WorldWideScience

Sample records for titania nanosheet cryatallites

  1. Analysis of Titania Nanosheet Adsorption Behavior Using a Quartz Crystal Microbalance Sensor

    Directory of Open Access Journals (Sweden)

    Yuichiro Tashiro

    2018-01-01

    Full Text Available We investigated the adsorption of albumin and fibronectin on a titania nanosheet- (TNS- modified quartz crystal microbalance (QCM sensor. A Ti QCM sensor was fabricated by reactive magnetron sputtering. A thin layer of Ti was deposited on the QCM sensor. This sensor was then alkali-modified by treatment with NaOH at room temperature to fabricate the titania nanosheets. Scanning probe microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were performed to investigate the surface topology and chemical components of each sensor. The TNS had a titanium oxide film exhibiting a nodular structure and a thickness of 13 nm on the QCM sensor. Furthermore, QCM measurements showed significantly greater amounts of albumin and fibronectin adsorbed on the TNS than on titanium. The NaOH treatment of titanium modified the sensor surface and improved the adsorption behaviors of proteins related to the initial adhesion of bone marrow cells. Therefore, we concluded that TNS improves the initial adhesion between the implant materials and the surrounding tissues.

  2. Layer-by-Layer Assembly and Photocatalytic Activity of Titania Nanosheets on Coal Fly Ash Microspheres

    Directory of Open Access Journals (Sweden)

    Xing Cui

    2014-01-01

    Full Text Available In order to address the problem with titania distribution and recovery, series of Ti0.91O2/CFA photocatalysts (Ti0.91O2/CFA-n, n=2,4,6, and 8 were fabricated by assembling Ti0.91O2 nanosheets on coal fly ash (CFA microspheres via the layer-by-layer assembly (LBLA process and characterized by scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, N2-sorption, and ultraviolet-visible absorption (UV-vis techniques. The SEM images and UV-vis spectra illustrated that Ti0.91O2 nanosheets were immobilized successfully on the CFA by the LBLA approach and changed the characteristics of CFA noticeably. The photocatalytic activity of Ti0.91O2/CFA was evaluated by the photodegradation of methylene blue (MB under UV irradiation. The results demonstrated that Ti0.91O2/CFA-6 showed the best photocatalytic activity among the series of Ti0.91O2/CFA irradiated for 60 min, with a decoloration rate above 43%. After photocatalysis, the Ti0.91O2/CFA could be easily separated and recycled from aqueous solution and Ti0.91O2 nanosheets were still anchored on the CFA.

  3. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  4. Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties.

    Science.gov (United States)

    Akatsuka, Kosho; Haga, Masa-aki; Ebina, Yasuo; Osada, Minoru; Fukuda, Katsutoshi; Sasaki, Takayoshi

    2009-05-26

    Exfoliated unilamellar titania nanosheets of Ti(0.87)O(2) with a lateral size of 10-30 microm were deposited layer-by-layer onto various substrates by Langmuir-Blodgett procedure to produce a highly ordered lamellar nanofilms. The nanosheets dispersed in an aqueous suspension containing quaternary ammonium ions as a supporting electrolyte floated spontaneously at the air/liquid interface, and they were successfully transferred onto the substrate after surface compression. Neat tiling of the nanosheets could be realized at an optimized surface pressure. The film thus obtained was exposed to UV light to turn the substrate surface hydrophilic, which was helpful for stable repetition of monolayer deposition. Layer-by-layer growth was confirmed by UV-visible absorption spectra, which showed progressive enhancement of an absorption band due to the nanosheet. Cross-sectional transmission electron microscopy images visualized the ultrathin film homogeneously deposited on the substrate surface and a lamellar fringe of the layer-by-layer assembled nanosheets was clearly resolved at a higher magnification. X-ray diffraction data on the films showed sharp basal reflections up to the seventh order, and Williamson-Hall analysis of the pattern indicated that the film was coherent across the total thickness with respect to X-ray and that the lattice strain was extremely small. In addition, the first basal reflection was accompanied by small satellite peaks, which are accounted for by the Laue interference function. All these features clearly indicate the formation of a highly ordered lamellar nanostructure of the titania nanosheets comparable to artificial lattice films produced via modern vapor-phase deposition processes. The obtained films showed superior dielectric and insulating properties as a reflection of the highly organized film nanoarchitecture.

  5. Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity.

    Science.gov (United States)

    Sun, Jing; Zhang, Hui; Guo, Liang-Hong; Zhao, Lixia

    2013-12-26

    A graphene-based two-dimensional (2D) nanoplatform provides new opportunities for fabricating 2D heterojunction interfaces to fortify charge transfer in semiconductor assemblies. In this report, TiO2 nanosheet/graphene composite based 2D-2D heterojunctions were fabricated by a solvothermal process. Microscopic and spectroscopic characterization revealed a homogeneous sheetlike morphology with intimate interfacial contact between the TiO2 nanosheet and graphene due to chemical interactions. Compared with 0D-2D Degussa P25 (TiO2)/graphene and 1D-2D TiO2 nanotube/graphene composites, the 2D-2D TiO2 nanosheet/graphene hybrid demonstrated higher photocatalytic activity toward the degradation of rhodamine B and 2,4-dichlorophenol under UV irradiation. Radical trapping and ESR experiments revealed the enhanced generation of ·OH and O2(•-) in the 2D-2D heterojunction system. By analyzing TiO2 excited state deactivation lifetime, the interfacial electron transfer rates determined for 0D-2D, 1D-2D, and 2D-2D TiO2/graphene composites were 1.15 × 10(8) s(-1), 3.47 × 10(8) s(-1), and 1.06 × 10(9) s(-1), respectively. It was therefore proposed that the fast charge separation in the TiO2 nanosheet/graphene photocatalyst promoted the generation of reactive oxygen species and enhanced the photodegradation reactions. The results underscore the key role of nanomaterial dimensionality in interfacial charge transfer processes.

  6. Titania species on two-dimensional HNbMoO6 nanosheets: structural feature, interaction model, and synergistic effect for photocatalytic degradation of methylene blue

    Science.gov (United States)

    Hu, Lifang; He, Jie; Xu, Lei; Li, Dewei; Zhang, Peipei

    2016-10-01

    HNbMoO6-based nanocomposite material T-HNbMoO6 is assembled by titania species dispersed on HNbMoO6 nanosheets (N-HNbMoO6), which is obtained through the mechanical exfoliation of layered HNbMoO6 (L-HNbMoO6). The microstructures, skeleton features, and spectral-response characteristics of the as-prepared materials were characterized by means of technologies, such as powder x-ray diffraction, field emission scanning electron microscope with energy dispersive spectroscopy mapping, high-resolution transmission electron microscopy with energy dispersive x-ray spectrometer, N2 adsorption-desorption isotherms, laser Raman spectroscopy, x-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, Mott-Schottky curves, and H2 temperature-programmed reduction analysis. The photocatalytic activity was evaluated by the degradation of methylene blue dye under the Xe lamp irradiation. The results showed that the titania species are dispersed on the surface of N-HNbMoO6 resulting from the interaction between guest titania species and host N-HNbMoO6. T-HNbMoO6 owns the best photocatalytic performance, which may be attributed to the synergistic effect between N-HNbMoO6 and titania species.

  7. Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications

    Science.gov (United States)

    Barai, Hasi Rani; Rahman, Md. Mahbubur; Joo, Sang Woo

    2017-12-01

    Template-free two-dimensional (2D) titania/titanate nanosheets on Ti metal foil (TiNS/Ti) is prepared by a hydrothermal method at 150 °C assisted by KOH(aq.),followed by sintering at 500 °C. A single thin layer of TiNS is grown with 2D morphology when using low concentrations of KOH(aq.) (0.25 and 0.5 M). However, the morphology is transformed to 1D when using a high concentration of KOH(aq.). The TiNS is a mixture of rutile TiO2 and K-titanate (K2Ti3O7 and K2Ti2O5) with the formation of Ti3+ interstitials. The optimized TiNS/Ti electrode exhibits quasi-rectangular cyclic voltammograms (CVs) in a wide potential range. The specific capacitance (Cs) are 6.8 × 103 and 4.7 × 103 μF/cm2 according to the CV (scan rate, 5 mV/s) and charge-discharge measurements (CD, current density, 50 μA/cm2), respectively. These values are much higher than those reported for pure 0D and 1D TiO2 nanostructures.The higher Cs for the TiNS/Ti electrode can be ascribed to the increased rate of K+ intercalation and de-intercalation during charging and discharging, as well as enhanced conductivity enable by the K in the crystal lattice (10.30%) and Ti3+ interstitials (5.2%), respectively. The TiNS/Ti electrode shows excellent stability with the Cs retention of 89% even after 5000 CD cycles.

  8. Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors

    KAUST Repository

    Zhang, Yu Xin

    2014-12-01

    A facile and large-scale strategy of mesoporous birnessite-type manganese dioxide (MnO2) nanosheets on one-dimension (1D) H2Ti 3O7 and anatase/TiO2 (B) nanowires (NWs) is developed for high performance supercapacitors. The morphological characteristics of MnO2 nanoflakes on H2Ti 3O7 and anatase/TiO2 (B) NWs could be rationally designed with various characteristics (e.g., the sheet thickness, surface area). Interestingly, the MnO2/TiO2 NWs exhibit a more optimized electrochemical performance with specific capacitance of 120 F g-1 at current density of 0.1 A g-1 (based on MnO 2 + TiO2) than MnO2/H2Ti 3O7 NWs. An asymmetric supercapacitor of MnO 2/TiO2//activated graphene (AG) yields a better energy density of 29.8 Wh kg-1 than MnO2/H2Ti 3O7//AG asymmetric supercapacitor, while maintaining desirable cycling stability. Indeed, the pseudocapacitive difference is related to the substrates, unique structure and surface area. Especially, the anatase/TiO2 (B) mixed-phase system can provide good electronic conductivity and high utilization of MnO2 nanosheets. © 2014 Elsevier B.V. All rights reserved.

  9. Surface science studies on titania for solar fuel applications

    Science.gov (United States)

    Hadsell, Courtney Sara Mathews

    Titanium dioxide (titania) is a well-studied material for various applications including but not limited to, paint, sunscreen, pharmaceuticals and solar cell applications (photocatalysis.) It can be found in three main crystal forms; rutile, anatase, and brookite and this work will focus on the anatase form which has been heavily studied for its potential in dye sensitized solar cells (DSSCs.) I propose that aqueous and photo dye stability can be improved by taking special care to the exposed surface of anatase. Additionally, the theoretical maximum open circuit voltage of a DSSC is dependent upon which surface is exposed to the electrolyte. Previous works in this area have not been rigorous with respect to the surface and morphology of titania being used. Standard synthesis techniques of anatase lead to a crystal that generally has 94% of the titania (101) surface exposed, and the other 6% is the higher energy (001) surface. The (101) surface has 5 & 6-fold coordinated titania whereas the (001) surface only has 5-fold (under) coordinated titania. This under-coordination leads to enhanced reactivity of the (001) surface which has been demonstrated by dissassociative adsorption of water, and catalysis applications. Much theoretical work has focused on the minority (001) surface because up until recently synthesizing anatase with enhanced exposure of the (001) surface has been difficult. The initial materials for this study will be multilayer titania nanotubes (TiNTs) and nanosheets (TiNS) which have been previously characterized by my predecessor. The TiNTs and TiNS have 100% exposed (001)-like surface. Both of these materials show enhanced stability of phosphonated dye binding as compared to the current standard of anatase nanoparticles (NPs) however, due to their limited thermal stability the potential of incorporating the TiNTs and TiNSs into devices has been eliminated in this study. To overcome the device limitations I will synthesis a novel titania nanotile

  10. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania

    International Nuclear Information System (INIS)

    Sun Pengzhan; Wang Kunlin; Zhong Minlin; Wei Jinquan; Wu Dehai; Zhu Hongwei; Ma Renzhi; Sasaki, Takayoshi

    2013-01-01

    The in situ self-assembly of two types of typical two-dimensional (2D) nanomaterials (i.e., graphene oxide (GO) and monolayer titania (TO)) is realized using a simple drop-casting method. Within the as-prepared hybrid films, the GO and TO nanosheets arrange alternately into a lamellar structure. Notably, the hybridization of GO and TO suppresses the formation of coffee-rings when drop-cast, which is attributed to the strong interactions between the GO and TO nanosheets. Finally, the mechanism for the in situ hybridization of these two types of nanosheets into heterogeneous lamellar films and the suppression of the coffee-ring effect are discussed. These results demonstrate the potential applications of drop-cast hybrid films for high-quality membrane deposition from liquid phases. (paper)

  11. Water disinfection through photoactive modified titania.

    Science.gov (United States)

    Sethi, Diptipriya; Pal, Ajoy; Sakthivel, Ramasamy; Pandey, Sony; Dash, Tapan; Das, Trupti; Kumar, Rohit

    2014-01-05

    TiO(2), N-TiO(2) and S-TiO(2) samples have been prepared by various chemical methods. These samples were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Laser Raman spectrometer, UV-Visible spectrophotometer, field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). X-ray powder diffraction study reveals that all three samples are single anatase phase of titania and the crystallinity of titania decreases with sulphur doping whereas nitrogen doping does not affect it. UV-Visible (diffuse) reflectance spectra shows that doping of titania with nitrogen and sulphur shift the absorption edge of titania from ultraviolet to visible region. XPS study confirms that both nitrogen and sulphur are well doped in the titania lattice. It is observed that nitrogen occupies at both substitutional and interstitial position in the lattice of titania. FE-SEM and TEM studies demonstrate that the particles are below 50nm range. It is found that S and N doping of titania increased its water disinfection property in the order TiO(2)UV-Visible light irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  13. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  14. Crystalline orientation control using self-assembled TiO2 nanosheet scaffold to improve CH3NH3PbI3 perovskite solar cells

    Science.gov (United States)

    Maitani, Masato M.; Satou, Hirokazu; Ohmura, Aoi; Tsubaki, Shuntaro; Wada, Yuji

    2017-08-01

    In perovskite solar cells with an organic inorganic hybrid metal halide perovskite crystalline semiconductor as the active layer, the properties of the n-type semiconductor scaffold, the materials used, and the morphology, wettability, and surface reactivity of the cells are important decisive factors affecting the overall device efficiency of the perovskite solar cells. We control the orientation of anatase titania nanosheets by a self-assembly technique to create the ordered mesoporous scaffolds with ordered voids. Differences between nanosheet orientations in each mesoporous scaffold indicate differences in the photoelectric properties of CH3NH3PbI3 perovskite crystals embedded in each scaffold. Although each scaffold consists of the same anatase TiO2 nanosheets, the properties of the solar cells are affected by the oxide scaffold nanomorphology, which determines the growth orientation of CH3NH3PbI3 perovskite crystals that affects the solar cell properties.

  15. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  16. Synthesis and characterization of silica–titania core–shell particles

    Indian Academy of Sciences (India)

    The precipitate was washed with ethanol and dried. 2.2 Synthesis of silica-coated titania particles. Titania particles were synthesized by sol–gel method [4]. For coating titania par- ticles with silica, hydrolysis of TEOS was carried out in the presence of titania particles. Silica shell grows on such titania nuclei. To a mixture of ...

  17. Titania nanotube arrays: Interfaces for implantable devices

    Science.gov (United States)

    Smith, Barbara Symie

    For the 8--10% of Americans (20--25 million people) that have implanted biomedical devices, biomaterial failure and the need for revision surgery are critical concerns. The major causes for failure in implantable biomedical devices promoting a need for re-implantation and revision surgery include thrombosis, post-operative infection, immune driven fibrosis and biomechanical failure. The successful integration of long-term implantable devices is highly dependent on the early events of tissue/biomaterial interaction, promoting either implant rejection or a wound healing response (extracellular matrix production and vasculature). Favorable interactions between the implant surface and the respective tissue are critical for the long-term success of any implantable device. Recent studies have shown that material surfaces which mimic the natural physiological hierarchy of in vivo tissue may provide a possible solution for enhancing biomaterial integration, thus preventing infection and biomaterial rejection. Titania nanotube arrays, fabricated using a simple anodization technique, provide a template capable of promoting altered cellular functionality at a hierarchy similar to that of natural tissue. This work focuses on the fabrication of immobilized, vertically oriented and highly uniform titania nanotube arrays to determine how this specific nano-architecture affects skin cell functionality, hemocompatibility, thrombogenicity and the immune response. The results in this work identify enhanced dermal matrix production, altered hemocompatibility, reduced thrombogenicity and a deterred immune response on titania nanotube arrays. This evidences promising implications with respect to the use of titania nanotube arrays as beneficial interfaces for the successful implantation of biomedical devices.

  18. Periodic titania nanostructures using block copolymer templates.

    Science.gov (United States)

    Chinthamanipeta, Pavan S; Lou, Qin; Shipp, Devon A

    2011-01-25

    The deposition of periodic titania nanostructures, templated by a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer, is reported. When cast as a thin film (30-50 nm thick), the PS-b-P4VP forms a morphology that consists of P4VP cylinders that are orientated perpendicular to the substrate. The P4VP phase was lightly cross-linked by exposing the film to diiodobutane. When the block copolymer film was exposed to the sol-gel titania precursor, titanium(IV) bis(ammonium lactate) dihydroxide (TALH), titania was formed in the P4VP phase. The resulting titania structures were identical in size to the P4VP cylinders and only formed (under the deposition conditions used in this study) when the block copolymer film was present on the substrate, thus providing evidence that the block copolymer indeed acts as a template. The process works for both silicon and indium tin oxide substrates.

  19. Synthesis and characterization of microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.; ten Elshof, Johan E.; Blank, David H.A.

    2004-01-01

    A procedure for the preparation of microporous titania membranes by the polymeric sol-gel technique is reported. The influence of acid/titanium ratio, water/titanium ratio, method of mixing components and refluxing time on particle size and sol stability was investigated. The thermal evolution,

  20. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  1. Fabrication of homogeneous titania/MWNT composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Korbely, Barbara; Nemeth, Zoltan; Reti, Balazs [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. ter 1, Szeged H-6720 (Hungary); Seo, Jin Won [Department Metallurgy and Materials Engineering (MTM), Katholieke Universiteit Leuven (Belgium); Magrez, Arnaud; Forro, Laszlo [Laboratory of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Hernadi, Klara, E-mail: hernadi@chem.u-szeged.hu [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. ter 1, Szeged H-6720 (Hungary)

    2011-11-15

    Highlights: {yields} Homogenous titania coverage on MWNT surface in a controllable way. {yields} Various titanium alkoxy precursors are suitable for layer formation. {yields} Acetone and ethanol are the best to promote interaction between MWNT and titania. -- Abstract: MWNT/titania nanocomposites were prepared by an impregnation method and subsequent heat treatment at 400 {sup o}C. Precursor compounds such as titanium (IV) propoxide and titanium (IV) ethoxide were used to cover the surface of CNTs under solution conditions. Electron microscopy and X-ray diffraction techniques were carried out to characterize the as-prepared titania layers.

  2. Comparative study of titania nanoparticles and nanotubes as antibacterial agents

    Science.gov (United States)

    Jing, Zhihong; Guo, Daojun; Wang, Weihua; Zhang, Shufang; Qi, Wei; Ling, Baoping

    2011-09-01

    Anatase titania nanoparticles with a high surface area (about 587.7 m 2/g) were synthesized by sol-gel method using isobutyl alcohol as solvent, and then anatase titania nanotubes with needlelike shape, which had diameters of about 5 nm and wall thickness of about 1 nm, could be obtained by microwave process using the above titania nanoparticles as precursors. Both titania nanoparticles and nanotubes were characterized through X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, photoluminescence spectroscopy and nitrogen adsorption-desorption isotherm technique. The antibacterial activities of both titania nanoparticles and nanotubes against Escherichia coli ( E. coli) were developed by quantification and qualitative ways, e.g. microcalorimetric method and disk diffusion method. At the same time, their antibacterial activities against E. coli were also investigated in dark and under UV irradiation. As a result, both the titania nanoparticles and nanotubes had good antibacterial activities against E. coli due to their low inhibitory concentration and large diameter of antibacterial circle. In addition, the titania nanoparticles displayed higher antibacterial activities than those of the titania nanotubes under UV irradiation, though they presented similar antibacterial activities in dark. The differences in antibacterial activities between titania nanoparticles and nanotubes might be attributed to the changes of their microstructure in our works.

  3. Fabrication of ruthenium metal nanosheets via topotactic metallization of exfoliated ruthenate nanosheets.

    Science.gov (United States)

    Fukuda, Katsutoshi; Sato, Jun; Saida, Takahiro; Sugimoto, Wataru; Ebina, Yasuo; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi

    2013-03-04

    The metallization behavior of molecularly thin RuO2 nanosheets obtained from complete delamination of layered ruthenates was studied. Interestingly, the RuO2 nanosheets in a monolayer state topotactically transformed into a single layer of Ru atoms, i.e., ruthenium metal nanosheets, which can be regarded as a new family of nanosized metals.

  4. The potential health risk of titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruinan, E-mail: ruinanzhang87@gmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Bai, Yuhong, E-mail: yuhong.bai1983@gmail.com [School of Pharmaceutical Sciences, Shandong University, Jinan 250100 (China); Zhang, Bin, E-mail: binzhang1968@hotmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Chen, Lingxin, E-mail: lxchen@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); Yan, Bing, E-mail: dr.bingyan@gmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Nanotechnology has been widely used in environmental treatments. Black-Right-Pointing-Pointer The safety of nanomaterials to human is under-studied. Black-Right-Pointing-Pointer Taking titania nanoparticle as an example to address nanotoxicity and remedy. Black-Right-Pointing-Pointer The much needed future investigations are suggested. - Abstract: Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs' toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.

  5. The potential health risk of titania nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Ruinan; Bai, Yuhong; Zhang, Bin; Chen, Lingxin; Yan, Bing

    2012-01-01

    Highlights: ► Nanotechnology has been widely used in environmental treatments. ► The safety of nanomaterials to human is under-studied. ► Taking titania nanoparticle as an example to address nanotoxicity and remedy. ► The much needed future investigations are suggested. - Abstract: Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs’ toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.

  6. Sustainable steric stabilization of colloidal titania nanoparticles

    Science.gov (United States)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  7. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid.

    Science.gov (United States)

    Xie, Yibing; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. © 2013 Elsevier B.V. All rights reserved.

