of the Intrinsic and Extrinsic Fracture Behavior of Iron Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.

    2001-01-11

    In this paper, we first present the status of our computational modeling study of the thermal expansion coefficient of Fe/Al over a wide range of temperature and evaluate its dependence on selected additives. This will be accomplished by applying an isobaric Monte Carlo technique. The required total energy of the sample will be computed by using a tight-binding (TB) method that allows us to significantly increase the size of the computational data base without reducing the accuracy of the calculations. The parameters of the TB Hamiltonian are fitted to reproduce the band structure obtained by our quantum mechanical full-potential LMTO calculations. The combination of the three methods mentioned above creates an effective approach to the computation of the physical properties of the transition-metal aluminides and it can be extended to alloys with more than two components. At present, we are using a simplified approach for a first-round of results; and as a test of the simplified approach, have obtained excellent agreement with experiment for aluminum. Our previous experimental results showed that, because of their smaller grain size, FA-187 and FA-189 are extrinsically more susceptible to environmental embrittlement than FA-186 under low strain loading condition. To further investigate the grain boundary size effect as related to the susceptibility of hydrogen embrittlement, we conducted comparative finite element modeling simulations of initial intergranular fracture of two iron aluminides (FA186 and FA189) due to hydrogen embrittlement. Sequentially coupled stress and mass diffusion analyses are carried out to determine crack-tip stress state and the extent of hydrogen diffusion at the crack tip region, and a proper failure criteria is then adopted to simulate the intergranular fracture. Good qualitative agreement between the modeling predictions and experimental results is observed.

  20. Microstructure/processing relationships in high-energy high-rate consolidated powder composites of Nb-stabilized Ti3Al+TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, B.; Hou, C.; Eliezer, Z.; Marcus, H.L.

    1989-01-01

    A new approach to powder processing is employed in forming titanium aluminide composites. The processing consists of internal heating of a customized powder blend by a fast electrical discharge of a homopolar generator. The high-energy high-rate '1MJ in 1s' pulse permits rapid heating of an electrically conducting powder mixture in a cold wall die. This short time at temperature approach offers the opportunity to control phase transformations and the degree of microstructural coarsening not readily possible with standard powder-processing approaches. This paper describes the consolidation results of titanium aluminide-based powder-composite materials. The focus of this study was the definition of microstructure/processing relationships for each of the composite constituents, first as monoliths and then in composite forms. Non-equilibrium phases present in rapidly solidified TiAl powders are transformed to metastable intermediates en route to the equilibrium gamma phase.

  1. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  2. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  3. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  4. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  5. Effect of filler metals and heat treatment on mechanical properties of welded joints of the VT20L and VT6L titanium cast alloys

    International Nuclear Information System (INIS)

    Abramova, V.N.; Polyakov, D.A.; Vas'kin, Yu.V.; Kulikov, F.R.; Prostov, I.A.; Yasinskij, K.K.

    1979-01-01

    Developed is a technology of welding and heat treatment of the VT20L and VT6L alloys, providing the mechanical properties of welds on the base metal level. It is found, that for residual stress relieving it is quite enough to anneal the alloys at 650 deg C. Welding of the investigated alloys up to 20 mm thick using SPT-2 additional wire provides the welded joint strength on a level of 0.8 σsub(u) of base metal. Usage of additional wire of base metal provides equal strength of welds and base metal

  6. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  7. Micro-structure of Joints made of Dissimilar Metals using Explosion Welding

    Directory of Open Access Journals (Sweden)

    Juan Ramón Castillo-Matos

    2017-04-01

    Full Text Available The objective of this investigation is to establish the behaviour of the micro-structure of dissimilar joints made of titanium with AISI 1020, 1066 and 1008 steels through explosion welding. A detonation velocity of 2 800 m/s, a charge radius of 0,345 kg and a collision velocity of 1196, 16 m/s with an explosive volume of 600 cm3 and a density of 1,15 g/cm3 were considered. The microstructures obtained were composed of equiaxed ferrite grains, very fine grains of troostitic type and coarse grains with ferrite grid. Fine and aligned grains of ferrite type are observed in the casted area of both base materials. The metal hardness experienced an increase in samples from 120 HV AISI 1008 steel up to 250 HV for AISI 1066 steel. The AISI 1020 steel joint with titanium has an line shaped interface unlike the AISI 1008 steels with 4063 forms waves with uniform width, which provides a higher mechanical resistance associated with the ductility of the AISI 1008 steel.