  8. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  9. Titania supported tungsten oxide species studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, Hack Sung; Kim, Kwan

    1991-01-01

    Laser Raman spectroscopy has been used to study the tungsta catalyst supported on titania. The surface tungsten species which forms on titania after calcination appeared to possess a structure that is independent of the initial impregnation condition. The surface polytungstate seemed to be stable only at the interfacial region since the crystalline WO 3 phase was observed as long as the tungsta loading was in excess of monolayer coverage. The close intact and strong interaction between the polytungstate and the titania could be evidenced from the inhibition of the phase transition of TiO 2 from anatase to rutile.(Author)

  10. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    Science.gov (United States)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-08

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  11. Formation and photopatterning of nanoporous titania thin films

    International Nuclear Information System (INIS)

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk; Rice, Philip M.; Topuria, Teya; Miller, Robert D.; Kim, Ho-Cheol

    2007-01-01

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequent wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania

  12. Synthesis and characterization of titania nanorods from ilmenite for photocatalytic annihilation of E. coli.

    Science.gov (United States)

    Sethi, Diptipriya; Jada, Naresh; Kumar, Rohit; Ramasamy, Sakthivel; Pandey, Sony; Das, Trupti; Kalidoss, Jayasankar; Mukherjee, Partha Sarathi; Tiwari, Ashish

    2014-11-01

    Titania nanorod structures have been obtained by thermal plasma reduction of ilmenite (FeTiO₃) followed by chemical treatments. Inherently present iron in the titania nanorods acts as a dopant which results in shifting the absorption edge of titania from ultraviolet to visible region. X-ray diffraction (XRD) study confirms the existence of rutile phase of titania. X-ray Photoelectron Spectroscopy (XPS) reveals the presence of Ti(4+), O(2-), Fe(3+) and surface hydroxyl group. Transmission Electron Microscopy (TEM) confirms the formation of nanorod structure having width of 6 nm and length of 32 nm. Photocatalytic annihilation property of titania nanorods derived from ilmenite (titania-I), rutile titania obtained from titanium(IV) butoxide (titania-A) and Degussa P25 titania was studied under UV and UV-Visible irradiation conditions separately and compared. The time required for complete photocatalytic annihilation of Escherichiacoli cells are 10, 15 and 45 min under UV irradiation whereas it has taken 15, 10-15, 30 min under UV-Visible irradiation for titania-A, Degussa P25 titania and titania-I respectively. It is observed that titania-I shows significantly stronger antibacterial property under UV-Visible irradiation compared to UV alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. STUDI PREPARASI DAN KARAKTERISASI SEL SURYA BERBASIS TITANIA MELALUI PENYISIPAN LOGAM TEMBAGA (CU DENGAN BERBAGAI VARIASI MASSA PADA LAPISAN AKTIF TITANIA

    Directory of Open Access Journals (Sweden)

    Rita Prasetyowati

    2017-05-01

                This study aims to determine the effect of insertion of copper (Cu with a variety of mass to structure morphology and composition of surface layer of titania, absorbance of titania, resistance of titania and solar cell performance based on titania.. Solar cell performance is characterized from voltage of solar cell.                 Preparation of titania-copper layer (TiO2-Cu to form a paste was made using a sol-gel method. Pasta titania-copper deposited on a transparent electrode (Indium Tin Oxide with a doctor blade method. There were five variations of Cu mass pasted on layers of titania, namely 0,050 grams (Sample 1; 0,075 grams (sample 2; 0,100 grams (3 samples; 0.0125 (sample 4 and 0.0150 (sample 5. Each variation of the mass of Cu is inserted in one gram of TiO2. SEM and EDS characterization performed on layers of titania-copper to know the structure morphology and composition of the titania-copper. Layer absorbance was characterized using UV-Visible spectrometer. Resistance of titania was measured using a Wheatstone bridge. The performance of solar cells measured by measuring the voltage of the solar cell.                  Keywords: titania, copper, surface morphology, absorbance, resistance, solar cells

  14. Preparation and corrosion behavior evaluation of amalgam/titania nano composite

    Directory of Open Access Journals (Sweden)

    Neda Bahremandi Tolou

    2011-01-01

    Conclusion: By adding nano particles of titania and preparing amalgam/titania nano composite as a dental amalgam, corrosion behavior and mercury release during the 2 st h after preparation could be improved.

  15. Formation of bimodal porous silica-titania monoliths by sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Ruzimuradov, O N, E-mail: ruzimuradov@rambler.ru [Department of General Chemistry, Faculty of Chemistry, National University of Uzbekistan, 15, Vuzgorodok, Tashkent, 100174 (Uzbekistan)

    2011-10-29

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N{sub 2} adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  16. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  17. In-situ deposition of hydroxyapatite on graphene nanosheets

    OpenAIRE

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-01-01

    Graphene nanosheets were effectively functionalized by in-situ deposition of hydroxyaptite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, trans...

  18. Study on Synthesis and Photocatalytic Activity of Porous Titania Nanotubes

    Directory of Open Access Journals (Sweden)

    Huang Liu

    2016-01-01

    Full Text Available Using the common natural cellulose substance (filter paper and triblock copolymer (Pluronic P123 micelles as dual templates, porous titania nanotubes with enhanced photocatalytic activity have been successfully synthesized through sol-gel methods. Firstly, P123 micelles were adsorbed onto the surfaces of cellulose nanofibers of filter paper, followed by hydrolysis and condensation of tetrabutyl titanate around these micelles to form titania layer. After calcination to remove the organic templates, hierarchical titania nanotubes with pores in the walls were obtained. The sample was characterized by X-ray diffraction pattern (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption/desorption, Fourier Transform Infrared Spectroscopy (FT-IR, Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS, and X-ray photoelectron spectroscopy (XPS. As compared with commercial P25 catalyst, the porous titania nanotubes prepared by this method displayed significantly enhanced photocatalytic activity for degrading methyl orange under UV irradiation. Within 10 minutes, the porous titania nanotubes are able to degrade over 70% of the original MO, while the value for the commercial Degussa P25 is only about 33%.

  19. Titania based nanocomposites as a photocatalyst: A review

    Directory of Open Access Journals (Sweden)

    Farha Modi

    2016-08-01

    Full Text Available Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.

  20. Subnanometer Thin β-Indium Sulfide Nanosheets.

    Science.gov (United States)

    Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan

    2012-12-20

    Nanosheets are a peculiar kind of nanomaterials that are grown two-dimensionally over a micrometer in length and a few nanometers in thickness. Wide varieties of inorganic semiconductor nanosheets are already reported, but controlling the crystal growth and tuning their thickness within few atomic layers have not been yet explored. We investigate here the parameters that determine the thickness and the formation mechanism of subnanometer thin (two atomic layers) cubic indium sulfide (In2S3) nanosheets. Using appropriate reaction condition, the growth kinetics is monitored by controlling the decomposition rate of the single source precursor of In2S3 as a function of nucleation temperature. The variation in the thickness of the nanosheets along the polar [111] direction has been correlated with the rate of evolved H2S gas, which in turn depends on the rate of the precursor decomposition. In addition, it has been observed that the thickness of the In2S3 nanosheets is related to the nucleation temperature.

  1. Green synthesis and characterization of graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Farnosh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-03-15

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductant but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.

  2. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  3. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  4. Interaction between surfactant and titania in a detergent nanofluid system

    Science.gov (United States)

    Slamet, Redjeki, Athiek Sri

    2017-11-01

    Interaction between surfactant palm primary alkyl sulfonate (palm PAS) and tinania (TiO2) in nanofluid system have been studied. In this experiment, nanofluid is prepared as follow: a certain amount of titania is dispersing in a water as a host fluid, and then dissolving a certain amount of palm PAS into water and stirred followed with sonication. Characterisation of nanofluid is conducted by FTIR for chemical structure and UV Vis spectrofotometer for absorbance. The result shows a synergize interaction between surfactant and nanofluid. The presence of titania in surfactant solution will reduce the surfactantsurface tension from 32,7 mN/m to 31,5 mN/m and the presence of surfactant in nanofluid, will stabilize nanofluid system. The optimum ratio of titania : surfactant is 1 : 10 (w/w).

  5. The improved stability of enzyme encapsulated in biomimetic titania particles

    International Nuclear Information System (INIS)

    Jiang Yanjun; Sun Qianyun; Jiang Zhongyi; Zhang Lei; Li Jian; Li Lin; Sun Xiaohui

    2009-01-01

    This study demonstrates a novel biomimetic approach for the entrapment of yeast alcohol dehydrogenase (YADH) within titania nanoparticles to improve its stability. Protamine was as the template and catalyst for the condensation of titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles in which YADH was trapped. The as-prepared titania/protamine/YADH composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of YADH encapsulation was tentatively proposed from a series of experimental results. The preliminary investigation showed that encapsulated YADH could retain most of its initial activity. Compared to free YADH, encapsulated YADH exhibited significantly improved thermal, pH and recycling stability. After 5 weeks storage, no substantial loss of catalytic activity for encapsulated YADH was observed

  6. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    Science.gov (United States)

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  7. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Directory of Open Access Journals (Sweden)

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  8. Surface studies of titania related nanostructures

    Science.gov (United States)

    Papageorgiou, Anthoula Chrysa

    In this thesis, surface sensitive techniques have been employed to investigate the surface chemistry of TiC>2. A bottom-up approach was used to grow ultra-thin films of rutile TiO2(110) on Ni(110). The surface structure of this system was probed using scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED), whereas the electronic structure was characterised with soft X-ray photoelectron spectroscopy (SXPS). SXPS was also used to investigate the reactivity of this system towards water. While optimising the conditions for the growth of the desired titania phase, the growth of other structures commonly found in reduced native TiC>2 crystals were apparent from STM and LEED observations. The formation of 1x2 reconstructed TiO2(110) and crystallographic shear planes are reported. These phases are assigned by comparison with previous studies of analogous phases on the native rutile TiC>2(110) surface. STM was also used to monitor chemical reactions on native TiO2(110) surfaces. The reaction of surface bridging hydroxyl groups with molecular oxygen at room temperature was imaged directly. After exposure to O2, nearly all bridging hydroxyl groups are consumed, and new, mobile adsorbates appear with a range of apparent heights. With the support of calculations performed by Hofer's group in the University of Liverpool and Fisher's group in UCL, the adsorbates left on the surface after the reaction are assigned to neutral and charged oxygen adatoms as well as terminal hydroxyls. Finally, the surface local density of states of TiO2(110) were measured using scanning tunnelling spectroscopy. Energetically localised states are found at sample biases of +0.2 V, 0.7 V and 1.9 V. Additionally, a surface state at 1.9 V is localised spatially at two adjacent titanium five-fold atoms near to the positions of surface oxygen vacancies.

  9. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  10. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Titania nanotube arrays as interfaces for neural prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Sorkin, Jonathan A. [Department of Mechanical Engineering, Colorado State University, Fort Collins CO 80523 (United States); Hughes, Stephen [Department of Chemical and Biological Engineering, Colorado State University, Fort Collins CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins CO 80523 (United States); Soares, Paulo [Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901 (Brazil); Popat, Ketul C., E-mail: ketul.popat@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins CO 80523 (United States)

    2015-04-01

    Neural prostheses have become ever more acceptable treatments for many different types of neurological damage and disease. Here we investigate the use of two different morphologies of titania nanotube arrays as interfaces to advance the longevity and effectiveness of these prostheses. The nanotube arrays were characterized for their nanotopography, crystallinity, conductivity, wettability, surface mechanical properties and adsorption of key proteins: fibrinogen, albumin and laminin. The loosely packed nanotube arrays fabricated using a diethylene glycol based electrolyte, contained a higher presence of the anatase crystal phase and were subsequently more conductive. These arrays yielded surfaces with higher wettability and lower modulus than the densely packed nanotube arrays fabricated using water based electrolyte. Further the adhesion, proliferation and differentiation of the C17.2 neural stem cell line was investigated on the nanotube arrays. The proliferation ratio of the cells as well as the level of neuronal differentiation was seen to increase on the loosely packed arrays. The results indicate that loosely packed nanotube arrays similar to the ones produced here with a DEG based electrolyte, may provide a favorable template for growth and maintenance of C17.2 neural stem cell line. - Highlights: • Titania nanotube arrays can be fabricated with to have loosely or densely packed morphologies. • Titania nanotube arrays support higher C17.2 neural stem cell adhesion and proliferation. • Titania nanotube arrays support higher C17.2 neural stem cell differentiation towards neuronal lineage.

  12. Electro spraying of titania for nitrogen oxide abatement

    NARCIS (Netherlands)

    Ursem, W.N.J.; Marijnissen, J.C.; Roos, R.A.; Kelder, E.M.

    2010-01-01

    The invention provides a method for the production of a titania coating (80) on a surface (101) of an object (100) comprising electro spraying a titanium comprising liquid (15) to the surface (101) of the object (100) to provide a titanium comprising layer (85); and heating thetitanium comprising

  13. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Electrophoretic deposition (EPD) of titania nanoparticles was performed at different voltages and times. The wet density of deposits was calculated according to the Archimedes' principle. The wet density as well as the electric field over the deposits increased with time and attained the plateau at longer times. The.

  14. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays ...

  15. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  16. Ti3+-containing titania: Synthesis tactics and photocatalytic performance

    NARCIS (Netherlands)

    Saputera, W.H.; Mul, Guido; Hamdy, Mohamed S.

    2015-01-01

    Three different synthesis techniques were applied to prepare Ti3+-containing TiO2. The first is a self-doped technique in which TiO2 was reduced in situ at 500 °C by NO and CO gases to produce blue powder (blue titania). The second method is a calcination treatment of a physical mixture consisting

  17. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    Electrophoretic deposition (EPD); electro-osmotic flow; titania nanoparticles; triethanolamine. (TEA); wet density. 1. .... (25 °C) and atmospheric pressure. The immersion weight ... Wet density of deposits and velocity of electro-osmotic flow against TEA concentration at (a) 60 and (b) 200 V and longer EPD times (360 s).

  18. Investigation of superhydrophilic mechanism of titania nano layer ...

    Indian Academy of Sciences (India)

    Investigation of superhydrophilic mechanism of titania nano layer thin film—Silica and indium oxide dopant effect. Akbar Eshaghi Ameneh Eshaghi. Volume 35 ... In this paper, TiO2–SiO2–In2O3 nano layer thin films were deposited on glass substrate using sol–gel dip coating method. Fourier transform infrared spectroscopy ...

  19. Synthesis of mesoporous titania by homogeneous hydrolysis of titania oxo-sulfate in the presence of cationic and anionic surfactants

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Houšková, Vendula; Murafa, Nataliya; Bakardjieva, Snejana

    2010-01-01

    Roč. 54, č. 4 (2010), s. 368-378 ISSN 0862-5468 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : surfactant * titania * mesoporous * photocatalyst Subject RIV: CA - Inorganic Chemistry Impact factor: 0.297, year: 2010

  20. Reduced Graphene Oxide Nanosheet for Chemo-photothermal Therapy.

    Science.gov (United States)

    Cheon, Yeong Ah; Bae, Jun Hyuk; Chung, Bong Geun

    2016-03-22

    The protein-functionalized reduced graphene oxide (rGO) nanosheet is of great interest in stimuli-responsive drug delivery and controlled release applications. We developed doxorubicin (DOX)-loaded bovine serum albumin (BSA)-functionalized rGO (DOX-BSA-rGO) nanosheets. To investigate the reduction of BSA-functionalized GO nanosheets and drug loading efficiency, we used X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer analysis. DOX-BSA-rGO nanosheets exhibited dose-dependent cellular uptake without any cytotoxic effect. We also demonstrated near-infrared (NIR)-induced chemo-photothermal therapy of brain tumor cells treated with DOX-BSA-rGO nanosheets. Therefore, this DOX-BSA-rGO nanosheet could be a powerful tool for chemo-photothermal therapy applications.

  1. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity.

    Science.gov (United States)

    Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek

    2011-03-21

    Nitrogen and sulfur co-doped TiO(2) nanosheets with exposed {001} facets (N-S-TiO(2)) were prepared by a simple mixing-calcination method using the hydrothermally prepared TiO(2) nanosheets powder as a precursor and thiourea as a dopant. The resulting samples were characterized by transmission electron microscope, X-ray diffraction, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-Vis absorption spectroscopy. The electronic properties of N,S co-doped TiO(2) were studied using the first-principle density functional theory (DFT). The photocatalytic activity of N-S-TiO(2) was evaluated by degradation of 4-chlorophenol (4-CP) aqueous solution under visible light irradiation. The production of hydroxyl radicals (˙OH) on the surface of visible-light-irradiated samples was detected by photoluminescence technique using terephthalic acid as a probe molecule. The results show that nitrogen and sulfur atoms were successfully incorporated into the lattice of TiO(2), which resulted in N-S-TiO(2) samples exhibiting stronger absorption in the UV-visible range with a red shift in the band gap transition. The first-principle DFT calculations further confirm that N and S co-dopants can induce the formation of new energy levels in the band gap, which is associated with the response of N-S-TiO(2) nanosheets to visible light irradiation. Surprisingly, pure TiO(2) nanosheets show the visible-light photocatalytic activity for the degradation of 4-CP mainly due to the substrate-surface complexation of TiO(2) and 4-CP, which results in extending absorption of titania to visible light region through ligand-to-titanium charge transfer. The N-S-TiO(2) samples studied exhibited an enhanced visible-light photocatalytic activity than pure TiO(2). Especially, the doped TiO(2) sample at the nominal weight ratio of thiourea to TiO(2) powder of 2 showed the highest photocatalytic activity, which was about twice greater than that of Degussa P25. The enhanced activity of

  2. Atomically resolved structure of ligand-protected Au{sub 9} clusters on TiO{sub 2} nanosheets using aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Al Qahtani, Hassan S.; Andersson, Gunther G., E-mail: gunther.andersson@flinders.edu.au, E-mail: nakayama.tomonobu@nims.go.jp [Flinders Centre for NanoScale Science and Technology, Flinders University, Adelaide SA 5001 (Australia); Kimoto, Koji [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Bennett, Trystan; Alvino, Jason F.; Metha, Gregory F. [Department of Chemistry, The University of Adelaide, Adelaide SA 5005 (Australia); Golovko, Vladimir B. [Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140 (New Zealand); Sasaki, Takayoshi; Nakayama, Tomonobu, E-mail: gunther.andersson@flinders.edu.au, E-mail: nakayama.tomonobu@nims.go.jp [WPI-MANA, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2016-03-21

    Triphenylphosphine ligand-protected Au{sub 9} clusters deposited onto titania nanosheets show three different atomic configurations as observed by scanning transmission electron microscopy. The configurations observed are a 3-dimensional structure, corresponding to the previously proposed Au{sub 9} core of the clusters, and two pseudo-2-dimensional (pseudo-2D) structures, newly found by this work. With the help of density functional theory (DFT) calculations, the observed pseudo-2D structures are attributed to the low energy, de-ligated structures formed through interaction with the substrate. The combination of scanning transmission electron microscopy with DFT calculations thus allows identifying whether or not the deposited Au{sub 9} clusters have been de-ligated in the deposition process.

  3. Performance engineering of dye sensitized solar cells (DSSC) using Ag modified titania as photoanode

    Science.gov (United States)

    Nair, Ranjith G.; Mathan Kumar, P.; Samdarshi, S. K.

    2018-01-01

    Present work reports the fabrication of silver (Ag) modified titania photoanode as an efficient photoanode for Dye Sensitized Solar Cell (DSSC). Pristine and Ag modified Titania nanomaterials were prepared using sol gel method. The structural analyses confirm the high crystallinity of the samples with crystallite size distribution in nanorange. TEM micrograph confirms that the synthesized nanomaterials are in uniform size. A red shift is observed in the UV DRS spectra compared to pristine Titania and which confirm the incorporation of Ag inside titania. A prototype DSSC was fabricated using the pristine and modified Titania as photoanode, Ruthenium dye as sensitizer, I-/I-3 as redox electrolyte and platinum counter electrode. The cell with Ag modified titania photoanode showed 15 times enhanced photoconversion efficiency (PCE) than the pristine one. This improved performance of the Ag modified DSSC can be ascribed to reduced recombination and improved charge carrier transport of electrons/holes at the interfaces.

  4. In situ deposition of hydroxyapatite on graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Neelgund, Gururaj M. [Department of Chemistry, Prairie View A and M University, Prairie View, TX 77446 (United States); Oki, Aderemi, E-mail: aroki@pvamu.edu [Department of Chemistry, Prairie View A and M University, Prairie View, TX 77446 (United States); Luo, Zhiping [Microscopy and Imaging Center and Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843 (United States)

    2013-02-15

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  5. Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules

    International Nuclear Information System (INIS)

    Xie Yibing

    2006-01-01

    A highly ordered and crystallized titania (TiO 2 ) nanotube array is fabricated by a low-voltage anodization plus a post-embedding calcination process. Polyoxophosphotungstate-titania (POPTA-TiO 2 ) composite catalyst is synthesized by embedding POPTA in TiO 2 tubule channels to improve the photoelectrochemical properties. The morphological characteristics and crystal behaviour of POPTA-TiO 2 are examined by field-emission scanning electron microscopy and x-ray diffraction. The stability of the chemical structure has been analysed by Fourier transformed infrared spectroscopy measurements. The photoelectrochemical properties are investigated by means of the polarization current response. Photocatalytic and photoelectrocatalytic reactivities for the degradation of an endocrine disrupting chemical have also been investigated to examine the photoelectrochemical reaction efficiency of POPTA-TiO 2 composite catalyst

  6. Lithium ion batteries with titania/graphene anodes

    Science.gov (United States)

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  7. Preparation of homogeneous titania coatings on the surface of MWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Reti, Balazs; Kukovecz, Akos; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, Szeged 6720 (Hungary); Dieker, Christel; Alexander, Duncan T.L.; Forro, Laszlo [Laboratoire de Physique de la Matiere Complexe, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Seo, Jin Won [Department of Metallurgy and Materials Engineering, Katholieke Universitet Leuven, Kasteelpark Arenberg 44-bus, 2450 Heverlee (Belgium)

    2010-12-15

    The aim of this work was to develop a controllable route to produce a stable and inorganic layer on the surface of multi-wall carbon nanotubes. Precursor compounds such as TiBr{sub 4}, TiCl{sub 4}, Ti(OiPr){sub 4}, and Ti(OEt){sub 4} were used to cover the surface of carbon nanotubes (CNTs) under either solvent free or solution conditions. Various titania precursors were compared in the formation of homogeneous layers on the surface of CNTs. As-prepared titania coverages were characterized by transmission electron microscopy (TEM), high resolution TEM, scanning electron microscopy, electron energy loss spectroscopy, and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Microstructure and abrasion resistance of plasma sprayed titania coatings

    Science.gov (United States)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  9. Lamellar Micelles - Mediated Synthesis of Nanoscale Thick Sheets of Titania

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Šolcová, Olga; Matějová, Lenka; Cajthaml, Tomáš

    2007-01-01

    Roč. 61, 14-15 (2007), s. 2931-2934 ISSN 0167-577X R&D Projects: GA ČR(CZ) GA104/04/0963; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : nanostructures * lamellar titania * templating Subject RIV: CA - Inorganic Chemistry Impact factor: 1.625, year: 2007

  10. The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties

    International Nuclear Information System (INIS)

    Pasqui, Daniela; Atrei, Andrea; Barbucci, Rolando

    2009-01-01

    We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pH values. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate.

  11. Titania-alumina aerogel materials for degradation of rhodamine B dye: Impact of particle size of titania

    Science.gov (United States)

    Shrestha, Sunav

    Disposal of pollutants, mainly organic dyes from textile industries are the primary sources of water pollution in developing countries, and often leading to scarcity of clean water. These dyes can undergo further oxidation and form several toxic compounds, which possess threat to the water ecosystem. It is therefore necessary to remove these organics from effluents for a clean environment. Among the various methods, Advanced Oxidation Processes (AOPs) called heterogeneous photocatalysis is considered as an effective method for the removal of organics from water sources. In this regard, a set of titania-alumina (TiO2-Al2O3) mixed oxide materials were prepared by supercritical drying method and investigated towards the degradation of a model pollutant, rhodamine B (RhB). The physico-chemical properties of the synthesized materials were studied in detail using several techniques that include powder X-ray diffraction, nitrogen physisorption, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Electrospray ionization-Mass spectroscopic (ESI-MS) studies were also carried out to confirm the degradation of the RhB by identifying its intermediate products. The results indicate that the particle size of the photoactive species, titania, was the key factor for effective photocatalytic degradation of the RhB dye over the titania-alumina mixed oxide materials.

  12. Synthesis of eccentric titania-silica core-shell and composite particles

    NARCIS (Netherlands)

    Demirors, A.F.|info:eu-repo/dai/nl/30483176X; van Blaaderen, A.|info:eu-repo/dai/nl/092946488; Imhof, A.|info:eu-repo/dai/nl/145641600

    2009-01-01

    We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control

  13. Evaluation of the Morphology and Osteogenic Potential of Titania-Based Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2012-01-01

    Full Text Available Submicron-scale titania-based ceramic fibers with various compositions have been prepared by electrospinning. The as-prepared nanofibers were heat-treated at 700°C for 3 h to obtain pure inorganic fiber meshes. The results show that the diameter and morphology of the nanofibers are affected by starting polymer concentration and sol-gel composition. The titania and titania-silica nanofibers had the average diameter about 100–300 nm. The crystal phase varied from high-crystallized rutile-anatase mixed crystal to low-crystallized anatase with adding the silica addition. The morphology and crystal phase were evaluated by SEM and XRD. Bone-marrow-derived mesenchymal stem cells were seeded on titania-silica 50/50 fiber meshes. Cell number and early differentiation marker expressions were analyzed, and the results indicated osteogenic potential of the titania-silica 50/50 fiber meshes.

  14. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mimicking a Dog's Nose: Scrolling Graphene Nanosheets.

    Science.gov (United States)

    Chen, Zhuo; Wang, Jinrong; Pan, Douxing; Wang, Yao; Noetzel, Richard; Li, Hao; Xie, Peng; Pei, Wenle; Umar, Ahmad; Jiang, Lei; Li, Nan; Rooij, Nicolaas Frans de; Zhou, Guofu

    2018-03-07

    Inspired by the densely covered capillary structure inside a dog's nose, we report an artificial nanostructure, i. e., poly(sodium p-styrenesulfonate)-functionalized reduced graphene oxide nanoscrolls (PGNS), with high structural perfection and efficient gas sensing applications. A facile supramolecular assembly is introduced to functionalize graphene with the functional polymer, combined with the lyophilization technique to massively transform the planar graphene-based nanosheets to nanoscrolls. Detailed characterizations reveal that the bioinspired nanoscrolls exhibit a wide-open tubular morphology with uniform dimensions that is structurally distinct from the previously reported ones. The detailed morphologies of the graphene-based nanosheets in each scrolling stage during lyophilization are monitored by cryo-SEM. This unravels an asymmetric polymer-induced graphene scrolling mechanism including the corresponding scrolling process, which is directly presented by molecular dynamics simulations. The fabricated PGNS sensors exhibit superior gas sensing performance with reliable repeatability, excellent linear sensibility, and, especially, an ultrahigh response ( R a / R g = 5.39, 10 ppm) toward NO 2 . The supramolecular assembly combined with the lyophilization technique to fabricate PGNS provides a strategy to design biomimetic materials for gas sensors and chemical trace detectors.

  16. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    Directory of Open Access Journals (Sweden)

    Juan L Vivero-Escoto, Ya-Dong Chiang, Kevin C-W Wu and Yusuke Yamauchi

    2012-01-01

    Full Text Available This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  17. Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis

    International Nuclear Information System (INIS)

    Shi, Liang; Cao, Lixin; Gao, Rongjie; Zhao, Yanling; Zhang, Huibin; Xia, Chenghui

    2014-01-01

    Graphical abstract: The Gd-doped titania nanotubes showed an increase in photocatalytic activity together with Gd/Ti ratio increase up 0.5%, followed by a rapid fall above 1.0%. - Highlights: • Enhanced Gd-doped titania nanotube photocatalysts have been synthesized. • Uniform Gd-doped titania nanoparticles were employed as raw materials. • Actual gadolinium contents in titania were precisely characterized by ICP-AES. • The distribution of Gd dopant was marked using element mapping. - Abstract: Gadolinium-doped titanium dioxide nanotubes were fabricated with a facile two-step route. Precursors Gd-doped titania nanoparticles were synthesized by a traditional sol–gel method. Hydrothermal process and acid treatment were employed afterwards, and Gd-doped titania nanotubes were finally obtained after calcination. The nominal doping concentration was expressed by Gd/Ti atomic ratio, ranged from 0% to 5.0%. Both the precursors and nanotubes were characterized by X-ray photoelectron spectra, inductively coupled plasma-atomic emission spectrometry, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometer, UV–vis diffusion reflection spectra and N 2 absorption–desorption experiment. The photocatalytic activities were investigated using methyl orange as the model pollutant. The results indicated that Gd-doped titania nanotubes with nominal Gd/Ti of 0.5% possessed the optimal photocatalytic activity in our study

  18. Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Miyamoto

    2009-10-01

    Full Text Available Inorganic layered crystals exemplified by clay minerals can be exfoliated in solvents to form colloidal dispersions of extremely thin inorganic layers that are called nanosheets. The obtained “nanosheet colloids” form lyotropic liquid crystals because of the highly anisotropic shape of the nanosheets. This system is a rare example of liquid crystals consisting of inorganic crystalline mesogens. Nanosheet colloids of photocatalytically active semiconducting oxides can exhibit unusual photoresponses that are not observed for organic liquid crystals. This review summarizes experimental work on the phase behavior of the nanosheet colloids as well as photochemical reactions observed in the clay and semiconducting nanosheets system.

  19. Surface magnetism of exfoliated α-Co hydroxide nanosheets

    Science.gov (United States)

    Honda, Zentaro; Anai, Katsuki; Hagiwara, Masayuki; Kida, Takanori; Okutani, Akira; Sakai, Masamichi; Fukuda, Takeshi; Kamata, Norihiko

    2017-08-01

    α-Co hydroxide nanosheets have been synthesized and their magnetic properties were investigated. By using a soft chemical exfoliation technique, exfoliated α-Co hydroxide nanosheets, typically with lateral dimensions of few 100 nm, were obtained in a colloidal suspension. The magnetic responses of a sample consisting of a colloidal suspension of the nanosheets indicates a ferromagnetic phase transition occurs at TC=37.8 K. The magnetization possesses a linear temperature dependence at low temperatures below TC. In addition to this observation, the magnetization is proportional to (1-T/TC)β with β=0.8±0.1 near TC, which imply that the surface magnetism dominates in the exfoliated α-Co hydroxide nanosheets.

  20. Freestanding palladium nanosheets with plasmonic and catalytic properties

    Science.gov (United States)

    Huang, Xiaoqing; Tang, Shaoheng; Mu, Xiaoliang; Dai, Yan; Chen, Guangxu; Zhou, Zhiyou; Ruan, Fangxiong; Yang, Zhilin; Zheng, Nanfeng

    2011-01-01

    Ultrathin metal films can exhibit quantum size and surface effects that give rise to unique physical and chemical properties. Metal films containing just a few layers of atoms can be fabricated on substrates using deposition techniques, but the production of freestanding ultrathin structures remains a significant challenge. Here we report the facile synthesis of freestanding hexagonal palladium nanosheets that are less than 10 atomic layers thick, using carbon monoxide as a surface confining agent. The as-prepared nanosheets are blue in colour and exhibit a well-defined but tunable surface plasmon resonance peak in the near-infrared region. The combination of photothermal stability and biocompatibility makes palladium nanosheets promising candidates for photothermal therapy. The nanosheets also exhibit electrocatalytic activity for the oxidation of formic acid that is 2.5 times greater than that of commercial palladium black catalyst.

  1. Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets

    Science.gov (United States)

    Dogan, Sedat; Bielewicz, Thomas; Lebedeva, Vera; Klinke, Christian

    2015-03-01

    Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm2 V-1 s-1. Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials.Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm2 V-1 s-1. Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06957a

  2. Template Approach to Crystalline GaN Nanosheets.

    Science.gov (United States)

    Liu, Baodan; Yang, Wenjin; Li, Jing; Zhang, Xinglai; Niu, Pingjuan; Jiang, Xin

    2017-05-10

    Crystalline GaN nanosheets hold great challenge in growth and promising application in optoelectronic nanodevices. In this work, we reported an accessible template approach toward the rational synthesis of GaN nanosheets through the nitridation of metastable γ-Ga 2 O 3 nanosheets synthesized from a hydrothermal reaction. The cubic γ-Ga 2 O 3 nanosheets with smooth surface and decent crystallinity can be directly converted into hexagonal GaN nanosheets with similar morphology framework and comparable crystal quality in NH 3 at 850 °C. UV-vis spectrum measurement reveals that the GaN nanosheets show a band gap of 3.30 eV with strong visible absorption in the range of 370-500 nm. The template synthetic strategy proposed in this work will open up more opportunities for the achievement of a variety of sheetlike nanostructures that can not be obtained through conventional routines and will undoubtedly further promote the fundamental research of newly emerging sheetlike nanostructures and nanotechnology.

  3. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity

    International Nuclear Information System (INIS)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-01-01

    Graphical abstract: - Highlights: • Two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion. • Effective interfacial heterojunction and high specific surface were observed. • Interstratified nanohybrid exhibits a superior photocatalytic activity. - Abstract: Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl–Ti 3 O 7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10 −2 min −1 , which is about 9 and 4 times higher than its precursors H 2 Ti 3 O 7 and ZnAl-LDH, respectively. Based on UV–vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior

  4. Nafion titania nanotubes nanocomposite electrolytes for high-temperature direct methanol fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2012-01-01

    Full Text Available Nafion-based nanocomposite membranes containing various amounts of titania nanotubes (TNTs) as an inorganic filler have been prepared using melt-mixing method and have been investigated for proton exchange membrane applications. The one...

  5. HOT ELUENT CAPILLARY LIQUID CHROMATOGRAPHY USING ZIRCONIA AND TITANIA BASED STATIONARY PHASES. (R825344)

    Science.gov (United States)

    AbstractHigh speed capillary liquid chromatographic separations using a simple home made system constructed from readily available inexpensive components have been studied. Using thermally stable zirconia and titania based packing, the separation of eight alkylbenzene...

  6. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    Directory of Open Access Journals (Sweden)

    T. Kimura

    2014-11-01

    Full Text Available Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene (PS-b-PEO diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  7. The anti-microbial activity of titania-nickel ferrite composite nanoparticles

    Science.gov (United States)

    Rana, S.; Misra, R. D. K.

    2005-12-01

    A novel approach to synthesize a new generation of composite nanoparticles consisting of a photocatalytic shell of anatase-titania and a magnetic core of nickel ferrite has been adopted combining reverse micelle and chemical hydrolysis techniques. Titania is an effective anti-microbial agent that can be directly sprayed on infected areas of the human body or environment. Unfortunately, titania is an electrical insulator and is difficult to extract from the sprayed surface after treatment. The titania photocatalytic shell provides good antimicrobial capability that renders the bacteria inactive and removes the organic pollutants, while the nickel ferrite magnetic core enables controlled delivery of composite nanoparticles through the application of a small magnetic field, encouraging their application as removable anti-microbial photocatalyst nanoparticles.

  8. Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The surface modification of the anatase titania nanoparticles prepared via a controlled nonhydrolytic sol-gel process is achieved by the formation of the bidentate coordination between titania and methacrylic acid (MAA molecules. The in situ photocatalytic polymerization of methyl methacrylate (MMA monomer is initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. A variety of techniques including differential scanning calorimetry (DSC, thermo-gravimetric analysis (TGA and scanning electron microscopy (SEM are employed to characterize the resulting materials. The glass transition temperatures and the thermal stabilities of polymethyl methacrylate (PMMA composite materials prepared via photocatalytic polymerization are enhanced compared with pure polymer. The partial aggregation of titania nanoparticles in PMMA composite films is derived from the surface polymerization of MMA, which makes the inorganic particles hydrophobic and drives them to the water/oil interfaces.

  9. Iron on mixed zirconia-titania substrate F-T catalyst

    International Nuclear Information System (INIS)

    Dyer, P.N.; Nordquist, A.F.; Pierantozzi, R.

    1988-01-01

    This patent deals with a Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized

  10. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    Science.gov (United States)

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  11. Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid

    Science.gov (United States)

    Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed

    2015-06-01

    Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.

  12. Titania-functionalized graphene oxide for an efficient adsorptive removal of phosphate ions.

    Science.gov (United States)

    Sakulpaisan, Samita; Vongsetskul, Thammasit; Reamouppaturm, Sakultip; Luangkachao, Jakkrawut; Tantirungrotechai, Jonggol; Tangboriboonrat, Pramuan

    2016-02-01

    Titania-functionalized graphene oxide (T-F GO), synthesized by a sol-gel process, was used as a highly efficient material to remove phosphate ions from the simulated wastewater. X-ray diffraction spectra, Fourier transform infrared spectra and scanning electron micrographs of T-F GO confirmed that titania particles were successfully grown on graphene oxide (GO) surface. The phosphate ion adsorption capacities of GO, titania and T-F GO as a function of the contact time and the pH were investigated by a UV-visible spectrophotometer. Results showed that T-F GO could absorb phosphate ions better than titania and GO could. This indicated the synergistic effect between titania and GO in the phosphate ion adsorption. The pH increment lowered the absorption capacities due to increasing the repulsion between phosphate anions and the charges on the T-F GO surface, whereas the addition of sodium ions increased the adsorption capacities. Also, phosphate ions were absorbed by specific sites of T-F GO and formed a monolayer on its surface. Finally, the maximum adsorption capacity of T-F GO was 33.11 mg/g at pH 6, much higher than those of GO and titania. Therefore, T-F GO could be a promising material to remove phosphate ions from wastewater in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hierarchical nanoflowers assembled with Au nanoparticles decorated ZnO nanosheets toward enhanced photocatalytic properties

    DEFF Research Database (Denmark)

    Yu, Cuiyan; Yu, Yanlong; Xu, Tao

    2017-01-01

    Hierarchical nanoflowers assembled with Au nanoparticles (NPs) decorated ZnO nanosheets (Au-ZnO nanosheet flowers, AZNSFs) were successful synthesized. The AZNSFs showed more efficient activity to photodegradation of RhB than that of pure ZnO nanosheet flowers and commercial ZnO nanopowders...

  14. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction.

    Science.gov (United States)

    Xu, You; Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Zhang, Bin

    2013-07-28

    Nanoporous FeP nanosheets are successfully synthesized via the anion-exchange reaction of inorganic-organic hybrid Fe18S25-TETAH (TETAH = protonated triethylenetetramine) nanosheets with P ions. The as-prepared nanoporous FeP nanosheets exhibit high electrochemical hydrogen evolution reaction activity in acidic medium.

  15. Dielectric Measurements on Sol-Gel Derived Titania Films

    Science.gov (United States)

    Capan, Rifat; Ray, Asim K.

    2017-11-01

    Alternating current (AC) impedance measurements were performed on 37 nm thick nanostructured sol-gel derived anatase titania films on ultrasonically cleaned (100) p-silicon substrates at temperatures T ranging from 100 K to 300 K over a frequency range between 20 Hz and 1 MHz. The frequency-dependent behavior of the AC conductivity σ ac( f, T) obeys the universal power law, and the values of the effective hopping barrier and hopping distance were found to be 0.79 eV and 6.7 × 10-11 m from an analysis due to the correlated barrier-hopping model. The dielectric relaxation was identified as a thermally activated non-Debye process involving an activation energy of 41.5 meV.

  16. Thermally modified titania photocatalysts for phenol removal from water

    Directory of Open Access Journals (Sweden)

    Joanna Grzechulska-Damszel

    2006-01-01

    Full Text Available Two kinds of titanium dioxide were used as starting materials for thermal modification: Tytanpol A11 supplied by Chemical Factory “Police” S.A. (Poland and Degussa P25 supplied by Degussa AG (Germany. The photocatalytic activity of titania materials modified by thermal treatment was tested in the reaction of photocatalytic oxidation of phenol. It was found that the highest activity in the reaction of photocatalytic decomposition of phenol, in case of Tytanpol A11, shows the samples of material modified at temperatures of 700 and 750°C. These catalysts were more active than untreated A11, whereas materials modified at higher temperatures show lower activity. In the case of P25, all thermally treated materials were less active than the unmodified material. The photocatalyst samples were characterized by UV-Vis/DR, FTIR/DRS, and XRD methods.

  17. Synthesis and characterization of natural hydroxyapatite (recycled) composites with titania; Sintese e caracterizacao de compositos de hidroxiapatita natural (reciclada) com titania

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Filho, Antonio Alves; Gouveia, Vitor Jose Pinto, E-mail: antonio.mendes@cetec.br, E-mail: vitor@cetec.br [Fundacao Centro Tecnologico de Minas Gerais (CETEC), MG (Brazil); Pereira, Renato Alves; Araujo, Fernando Gabriel da Silva, E-mail: renafis@yahoo.com.br, E-mail: fgabrielaraujo@uol.com.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Sousa, Camila Mateus de, E-mail: kamila_mateus@hotmail.com [Centro Universitario de Belo Horizonte (UNI-BH), MG (Brazil)

    2010-07-01

    Natural hydroxyapatite biphasic ceramics (recycled) with titania (TiO{sub 2}-Hap) were studied in this work. For the formation of such ceramic the powders were mixed natural hydroxyapatite obtained from veal bone by the hydrothermal method with titania (TiO{sub 2}), forming the composites H9T1. The powders, manually homogenized, were conformed in pellet and sintered at temperatures between 1200 and 1400 deg C The ceramic bodies were characterized by XRD and SEM/EDS. The initial results were not satisfactory and require new studies. (author)

  18. Sensitization of Xanthophylls-Chlorophyllin Mixtures on Titania Solar Cells

    Directory of Open Access Journals (Sweden)

    Indriana Kartini

    2015-03-01

    Full Text Available Co-sensitization of natural dyes on TiO2 for dye-sensitized solar cell (DSSC was proposed between chlorophyllin (C and xanthophylls (X at various volume ratios of C/X. Chlorophyllin is chlorophyll derivative providing -COOH groups essential for binding to TiO2. The chlorophyll was extracted from dried spinach (amaranthus viridis leaves in a mixture of methanol-acetone (70%:30%. Chlorophyll extract dye was obtained after partition of the crude extracts in diethyl ether solution. Then, it was hydrolyzed under alkaline condition to get chlorophyllin. Xanthophyll was extracted from fresh petal of chrysanthemum (chrysanthemum indicum flowers. Blending of chlorophyllin and xanthophyll was carried out at various volume ratios of C to X (1:0, 5:1, 1:1, 1:5, 0:1. Titania solar cells were constructed in sandwich system of conducting glass-titania/dyes as the photoanode and conducting glass-platinum as the photocathode. Electrolyte solution containing I-/I3- was inserted between the electrodes by capillary action. All dye extracts and blending solutions were analyzed by UV-Vis spectrophotometer. It is shown that the absorption spectra of blending dyes are complimentary in the visible region resulted in a panchromatic response of the dyes. From the cyclic voltammogram of the dyes and blended-dyes, it is found that the energy level of xanthophyll is the lowest. The I-V test at 100 mw/cm2 irradiation confirmed that the energy conversion efficiency (h of the blended dyes of xanthophyll and chlorophyllin-sensitized solar cell resulted in significant improvement than those of the single dye. Beneficially, the mixed dyes can be adsorbed from solution blend using single dipping step.

  19. Photocatalytic hydrogen production over CuO-modified titania.

    Science.gov (United States)

    Yu, Jiaguo; Hai, Yang; Jaroniec, Mietek

    2011-05-01

    Efficient hydrogen production and decomposition of glycerol were achieved on CuO-modified titania (CuO-TiO(2)) photocatalysts in glycerol aqueous solutions. CuO clusters were deposited on the titania surface by impregnation of Degussa P25 TiO(2) powder (P25) with copper nitrate followed by calcination. The resulting CuO-TiO(2) composite photocatalysts were characterized by X-ray diffraction (XRD), UV-visible spectrophotometry, X-ray photoelectron spectroscopy (XPS), N(2) adsorption-desorption, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The low-power ultraviolet light emitting diodes (UV-LED) were used as the light source for photocatalytic H(2)-production reaction. A detailed study of CuO effect on the photocatalytic H(2)-production rates showed that CuO clusters can act as an effective co-catalyst enhancing photocatalytic activity of TiO(2). The optimal CuO content was found to be 1.3 wt.%, giving H(2)-production rate of 2061 μmolh(-1)g(-1) (corresponding to the apparent quantum efficiency (QE) of 13.4% at 365 nm), which exceeded the rate of pure TiO(2) by more than 129 times. The quantum size effect of CuO clusters is deemed to alter its energy levels of the conduction and valence band edges in the CuO-TiO(2) semiconductor systems, which favors the electron transfer and enhances the photocatalytic activity. This work shows not only the possibility of using CuO clusters as a substitute for noble metals in the photocatalytic H(2)-production but also demonstrates a new way for enhancing hydrogen production activity by quantum size effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Structural and electronic properties of hybrid silicon-germanium nanosheets

    Directory of Open Access Journals (Sweden)

    F. L. Pérez Sánchez

    2014-12-01

    Full Text Available Using first principles molecular calculations, based on the Density Functional Theory (DFT, structural and electronic properties of hybrid graphene—like silicon—germanium circular nanosheets of hexagonal symmetry are investigated. The exchange—correlation functional of Perdew—Wang (PW in the local spin density approximation (LSDA based on the pseudopotentials of Dolg—Bergnre is applied. The finite extension nanosheets are represented by the CnHm—like cluster model with mono—hydrogenated armchair edges. Changes of the physicochemical properties were analyzed to learn on the chemical composition. We have obtained that the corrugation of the hybrid nanosheets is maintained (with respect to the pristine nanosheets of Ge and Si and is more pronounced when there is a high percentage of germanium. Moreover, hybrid nanosheets have ionic bonds (polarity in the interval from 0.18 to 0.77 D and exhibit a semimetal behavior. Three types of chemical compositions are considered: 1 the one—one relationship, 2 formation of Ge dimers and 3 formation of Ge hexagons. In each case it is observed an increase in the chemical reactivity. Finally, analyzing the work function we conclude that in cases 1 and 2 the chemical compositions improve the efficiency of the field emission and thereby they could expand the scope of nanotechnology applications.

  1. Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.

    Science.gov (United States)

    Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan

    2016-11-30

    Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS 2 , MoSe 2 , WS 2 , and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.

  2. Preparation and corrosion behavior evaluation of amalgam/titania nano composite.

    Science.gov (United States)

    Tolou, Neda Bahremandi; Fathi, Mohammadhossein; Monshi, Ahmad; Mortazavi, Vajihesadat; Shirani, Farzaneh

    2011-12-01

    Many attempts have been performed and continued for improvement of dental amalgam properties during last decades. The aim of present research was fabrication and characterization of amalgam/titania nano composite and evaluation of its corrosion behavior. In this experimental research, nano particles of titania were added to initial amalgam alloy powder and then, dental amalgam was prepared. In order to investigate the effect of nano particle amounts on properties of dental amalgam, proper amount of 0, 0.5, 1, 2 and 3 wt% of titania nano particles were added to amalgam alloy powder and the prepared composite powder was triturated by a given percent of mercury. X-ray Diffraction, Scanning Electron Microscopy and Energy-Dispersive Spectroscopy techniques were use to characterize the prepared nano composites. Potentiodynamic polarization corrosion tests were performed in the Normal Saline (0.9 wt% NaCl) and Ringer's solutions as electrolytes at 37°C. Immersion corrosion tests were also performed immediately 2 h after preparation of cylindrical samples (4 mm in diameter and 8 mm height) via immersion into a 100 ml volumetric flask consisting of artificial saliva. The results indicated that the current corrosion density of amalgam/titania nano composite changes a bit with adding 1% of nano particles of titania. Also, during the 1(st) h after preparation, initial released mercury from prepared nano composite dental amalgam decreased. By adding nano particles of titania and preparing amalgam/titania nano composite as a dental amalgam, corrosion behavior and mercury release during the 2(st) h after preparation could be improved.

  3. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    International Nuclear Information System (INIS)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-01-01

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO 2 ) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 °C) do not show significant activity under our conditions, while the one annealed at 450 °C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: ► Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. ► Titania crystal is formed by annealing hydrogen titanate at different temperatures. ► Best visible-light activity is achieved by Ag-loaded titania annealed at 450 °C. ► The visible light activity is attributed to the surface plasmonic resonance effect.

  4. Direct Synthesis of 7 nm Thick Zinc(II)-Benzimidazole-Acetate Metal-Organic Framework Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Feng; Kumar, Prashant; Xu, Wenqian; Mkhoyan, K. Andre; Tsapatsis, Michael

    2018-01-09

    Two-dimensional metal-organic frameworks (MOFs) are promising candidates for high performance gas sepa-ration membranes. Currently, MOF nanosheets are mostly fabricated through delamination of layered MOFs, which often re-sults in a low yield of intact free-standing nanosheets. In this work, we present a direct synthesis method for zinc(II)-benzimidazole-acetate (Zn(Bim)OAc) MOF nanosheets. The obtained nanosheets have a lateral dimension of 600 nm when synthesized at room temperature. By adjusting the synthesis temperature, the morphology of obtained nanosheets can be readily tuned from nanosheets to nanobelts. A thickness of 7 nm is determined for Zn(Bim)OAc using high-angle annular dark-field scanning transmission electron microscopy, which makes these nanosheets promising building blocks of gas sepa-ration membranes.

  5. Correlation between lateral size and gas sensing performance of MoSe2 nanosheets

    Science.gov (United States)

    Zhang, Shaolin; Nguyen, Thuy Hang; Zhang, Weibin; Park, Youngsin; Yang, Woochul

    2017-10-01

    We demonstrate a facile synthetic method to prepare lateral size controlled molybdenum diselenide (MoSe2) nanosheets using liquid phase exfoliated few-layer MoSe2 nanosheets as a starting material. By precisely controlling the centrifugation condition, preparation of MoSe2 nanosheets with a narrow size distribution ranging from several hundred nanometers to several micrometers could be realized. The accurate size control of MoSe2 nanosheets offers us a great opportunity to examine the size dependent sensing properties. The sensing test results demonstrate that the MoSe2 nanosheets provide competitive advantages compared with conventional graphene based sensors. A tradeoff phenomenon on sensing response and recovery as the lateral size of MoSe2 nanosheets varies is observed. First principles calculations reveal that the ratio of edge-surface sites is responsible for this phenomenon. The correlation between the lateral size and gas sensing performance of MoSe2 nanosheets is established.