  8. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  9. Titanium ; dream new material

    International Nuclear Information System (INIS)

    Lee, Yong Tae; Kim Seung Eon; Heoon, Yong Taek; Jung, Hui Won

    2001-11-01

    The contents of this book are history of Titanium, present situation of Titanium industry, property of Titanium alloy, types of it, development of new alloy of Titanium smelting of Titanium, cast of Titanium and heat treatment of Titanium, Titanium alloy for plane, car parts, biological health care, and sport leisure and daily life, prospect, and Titanium industrial development of Titanium in China.

  10. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    OpenAIRE

    Maryana Zagula-Yavorska; Małgorzata Wierzbińska; Jan Sieniawski

    2017-01-01

    A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a), rhodium-modified (b), and rhodium- and hafnium-modified (c). All three coatings consisted of two layers: the additive layer and the interdi...

  11. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  12. Microstructure and mechanical properties of LENS fabricated TiAl structures

    CSIR Research Space (South Africa)

    Tlotleng, M

    2016-11-01

    Full Text Available It is difficult to produce titanium aluminides (TiAl) components because these materials lack ductility and when used as high temperature structures they fail prematurely due to the inability to self-oxidise. In this study, a 20 by 20 mm cube part...

  13. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  14. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  15. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  16. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  17. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  18. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  19. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  20. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  1. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  2. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  3. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  4. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  5. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  6. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  7. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  8. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    software ANSYS, a thermo-mechanical model is employed to predict the thermally induced stresses and strains during welding, while an in-house finite element code is used to study the plastic flow localization and failure in a subsequent structural analysis. The coupling between the two models is made......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence......, showed the largest influence of the post-welding conditions, even though significant relaxation of the residual stress state was predicted....

  9. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  10. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  11. Characterization of Friction Welded Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry

    Science.gov (United States)

    Kumar, R.; Balasubramanian, M.

    The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.

  12. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  13. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  14. Diffusion and phase transformation behavior in poly-synthetically-twinned (PST) titanium-aluminum/titanium diffusion couple

    Science.gov (United States)

    Pan, Ling

    Motivated by the great potential applications of gamma titanium aluminide based alloys and the important effect of diffusion on the properties of gamma-TiAl/alpha2-Ti3Al two-phase lamellar structure, we conduct this thesis research to explore the microstructural evolution and interdiffusion behavior, and their correlations in multi-phase solid state diffusion couples made up of pure titanium and polysynthetically-twinned (PST) Ti-49.3 at.% Al "single" crystal, in the temperature range of 973--1173 K. The diffusion couples are prepared by high vacuum hot-pressing, with the diffusion direction parallel to the lamellar planes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) are employed to observe the microstructure at various interfaces/interphases. A reaction zone (RZ) of polycrystalline alpha 2-Ti3Al phase forms along the PST Ti-Al/Ti bonding interface having a wavy interface with the PST crystal and exhibits deeper penetration in alpha2 lamellae, consisting of many fine alpha2 and secondary gamma laths, than in primary gamma lamellae. Direct measurement of the RZ thickness on SEM back-scattered electron images reveals a parabolic growth of the RZ, indicating a macroscopically diffusion-controlled growth. Concentration profiles from Ti, through the RZ, into the alpha2 lamellae of the PST crystal are measured by quantitative energy-dispersive x-ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM). A plateau of composition adjacent to the RZ/(mixed alpha2 lath in PST) interface forms in the deeply penetrated RZ grains, implying a diffusion barrier crossing the interface and some extent of interface control in the RZ grain growth. The interdiffusion coefficient is evaluated both independent of composition and as a function of composition. No significant concentration dependence of the interdiffusion coefficients is observed using Boltzmann-Matano analysis