  6. The role of support oxygen in the epoxidation of propene over gold–titania catalysts investigated by isotopic transient kinetics

    NARCIS (Netherlands)

    Nijhuis, T.A.; Sacaliuc-Parvulescu, E.; Govender, N.S.; Schouten, J.C.; Weckhuysen, B.M.

    2009-01-01

    Transient kinetic experiments were performed on gold–titania catalysts for the epoxidation of propene using hydrogen and oxygen to investigate the reaction mechanism. A ‘classical’ 1 wt% gold on titania catalyst was studied, as well as a 1 wt% gold on Ti-SBA-15 catalyst. Steady-State Isotopic

  7. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinjin [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Chengjian [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Zhou, Jingfang [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095 (Australia); Li, Chunxia [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Shao, Yiran; Shi, Chao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2}/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO{sub 2}/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO{sub 2}/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO{sub 2}) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO{sub 2} coatings. In the study, titania-nanosilver (TiO{sub 2}/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO{sub 2} powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO{sub 2}/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO{sub 2}/Ag coatings and no crystalline changed happened in the TiO{sub 2} structure. The reduction ratios on the TiO{sub 2}/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO{sub 2}/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO{sub 2}/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the

  8. Toward Edge-Defined Holey Boron Nitride Nanosheets

    Science.gov (United States)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  9. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    Science.gov (United States)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  10. Field emission properties of ZnO nanosheet arrays

    International Nuclear Information System (INIS)

    Naik, Kusha Kumar; Rout, Chandra Sekhar; Khare, Ruchita; More, Mahendra A.; Chakravarty, Disha; Late, Dattatray J.; Thapa, Ranjit

    2014-01-01

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm 2 and current density of 50.1 μA/cm 2 at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications

  11. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core

    International Nuclear Information System (INIS)

    Rawat, Jagdish; Rana, Subhasis; Srivastava, Radhey; Misra, R. Devesh K.

    2007-01-01

    Reverse micelle and hydrolysis have been combined to synthesize composite nanoparticles consisting of anatase-titania photocatalytic shell and nickel ferrite magnetic core. The average particle size of the composite nanoparticles was in the range of 10-15 nm. The photocatalytic shell of titania is responsible for the photocatalytic and anti-microbial activity and nickel ferrite magnetic core is responsible for the magnetic behavior, studied by superconducting quantum interference device. The anatase TiO2 coated NiFe 2 O 4 nanoparticles retains the magnetic characteristics of uncoated nanocrystalline nickel ferrites, superparamagnetism (absence of hysteresis, remanence and coercivity at 300 K) and non-saturation of magnetic moments at high field. The magnetic measurements results encourage their application as removable anti-microbial photocatalysts. Bacterial inactivation with UV light in the presence of titania-coated NiFe 2 O 4 nanoparticles is faster than the action with UV light alone

  12. Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yingchun [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Faculty of Chemical and Life Sciences, Qujing Normal University, Qujing 655000 (China); Zhai Zhongbiao [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Kunming Metallurgy Research Institute, Kunming 650031 (China); He Jiao; Li Bin; Li Junjie [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Wang Jiaqiang, E-mail: jqwang@ynu.edu.cn [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China)

    2010-07-20

    Anatase mesoporous titania with novel morphologies were synthesized by using the skins of tomatoes, bulb onions, grapes, and garlic bulbs, respectively, as templates and used for the photodegradation of Gentian violet, methyl violet, xylenol orange, and Rhodamine B under UV light. The samples were characterized by a combination of various physicochemical techniques, such as X-ray diffraction, SEM, HRTEM, N{sub 2} adsorption/desorption, diffuse reflectance UV-Vis, and FT-IR. It was found that all of the synthesized mesoporous titania samples exhibited similar morphologies to those of the original templates. The photoactivity of P25 TiO{sub 2} for the four dyes is nearly the same while the mesoporous titania samples synthesized by using the four skins as templates exhibited varied photoactivities for the four dyes.

  13. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  14. Characterization of sodium phenytoin co-gelled with titania for a controlled drug-release system

    International Nuclear Information System (INIS)

    Lopez, T.; Quintana, P.; Ortiz-Islas, E.; Vinogradova, E.; Manjarrez, J.; Aguilar, D.H.; Castillo-Ocampo, P.; Magana, C.; Azamar, J.A.

    2007-01-01

    Sodium phenytoin, C 15 H 11 N 2 NaO 2 , in several concentrations was co-gelled with titania (TiO 2 ), by a sol-gel process. This technique is a promising method to encapsulate several drugs, in this case, phenytoin is an anticonvulsant used to control epileptic seizures. Samples were prepared by adding different concentrations (X = 50, 100, 200 and 250 mg per 20 g of titania matrix) of sodium phenytoin (Ph) to a solution of titanium n-butoxide. The resulting titania-Ph-X materials were characterized by transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface areas. The porous nanomaterials showed a wide range of particle size, from 10 to 210 nm, with a mean pore diameter of 5 nm. X-ray diffraction showed an amorphous structure of the prepared samples

  15. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Jagdish [Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Rana, Subhasis [Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Srivastava, Radhey [Department of Chemistry, University of Louisiana at Lafayette, LA 70504-4370 (United States); Misra, R. Devesh K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States) and Department of Chemical Engineering, Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States)]. E-mail: dmisra@louisiana.edu

    2007-04-15

    Reverse micelle and hydrolysis have been combined to synthesize composite nanoparticles consisting of anatase-titania photocatalytic shell and nickel ferrite magnetic core. The average particle size of the composite nanoparticles was in the range of 10-15 nm. The photocatalytic shell of titania is responsible for the photocatalytic and anti-microbial activity and nickel ferrite magnetic core is responsible for the magnetic behavior, studied by superconducting quantum interference device. The anatase TiO2 coated NiFe{sub 2}O{sub 4} nanoparticles retains the magnetic characteristics of uncoated nanocrystalline nickel ferrites, superparamagnetism (absence of hysteresis, remanence and coercivity at 300 K) and non-saturation of magnetic moments at high field. The magnetic measurements results encourage their application as removable anti-microbial photocatalysts. Bacterial inactivation with UV light in the presence of titania-coated NiFe{sub 2}O{sub 4} nanoparticles is faster than the action with UV light alone.

  16. Influence of nanophase titania topography on bacterial attachment and metabolism

    Directory of Open Access Journals (Sweden)

    Margaret R Park

    2008-12-01

    Full Text Available Margaret R Park1, Michelle K Banks1, Bruce Applegate2, Thomas J Webster31School of Civil Engineering; 2Department of Food Science; 3School of Biomedical Engineering, Purdue University, West Lafayette, IN, USAAbstract: Surfaces with nanophase compared to conventional (or nanometer smooth topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection.Keywords: bacteria, attachment, nanophase, topography, metabolism

  17. Hydrothermal growth of titania nanowires for SAW device sensing area

    Science.gov (United States)

    Rosydi Zakaria, Mohd; Ayub, Sh. Nadzirah S.; Hafiz Ismail, Mohd; Johari, Shazlina; Hashim, Uda

    2017-11-01

    Synthesis of titania or titanium dioxide (TiO2) is attracted to energy and environmental applications. Here, the growth of nanostructure TiO2 nanowires on Si (100) substrates by using the two-step method. Different seed layers of TiO2 were deposited by spin coating and annealing, followed by the growth of TiO2 nanowires by using the hydrothermal method. The sol-gel technique was used in preparing the TiO2 solution for the thin film deposition purpose. Acetic acid, hydrochloric acid and tris (2-aminoethyl) amine were used as a stabilizer to synthesize three different TiO2 seed layers. The aim of this study was to understand the role of polycrystalline size on thin film towards the diameter of nanowires grown as a sensing area in Surface Acoustic Wave (SAW) Biosensor. The morphology and structure of the thin film and TiO2 nanowires were characterized using X-Ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM).

  18. Titania nanotube arrays as interfaces for neural prostheses.

    Science.gov (United States)

    Sorkin, Jonathan A; Hughes, Stephen; Soares, Paulo; Popat, Ketul C

    2015-04-01

    Neural prostheses have become ever more acceptable treatments for many different types of neurological damage and disease. Here we investigate the use of two different morphologies of titania nanotube arrays as interfaces to advance the longevity and effectiveness of these prostheses. The nanotube arrays were characterized for their nanotopography, crystallinity, conductivity, wettability, surface mechanical properties and adsorption of key proteins: fibrinogen, albumin and laminin. The loosely packed nanotube arrays fabricated using a diethylene glycol based electrolyte, contained a higher presence of the anatase crystal phase and were subsequently more conductive. These arrays yielded surfaces with higher wettability and lower modulus than the densely packed nanotube arrays fabricated using water based electrolyte. Further the adhesion, proliferation and differentiation of the C17.2 neural stem cell line was investigated on the nanotube arrays. The proliferation ratio of the cells as well as the level of neuronal differentiation was seen to increase on the loosely packed arrays. The results indicate that loosely packed nanotube arrays similar to the ones produced here with a DEG based electrolyte, may provide a favorable template for growth and maintenance of C17.2 neural stem cell line. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Anodic titania films as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Lindsay, M.J.; Blackford, M.G.; Attard, D.J.; Luca, V.; Skyllas-Kazacos, M.; Griffith, C.S.

    2007-01-01

    Titania thin films were prepared through the anodisation of titanium metal in a 1.0 M sulphuric acid solution at 80 o C utilising a series of pulsed dc constant currents of increasing magnitude. Films were then tested as a potential anode material for lithium batteries using a variety of techniques. Electrochemical testing revealed that the films (3.8 cm 2 ) offered good rate capabilities affording a constant capacity of 48 μAh for a constant current of 10 μA which decreased to 25 μAh on increasing the current to 1250 μA. Cyclic voltammetry was conducted over a range of scan rates from which capacitive currents were examined and rate constants, transfer coefficients and diffusion coefficients calculated. Electrochemical impedance spectroscopy was conducted over six potentials in the range 0.1-2.7 V with the experimental data successfully modelled using an equivalent circuit with the notation R(Q(RW))C. TEM observation of focussed ion beam milled cross-sections showed significant structural differences between the as-anodised film and those cycled in a lithium battery. Raman spectroscopy showed that the films had an anatase character that transformed into an unidentified lithium-containing, titanate phase on cycling. Based on a film thickness of 100 nm, and assuming density of 4 g cm -3 such films offered a stable capacity of 316 mAh g -1

  20. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition

    International Nuclear Information System (INIS)

    Jothiramalingam, R.; Wang, M.K.

    2007-01-01

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R 2 and standard error. The goodness to the linear fit was observed for Elovich model with high R 2 (≥0.9477) value

  1. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    Energy Technology Data Exchange (ETDEWEB)

    Jirák, Zdeněk; Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase, possessing high magnetization, M{sub 10} {sub kOe}(4.5 K) = 63.5 emu g{sup −1}, and Curie temperature, T{sub C} = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO{sub 2} shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles. - Highlights: • Magnetic nanoparticles of perovskite La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase are coated with TiO{sub 2}. • The titania forms a continuous and amorphous shell and provides colloidal stability. • Morphology and surface properties are compared to a silica-coated product. • MRI properties of both the titania- and silica-coated particles are studied at 0.5 T. • The temperature dependence of r{sub 2} is strongly affected by the type of coating.

  2. Enhanced Photocatalytic Activity for Degradation of Methyl Orange over Silica-Titania

    Directory of Open Access Journals (Sweden)

    Yaping Guo

    2011-01-01

    Full Text Available Silica-modified titania (SMT powders with different atomic ratios of silica to titanium (Rx were successfully synthesized by a simple ultrasonic irradiation technique. The prepared samples were characterized by X-ray diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and ultraviolet visible spectroscopy. The specific surface area was measured according to BET theory. Results indicate that the addition of silica to titania can suppress the crystalline size growth and the transformation of anatase phase to rutile phase of titania, enlarge specific surface area of the titania particles, and result in a blue shift of absorption edge compared to pure titania. The photocatalytic activity of the SMT samples was evaluated by decolorizing methyl orange aqueous solutions under UV-visible light irradiation. It was found in our study that this activity was affected by silica content, calcination temperature, H2SO4, and oxidants such as KIO4, (NH42S2O8 and H2O2. The results reveal that the photocatalytic activity of 0.1-SMT catalyst is the best among all samples calcined at 550°C for 1 h and it is 1.56 times higher than that of Degussa P-25 titania, which is a widely used commercial TiO2 made by Germany Degussa company and has been most widely used in industry as photocatalyst, antiultraviolet product, and thermal stabilizer. The optimal calcination temperature for preparation was 550°C. The photocatalytic activity of SMT samples is significantly enhanced by H2SO4 solution treatment and oxidants.

  3. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  4. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    Science.gov (United States)

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  5. Surface Properties of Photocatalytic Nano-Crystalline Titania Films and Reactor for Photocatalytic Degradation of Chloroform

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob; Jensen, Henrik

    2006-01-01

    In this work two immobilizations techniques of TiO2 onto glass were investigated; deposition of previously made titania powder (PMTP) and a sol-gel method. The titania powder used in this work was Degussa P25, Hombikat UV100 and a powder prepared in our laboratory SC134. The prepared TiO2 films...... were characterized using XRD, XPS, AFM, UV-Vis spectroscopy and the photocatalytic activity was assessed using stearic acid as a model compound. Investigation of the prepared films showed that the films prepared from Degussa P25 was the most active, followed by the Hombikat UV100 film, Sol-gel film...

  6. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes

    International Nuclear Information System (INIS)

    Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquez, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R.

    2005-01-01

    Arrays of Ni nanowires electrodeposited into self-aligned and randomly disordered titania nanotube arrays grown by anodization process are investigated by X-ray diffraction, SEM, rf-GDOES and VSM magnetometry. The titania nanotube outer diameter is about 160 nm, wall thickness ranging from 60 to 70 nm and 300 nm in depth. The so-obtained Ni nanowires reach above 100 nm diameter and 240 nm length, giving rise to coercive fields of 98 and 200 Oe in the perpendicular or parallel to the nanowires axis hysteresis loops, respectively. The formation of magnetic vortex domain states is also discussed

  7. Design of titania nanotube structures by focused laser beam direct writing

    International Nuclear Information System (INIS)

    Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei; Ursaki, Veaceslav; Tiginyanu, Ion

    2013-01-01

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO 2 NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes

  8. Reinforcement of poly(dimethylsiloxane by sol-gel in situ generated silica and titania particles

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The usual sol-gel process was applied to precipitate silica or titania particles in a preformed poly(dimethylsiloxane (PDMS network under the presence of dibutyltin diacetate used as a catalyst. The resulting structures of the reinforcing fillers were studied by transmission electron microscopy and small-angle neutron scattering. Stress-strain measurements in elongation and equilibrium swelling experiments revealed distinct behaviors mainly attributed to the nature and the size of the generated particles and to the formation, in the case of titania, of a filler network even at low filler loadings.

  9. Surface layer composition of titania produced by various methods. The change of layer state under illumination

    International Nuclear Information System (INIS)

    Zakharenko, V; Daibova, E; Zmeeva, O; Kosova, N

    2016-01-01

    The comparative analysis of experimental data over titanium dioxide powders prepared by various ways under ambient air is carried out. The results over TiO 2 prepared by high-temperature heating of anatase, produced by burning of titanium micro particles and grinding of rutile crystal are used for that comparison. Water and carbon dioxide were the main products released from the surface of the titania powders. It was found that under UV irradiation absorbed by titania, in absent oxygen, water effectively reacts with lattice oxygen of titanium dioxide. (paper)

  10. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    Science.gov (United States)

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  11. Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells

    Science.gov (United States)

    Wang, Changlei; Yu, Zhenhua; Bu, Chenghao; Liu, Pei; Bai, Sihang; Liu, Chang; Kondamareddy, Kiran Kumar; Sun, Weiwei; Zhan, Kan; Zhang, Kun; Guo, Shishang; Zhao, Xingzhong

    2015-05-01

    A facile way of fabricating efficient blocking layer on mesoporous TiO2 film of dye-sensitized solar cells (DSSCs) is demonstrated here for the first time. Al2O3 and TiO2 are combined together to form a blocking layer. A simple spin coating technique is employed which is a versatile and low-cost method over the atomic layer deposition (ALD) technique. Multifunctional alumina/titania (Al2O3/TiO2) hybrid overlayer is prepared on traditional TiO2 nanocrystalline thin film surface, through sequential deposition of AlCl3·6H2O and TiCl4 precursor solutions followed by sintering at 500 °C for 30 min. Al2O3 effectively plays its role in retarding interfacial recombination of electrons and improving open circuit potential (Voc), while the tiny TiO2 clusters synthesized from TiCl4 treatment act as electron transporting channels to facilitate electron diffusion which leads to enhanced photocurrent (Jsc). Compared to the device without blocking layer, the DSSCs assembled with Al2O3/TiO2 hybrid blocking layer showed improvement in Jsc (from 13.09 mA/cm2 to 16.90 mA/cm2) as well as in Voc (from 0.72 V to 0.73 V) resulting a much better conversion efficiency of 8.60%.

  12. Few-atomic-layered boron carbonitride nanosheets prepared by chemical vapor deposition.

    Science.gov (United States)

    Qin, Li; Yu, Jie; Kuang, Shengyong; Xiao, Chang; Bai, Xuedong

    2012-01-07

    Few-atomic-layered boron carbonitride (BCN) nanosheets have been grown on Si substrate by microwave plasma chemical vapor deposition from a gas mixture of CH(4)-N(2)-H(2)-BF(3). The grown BCN nanosheets are oriented with their base planes perpendicular to the substrate surface. Ultrathin BCN nanosheets with thickness from 2 to a few atomic layers account for a considerable portion of the products, although many of them have more than 10 layers. Photoluminescence is measured for the BCN nanosheets and intense emission at 3.27 eV with very weak defect-related emission is observed for the nanosheets with the composition of B(0.38)C(0.27)N(0.35). The present BCN nanosheets are promising for applications in nanoelectronics, catalyst supports, gas adsorption, etc.

  13. O-(carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties.

    Science.gov (United States)

    Wang, Jiali; Gao, Xueli; Wang, Jian; Wei, Yi; Li, Zhaokui; Gao, Congjie

    2015-02-25

    A novel O-(carboxymethyl)-chitosan (OCMC) nanofiltration (NF) membrane is developed via surface functionalization with graphene oxide (GO) nanosheets to enhance desalting properties. Using ring-opening polymerization between epoxy groups of GO nanosheets and amino groups of OCMC active layer, GO nanosheets are irreversibly bound to the membrane. The OCMC NF membranes surface-functionalized with GO nanosheets are characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact angle analyzer, and zeta potential analyzer. The membranes exhibit not only higher permeability but also better salt rejections than the pristine membranes and the commercial NF membranes; besides, the desalting properties are enhanced with the concentration of GO nanosheets increasing. Furthermore, the transport mechanism of GO-OCMC NF membranes reveals that the nanoporous structure of GO-OCMC functional layer and size exclusion and electrostatic repulsion of water nanochannels formed by GO nanosheets lead to the membranes possessing enhanced desalting properties.

  14. Structural and photoluminescence properties of Si-based nanosheet bundles rooted on Si substrates

    Science.gov (United States)

    Yuan, Peiling; Tamaki, Ryo; Kusazaki, Shinya; Atsumi, Nanae; Saito, Yuya; Kumazawa, Yuki; Ahsan, Nazmul; Okada, Yoshitaka; Ishida, Akihiro; Tatsuoka, Hirokazu

    2018-04-01

    Si-based nanosheet bundles were synthesized by the extraction of Ca atoms from CaSi2 microwalls grown on Si substrates by inositol hexakisphosphate solution or thermal treatment in FeCl2 vapor. The structural and photoluminescence properties of the Si-based nanosheet bundles were examined. The photoluminescence emissions in the visible region were clearly observed, and the temperature and excitation intensity dependences of the emissions were characterized. The observed Si-based nanosheets consist of thin Si layers, and a superlattice-like layered structural model is proposed to describe the Si-based nanosheet bundle structures and their photoluminescence property. The photoluminescence property of the nanosheets significantly depends on their treatment process. The luminescence mechanism of the nanosheets was discussed.

  15. The Effect of Titanium Tetrahedral Coordination of Silica-Titania Catalyst on the Physical Properties of Biodiesel

    Science.gov (United States)

    Nizar, U. K.; Hidayatul, J.; Sundari, R.; Bahrizal, B.; Amran, A.; Putra, A.; Latisma DJ, L.; Dewata, I.

    2018-04-01

    This study investigates the correlation of the number of titanium tetrahedral coordination and biodiesel production. The solid-state method has been used to synthesis of silica-titania catalyst for biodiesel production, which the precursors, i.e. silica and titania commercials were heated in the temperature range of 450 - 550°C. The characterization of the prepared silica-titania has been studied by FTIR and DR UV-Vis in order to identify and calculate the presence of titanium tetrahedral coordination in silica-titania catalyst. A very small peak at around 950 cm-1 indicated the presence of titanium tetrahedral coordination through Si–O–Ti bonds. Deconvolution of DR UV-Vis spectra showed the coordination of titanium in silica-titania is more octahedral. However, the number of titanium tetrahedral coordination of the prepared silica-titania is found higher than that of TiO2 commercial. The increasing of titanium tetrahedral fraction in silica-titania affects the physical properties of biodiesel in terms of boiling point, viscosity and density, which is produced by the reaction of methanol and palm oil.

  16. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  17. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization.

    Science.gov (United States)

    Han, Guang; Müller, Werner E G; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100-200 nm thickness and with a pore diameter of 10nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. High energy milling of zirconia-titania powders synthesized by coprecipitation; Moagem de alta energia em pos de zirconia-titania sintetizados por co-precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano M.B.; Marchi, Juliana; Lazar, Dolores R.R.; Ussui, Valter, E-mail: vussui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Zirconia based ceramics are known by its remarkable mechanical properties as hardness and fracture toughness and in biomedical applications are classified as bioinert. By its turn, titania ceramics has been studied due to its ability to bond directly to bone tissue, but are structurally brittle. Properties of ceramics are strongly dependent of physical and chemical characteristics of its former powders. In the present work, research done for the synthesis of zirconia-titania ceramics by the coprecipitation route are presented, emphasizing the conditioning process through a high energy milling in a atritor mill, classifying of powders in vibratory sieves and forming of cylindrical ceramic samples followed by a sintering process at 1500 deg C for 01 hour. The intermediary samples produced in the various steps of the process were characterized by scanning electronic microscope, X-ray diffraction, nitrogen gas adsorption and granulometric analysis. (author)

  19. Enhancing osseointegration of orthopedic implants with titania nanotube surfaces

    Science.gov (United States)

    Baker, Erin A.

    Introduction: As joint arthroplasty surgical procedures increase annually, the development of new strategies, including novel materials and surface modifications, to attain solid bone-implant fixation are needed to increase implant terms of service. In this study, we evaluate two morphologies of titania nanotubes in both in vitro and in vivo experiments to quantify osseointegrative potential and material-level biocompatibility. Materials and Methods: Samples were prepared via an electrochemical etching process. Two different titania nanotube (TiNT) morphologies were produced, Aligned and Trabecular. For the in vitro experiment, Sprague Dawley (SD) rat marrow-derived bone marrow cells (BMC) were seeded on samples. Alkaline phosphatase (ALP) activity, osteocalcin (OC) expression, expression of relevant genes as well as cell attachment and morphology were assessed. In the first in vivo experiment, Kirschner wires were implanted unilaterally into SD rat femora with a TiNT-etched or unmodified (Control) implant. General health assessments and weekly body weights were recorded. At a 12-week endpoint, hematologic, systemic metal ion, and histologic analyses were performed. For the second in vivo experiment, Kirschner wires were implanted bilaterally into SD rat femora, with a TiNT-etched implant in one femora and unmodified (Control) implant as an internal control. At 4- and 12-week endpoints, femora were assessed via biomechanics, undecalcified histology, micro-computed tomography (muCT), and backscattered electron imaging (BEI) to characterize de novo bone formation. Results: In vitro experiments demonstrated BMC attachment and differentiation into osteoblasts as well as greater ALP activity, OC expression, total cell counts, and gene expression (of Col1a1, IGF-1, and osteonectin) on TiNT surfaces versus Controls. Cells on TiNT-etched substrates were smaller in diameter and more eccentric than Controls. In the first in vivo experiment, there were significant differences

  20. Antibacterial nano-structured titania coating incorporated with silver nanoparticles.

    Science.gov (United States)

    Zhao, Lingzhou; Wang, Hairong; Huo, Kaifu; Cui, Lingyun; Zhang, Wenrui; Ni, Hongwei; Zhang, Yumei; Wu, Zhifen; Chu, Paul K

    2011-08-01

    Titanium (Ti) implants are widely used clinically but post-operation infection remains one of the most common and serious complications. A surface boasting long-term antibacterial ability is highly desirable in order to prevent implant associated infection. In this study, titania nanotubes (TiO(2)-NTs) incorporated with silver (Ag) nanoparticles are fabricated on Ti implants to achieve this purpose. The Ag nanoparticles adhere tightly to the wall of the TiO(2)-NTs prepared by immersion in a silver nitrate solution followed by ultraviolet light radiation. The amount of Ag introduced to the NTs can be varied by changing processing parameters such as the AgNO(3) concentration and immersion time. The TiO(2)-NTs loaded with Ag nanoparticles (NT-Ag) can kill all the planktonic bacteria in the suspension during the first several days, and the ability of the NT-Ag to prevent bacterial adhesion is maintained without obvious decline for 30 days, which are normally long enough to prevent post-operation infection in the early and intermediate stages and perhaps even late infection around the implant. Although the NT-Ag structure shows some cytotoxicity, it can be reduced by controlling the Ag release rate. The NT-Ag materials are also expected to possess satisfactory osteoconductivity in addition to the good biological performance expected of TiO(2)-NTs. This controllable NT-Ag structure which provides relatively long-term antibacterial ability and good tissue integration has promising applications in orthopedics, dentistry, and other biomedical devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. MEMS optical interferometry-based pressure sensor using elastomer nanosheet developed by dry transfer technique

    Science.gov (United States)

    Takahashi, Kazuhiro; Fujie, Toshinori; Sato, Nobutaka; Takeoka, Shinji; Sawada, Kazuaki

    2018-01-01

    We developed an elastomer-based Fabry–Perot interferometer with a submicron gap between a freestanding thin film and a substrate by a dry transfer technique. A newly developed elastomeric nanosheet using a polystyrene–polybutadiene–polystyrene triblock copolymer (SBS) provides a low Young’s modulus of 40 MPa, a large elastic strain of 38%, and high adhesiveness. A freestanding SBS nanosheet can be formed by a dry transfer technique without vacuum and high-temperature processes owing to the high adhesiveness of SBS nanosheets. With the pressure change, the freestanding nanosheet was found to deform with good adhesion between the dry transferred SBS and the substrate.

  2. Co-electrospun lead selenide/titania-core/sheath nanowires for photovoltaic applications.

    Science.gov (United States)

    2012-12-01

    This study presents a novel, low-cost, all-inorganic lead selenide-titania (PbSe/TiO2) nanowire : heterostructure material synthesis for photovoltaic applications. PbSe nanorods (NRs) have been coelectrospun : within a TiO2 nanotube with high connect...

  3. Thick film titania on glass supports for vapour phase photocatalytic degradation of toluene, acetone, and ethanol

    Czech Academy of Sciences Publication Activity Database

    Neti, R.N.; Parmar, G.R.; Bakardjieva, Snejana; Šubrt, Jan

    2010-01-01

    Roč. 163, č. 3 (2010), s. 219-229 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40320502 Keywords : titania photocatalyst * thick films * glass support Subject RIV: CA - Inorganic Chemistry Impact factor: 3.074, year: 2010

  4. Preparation of Nanocrystalline Titania Thin Films by Using Pure and Water-modified Supercritical Carbon Dioxide.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Dřínek, Vladislav; Daniš, S.; Matějová, L.

    2016-01-01

    Roč. 117, NOV 2016 (2016), s. 289-296 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin films * supercritical carbon dioxide * crystallization Subject RIV: CA - Inorganic Chemistry Impact factor: 2.991, year: 2016

  5. Solid-state titania-based gas sensor for liquefied petroleum gas ...

    Indian Academy of Sciences (India)

    Administrator

    Solid-state titania-based gas sensor for liquefied petroleum gas detection at room temperature. B C YADAV*, ANURADHA YADAV, TRIPTI SHUKLA and SATYENDRA SINGH. Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow,. Lucknow 226 007, India. MS received 27 May ...

  6. Hazard reduction for the application of titania nanoparticles in environmental technology

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Photocatalytically active titania (TiO2) nanoparticles are applied, and considered for application, in the degradation of hazardous substances. However, these nanoparticles are also hazardous by themselves. High efficiency immobilization of TiO2 nanoparticles on large inorganic supports that are not

  7. Adsorption of molybdate monomers and polymers on titania with a multisite approach

    NARCIS (Netherlands)

    Bourikas, K.; Hiemstra, T.; Riemsdijk, van W.H.

    2001-01-01

    Adsorption of polymers on mineral surfaces is of great interest. A representative important system is the molybdenum supported titania, used in catalysis. The well-known chemistry of molybdate polymers in aqueous solutions allows a detailed study of the contribution of these polymers to the Mo

  8. Solid-state titania-based gas sensor for liquefied petroleum gas ...

    Indian Academy of Sciences (India)

    Solid-state titania-based gas sensor for liquefied petroleum gas detection at room temperature. B C Yadav ... This paper reports the liquefied petroleum gas (LPG) sensing of titanium dioxide (Qualigens, India). Scanning electron ... Variations in resistance with exposure of LPG to the sensing element were observed.

  9. Optical, mechanical and TEM assessment of titania-doped Bi2V1 ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 37; Issue 7. Optical, mechanical and TEM assessment of titania-doped Bi2V1−TiO5.5−δ bismuth vanadate oxides. Gurbinder Kaur Gary Pickrell Vishal Kumar Om Prakash Pandey Kulvir Singh Daniel Homa. Volume 37 Issue 7 December 2014 pp ...

  10. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, P.; Kuráň, P.; Šťastný, M.

    2015-01-01

    Roč. 344, JUL (2015), s. 9-16 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Titania-iron oxides * Homogeneous hydrolysis * Degradation of organophosphates * Parathion methyl Subject RIV: CA - Inorganic Chemistry Impact factor: 3.150, year: 2015

  11. Evaluation of antimicrobial efficacy of nano coated silver-titania metallic plates against selective pathogens

    Directory of Open Access Journals (Sweden)

    Mohamad, S.M.

    2012-01-01

    Full Text Available Aim: Nanotechnology is an increasingly growing field with its current application in Science and Technology for the purpose of manufacture of novel materials at the nanoscale level. Silver-Titania nanoparticles (AgTiO2-NPs have been known to have inhibitory and bactericidal effects.Methodology and Results: In the present study, stable silver-titania nanoparticles coated metallic blocks were prepared for testing their efficacy against selected bacterial pathogens like Escherichia coli and Staphylococcus aureus. In the experimental part, the bacterial pathogens were inoculated on silver-titania nanoparticle coated blocks and the treatment was carried out in „0‟ time and „24‟ h interval and were enumerated.Conclusion, significance and impact of study:The results were compared with the control (uncoated metallic blocks and analyzed by using Japanese Industrial Standard (JIS Z2801:2000 method. From this study, it was concluded that silver-titania nanoparticles has inhibitory effect on bacterial pathogen tested.

  12. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  13. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    Czech Academy of Sciences Publication Activity Database

    Brunátová, T.; Matěj, Z.; Oleynikov, P.; Vesely, J.; Danis, S.; Popelková, Daniela; Kuzel, R.

    2014-01-01

    Roč. 98, December (2014), s. 26-36 ISSN 1044-5803 Institutional support: RVO:61389013 Keywords : titania nanowires * titanate nanorods * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.845, year: 2014

  14. Recyclable Aggregates of Mesoporous Titania Synthesized by Thermal Treatment of Amorphous or Peptized Precursors

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2018-03-01

    Full Text Available Recyclable aggregates of mesoporous titania with different anatase–rutile ratios have been prepared by thermal treatments of either amorphous or peptized precursors. These last two have been obtained by hydrolysis of either Ti(OC2H54 or of Ti(OC2H54 in mixture with 5 mol % Zr(OC3H74 at room temperature in the presence of NH4OH as a catalyzing agent. The anatase–rutile ratio, the recyclable aggregates of the nano-sized particles, the mesoporosity, the surface area and the crystallinity of the resulting crystallized products of titania can be controlled by the synthesis parameters including: concentration of ammonia catalyst, stirring time and concentration of the peptizing HNO3, drying method of peptized precursors, calcination temperature, and finally the ramp rate up to the titania crystallization temperature. A broad range of synthesis parameters control the crystal sizes of titania particles produced. This allows catalyst preparation with very different crystal size, surface area, anatase to rutile crystal ratio and various mesoporous structures. Drying by lyophilization of precursors reduce the aggregation of the primary particles giving micro-/macroporous structures.

  15. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Directory of Open Access Journals (Sweden)

    A. C. Jones

    2016-03-01

    Full Text Available In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C. As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  16. Physicochemical characterization of functionalized-nanostructured-titania as a carrier of copper complexes for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    López, Tessy [Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960 México D.F. (Mexico); Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans (United States); Ortiz, Emma, E-mail: emma170@hotmail.com [Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Guevara, Patricia [Neuroimmunology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Gómez, Esteban [Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Novaro, Octavio [Institute of Physics-UNAM, Circuito de la Investigación Científica Ciudad Universitaria, CP 04510 México D.F. (Mexico)

    2014-07-01

    In the present paper we report the preparation and characterization of functionalized-TiO{sub 2} (F-TiO{sub 2}) to obtain a biocompatible material to be used as carrier of alternative anticancer agents: copper acetate and copper acetylacetonate. The sol–gel procedure was used to prepare the fuctionalized titania material through hydrolysis and condensation of the titanium's butoxide. Sulfate, amine and phosphate ions served as functional groups which were anchored to the titania's surface. Mineral acids and gamma amine butyric acid were the precursors and they were added at the initial step of the synthesis. The copper complexes were loaded on titania and were also added to the reactor synthesis from the beginning. Infrared and ultraviolet–visible spectroscopies were the principal techniques used to the characterization of F-TiO{sub 2} and copper complexes loaded on titania materials. Transmission Electronic Microscopy (TEM) was used to complement the characterization's studies. The biocompatibility of F-TiO{sub 2} was evaluated by treating different cancer cell lines with increased concentration of this compound. The amine, the sulfate and the phosphate on the titania's surface, as well as the integral structures of the metal complexes on titania were well identified by infrared and ultraviolet–visible spectroscopies. The TEM photographs of Cu(acac){sub 2}/F-TiO{sub 2} and Cu(Oac){sub 2}/F-TiO{sub 2} materials showed the formation of nanoparticles, which have sizes ranging from 4 to 10 nm, with no morphology alterations in comparison with F-TiO{sub 2} nanoparticles, suggesting that the presence of low quantities of copper do not affect the structure of the nanoparticles. The Energy Dispersive Spectroscopy (EDS) confirms the presence of copper on the titania's nanoparticles. The biological results indicate that there is more than 90% cell survival, thus suggesting that F-TiO{sub 2} does not cause damage to the cells. Therefore

  17. Hydrophobic CuO Nanosheets Functionalized with Organic Adsorbates.

    Science.gov (United States)

    He, Yulian; Fishman, Zachary S; Yang, Ke R; Ortiz, Brandon; Liu, Chaolun; Goldsamt, Julia; Batista, Victor S; Pfefferle, Lisa D

    2018-02-07

    A new class of hydrophobic CuO nanosheets is introduced by functionalization of the cupric oxide surface with p-xylene, toluene, hexane, methylcyclohexane, and chlorobenzene. The resulting nanosheets exhibit a wide range of contact angles from 146° (p-xylene) to 27° (chlorobenzene) due to significant changes in surface composition induced by functionalization, as revealed by XPS and ATR-FTIR spectroscopies and computational modeling. Aromatic adsorbates are stable even up to 250-350 °C since they covalently bind to the surface as alkoxides, upon reaction with the surface as shown by DFT calculations and FTIR and 1 H NMR spectroscopy. The resulting hydrophobicity correlates with H 2 temperature-programmed reduction (H 2 -TPR) stability, which therefore provides a practical gauge of hydrophobicity.

  18. Reduced humic acid nanosheets and its uses as nanofiller

    Science.gov (United States)

    Duraia, El-shazly M.; Henderson, B.; Beall, Gary W.

    2015-10-01

    Leonardite is highly oxidized form of lignite coal and contains a number of carboxyl groups around the edges of a graphene-like core. A novel approach has been developed to synthesize graphene oxide-like nanosheets in large scale utilizing leonardite as a starting material. Humic acid extracted from leonardite has been reduced by performing a high pressure catalytic hydrogenation. The reaction was carried out inside a high pressure stirred reactor at 150 °C and 750 psi (~5.2×106 Pa). Morphology of the as-synthesized samples showed porous platy particles and EDAX analysis indicates the carbon and oxygen atomic ratios as 96:4-97:3%. The as-synthesized material has been used as nanofiller in polyurethane. The reduced humic acid-polyurethane nanocomposite showed over 250% increase of Young's modulus. This new approach provides a low cost and scalable source for graphene oxide-like nanosheets in nanocomposite applications.

  19. Nanosheet-Assembled ZnO Microflower Photocatalysts

    Directory of Open Access Journals (Sweden)

    Siwen Zhang

    2014-01-01

    Full Text Available Large scale ZnO microflowers assembled by numerous nanosheets are synthesized through a facile and effective hydrothermal route. The structure and morphology of the resultant products are characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. Photocatalytic properties of the as-synthesized products are also investigated. The results demonstrate that eosin red aqueous solution can be degraded over 97% after 110 min under UV light irradiation. In addition, methyl orange (MO and Congo red (CR aqueous solution degradation experiments also are conducted in the same condition, respectively. It showed that nanosheet-assembled ZnO microflowers represent high photocatalytic activities with a degradation efficiency of 91% for CR with 90 min of irradiation and 90% for MO with 60 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  20. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  1. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    International Nuclear Information System (INIS)

    Lopez, Tessy; Ortiz, Emma; Meza, Doraliz; Basaldella, Elena; Bokhimi, Xim; Magana, Carlos; Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier

    2011-01-01

    Research highlights: → Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. → Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. → Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. → The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. → There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO 2 ). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N 2 adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO 2 tubes than in mesoporous silica matrix.

  2. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tessy, E-mail: tessy3@prodigy.net.mx [Universidad Autonoma Metropolitana-Xochimilco. Departamento de Microbiologia. Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico D.F. Mexico (Mexico); Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118 (United States); Ortiz, Emma [Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Meza, Doraliz [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, Mexico D.F., C.P. 09340 (Mexico); Basaldella, Elena [CIC-CINDECA - Universidad Nacional de La Plata - Calle 47 No 257 - La Plata (Argentina); Bokhimi, Xim; Magana, Carlos [Instituto de fisica, UNAM. Circuito de la Investigacion s/n. C.U. Mexico D.F. 01000 (Mexico); Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier [Departamento de Quimica Inorganica, Universidad de Alicante. Apartado 99, E-03080 Alicante, Espana Spain (Spain)

    2011-04-15

    Research highlights: {yields} Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. {yields} Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. {yields} Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. {yields} The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. {yields} There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO{sub 2}). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO{sub 2} tubes than in mesoporous silica

  3. Hafnia-rich mixed oxide ceramics of the system HfO2-ZrO2-TiO2 for heaters and heat exchangers in electrothermal thrusters: The effects of titania on selected electrical and mechanical properties of Hafnia-rich mixed oxides in the system Hafnia-Zirconia-Titania, volume 1

    Science.gov (United States)

    Staszak, Paul Russell; Wirtz, G. P.; Berg, M.; Brown, S. D.

    1988-01-01

    A study of the effects of titania on selected properties of hafnia-rich mixed oxides in the system hafnia-zirconia-titania (HZT) was made in the region 5 to 20 mol percent titania. The studied properties included electrical conductivity, thermal expansion, and fracture strength and toughness. The effects of titania on the properties were studied for the reduced state as well as the oxidized state of the sintered mixed oxides. X-ray analysis showed that the materials were not always single phase. The oxidized compositions went from being monoclinic solid solutions at low titania additions to having three phases (two monoclinic and a titanate phase) at high additions of titania. The reduced compositions showed an increasing cubic phase presence mixed with the monoclinic phase as titania was added. The electrical conductivity increased with temperature at approximately 0.1 mhos/cm at 1700 C for all compositions. The thermal expansion coefficient decreased with increasing titania as did the monoclinic to tetragonal transformation temperature. The fracture strength of the oxidized bars tended to decrease with the addition of titania owing to the presence of the second phase titania. The fracture strength of the reduced bars exhibited a minimum corresponding to a two-phase region of monoclinic and cubic phases. When the second phases were suppressed, the titania tended to increase the fracture strength slightly in both the oxidized and reduced states. The fracture toughness followed similar trends.

  4. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-01-01

    Roč. 499, AUG (2017), s. 138-144 ISSN 0021-9797 Institutional support: RVO:61388980 ; RVO:61389013 ; RVO:61388955 Keywords : Hydroxide nanosheets * Delamination * Exfoliation * Layered nickel hydroxide * Layered cobalt hydroxide * Electrode material Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W); CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W); Polymer science (UMCH-V) Impact factor: 4.233, year: 2016

  5. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    Science.gov (United States)

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Shock-wave induced synthesis of few layer graphene nanosheets

    Science.gov (United States)

    Chen, Pengwan; Yin, Hao; Xu, Chunxiao; Gao, Xin; Zhou, Qiang; Qu, Liangti

    2017-06-01

    Shock wave action combining shock-induced chemical reaction will cause a series of changes of material physical and chemical properties, which is supposed to be a new method for material synthesis and modification. Using solid CO2 (dry ice) as the carbon source, few layer graphene nanosheets were successful synthesized by reduction of CO2 with calcium hydride under detonation-driven flyer impact loading in this study. Furthermore, by adding ammonium nitrate to the reaction system, nitrogen-doped graphene materials were formed in this one-step shock-wave treatment. Similarly, few layer graphene and nitrogen-doped graphene materials were also prepared through the reaction of calcium carbonate and magnesium induced by shock wave. The shock synthesis of graphene nanosheets requires a balance between the growth rate of graphene materials and the formation rate of carbon atoms. Meanwhile, the pressure and temperature are two important factors affecting the synthesis of few layer graphene nanosheets. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11521062 and 11172043.

  7. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  8. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states

    International Nuclear Information System (INIS)

    Raupp, G.B.; Dumesic, J.A.

    1985-01-01

    The adsorptive properties of titania surfaces with different oxidation states were proved by temperature-programmed desorption (TPD) of CO, H 2 , CO 2 , and H 2 O. Auger electron spectroscopy and X-ray photoelectron spectroscopy revealed that vacuum annealing an oxidized titanium foil at temperatures from 300 to 800 K was an effective means of systematically varying the average surface oxidation state from Ti 4+ to Ti 2+ . Carbon monoxide weakly adsorbed (desorption energy of 44-49 kJ x mol -1 ) in a carbonyl fashion on coordinatively unsaturated cation sites. Titania surfaces were inert with respect to H 2 adsorption and dissociation. Carbon dioxide adsorbed in a linear molecular fashion. Water adsorbed both molecularly and dissociatively. Results are discussed in terms of the role of titania oxidation state in CO hydrogenation over titania-supported metal catalysts. 74 references, 7 figures

  9. Exfoliation of Graphene Oxide Nanosheets from Pencil Lead and IN SITU Preparation of Gold Nanoparticles on Graphene Oxide Nanosheets

    Science.gov (United States)

    Boruah, Sontara Konwar; Boruah, Prabin Kumar; Sarma, Pradyut; Bezbaruah, Bipul; Medhi, Chitrani; Medhi, Okhil Kumar

    2013-01-01

    This work reports the low-cost exfoliation of graphene oxide (GO) from pencil lead using modified Hummer's method. The gold nanoparticles (AuNPs) supported on GO is prepared via an in situ bio reduction of HAuCl4 by polyphenolic biomolecules present in young leaves of tea (Camellia sinensis) extracted in the presence of GO. The UV-Visible absorption spectrum of GO dispersion in water exhibits two bands at 228 nm and a shoulder at 300 nm corresponding to π-π* transitions of aromatic C-C bonds and n-π* transitions of C=O bonds. In photoluminescence (PL) study, GO dispersion in water shows an emission band at 555 nm, when excited at 325 nm. When AuNPs are supported on GO nanosheets the bands at 228 nm and 300 nm of GO disappears and two new UV-Visible bands at 229 nm for π-π* (for C=C) and 550 nm for transverse surface plasmon resonance (TSPR) of AuNPs appears. When AuNPs are supported on GO nanosheets, PL emission band at 555 nm disappears and two new PL emission bands appear at 431 nm and 658 nm. The physical and morphological characterizations are performed by Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), High-resolution-transmission electron microscopy (HR-TEM) and BET surface area measurement. Morphological studies revealed that the GO nanosheets are well dispersed in water and AuNPs are supported on the GO nanosheets.

  10. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  11. Activity of nanosized titania synthesized from thermal decomposition of titanium (IV n-butoxide for the photocatalytic degradation of diuron

    Directory of Open Access Journals (Sweden)

    Jitlada Klongdee, Wansiri Petchkroh, Kosin Phuempoonsathaporn, Piyasan Praserthdam, Alisa S. Vangnai and Varong Pavarajarn

    2005-01-01

    Full Text Available Nanoparticles of anatase titania were synthesized by the thermal decomposition of titanium (IV n-butoxide in 1,4-butanediol. The powder obtained was characterized by various characterization techniques, such as XRD, BET, SEM and TEM, to confirm that it was a collection of single crystal anatase with particle size smaller than 15 nm. The synthesized titania was employed as catalyst for the photodegradation of diuron, a herbicide belonging to the phenylurea family, which has been considered as a biologically active pollutant in soil and water. Although diuron is chemically stable, degradation of diuron by photocatalyzed oxidation was found possible. The conversions achieved by titania prepared were in the range of 70–80% within 6 h of reaction, using standard UV lamps, while over 99% conversion was achieved under solar irradiation. The photocatalytic activity was compared with that of the Japanese Reference Catalyst (JRC-TIO-1 titania from the Catalysis Society of Japan. The synthesized titania exhibited higher rate and efficiency in diuron degradation than reference catalyst. The results from the investigations by controlling various reaction parameters, such as oxygen dissolved in the solution, diuron concentration, as well as light source, suggested that the enhanced photocatalytic activity was the result from higher crystallinity of the synthesized titania.

  12. Reagent-Free Electrophoretic Synthesis of Few-Atom-Thick Metal Oxide Nanosheets

    DEFF Research Database (Denmark)

    Hou, Chengyi; Zhang, Minwei; Zhang, Lili

    2017-01-01

    reagents. The focus is on free-standing polycrystalline ZnO nanosheets that can be produced with a lateral dimension as large as 10 mu m and a thickness of 1 nm (the thinnest free-standing metal oxide nanosheet ever reported). A new electrophoretic assembly mechanism dominated by intrinsic surface polarity...

  13. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  14. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    Science.gov (United States)

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman; Brewer, Damien D.; Gettel, Melissa; Kumar, Sandeep; Lee, J. Alex; Maheshwari, Sudeep; Mittal, Anudha; Sung, Chun-Yi; Cococcioni, Matteo; Francis, Lorraine F.; McCormick, Alon V.; Mkhoyan, K. Andre; Tsapatsis, Michael

    2011-10-01

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

  15. Suspended HOPG nanosheets for HOPG nanoresonator engineering and new carbon nanostructure synthesis

    International Nuclear Information System (INIS)

    Rose, F; Debray, A; Martin, P; Fujita, H; Kawakatsu, H

    2006-01-01

    Suspended highly oriented pyrolytic graphite (HOPG) nanosheets (10-300 nm thick) were created by direct mechanical cleavage of a bulk HOPG crystal onto silicon micropillars and microtracks. We show that suspended HOPG nanosheets can be used to engineer HOPG nanoresonators such as membranes, bridges, and cantilevers as thin as 28 carbon atom layers. We measured by Doppler laser heterodyne interferometry that the discrete vibration modes of an HOPG nanosheet membrane and the resonance frequency of a FIB-created HOPG microcantilever lie in the MHz frequency regime. Moreover, a new carbon nanostructure, named 'nanolace', was synthesized by focused ion beam (FIB) sputtering of suspended HOPG nanosheets. Graphite nanosheets suspended on micropillars were eroded by a FIB to create self-oriented pseudo-periodical ripples. Additional sputtering and subsequent milling of these ripples led to the formation of honeycomb-like shaped nanolaces suspended and linked by ribbons

  16. Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System.