  15. Simplified welding distortion analysis for fillet welding using composite shell elements

    Directory of Open Access Journals (Sweden)

    Mingyu Kim

    2015-05-01

    Full Text Available This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  16. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  17. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  18. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  19. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  20. Effects of heat-treatment on the microstructure of TiAl-Nb produced with laser metal deposition technique

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2017-10-01

    Full Text Available due to their lightness and excellent creep properties when compared to nickel super-alloys. This paper looked into the production of titanium aluminide microstructures, the so-called ordered a2-Ti3Al-Nb, making use of the in-situ laser metal alloying...

  1. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  2. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  3. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  4. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  5. A Novel Low-Temperature Fiffusion Aluminide Coating for Ultrasupercritical Coal-Fried Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying

    2009-12-31

    An ultrasupercritical (USC) boiler with higher steam temperature and pressure is expected to increase the efficiency of the coal-fired power plant and also decrease emissions of air pollutants. Ferritic/martensitic alloys have been developed with good creep strength for the key components in coal-fired USC plants. However, they typically suffer excessive steam-side oxidation, which contributes to one of main degradation mechanisms along with the fire-side corrosion in coal-fired boilers. As the steam temperature further increases in USC boilers, oxidation of the tube internals becomes an increasing concern, and protective coatings such as aluminide-based diffusion coatings need to be considered. However, conventional aluminizing processes via pack cementation or chemical vapor deposition are typically carried out at elevated temperatures (1000-1150 C). Thermochemical treatment of ferritic/martensitic alloys at such high temperatures could severely degrade their mechanical properties, particularly the alloy's creep resistance. The research focus of this project was to develop an aluminide coating with good oxidation resistance at temperatures {le} 700 C so that the coating processing would not detrimentally alter the creep performance of the ferritic/martensitic alloys. Nevertheless, when the aluminizing temperature is lowered, brittle Al-rich intermetallic phases, such as Fe{sub 2}Al{sub 5} and FeAl{sub 3}, tend to form in the coating, which may reduce the resistance to fatigue cracking. Al-containing binary masteralloys were selected based on thermodynamic calculations to reduce the Al activity in the pack cementation process and thus to prevent the formation of brittle Al-rich intermetallic phases. Thermodynamic computations were carried out using commercial software HSC 5.0 for a series of packs containing various Cr-Al binary masteralloys. The calculation results indicate that the equilibrium partial pressures of Al halides at 700 C were a function of Al

  6. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  7. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  8. Microstructural, mechanical characterisation and fractography of As-cast Ti-Al alloy

    International Nuclear Information System (INIS)

    Hamzah, E.; Ong, W.R.; Tamin, M.N.

    2007-01-01

    The effect of alloying element, namely chromium (Cr) on the microstructures, mechanical characterization and fracture surface of gamma titanium aluminide (Ti Al) has been studied. Micro-hardness and fatigue crack growth tests were performed on as-cast samples with composition of Ti-48at%Al and Ti-48%Al-2at%Cr. Prior to the micro-hardness tests; samples were metallurgically prepared for microstructural and structural analysis using optical microscope and scanning electron microscope. Field emission scanning electron microscope (FESEM) technique was employed to investigate the fracture surface of sample after fatigue crack growth test. Micro-hardness tests results showed increasing hardness value of Ti-48Al alloys when chromium is added. Both titanium aluminide alloys exhibited a nearly lamellae microstructure. However, finer laths of plates in lamellar structure have been observed in Ti-48at%Al-2at%Cr. FESEM micrograph of surface fracture indicates a mixed mode of failure for both alloys. (author)