    Science.gov (United States)

    Oh, Seung Mi; Patil, Sharad B; Jin, Xiaoyan; Hwang, Seong-Ju

    2017-10-26

    Among many types of nanostructured inorganic materials, highly anisotropic 2D nanosheets provide unique advantages in designing and synthesizing efficient electrode and electrocatalyst materials for novel energy storage technologies. 2D inorganic nanosheets boast lots of unique characteristics such as high surface area, short ion diffusion path, tailorable compositions, and tunable electronic structures. These merits of 2D inorganic nanosheets render them promising candidate materials as electrodes for diverse secondary batteries and supercapacitors, and electrocatalysts. A wide spectrum of examples is presented for inorganic nanosheet-based electrodes and electrocatalysts. Future perspectives in research about 2D nanosheet-based functional materials are discussed to provide insight for the development of next-generation energy storage systems using 2D nanostructured materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation and characterization of titania/ZnS core-shell nanotubes.

    Science.gov (United States)

    Kim, Mee Rahn; Ahn, Shin Ja; Jang, Du-Jeon

    2006-01-01

    Core-shell nanocomposites of titania nanotubes/ZnS quantum dots have been prepared by using a hydrothermal synthetic method and characterized by using various microscopic and spectroscopic methods. ZnS quantum dots surround the outsides of titania nanotubes having the inner and the outer diameters of 15 and 30 nm, respectively, with a thickness of 2 nm. The nanocomposites suspended in water show a broader absorption spectrum shifted to a longer wavelength by 20 nm and emit substantially stronger ZnS luminescence having significantly slower decay kinetics than bare ZnS nanoparticles in water. The support of TiO2 nanotubes is found to enhance the optical properties of ZnS considerably.

  18. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  19. UV-Irradiated Photocatalytic Degradation of Nitrobenzene by Titania Binding on Quartz Tube

    Directory of Open Access Journals (Sweden)

    Thou-Jen Whang

    2012-01-01

    Full Text Available A new method for UV-irradiated degradation of nitrobenzene by titania photocatalysts was proposed, titania nanoparticles were coated on a quartz tube through the introduction of tetraethyl orthosilicate into the matrix. The dependence of nitrobenzene photodegradation on pH, temperature, concentration, and air feeding was discussed, and the physical properties such as the activation energy, entropy, enthalpy, adsorption constant, and rate constant were acquired by conducting the reactions in a variety of experimental conditions. The optimum efficiency of the photodegradation with the nitrobenzene residue as low as 8.8% was achieved according to the experimental conditions indicated. The photodegradation pathways were also investigated through HPLC, GC/MS, ion chromatography (IC, and chemical oxygen demand (COD analyses.

  20. High energy milling of zirconia-titania powders synthesized by coprecipitation

    International Nuclear Information System (INIS)

    Silva, Cristiano M.B.; Marchi, Juliana; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Zirconia based ceramics are known by its remarkable mechanical properties as hardness and fracture toughness and in biomedical applications are classified as bioinert. By its turn, titania ceramics has been studied due to its ability to bond directly to bone tissue, but are structurally brittle. Properties of ceramics are strongly dependent of physical and chemical characteristics of its former powders. In the present work, research done for the synthesis of zirconia-titania ceramics by the coprecipitation route are presented, emphasizing the conditioning process through a high energy milling in a atritor mill, classifying of powders in vibratory sieves and forming of cylindrical ceramic samples followed by a sintering process at 1500 deg C for 01 hour. The intermediary samples produced in the various steps of the process were characterized by scanning electronic microscope, X-ray diffraction, nitrogen gas adsorption and granulometric analysis. (author)

  1. Impedance response of carbon nanotube-titania electrodes dried under modified gravity

    International Nuclear Information System (INIS)

    Ordenana-Martinez, A.S.; Rincon, M.E.; Vargas, M.; Ramos, E.

    2011-01-01

    The synthesis and impregnation of porous titania films by commercial multiwalled carbon nanotubes and nanotube rich carbon soot are reported. The samples were dried under terrestrial gravity g and in a centrifuge accelerated at 13 g. X-Ray Diffraction data and Scanning Electron Microscopy images indicated differences in the crystal structure and tendency to agglomeration in both carbon types, providing different microstructures of functionally graded electrodes. Drying the samples in a centrifuge helps to the distribution of carbon nanoparticles and to the decrement of the impedance at the contact interfaces. The presence of titania weakens the differences observed in both drying protocols, but not the differences due to the carbon source. Superior capacitance and network conductivity were observed in electrodes based on commercial carbon nanotubes.

  2. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor

    Science.gov (United States)

    Banerjee, Subarna; Mohapatra, Susanta K.; Misra, Mano; Mishra, Indu B.

    2009-02-01

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  3. Silica-coated titania and zirconia colloids for subsurface transport field experiments

    Science.gov (United States)

    Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.

    2000-01-01

    Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.

  4. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  5. Titania-coated manganite nanoparticles: synthesis of the shell, characterization and MRI properties

    Czech Academy of Sciences Publication Activity Database

    Jirák, Zdeněk; Kuličková, Jarmila; Herynek, Vít; Maryško, Miroslav; Koktan, Jakub; Kaman, Ondřej

    2017-01-01

    Roč. 427, Apr (2017), s. 245-250 ISSN 0304-8853 R&D Projects: GA ČR GA15-10088S; GA ČR GA16-04340S Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * core-shell nanoparticles * titania coating * perovskite manganite * magnetic resonance imaging * transverse relaxivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  6. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Burlacov, I.; Jirkovský, Jaromír; Muller, M.; Heimann, R. B.

    2006-01-01

    Roč. 201, 1-2 (2006), s. 255-264 ISSN 0257-8972 Grant - others:European Communities(XE) EVKI-2002-30025 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : titania (anatase) coatings * induction plasma spraying * suspension plasma spraying * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.559, year: 2006

  7. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug.

  8. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  9. Transparent titania-zirconia thin films for self-cleaning and photocatalytic application

    OpenAIRE

    Vodišek, Nives; Ramanujachary, Kandalam; Brezová, Vlasta; Lavrenčič Štangar, Urška

    2017-01-01

    Thin films were prepared by sol-gel process, where different amount of zirconia were added to titania. Photocatalytic activity of thin films was measured by two methods i) determination of degradation ration of methyl stearate with measuring the contact angle and ii) formation of hydroxyterephthalic acid was measured by spectrofluorometer. Prepared samples were characterized by UV-Vis spectrophotometer, SEM, XRD, FT-IR ATR, and BET. The result of measurements of photocatalytic acti...

  10. Titania and zirconia binary oxides as catalysts for total oxidation of ethyl acetate and methanol decomposition

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Mileva, A.; Issa, G.; Dimitrov, M.; Kovacheva, D.; Henych, Jiří; Kormunda, M.; Scotti, N.; Slušná, Michaela; Tolasz, Jakub; Štengl, Václav

    2018-01-01

    Roč. 6, č. 2 (2018), s. 2540-2550 ISSN 2213-3437 Grant - others:AV ČR(CZ) BAS-17-13 Program:Bilaterální spolupráce Institutional support: RVO:61388980 Keywords : Effect of preparation procedure * Ethyl acetate oxidation * Methanol decomposition * Titania-zirconia binary oxides Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry

  11. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  12. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    International Nuclear Information System (INIS)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-01-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug

  13. Photocatalytic inactivation of hospital-associated bacteria using titania nanoparticle coated textiles

    International Nuclear Information System (INIS)

    Tahir, T.; Qazi, I.A.; Hashmi, I.; Baig, M.A.

    2017-01-01

    Modification in hospital textiles to include disinfection properties may help in the reduction of nosocomial infections. In this study, antibacterial properties were imparted to cotton fabric by modifying it with pure and (1%) silver doped titania nanoparticles. The nanoparticles were prepared by liquid impregnation process and characterized using X-ray Diffraction (XRD) spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). These nanoparticles were attached to cotton fabric using a cross linking agent succinic acid. Samples were washed at three different temperatures (30, 60 and 90 degree C), with and without detergent and for different number of cycles to test the durability of nanoparticles to the fabric. Scanning Electron Microscopy (SEM) was used for studying surface topography of fabric. Energy Dispersive X-ray fluorescence (ED-XRF) spectrometer was used to detect the titanium present on the fabric. Catalytic spectrophotometry using UV/visible spectrophotometer was used to determine titania concentration in washing effluent. The antibacterial activity of the modified fabric was examined against Methicillin Resistant Staphylococcus aureus (MRSA) under UV and fluorescent light. The maximum durability of titania nanoparticles to the fabric was retained after washing without detergent at 30 degree C. The overall results of durability testing showed that coating of nanoparticles on fabric was durable against washing at various conditions, hence suitable from an environmental perspective. Antibacterial testing showed 100% photocatalytic inactivation of MRSA after 4 and 24 h of UV and fluorescent light exposure respectively. The potential of using such textiles in hospital environment was validated through the use of modified bed linen in a local hospital for a period of three days consecutively. The viable count indicated the reduced bacterial contamination on nano-coated fabric as compared to uncoated fabric. Bed linen, curtains

  14. Titania Supported Co-Mn-Al Oxide Catalysts in Total Oxidation of Ethanol

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jirátová, Květa; Klempa, Jan; Böhmová, Vlasta; Obalová, L.

    2012-01-01

    Roč. 179, č. 1 (2012), s. 164-169 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/1762; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z30130516 Keywords : mixed oxide catalysts * voc oxidation * titania Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  15. As(V) adsorption onto nanoporous titania adsorbents (NTAs): effects of solution composition.

    Science.gov (United States)

    Han, Dong Suk; Batchelor, Bill; Park, Sung Hyuk; Abdel-Wahab, Ahmed

    2012-08-30

    This study has focused on developing two nanoporous titania adsorbents (NTA) to enhance removal efficiency of adsorption process for As(V) by characterizing the effects of pH and phosphate concentration on their sorption capacities and behaviors. One type of adsorbent is a mesoporous titania (MT) solid phase and the other is group of a highly ordered mesoporous silica solids (SBA-15) that can incorporate different levels of reactive titania sorption sites. Microscopic analysis showed that Ti((25))-SBA-15 (Ti/SBA=0.25 g/g) had titania nanostructured mesopores that do not rupture the highly ordered hexagonal silica framework. However, MT has disordered, wormhole-like mesopores that are caused by interparticle porosity. Adsorption experiments showed that Ti((25))-SBA-15 had a greater sorption capacity for As(V) than did Ti((15))-SBA-15 or Ti((35))-SBA-15 and the amount of As(V) adsorbed generally decreased as pH increased. Higher removal of As(V) was observed with Ti((25))-SBA-15 than with MT at pH 4, but MT had higher removals at higher pH (7, 9.5), even though MT has a lower specific surface area. However, in the presence of phosphate, MT showed higher removal of As(V) at low pH rather than did Ti((25))-SBA-15. As expected, the NTAs showed very fast sorption kinetics, but they followed a bi-phasic sorption pattern. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Super/Subcritical Fluid Extractions for Preparation of the Crystalline Titania

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Cajthaml, Tomáš; Matěj, Z.; Benada, Oldřich; Klusoň, Petr; Šolcová, Olga

    2010-01-01

    Roč. 52, č. 2 (2010), s. 215-221 ISSN 0896-8446 R&D Projects: GA ČR GP104/09/P290; GA ČR GA104/09/0694 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : titania * supercritical fluid extraction * pressurised fluid extraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.986, year: 2010

  17. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.M.; McGehee, M.D. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205 (United States); Liu, Y. [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States); Frindell, K.L.; Stucky, G.D. [Department of Chemistry, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)

    2003-04-01

    Interpenetrating networks of organic and inorganic semiconductors are attractive for photovoltaic cells because electron transfer between the two semiconductors splits excitons. In this paper we show that films of titania with a uniform distribution of pore sizes can be made using a block copolymer as a structure-directing agent, and that 33 % of the total volume of the film can be filled with a semiconducting polymer. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  18. Mn-Zn ferrite nanoparticles with silica and titania coatings: synthesis, transverse relaxivity and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Herynek, V.; Havelek, R.; Královec, K.; Kubániová, D.; Kohout, J.; Dvořák, P.; Jirák, Zdeněk

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-8, č. článku 5300908. ISSN 0018-9464 R&D Projects: GA ČR GA16-04340S Institutional support: RVO:68378271 Keywords : amorphous titania * silica * magnetic nanoparticles * Mn-Zn ferrite * transverse relaxivity * cytotoxicity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  19. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C.

    2014-01-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H 2 SO 4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H 2 SO 4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates

  20. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn; Huang, Z.X.; Luo, J.M.; Zhong, Z.C., E-mail: zzhong.2006@yahoo.com.cn

    2014-04-15

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H{sub 2}SO{sub 4} solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H{sub 2}SO{sub 4} solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates.

  1. The role of nanocrystalline titania coating on nanostructured austenitic stainless steel in enhancing osteoblasts functions for regeneration of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shah, J.S.; Venkatsurya, P.K.C.; Thein-Han, W.W. [Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Pesacreta, T.C. [Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, LA 70504 (United States); Somani, M.C.; Karjalainen, L.P. [Department of Mechanical Engineering, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2011-03-12

    In the context of osseointegration of metallic implants, while nanostructuring the surface favorably modulates cellular response, the disinfective attributes required during the healing process are not available. Thus, in the present study, we demonstrate that nanocrystalline titania provides cumulative benefit of enhancing osteoblasts functions to promote the efficacy of metal implants together with the disinfective attributes. To this end, the primary objective here is to examine the select functions of bone forming cells (osteoblasts) on electrocrystallized nanonodular titania-coated nanograined/ultrafine grained (NG/UFG) austenitic stainless steel. The accompanying objective is to study the disinfective/antimicrobial activity. To the best of our understanding this is the first study of nanophase titania on a non-titanium substrate. The osteoblasts functions were investigated in terms of cell attachment, proliferation, and quantitative analysis of proteins, actin and vinculin. In comparison to the bare NG/UFG substrate, the nanophase titania-coated substrate exhibited higher degree of cell attachment and proliferation which are regulated via cellular and molecular interactions with proteins, actin and vinculin. The enhanced functions of osteoblasts suggest that nanophase titania adsorbs extracellular matrix proteins, fibronectin and vitronectin from serum enhancing protein, with subsequent binding of integrins and osteoblasts precursor to titania. The antimicrobial attributes assessed in terms of degradation of methyl orange and effectiveness in killing E. coli supports the viewpoint that large surface area of titania would be instrumental in reducing the detrimental effect of biologically reactive oxygen species produced by macrophages in the vicinity of the metal bone/implant interface. In summary, the study provides some new insights concerning nanostructuring of metallic substrates with specific physical and surface properties for medical devices with

  2. Propiedades mécanicas y tribólogicas de recubrimientos alumina/titania proyectados por oxifuel (spray llama

    Directory of Open Access Journals (Sweden)

    Saura, J. J.

    2008-02-01

    Full Text Available In this paper the porosity, phases, mechanical properties and abrasive wear resistance of ceramic layers of Al2O3/TiO2 deposited using the flame spray process are evaluated. The proportion of titania has a strong influence on the porosity of the coating, having observed an approximately linear plot decrease with the increasing of titania´s content. Crystalline phases of the deposited layers changed according to the characteristics of the powder and the thermal process employed. It has been observed that hardness depends only on the titania percentage, also toughness decreases with coatings hardness but resistance to abrasive wear traces an increasing lineal plot with this property.

    En este trabajo se ha estudiado, las fases, las propiedades mecánicas y la resistencia al desgaste abrasivo de recubrimientos cerámicos alumina/titania proyectados por el proceso de oxifuel (spray llama. La proporción de titania tiene una fuerte influencia sobre la porosidad de los recubrimientos, habiéndose observado una disminución casi-lineal de la porosidad con el incremento de titania. Las fases cristalinas que resultan después de la proyección han variado según la naturaleza del polvo y el proceso térmico experimentado. Mientras la dureza obtenida depende sólo del porcentaje en peso de titania, la tenacidad es una función inversa de la dureza, y, la resistencia al desgaste por abrasión es una función creciente con la dureza de los recubrimientos.

  3. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guang [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Müller, Werner E.G.; Wang, Xiaohong [ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz (Germany); Lilja, Louise [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist.

  4. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution.

    Science.gov (United States)

    Majidnia, Zohreh; Fulazzaky, Mohamad Ali

    2017-04-15

    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L -1 on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L -1 . The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    coefficient ( ) of the MoSe2 nanosheets with PS-NH2 in various organic solvents was determined using the Lambert – Beer law . (Equation 2 and 3...absorbance linearly increased with the amount of MoSe2 following Lambert – Beer behaviour, which implies uniform dispersion of MoSe2 without aggregation...of the MoSe2 concentration in each solvent (Figure 14). The absorbance linearly increased with the amount of MoSe2 in accordance with Lambert - Beer

  6. Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Pamanji, Sreedhara Reddy

    2015-06-01

    A green one step facile synthesis of graphene nanosheets by Terminalia chebula (T. chebula) extract mediated reduction of graphite oxide (GO) is reported in this work. This method avoids the use of harmful toxic reducing agents. The comparative results of various characterizations of GO and T. chebula reduced graphene oxide (TCG) provide a strong indication of the exclusion of oxygen containing groups from graphene oxide and successive stabilization of the formed reduced graphene oxide (RGO). The functionalization of reduced graphene oxide with the oxidized polyphenols causes their stability by preventing the aggregation. We also have proposed how the oxidized polyphenols are accountable for the stabilization of the formed graphene sheets.

  7. Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film

    International Nuclear Information System (INIS)

    Yu Jiuhong; Ju Huangxian

    2003-01-01

    Hemoglobin (Hb) was entrapped in a titania sol-gel matrix and used as a mimetic peroxidase to construct a novel amperometric biosensor for hydrogen peroxide. The Hb entrapped titania sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process for protein immobilization. The morphologies of both titania sol-gel and the Hb films were characterized using scanning electron microscopy (SEM) and proved to be chemically clean, porous, homogeneous. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Hb and a very low mass transport barrier to the substrates. H 2 O 2 could be reduced by the catalysis of the entrapped hemoglobin at -300 mV without any mediator. The reagentless H 2 O 2 sensor exhibited a fast response (less than 5 s) and sensitivity as high as 1.29 mA mM -1 cm -2 . The linear range for H 2 O 2 determination was from 5.0x10 -7 to 5.4x10 -5 M with a detection limit of 1.2x10 -7 M. The apparent Michaelis-Menten constant of the encapsulated hemoglobin was calculated to be 0.18±0.02 mM. The stability of the biosensor was also evaluated

  8. Synthesis and characterization of hybrid cured poly(ether-urethaneacrylate/titania microcomposites formed from tetraalkoxytitanate precursor

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available Hybrid poly(ether-urethaneacrylate (PEUA/titania (TiO2 microcomposites were prepared using a novel method that includes a swelling of different photo-crosslinked PEUA networks in concentrated tetraisopropoxytitanate (Ti(OiC3H74 or TIPT precursor solution in organic media followed by the hydrolysis of covalently bonded polyalkoxytitanate ([–OTi(OC3H72–]n chains and their aggregation to amorphous micro- and nano-scale sized TiO2 particles. A formation of polymer/titania hybrids was confirmed by complex investigations of the hybrids using infrared (IR spectroscopy, small angle X-ray scattering (SAXS analysis, scanning electron microscopy (SEM and gravimetry. The dependence of titania phase formation behavior versus functionality of the poly(ether-urethaneacrylate network was discussed. The presence of reactive groups in the organic network promotes the formation of surface-bonded ball-shaped type TiO2 inclusions as well as provides transparency to the hybrid film samples. The results obtained in this work can be applied for the development of polymer/TiO2 composite materials for multipurpose optical application and advanced sealants.

  9. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating.

    Science.gov (United States)

    Wu, Qing Liu; Subramanian, Navaladian; Rankin, Stephen E

    2011-08-02

    Poly(propylene glycol) (PPG) of moderately high molecular weight (M(n) = 3500 Da) exhibits amphibious behavior in aqueous solution in that it is hydrophilic at low temperature but hydrophobic at high temperature. This property is utilized to generate porous titania thin films with a hierarchical structure consisting of macroporous voids/cracks in films with mesoporous walls. The smaller mesopores result from the self-assembly of the Pluronic block copolymer P123 to form micellar templates in well-ordered arrays with hexagonal symmetry. The larger pores are generated from the phase separation of PPG during aging of the films. The PPG acts to a limited degree as a swelling agent for the P123 micelles, but because the films are aged at a low temperature where PPG is hydrophilic, much of the PPG remains in the polar titania phase. Upon heating, the PPG phase separates to form randomly dispersed, large pores throughout the film while retaining the ordered mesoporous P123-templated structure in the matrix of the material. TEM and SEM imaging confirm that calcined titania thin films have interconnected hierarchical porous structures consisting of ordered mesopores 4-12 nm in diameter and macroporous voids >100 nm in size. The density and size of the voids increase as more PPG is added to the films.

  10. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)

    2017-04-15

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  11. Electrochemical Synthesis of Ordered Titania Nanotubes in Mixture of Ethylene Glycol and Glycerol Electrolyte

    International Nuclear Information System (INIS)

    Chin, L.Y.; Zulkarnain Zainal; Zuraida Khusaimi; Siti Sarah Ismail

    2016-01-01

    The electrolyte chemistry (nature and its composition) plays a critical role in determining the nano tube architecture and its growth process. In the present study, the formation of well-ordered titania nano tubes (TNT) is achieved by electrochemical anodization of titanium substrate in aqueous ethylene glycol-glycerol electrolyte (EG/Gly). The resulted samples were characterized using X-ray Diffraction (XRD) and the morphology changes were monitored by Field Emission Scanning Electron Microscopy (FESEM). Compositional changes of the titania nano tubes (TNT) were determined using Energy Dispersive X-ray Spectroscopy (EDX). The influence of anodization voltage, volume ratio of electrolyte and NH 4 F content on the morphology and geometry of titania nano tubes have been investigated. The nature of electrolytes influenced the ordering and uniformity of nano tubes. In addition, nano tubes with various diameters ranging from 62 - 112 nm and lengths of 1.1 - 1.3 μm were obtained by controlling the anodization voltage and volume ratio of EG/ Gly. Ultimately, anodization of Ti at 20 V in 1:1 volume ratio of EG/ Gly containing 0.25 - 1.0 wt.% NH 4 F appears to be an optimum condition for controlling the ordering of nano tubes. (author)

  12. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  13. Silver nanoparticles embedded titania nanotube with tunable blue light band gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei-Lin; Yang, Chung-Sung, E-mail: csyang@mail.ncyu.edu.tw

    2016-06-01

    Silver nanoparticles embedded titania nanotube (SET) have been successfully prepared by titania nanotubes and silver nanoparticles via a template-free reaction. Powder X-ray diffraction (P-XRD) spectra and Fourier transform infrared (FT-IR) spectra show that the charge of silver atoms maintains neutral in the formation of silver nanoparticles. The Ag atom of Ag nanoparticles and the oxygen atom of TiO{sub 2} possess a chemical bonding with an ionic character rather than a covalent character. The quantitative microanalysis data collected from X-ray photo-emission (XPS) spectra indicate that the ratio of Ag/Ti in SET is 15.2 ± 2.7%. The cut-off band gap of SET is adjustable from 420 nm (Ag/Ti = 12.5%) to 430 nm (Ag/Ti = 17.8%). - Highlights: • The self-assembly silver nanoparticles are embedded on titania nanotube. • The charge of silver atoms is neutral in the formation of silver nanoparticles. • The quantitative microanalysis data confirm that ratio of Ag/Ti is 15.2 ± 2.7%. • The band gap of SET locates in the desirable blue light region.

  14. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces

    Science.gov (United States)

    Bhosle, Sachin M.; Friedrich, Craig R.

    2017-10-01

    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  15. Electrophoretic deposition of silica-hyaluronic acid and titania-hyaluronic acid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7 (Canada)

    2011-06-15

    Research highlights: > The kinetics of electrodeposition of hyaluronic acid has been studied using quartz crystal microbalance. > Composite films containing silica and titania were prepared by electrophoretic deposition. > The deposition yield and deposit composition can be varied by variation of deposition time, voltage and bath composition. > We concluded that the method offers the advantages of room temperature processing for the fabrication of composite materials for biomedical applications. - Abstract: Thin films of hyaluronic acid were prepared by anodic electrophoretic deposition (EPD) and the deposition kinetics was studied using quartz crystal microbalance. EPD method has been developed for the fabrication of new ceramic-biopolymer nanocomposites containing silica and titania nanoparticles in the matrix of hyaluronic acid. The deposit thickness was varied in the range of 0-10 {mu}m. The composition of the deposits can be varied by the variation of silica and titania concentration in the suspensions. The deposits were studied by thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The method offers the advantages of room temperature processing of nanocomposite materials for biomedical applications.

  16. Thermal decomposition of precursors and physicochemical characteristics of titania supported vanadia catalysts

    International Nuclear Information System (INIS)

    Nalbandian, Lori; Lemonidou, Angeliki A.

    2004-01-01

    Titania supported vanadia catalysts (2.5, 5, and 11 wt.% V 2 O 5 ) were prepared by a wet impregnation technique and their thermal behavior, morphology as well as redox properties were examined by thermal analysis methods thermogravimetry (TGA), differential scanning calorimetry (DSC), temperature programmed-evolved gas analysis with mass spectroscopy, (EGA-MS), scanning electron microscopy (SEM), and temperature programmed reduction (TPR). The two Eurocat samples EL10V1 and EL10V8 containing 1 and 8 wt.% V 2 O 5 were also characterized using the same techniques. Thermal decomposition of vanadium oxide precursors (ammonium vanadyl oxalate) supported on TiO 2 as evidenced by thermal analysis, occurs in three successive steps, which are influenced by the surrounding atmosphere (oxidative, reductive, and inert). The presence of tower-like vanadia crystals in the sample with the highest vanadia loading (11 wt.% V 2 O 5 ) was identified by SEM. The H 2 -TPR experiments revealed that the reduction temperature is a factor of the vanadia loading and the type of support. Vanadia species supported on Norton titania are more reducible that those supported on Eurocat titania

  17. A Comparison of the Performances of Different Mesoporous Titanias in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Alessandro Latini

    2015-01-01

    Full Text Available The present work aims at optimizing titanium dioxide morphology for dye-sensitized solar cells applications. Five different anatase phase mesoporous titanias were prepared and tested as photoanodes in dye-sensitized solar cells. The materials were prepared by using a template approach. Two materials were synthesized by using monodisperse silica nanospheres and the other three using two different organic templating agents (Pluronic P123 and Brij 58. A complete characterization of the obtained materials was performed by powder XRD, FEG-SEM, UV-Vis reflectance spectroscopy, BET surface area measurements, and TG-DTA. Several cells were assembled using N719 as dye and a nonvolatile electrolyte based on benzonitrile. The cells were tested by means of J-V curves under simulated solar radiation, IPCE, and dark current measurements. The highest efficiencies were achieved with titania prepared by using Pluronic P123 as template (ηmax=6.8%, while the lowest efficiencies were recorded with using titania samples prepared with the silica nanospheres template (ηmin=5.7%. The different performances of the samples are examined and discussed.

  18. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    Science.gov (United States)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  19. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    International Nuclear Information System (INIS)

    Veerapandian, Murugan; Zhang, Linghe; Yun, Kyusik; Krishnamoorthy, Karthikeyan

    2013-01-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml −1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml −1 for Bacillus subtilis and 0.5 μg ml −1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside. (paper)

  20. Catalytic Emulsion Based on Janus Nanosheets for Ultra-Deep Desulfurization.

    Science.gov (United States)

    Xia, Lixin; Zhang, Hairan; Wei, Zhichao; Jiang, Yi; Zhang, Ling; Zhao, Jie; Zhang, Junhui; Dong, Li; Li, Erni; Ruhlmann, Laurent; Zhang, Qian

    2017-02-03

    Catalytic Janus nanosheets were synthesized by using an anion-exchange reaction between heteropolyacids (HPAs) and the modified ionic-liquid (IL) moieties of Janus nanosheets. Their morphology and surface properties were characterized by using SEM, energy-dispersive spectroscopy (EDS), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS) studies. Because of their inherent Janus structure, the nanosheets exhibited good amphipathic character with ILs and oil to form a stable ILs-in-oil emulsion. Therefore, these Janus nanosheets can be used as both emulsifiers and catalysts to perform emulsive desulfurization. During this process, sulfur-containing compounds at the interface could be easily oxidized and efficiently removed from a model oil. Application of this Janus emulsion brings an efficient, useful, and green procedure to the desulfurization process. Compared with the desulfurization catalyzed by using HPAs in a conventional two-phase system, the sulfur removal of dibenzothiophene (DBT) achieved in a Janus emulsion system was improved from 68 to 97 % within 1.5 h. Moreover, this emulsion system could be demulsified easily by simple centrifugation to recover both the nanosheets and the ILs. Owing to the good structural stability of the Janus nanosheets, the sulfur removal efficiency of DBT could still reach 99.9 % after the catalytic nanosheets had been recycled at least six times. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Thi; Chi, Do Thi; Dinh, Ngo Xuan; Hung, Nguyen Duy; Lan, Hoang [Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Tuan, Pham Anh [Vietnam Metrology Institute, 08 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Thang, Le Hong [School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Trung, Nguyen Ngoc [School of Engineering Physics, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Hoa, Nguyen Quang [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Huy, Tran Quang [Laboratory for Ultrastructure and Bionanotechnology (LUBN), National Institute of Hygiene and Epidemiology (NIHE), No. 1 Yecxanh Street, Hai Ba Trung District, Hanoi (Viet Nam); Quy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Duong, Thanh-Tung [Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764 Daejeon (Korea, Republic of); Phan, Vu Ngoc [Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan, E-mail: tuan.leanh1@hust.edu.vn [Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam)

    2014-12-05

    Highlights: • A photochemical method for effective decoration of the Ag-NPs on GO nanosheets is presented. • The average size of the Ag-NPs on the GO nanosheets obtained ∼6–7 nm with uniform size distribution. • Surface interaction of Ag-NPs with GO nanosheets leads to surface plasmon-enhanced luminescence. - Abstract: Nanohybrid materials based on silver nanoparticles (Ag-NPs) and graphene oxide (GO) are attracting considerable research interest because of their potential many applications including surface-enhanced Raman scattering, catalysis, sensors, biomedicine and antimicrobials. In this study, we established a simple and effective method of preparing a finely dispersed Ag-GO aqueous solution using modified Hummer and photochemical technique. The Ag-NPs formation on GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The average size of Ag-NPs on the GO nanosheets was approximately 6–7 nm with nearly uniform size distribution. The Ag-GO nanohybrid also exhibits an adsorption band at 435 nm because of the presence of Ag-NPs on the GO nanosheets. Photoluminescence emission of the Ag-GO nanohybrid was found at 400 and 530 nm, which can be attributed to the interaction between the luminescence of exploited GO nanosheets and localized surface plasmon resonance from metallic Ag-NPs. The observed excellent optical properties of the as-prepared Ag-GO nanohybrid showed a significant potential for optoelectronics applications.

  2. Graphene-MoS2 nanosheet composites as electrodes for dye sensitised solar cells

    Science.gov (United States)

    Lynch, Peter; Khan, Umar; Harvey, Andrew; Ahmed, Iftikhar; Coleman, Jonathan N.

    2016-03-01

    Replacing the platinum counter electrode in dye-senstized solar cells with a cheaper material has attracted much attention recently. Graphene, graphene oxide and other 2-dimensional materials have received significant attention. Here we demonstrate the dependence of device parameters on the thickness of counter electrodes formed from porous, disordered arrays of liquid-exfoliated graphene nanosheets. We find device efficiency to saturate at a counter electrode thickness of ∼400 nm. Such optimised counter electrodes can be improved further by adding MoS2 nanosheets to the graphene electrode. By measuring the dependence of device parameters on the composition of mixed graphene/MoS2 electrodes, we show that adding ∼10 wt% MoS2 nanosheets to a graphene counter electrode improves performance and can result in a cell efficiency of ∼95% of that achieved using a platinum electrode. This data is consistent with the MoS2 nanosheets being somewhat better catalysts than the graphene nanosheets. However, the graphene nanosheets are required to render the electrode conductive. More detailed analysis suggests the better performance of the MoS2 nanosheets to be mostly down to their smaller size.

  3. Preparation of Silica/Reduced Graphene Oxide Nanosheet Composites for Removal of Organic Contaminants from Water.

    Science.gov (United States)

    Li, Wen; Liu, Wei; Wang, Haifei; Lu, Wensheng

    2016-06-01

    Graphene-based composites open up new opportunities as effective adsorbents for the removal of organic contaminants from water. In this article, we report a novel and facile process to synthesize well-dispersed silica/reduced graphene oxide (SiO2/RGO) nanosheet composites. The SiO2/RGO nanosheet composites are prepared through a modified sol-gel process with in situ hydrolysis of tetraethoxysilane (TEOS) on graphene oxide (GO) nanosheet, followed by reduction of GO to graphene. In comparison with the RGO nanosheets, the as-prepared SiO2/RGO nanosheet composites have a larger surface area and good aqueous disperse ability. In addition, the application of SiO2/RGO nanosheet composites was demonstrated on removing organic dyes from water. The SiO2/RGO nanosheet composites show rapid and stable adsorption performance on removal of Methylene Blue (MB) and thionine (TH) from water. It is indicated that the resulting SiO2/RGO composites can be utilized as efficient adsorbents for the removal of organic contaminants from water.

  4. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  5. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  6. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light.

    Science.gov (United States)

    Yang, Shubin; Gong, Yongji; Zhang, Jinshui; Zhan, Liang; Ma, Lulu; Fang, Zheyu; Vajtai, Robert; Wang, Xinchen; Ajayan, Pulickel M

    2013-05-07

    Graphitic carbon nitride nanosheets are extracted, produced via simple liquid-phase exfoliation of a layered bulk material, g-C3N4. The resulting nanosheets, having ≈2 nm thickness and N/C atomic ratio of 1.31, show an optical bandgap of 2.65 eV. The carbon nitride nanosheets are demonstrated to exhibit excellent photocatalytic activity for hydrogen evolution under visible light. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrodeposition of Mesoporous Co3O4 Nanosheets on Carbon Foam for High Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Zhemi Xu

    2014-01-01

    Full Text Available Metal oxide nanosheets have promising potential applications in novel energy storage devices. In this work, Co3O4 nanosheets/carbon foam with excellent supercapacitor characteristics was successfully fabricated, without using metal substrates. The experimental results demonstrate that the electrochemical tests showed that the as-prepared Co3O4 nanosheets exhibited an ideal capacitive behavior with a maximum specific capacitance of 106 F/g in 1 M NaOH solution at a scan rate of 0.1 V s−1.

  8. Highly luminescent two dimensional excitons in atomically thin CdSe nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Halder, O.; Pradhani, A.; Rath, S., E-mail: srath@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Toshali Bhawan, Satyanagar, Bhubaneswar 751 007 (India); Sahoo, P. K. [Department of Physics, National Institute of Science Education and Research, Sachivalaya marg, Bhubaneswar 751 005 (India); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-05-05

    Atomically thin Cadmium Selenide (CdSe) nanosheets have been synthesized using a surfactant mediated growth technique. The transmission electron microscopy studies confirm the presence of single layered nanosheets with thickness 1.31 nm and their stacking structures which are complemented by the small angle x-ray scattering measurements. The strongly bound and polarized character of two dimensional excitonic states with enhanced oscillator strength yielding distinct narrow blue luminescence has been observed from the CdSe nanosheets using room temperature based optical studies.

  9. A DFT study on the effect of supporting titania on silica graphene epoxy graphene and carbon nanotubes - Interfacial properties and optical response

    CSIR Research Space (South Africa)

    Kiarii, EM

    2017-08-01

    Full Text Available A first principles study of the Titania is done as used in photo-catalysis to generate charge carries. Models of titania, silica, graphene, epoxy graphene monoxide, single wall Carbon nanotubes and their respective layer were studied in order...

  10. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M.; Sharma, Pradeep

    2014-06-01

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m-2 is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  12. Visible-Light Degradation of Dyes and Phenols over Mesoporous Titania Prepared by Using Anthocyanin from Red Radish as Template

    Directory of Open Access Journals (Sweden)

    Zhiying Yan

    2014-01-01

    Full Text Available Heterogeneous photocatalysis is able to operate effectively to eliminate organic compounds from wastewater in the presence of semiconductor photocatalyst and a light source. Although photosensitization of titania by organic dyes is one of the conventional ways for visible-light utilization of titania, previous studies have not yet addressed the use of natural food coloring agents as templates in the synthesis of mesostructured materials, let alone the simultaneous achievement of highly crystalline mesoscopic framework and visible-light photocatalytic activity. In this work, anthocyanin, a natural pigment from red radish was directly used as template in synthesis of highly crystalline mesoporous titania. The synthesized mesoporous titania samples were characterized by a combination of various physicochemical techniques, such as XRD, SEM, HRTEM, nitrogen adsorption/desorption, and diffuse reflectance UV-Vis. The prepared mesoporous titania photocatalyst exhibited significant activity under visible-light irradiation for the degradation of dyes and phenols due to its red shift of band-gap-absorption onset and visible-light response as a result of the incorporation of surface carbon species.

  13. Effect of cobalt doping and annealing on properties of titania thin films prepared by sol-gel process

    Science.gov (United States)

    Pärna, R.; Joost, U.; Nõmmiste, E.; Käämbre, T.; Kikas, A.; Kuusik, I.; Hirsimäki, M.; Kink, I.; Kisand, V.

    2011-05-01

    Undoped and cobalt doped titania (TiO 2) thin films have been prepared on Si(1 0 0) monocrystal and quartz substrate using the sol-gel deposition method and annealed in air at 450, 550, 650, 750, 850, 950 and 1050 °C. Several experimental techniques (AFM, XRD, Raman spectroscopy, XRR, EDX, XPS, XAS, UV-VIS spectroscopy) have been used to characterize these films. Further more the degree of light induced hydrophilicity was estimated by measuring the contact angle of a water droplet on the film. Increase of the annealing temperature and in smaller degree also cobalt doping predispose titania crystallite growth. The rutile phase was detected at lower temperatures in the cobalt doped films than in the undoped titania films. Cobalt in the cobalt doped TiO 2 was seen to be in Co 2+ oxidation state, mainly in CoTiO 3 phase when films were annealed at temperatures higher than 650 °C. Cobalt compounds segregated into the sub-surface region and to the surface of the titania, where they formed islands. Cobalt doping red-shifted the fundamental absorption edge further into the visible range, however it did not enhance the light induced hydrophilicity of the thin film surface as compared to the undoped titania thin films.

  14. Self-Exfoliated Metal-Organic Nanosheets through Hydrolytic Unfolding of Metal-Organic Polyhedra.

    Science.gov (United States)

    Garai, Bikash; Mallick, Arijit; Das, Anuja; Mukherjee, Rabibrata; Banerjee, Rahul

    2017-05-29

    Few-layers thick metal-organic nanosheets have been synthesized using water-assisted solid-state transformation through a combined top-down and bottom-up approach. The metal-organic polyhedra (MOPs) convert into metal-organic frameworks (MOFs) which subsequently self-exfoliate into few-layered metal-organic nanosheets. These MOP crystals experience a hydrophobicity gradient with the inner surface during contact with water because of the existence of hydrophobic spikes on their outer surface. When the amount of water available for interaction is higher, the resultant layers are not stacked to form bulk materials; instead few-layered nanosheets with high uniformity were obtained in high yield. The phenomenon has resulted high yield production of uniformly distributed layered metal-organic nanosheets from three different MOPs, showing its general adaptability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chirality-dependent anisotropic elastic properties of a monolayer graphene nanosheet.

    Science.gov (United States)

    Guo, Jian-Gang; Zhou, Li-Jun; Kang, Yi-Lan

    2012-04-01

    An analytical approach is presented to predict the elastic properties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized to simulate the stretching and angle variation of carbon-carbon bond, respectively. The constitutive equation of the graphene nanosheet is derived by using the strain energy density, and the analytical formulations for nonzero elastic constants are obtained. The in-plane elastic properties of the monolayer graphene nanosheet are proved to be anisotropic. In addition, Young's moduli, Poisson's ratios and shear modulus of the monolayer graphene nanosheet are calculated according to the force constants derived from Morse potential and AMBER force field, respectively, and they were proved to be chirality-dependent. The comparison with experimental results shows a very agreement.

  16. Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation.

    Science.gov (United States)

    Kim, Kwon-Ho; Kumar, Brijesh; Lee, Keun Young; Park, Hyun-Kyu; Lee, Ju-Hyuck; Lee, Hyun Hwi; Jun, Hoin; Lee, Dongyun; Kim, Sang-Woo

    2013-01-01

    Direct current (DC) piezoelectric power generator is promising for the miniaturization of a power package and self-powering of nanorobots and body-implanted devices. Hence, we report the first use of two-dimensional (2D) zinc oxide (ZnO) nanostructure and an anionic nanoclay layer to generate piezoelectric DC output power. The device, made from 2D nanosheets and an anionic nanoclay layer heterojunction, has potential to be the smallest size power package, and could be used to charge wireless nano/micro scale systems without the use of rectifier circuits to convert alternating current into DC to store the generated power. The combined effect of buckling behaviour of the ZnO nanosheets, a self-formed anionic nanoclay layer, and coupled semiconducting and piezoelectric properties of ZnO nanosheets contributes to efficient DC power generation. The networked ZnO nanosheets proved to be structurally stable under huge external mechanical loads.

  17. Ultrathin 2D Zirconium Metal-Organic Framework Nanosheets: Preparation and Application in Photocatalysis.

    Science.gov (United States)

    He, Ting; Ni, Bing; Zhang, Simin; Gong, Yue; Wang, Haiqing; Gu, Lin; Zhuang, Jing; Hu, Wenping; Wang, Xun

    2018-03-13

    Synthesizing ultrathin 2D metal-organic framework nanosheets in high yields has received increasing research interest but remains a great challenge. In this work, ultrathin zirconium-porphyrinic metal-organic framework (MOF) nanosheets with thickness down to ≈1.5 nm are synthesized through a pseudoassembly-disassembly strategy. Owing to the their unique properties originating from their ultrathin thickness and highly exposed active sites, the as-prepared ultrathin nanosheets exhibit far superior photocatalysis performance compared to the corresponding bulk MOF. This work highlights new opportunities in designing ultrathin MOF nanosheets and paves the way to expand the potential applications of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.

    Science.gov (United States)

    Voiry, Damien; Salehi, Maryam; Silva, Rafael; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Shenoy, Vivek B; Eda, Goki; Chhowalla, Manish

    2013-01-01

    We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low Tafel slope of 40 mV/dec. By partially oxidizing MoS2, we found that the activity of 2H MoS2 is significantly reduced after oxidation, consistent with edge oxidation. On the other hand, 1T MoS2 remains unaffected after oxidation, suggesting that edges of the nanosheets are not the main active sites. The importance of electrical conductivity of the two phases on the hydrogen evolution reaction activity has been further confirmed by using carbon nanotubes to increase the conductivity of 2H MoS2.

  19. Anion vacancy-mediated ferromagnetism in atomic-thick Ni3N nanosheets

    Science.gov (United States)

    Xia, Baorui; Wang, Tongtong; Chi, Xiao; Yu, Xiaojiang; Liu, Peitao; Zhang, Jingyan; Xi, Shibo; Du, Yonghua; Gao, Daqiang

    2017-12-01

    Realizing spin and electronic behavior of two-dimensional ultrathin nanosheets is significant to construct next generation nanoelectronics. Here, atomic-thick Ni3N nanosheets with clear room temperature ferromagnetism and high saturation magnetization (1.2 emu/g) are reported. X-ray magnetic circular dichroism and first-principles calculation results give the evidence that the observed intrinsic ferromagnetism in Ni3N nanosheets originates from the surface N-deficiency, where alignments of localized large magnetic moments of Ni in the vicinity of the N defect can be aligned parallel to activate macroscopic ferromagnetism. These ultrathin Ni3N nanosheets show great potential application in next-generation electron devices.

  20. Phosphorus doped graphitic carbon nitride nanosheets as fluorescence probe for the detection of baicalein.

    Science.gov (United States)

    Wang, Xuan; Li, Xuebing; Chen, Wenfang; Wang, Rulin; Bian, Wei; Choi, Martin M F

    2018-02-24

    Phosphorus doped graphitic carbon nitride (P-g-C 3 N 4 ) nanosheets were synthesized by calcination. P-g-C 3 N 4 nanosheets were characterized by XRD, XPS, TEM, fluorescence, ultraviolet-visible absorption and Fourier transform infrared spectroscopy. The fluorescence of the P-g-C 3 N 4 nanosheets was gradually quenched with the increase in the concentration of baicalein at room temperature. The proposed probe was used for the determination of baicalein in the concentration 2.0-30μM with a detection limit of 53nM. The quenching mechanism was discussed. The P-g-C 3 N 4 nanosheets have been successfully applied for effective and selective detection of baicalein in human urine samples and blood samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hydrodynamic transformation of a freestanding polymer nanosheet induced by a thermoresponsive surface.

    Science.gov (United States)

    Fujie, Toshinori; Park, Jin Young; Murata, Atsushi; Estillore, Nicel C; Tria, Maria Celeste R; Takeoka, Shinji; Advincula, Rigoberto C

    2009-07-01

    Freestanding quasi-two-dimensional ultrathin films (e.g., 41 nm thick polymer nanosheets) were produced, on which stimuli-responsive 47 nm thick polymer brushes were constructed by atom transfer radical polymerization (ATRP) of poly(N-isopropylacrylamide). The resulting surfaces of the multilayered polysaccharide ultrathin films were evaluated by ellipsometry, IR imaging, in situ variable-temperature atomic force microscopy (AFM), and contact angle measurements. The morphological transformation of the freestanding polymer nanosheet bearing thermoresponsive polymer brushes was observed macroscopically through reversible structural color changes at the air-water interface. The dynamic shape change of the nanosheet was also monitored with the addition of a surfactant such as sodium n-dodecylsulfate to reduce the hydrophobicity of the surface. It was then demonstrated that the highly flexible freestanding polymer nanosheet is capable of acting as a unique platform for inducing stimuli-responsive behavior in nanomaterials.

  2. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  3. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  4. Gold Nanoparticles on Layered Double Hydroxide Nanosheets and Its Electrocatalysis for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hye Ran; Lee, Jong Hyeon [The Catholic University of Korea, Bucheon (Korea, Republic of); Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, Bucheon (Korea, Republic of)

    2016-03-15

    We developed a new way to form the well-defined nanocomposite of Au NPs and exfoliated LDH nanosheet by in situ chemical reduction with NaBH{sub 4}. The optical and structural studies indicate that the Au NPs are highly dispersed and immobilized on the surface of LDH nanosheets. The Au/LDH nanosheet exhibited an excellent electrocatalysis toward glucose oxidation reaction. The results strongly demonstrate that the nanoscopic natures and dense positive charges of LDH nanosheet effectively stabilized the Au NPs to maintain their inherent properties during the synthesis and the electrocatalysis. The use of the double hydroxide nanosheets as nanoscopic support materials for the transition-metal NPs will dramatically improve their functionalities in heterogeneous catalysis. Recently, two-dimensional nanosheet of exfoliated layered double hydroxide (LDH) has emerged as a new type of solid support to immobilize the diverse metal NPs because of the large metal hydroxide area, good biochemical stability, and highly charged positive potential of 1- to 2-nm thick LDH layers. LDHs consist of a continuous stack of positively charged metal hydroxide layers with counter anions and water molecules placed in interlayer spaces.

  5. Ultrathin MoO2 nanosheets with good thermal stability and high conductivity

    Directory of Open Access Journals (Sweden)

    Enqiang Pu

    2017-02-01

    Full Text Available Exploration and development of new two-dimensional (2D materials with good stability and remarkable physical properties have become the research hotspots. We report for the first time the monodispersity of ultrathin MoO2 nanosheets have been synthesized through an improved chemical vapor deposition (CVD method using only molybdenum trioxide as precursor. The grown MoO2 nanosheets have an average thickness of ∼ 5 to 10 nm and exhibit good crystal-quality. Temperature-dependent Raman spectra show that the ultrathin MoO2 nanosheets have high thermal stability up to 503 K. In addition, the first order temperature coefficients of the MoO2 characteristic Raman modes O1–Mo and O2–Mo were firstly found to be -1.91×10-2 and -3.94×10-2 cm−1/K, respectively. Two-probe electrical measurements show that the as-fabricated ultrathin MoO2 nanosheets devices preserve a high electrical conductivity in ambient conditions, reaching up to 200 - 475 S/cm. The exceptionally high conductivity of individual MoO2 nanosheet is ascribed to the unique crystal structure. Our results demonstrate that the ultrathin MoO2 nanosheets show great potential applications in constructing new integrated electronic devices and systems.