  9. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  10. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  11. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  12. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  13. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  14. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  15. Aluminide protective coatings on high–temperature creep resistant cast steel

    Directory of Open Access Journals (Sweden)

    J. Kubicki

    2009-10-01

    Full Text Available This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were determined. Coatings capacity of carbon diffusion inhibition and thermal shocks resistance of coatings were determined with different methods. It was found, that all of the coatings reduce carbon diffusion in different degree and all coatings liable to degradation in consequence cracking and oxidation. Coating life time is mainly dependent on morphology, phase composition and service condition (thermal shocks first of all.

  16. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2016-01-01

    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  17. Optimum welding condition of 2017 aluminum similar alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Morikawa, K. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Fujishiro, Y.; Yoshida, M. [Sumitomo Metal Technology Ltd., Hyogo (Japan)

    2002-07-01

    Usefulness of the statistical analysis for judging optimization of the friction welding conditions was investigated by using 2017 aluminum similar alloy, where many samples under fixed welding conditions were friction welded and analyzed statistically. In general, selection of the optimum friction welding conditions for similar materials is easy. However, it was not always the case for 2017 aluminum alloy. For optimum friction welding conditions of this material, it is necessary to apply relatively larger upset pressure to obtain high friction heating. Joint efficiencies obtained under the optimum friction welding conditions showed large shape parameter (m value) of Weibull distribution as well as in the dissimilar materials previously reported. The m value calculated on the small number of data can be substituted for m value on the 30 data. Therefore, m value is useful for practical use in the factory for assuming the propriety of the friction welding conditions. (orig.)

  18. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  19. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  20. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  1. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  2. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  3. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    Science.gov (United States)

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  4. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    International Nuclear Information System (INIS)

    Mudali, U. Kamachi.; Ananda Rao, B.M.; Shanmugam, K.; Natarajan, R.; Raj, Baldev

    2003-01-01

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application

  5. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  6. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  7. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  8. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  9. Process for quality assurance of welded joints for electrical resistance point welding

    International Nuclear Information System (INIS)

    Schaefer, R.; Singh, S.

    1977-01-01

    In order to guarantee the reproducibility of welded joints of even quality (above all in the metal working industry), it is proposed that before starting resistance point welding, a preheating current should be allowed to flow at the site of the weld. A given reduction of the total resistance at the site of the weld should effect the time when the preheating current is switched over to welding current. This value is always predetermined empirically. Further possibilities of controlling the welding process are described, where the measurement of thermal expansion of the parts is used. A standard welding time is given. The rated course of electrode movement during the process can be predicted and a running comparison of nominal and actual values can be carried out. (RW) [de

  10. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal......–metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... with experimental results in the range of welding parameters leading to acceptable weld nugget sizes. The validated accuracy of the commercially available software proves the tool useful for assisting the choice of welding parameters....

  11. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  12. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  13. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied...... to weld pool tracking and the presented results verified its feasibility....

  14. Analysis of welding distortion due to narrow-gap welding of upper port plug

    International Nuclear Information System (INIS)

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  15. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  16. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  17. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kanda, Keiji; Mishima, Kaichiro; Tamai, Tadaharu; Hayashi, Masatoshi; Snelgrove, James L.; Stahl, David; Matos, James E.; Travelli, Armando; Case, F. Neil; Posey, John C.

    1983-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel cladding material. The release of fission products from the fuel plate at temperature below 500 deg. C was found negligible. The first rapid release of fission products was observed with the occurrence of blistering at 561±1 deg. C on the plates. The next release at 585. C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 deg. C of U-Al x . The released material was mostly xenon, but small amounts of iodine and cesium were observed. (author)

  18. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500 0 C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1 0 C on the plates. The next release at 585 0 C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 0 C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed

  19. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    Science.gov (United States)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  20. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).