  6. Ferroelectric, dielectric and electrical behavior of two-dimensional lead sulphide nanosheets

    Science.gov (United States)

    Afsar, M. F.; Jamil, Arifa; Rafiq, M. A.

    2017-12-01

    Two-dimensional pure cubic phase lead sulphide (PbS) nanosheets were synthesized using solid state reaction method at ambient pressure and low temperature ~190 °C. From 210 K-300 K, small polaron hopping conduction mechanism was found to be dominant in PbS nanosheets at frequencies 20 Hz-2 MHz. High values of dielectric constant (~200) and electrical conductivity (of the order of 10-3 S m-1 at 300 K) of PbS nanosheets were extracted suggesting that it is a proficient material for capacitive storage devices. A high value of density of states of the order of 1032 eV-1 cm-3 was obtained for PbS nanosheets. The capacitance-voltage (CV) measurements of PbS nanosheets resulted in a stable butterfly loop due to switching of ferroelectric polarization at 300 K. The permittivity calculated at 0 V capacitance was ~150 and the dielectric loss remained below ~0.50. The polarization-voltage (QV) measurements showed a remnant polarization 23 µC cm-2 in PbS nanosheets. The leakage current density was below 0.5 mA cm-2 in the range  ±5 V.

  7. Ultrathin Bismuth Nanosheets as a Highly Efficient CO2 Reduction Electrocatalyst.

    Science.gov (United States)

    Su, Panpan; Xu, Wenbin; Qiu, Yanling; Zhang, Taotao; Li, Xianfeng; Zhang, Huamin

    2018-03-09

    Electrochemical reduction of CO 2 to value-added products is an important and challenging reaction for sustainable energy study. Herein, bismuth nanosheets with thickness of around 10 nm were prepared through the electrochemical reduction of Bi 3+ . Ultrathin Bi nanosheets with numerous low-coordination sites can efficiently reduce CO 2 to formate in aqueous solution. Within the potential range of -0.9 to -1.2 V vs. reversible hydrogen electrode (RHE), the faradaic efficiency of formate is over 90 %, outperforming many Bi catalysts. At -0.7 V, the Bi nanosheets exhibit much higher current for formate generation than that of bulk Bi, attributed to a high surface area and also modified intrinsic electronic properties brought about by the ultrathin structure. DFT calculations demonstrate that Bi nanosheets have much higher density of states at the Fermi level compared to bulk Bi, favoring improved CO 2 reduction on Bi nanosheets. At -1.0 V, Bi nanosheets exhibit high selectivity for formate and excellent stability during 5 h of electrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment

    International Nuclear Information System (INIS)

    Zhao, Junfeng; Tan, Yang; Su, Kang; Zhao, Junjie; Yang, Chen; Sang, Lingling; Lu, Hongbin; Chen, JianHua

    2015-01-01

    Highlights: • NiO nanosheets were synthesized via a facile homogeneous precipitation method. • The NiO nanosheets have a large surface area. • This preparation method was low-cost, simple equipments, easy preparation, short reaction time and better repeatability. • The product also showed a favourable ability to remove Cr(VI) and Congo red (CR) in water treatment. - Abstract: NiO nanosheets were successfully synthesized by a facile homogeneous precipitation method with the assistance of ethanol amine. The sample was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption techniques. The results demonstrated that the as-prepared product was cubic NiO nanosheets with a large surface area of 170.1 m 2 g −1 . Further, the as-prepared product was used to investigate its potential application for wastewater treatment. The maximum adsorption capacity for Cr(VI) and Congo red (CR) on NiO nanosheets has been determined using the Langmuir equation and found to reach up to 48.98 and 167.73 mg g −1 , respectively. It could be concluded that NiO nanosheets with special surface features had the potential as adsorbents for wastewater treatment

  9. Precisely tunable thickness of graphitic carbon nitride nanosheets for visible-light-driven photocatalytic hydrogen evolution.

    Science.gov (United States)

    Hong, Yuanzhi; Li, Changsheng; Li, Di; Fang, Zhenyuan; Luo, Bifu; Yan, Xu; Shen, Hongqiang; Mao, Baodong; Shi, Weidong

    2017-09-28

    Graphitic carbon nitride (GCN) nanosheets with unique physicochemical properties have received increasing attention in the area of photocatalysis, yet tunable thickness for the straightforward production of this graphite-like two-dimensional (2D) nanomaterial remains a challenge. In this work, GCN nanosheets with different thicknesses were firstly prepared by a direct calcination of melamine supramolecular aggregates (MSA) obtained from a hydrochloric acid (HCl)-induced hydrothermal assembly approach. The resultant nanosheets over nanometer scale thickness could be precisely controlled via simply adjusting the HCl concentration. Compared to the bulk GCN (BGCN), the thinner nanosheets possessed a high specific surface area, a large electronic-band structure, and fast charge separation ability. The thinnest nanosheets with a thickness of approximately 4 nm exhibited excellent visible-light-driven photocatalytic water splitting performance in hydrogen evolution (524 μmol h -1 g -1 ), which is over 9-fold higher than the BGCN powder. This work provides a thickness-dependent strategy for the preparation of metal-free GCN nanosheets and develops a promising 2D photocatalyst for application in solar energy conversion.

  10. Sensing properties of monolayer borophane nanosheet towards alcohol vapors: A first-principles study.

    Science.gov (United States)

    Nagarajan, V; Chandiramouli, R

    2017-05-01

    The electronic properties of borophane nanosheet and adsorption behavior of three distinct alcohol vapors namely methanol, ethanol and 1-propanol on borophane nanosheet is studied using density functional theory method for the first time. The state-of-the-art provides insights on to the development of new two dimensional materials with the surface passivation on boron nanostructures. The density of states spectrum provides a clear perception on charge transfer upon adsorption of alcohol vapors on borophane nanosheets. The monolayer of borophane band gap widens upon adsorption of alcohol vapors, which can be used for the detection for volatile organic vapors. The adsorption properties of alcohol vapors on borophane base material are analyzed in terms of natural bond orbital, average energy gap variation, adsorption energy and energy gap. The most suitable adsorption sites of methanol, ethanol and 1-propanol molecules on borophane nanosheet are investigated in atomistic level. The adsorption of alcohol molecules on borophane nanosheet is found to be more favorable. The findings suggest that the monolayer borophane nanosheet can be utilized to detect the presence of alcohol vapors in the atmosphere. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 3D arrays of molybdenum sulphide nanosheets on Mo meshes: Efficient electrocatalysts for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Xu, Yan; Zheng, Chong; Wang, Sibo; Hou, Yidong

    2015-01-01

    3D arrays of molybdenum sulphide nanosheets on Mo mesh exhibited enhanced electro-catalytic activity for hydrogen evolution reaction. - Highlights: • 3D arrays of molybdenum sulphide nanosheets were obtained by a facile hydrothermal method. • The mesh structure could be beneficial to promote the electrolyte diffusion onto the electrode surface and thus promote the electron transfer. • 3D arrays of molybdenum sulphide nanosheets demonstrate an enhanced HER activity with a low onset overpotential of 120 mV and a Tafel slope of 46 mV/dec. - Abstract: Molybdenum sulphide has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER). Toward further improving its activity, tremendous efforts have been made to preferentially expose active edge sites of molybdenum sulphide-based catalysts by engineering their surface structure. In this work, 3D arrays of molybdenum sulphide nanosheets were synthesized by hydrothermal treatment of Mo mesh in aqueous thiourea solution. Their compositional, morphological and structural properties as well as electrocatalytic activities were investigated in details. The results reveal that 3D arrays of molybdenum sulphide nanosheets demonstrate an enhanced HER activity with a low onset overpotential of 120 mV and a Tafel slope of 46 mV/dec, which is superior to that of 2D arrays molybdenum sulphide nanosheets grown on Mo foil. The high activity for HER can be ascribed to the superstructure of the catalysts with a large fraction of edge sites and a high surface area

  12. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Science.gov (United States)

    Shu, Xia; Zheng, Hongmei; Xu, Guangqing; Zhao, Jiebo; Cui, Lihua; Cui, Jiewu; Qin, Yongqiang; Wang, Yan; Zhang, Yong; Wu, Yucheng

    2017-08-01

    We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu2O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm2 at the current density of 1.0 A/dm2, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  13. Photocatalysis of methylene blue contaminated water using titania fiber doped with silicon; Fotocatalise de aguas contaminadas com azul de metileno utilizando fibras de titania dopadas com silicio

    Energy Technology Data Exchange (ETDEWEB)

    Ugarteche, C.V.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Lab. de Materiais Ceramicos

    2009-07-01

    In this work, titania fibers doped with silicon were synthesized by electro spinning methodology, using titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone as precursors. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. The photo catalytic activity of the fibers in comparison with the standard TiO{sub 2} Degussa P25 was evaluated using a 20ppm methylene blue solution. The composition containing 30% of silicon kept the anatase phase stable until the heat treatment temperature of 800 deg C. In the other compositions there was a formation of the rutile phase, which is less photoactive. The compositions containing silicon were photo catalytic efficient and some of them were more active that the standard P25. (author)

  14. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    Science.gov (United States)

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  15. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  16. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst

    International Nuclear Information System (INIS)

    Chen Jiangyao; Li Guiying; He Zhigui; An Taicheng

    2011-01-01

    Highlights: → Adsorptive combined titania-montmorillonite-silica photocatalysts synthesized. → All catalysts had relatively high adsorption capacities of multinary VOCs. → All catalysts preferred to adsorb the VOCs with higher polarity. → CTMS80 can effectively photocatalytically remove VOCs of various components. - Abstract: A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO 2 particles with increasing of TiO 2 content, and anatase was the only crystalline phase with nano-scale TiO 2 particles. With increasing of the cation exchange capacity to TiO 2 molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene < ethyl acetate < ethanethiol, and increased with the increase of adsorption capacities for different pollutants of various components.

  17. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors.

    Science.gov (United States)

    Yun, Young Soo; Park, Min Hong; Hong, Sung Ju; Lee, Min Eui; Park, Yung Woo; Jin, Hyoung-Joon

    2015-02-18

    The nanostructure design of porous carbon-based electrode materials is key to improving the electrochemical performance of supercapacitors. In this study, hierarchically porous carbon nanosheets (HP-CNSs) were fabricated using waste coffee grounds by in situ carbonization and activation processes using KOH. Despite the simple synthesis process, the HP-CNSs had a high aspect ratio nanostructure (∼20 nm thickness to several micrometers in lateral size), a high specific surface area of 1945.7 m(2) g(-1), numerous heteroatoms, and good electrical transport properties, as well as hierarchically porous characteristics (0.5-10 nm in size). HP-CNS-based supercapacitors showed a specific energy of 35.4 Wh kg(-1) at 11250 W kg(-1) and of 23 Wh kg(-1) for a 3 s charge/discharge current rate corresponding to a specific power of 30000 W kg(-1). Additionally, the HP-CNS supercapacitors demonstrated good cyclic performance over 5000 cycles.

  18. Aging effects on vertical graphene nanosheets and their thermal stability

    Science.gov (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  19. A facile one-step method for synthesising a parallelogram-shaped single-crystalline ZnO nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Renyun, E-mail: renyun.zhang@miun.se; Hummelgård, Magnus; Olin, Håkan

    2014-05-01

    Graphical abstract: - Highlights: • A simple method to synthesise ZnO nanosheets is described. • Parallelogram-shaped ZnO nanosheets were obtained with single-crystalline structure. • A specific mechanism of the growth was suggested. - Abstract: ZnO nanosheets are found to be useful in many fields such as sensors and electronics. Non-uniform-shaped ZnO nanosheets are synthesised using several methods; moreover, uniformly shaped ones are less studied. Here, we report on a simple one-step method to synthesise parallelogram-shaped single-crystalline ZnO nanosheets. By controlling the reaction of Zn(NO{sub 3}){sub 2} and hexamethylenetetramine (HMT) in ethanol, average 30 nm-thick nanosheets with a high aspect ratio of 1:100 were obtained. The parallelogram angles were between 97° and 99°. Transmission electron microscopy (TEM) diffraction and X-ray diffraction (XRD) showed that the nanosheets were wurtzite-structured single-crystalline ZnO. Moreover, a growth mechanism of these parallelogram nanosheets is suggested based on the experimental results. These results suggest a new simple solution process to synthesise uniformly shaped ZnO nanosheets allowing large-scale production to be employed.

  20. Synthesis of fungus-like MoS2 nanosheets with ultrafast adsorption capacities toward organic dyes

    International Nuclear Information System (INIS)

    Song, HaoJie; You, Shengsheng; Jia, XiaoHua

    2015-01-01

    Fungus-like molybdenum disulfide (MoS 2 ) nanosheets with a thickness of a few nanometers have been successfully synthesized via one-pot hydrothermal method. The as-prepared MoS 2 nanosheets with a high surface area of 106.989 m 2 g -1 exhibited excellent wastewater treatment performance with high removal capacities toward organic dyes. In addition, the fungus-like MoS 2 nanosheets can absorb Congo red completely within 2 min. Successful access to high quality fungus-like MoS 2 nanosheets will make it possible for their potential application in catalysis and other fields. (orig.)

  1. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    International Nuclear Information System (INIS)

    Gao Deli; Yang Xuechang; Zhou Fei; Wu Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  2. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  3. Photochemical Properties of Precipitated Titania Aerosol Produced by Powdering of Crystal Rutile under Ambient Air

    Directory of Open Access Journals (Sweden)

    Valery Zakharenko

    2013-01-01

    Full Text Available It is shown that the quantum yields of oxygen photoadsorption and carbon dioxide photodesorption on TiO2 are significantly higher under illumination by quanta with energy from the surface absorption region of TiO2 when it is not produced by the traditional way, but from the rutile crystal. The magnitudes and spectral dependencies of the quantum yield of photoadsorption and photodesorption for TiO2 produced from a monocrystal are determined. A mechanism of a sharp increase of the titania photoadsorption activity in the surface absorption region is proposed.

  4. Preparation and characterization of Bismaleimide resin/titania nanocomposites via sol-gel process

    OpenAIRE

    Lu, Guotao; Huang, Ying

    2013-01-01

    Bismaleimide (BMI) resin/ titania nanocomposites were synthesized from allylated-phenolic modified bismaleimide resin and TiO2 via the sol-gel process of tetrabutyltitanate (Ti(OnBu)4, TBT). These nanocomposite materials were characterized by FT-IR, XRD, FE-SEM, TGA and DMA. It was found that the nano-scale TiO2 particles were formed in the AP-BMI resin matrix, and the average primary particle size of the dispersed phase in the nanocomposites was less than 100nm, but the particle aggregates w...

  5. Photovoltaic behaviour of titanyl phthalocyanine thin films and titania bilayer films

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Zachary, A. M.; Choi, Y.; Hanuš, J.; Toušek, J.; Toušková, J.; Cimrová, Věra; Slavinská, D.; Biederman, H.; Hanley, L.

    2008-01-01

    Roč. 268, č. 1 (2008), s. 57-60 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA MŠk(CZ) 1M06031 Grant - others:National Science Foundation(US) CHE0241425; GA MŠk(CZ) 1P05ME754 Institutional research plan: CEZ:AV0Z40500505 Keywords : conjugated polymers * photovoltaics * phthalocyanine * thin films * titania Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. SYNTHESIS OF MESOPOROUS TITANIA BY POTATO STARCH TEMPLATED SOL-GEL REACTIONS AND ITS CHARACTERIZATION

    OpenAIRE

    Budi, Canggih Setya; Kartini, Indriana; Rusdiarso, Bambang

    2010-01-01

    Mesoporous titania powders with high-order crystalline building blocks had been synthesized through the sol-gel process using potato starch gel template. Internal spongelike pore structure of starch gel template was generated by heating the starch granules at 95 °C in water solution and freezing the starch gel at -15 °C. The synthesis routes were performed by immersing the starch gel template for 4 days into the white colloidal solution of TiO2 nanoparticles, which were prepared by hydrolyzin...

  7. THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES

    Directory of Open Access Journals (Sweden)

    Sasan Otroj

    2011-12-01

    Full Text Available The self-flow characteristics and properties of high-alumina low-cement refractory castables added with nano-titania particles are investigated. For this reason, the reactive alumina in the castable composition is substituted by nano-titania powder in 0-1 %wt. range. The microstructures, phase composition, physical and mechanical properties of these refractory castables at different temperatures are studied. The results show that the addition of nano-titania particles has great effect on the self-flow characteristics, phase composition, physical and mechanical properties of these refractory castables. With increase of nano-titania particles in castable composition, the self-flow value and working time tend to decrease. With addition of 0.5 wt.% nano-titania in the castable composition, the mechanical strength of castable in all firing temperatures tends to increase. It is attributed to the formation of CA6 phase and enhanced ceramic bonding. Nano-titania particles can act as a nucleating agent for hibonite phase and decrease the formation temperature of hibonite. Because of perovskite phase formation, the addition of 1 wt.% nano-titania can decrease the mechanical strength of castable after firing.

  8. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics.

    Science.gov (United States)

    Dang, Rui; Song, Lingling; Dong, Wenjun; Li, Chaorong; Zhang, Xiaobo; Wang, Ge; Chen, Xiaobo

    2014-01-08

    Large-area Cu nanosheets are synthesized by a strategy of Cu nanocrystal self-assembly, and then aqueous conductive Cu nanosheet ink is successfully prepared for direct writing on the conductive circuits of flexible electronics. The Cu nanocrystals, as building blocks, self-assemble along the [111] direction and grow into large-area nanosheets approximately 30-100 μm in diameter and a few hundred nanometers in thickness. The laminar stackable patterns of the Cu nanosheet circuits increase the contact area of the Cu nanosheets and improve the stability of the conductor under stress, the result being that the Cu nanosheet circuits display excellent conductive performance during repeated folding and unfolding. Moreover, heterostructures of Ag nanoparticle-coated Cu nanosheets are created to improve the thermal stability of the nanosheet circuits at high temperatures.

  9. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zheng, Hongmei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Zhao, Jiebo [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Cui, Jiewu; Qin, Yongqiang; Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-08-01

    Graphical abstract: Current-time and potential-time curves of the copper foil anodization process, CV of copper substrate in anodization solution and SEM morphologies of anodization products on Cu substrates obtained at different time. - Highlights: • Copper oxides nanosheet arrays were achieved via anodization method. • The growth mechanisms of the copper anodization process were studied. • Photoelectrochemical performances of copper oxides NSAs were studied. - Abstract: We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu{sub 2}O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm{sup 2} at the current density of 1.0 A/dm{sup 2}, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  10. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  11. The Effect of Type and Concentration of Modifier in Supercritical Carbon Dioxide on Crystallization of Nanocrystalline Titania Thin Films.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Jandová, Věra; Dřínek, Vladislav; Daniš, E.; Matějová, L.

    2018-01-01

    Roč. 133, MAR 2018 (2018), s. 211-217 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin film * supercritical carbon dioxide * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.991, year: 2016

  12. Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities

    Energy Technology Data Exchange (ETDEWEB)

    Chanhom, Padtaraporn [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Charoenlap, Nisanart [Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Tomapatanaget, Boosayarat [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-01

    New types of colloidal multifunctional nanocomposites that combine superparamagnetic character and high photocatalytic activity were synthesized and investigated. The superparamagnetic nanocomposites composed of anatase titania, silica, and iron oxide nanoparticles (TSI) were synthesized using thermal decomposition method followed by microemulsion method, without calcination at high temperature. Different techniques including X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize and confirm the structure of the nanocomposites. These nanocomposites showed high photocatalytic activity when used in the photodegradation of methylene blue under irradiation with a black light lamp. Moreover, the nanocomposites exhibited high antibacterial properties. From our study, the nanocomposites can be useful in various applications such as removal of pollutants with readily separation from the environment using an external magnetic field. These composites could effectively photo-degrade the dye at least three cycles without regeneration. The effects of silica shell thickness on the photocatalytic activity was investigated, and the thickness of 6 nm of the silica interlayer is enough for the inhibition of electron translocation between titania and iron oxide nanoparticles and maintaining the efficiency of photocatalytic activity of titania nanoparticles. - Highlights: • New colloidal nanocomposites of iron oxide-silica-titania were prepared. • The nanocomposites exhibited high photocatalytic activity with magnetic response. • The effects of silica thickness on photocatalytic activity were investigated. • Bactericidal activity of the nanocomposites was demonstrated.

  13. Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.

    Science.gov (United States)

    Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco

    2015-12-15

    An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.

  14. Selective pervaporation of water through a non-selective microporous titania membrane by a dynamically induced molecular sieving mechanism

    NARCIS (Netherlands)

    Sekulic, J.; ten Elshof, Johan E.; Blank, David H.A.

    2005-01-01

    Pervaporation experiments were performed on microporous titania membranes using several binary liquids containing 2-20 wt % water. The membrane was nonselective in the separation of water from alcohols and p-dioxane but showed a remarkably high selectivity in the separation of water from ethylene

  15. Stable Titania Nanostructures on Stainless Steel Coronary Stent Surface for Enhanced Corrosion Resistance and Endothelialization.

    Science.gov (United States)

    Mohan, Chandini C; Cherian, Aleena Mary; Kurup, Sujish; Joseph, John; Nair, Manitha B; Vijayakumar, Maniyal; Nair, Shantikumar V; Menon, Deepthy

    2017-06-01

    Stainless steel (SS) coronary stents continue to present risk of in-stent restenosis that impact its long term safety and efficacy. The present work focuses on developing a drug-free and polymer-less surface on coronary stents by utilizing a titania (TiO 2 ) nanotexturing approach through hydrothermal processing, that will offer improved stent performance in vivo. Mechanically stable and durable nanotextured coatings are obtained on SS stents that also offer good corrosion resistance. In vitro vascular cell (endothelial and smooth muscle cells) studies on surface modified SS show preferential rapid endothelialization with enhanced nitric oxide production and reduce smooth muscle cell proliferation, in comparison to unmodified SS. In vivo evaluation of the nanotextured stents after subcutaneous implantation in rabbits show reduced irritability and minimal localized inflammatory response. These beneficial effects suggest that the stable, easily scalable titania nanosurface modification strategy on coronary stent surfaces can be a much cheaper alternative to drug eluting stents in addressing in-stent restenosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, characterisation and application of copper modified brookite titania photocatalyst activated by visible light.

    Science.gov (United States)

    Osei, Prince Bonsu; Lü, Xiaomeng; Xie, Jimin; Jiang, Deli; Chen, Min; Wei, Xiaojun

    2014-09-01

    Brookite titania nanomaterials modified with Copper Nanoparticles (NPs) Cu-TiO2 were prepared in this research. Hydrothermal method was used to prepare Brookite Titania whiles, copper NPs were loaded on its surface by consecutive ion adsorption and photoreduction. The photocatalyst was characterised by Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance Spectrum (UV-vis DRS) and Inductively Coupled Plasma-Atomic Emission spectroscopy (ICP-AES). The photocatalytic activity of the prepared composite was also determined by photodecolorisation of organic pollutants under visible light. Crystal Violet dye (CV) was used as a model organic pollutant. The optimum loading ratio of Cu/Ti which resulted in the best photodecolorisation efficiency was also determined. The results revealed that the sample Cu-TiO2 (Cu/Ti = 2% molar ratio) with copper particle size of 3 nm had the best photocatalytic decolorisation efficiency of 98% after 50 min of irradiation under visible light. The decolorisation efficiency of the sample Cu-TiO2 (2%) was also higher than that of commercial P25 (38%).

  17. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    Science.gov (United States)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  18. Molecular adsorption of hydrogen peroxide on N- and Fe-doped titania nanoclusters

    Science.gov (United States)

    Mohajeri, Afshan; Dashti, Nasimeh Lari

    2017-06-01

    Titanium dioxide (titania) nanoparticles have been extensively investigated for photocatalytic applications such as the decomposition and adsorption of pollutant and undesirable compound in air and waste water. In this context, the present article reports the molecular adsorption of hydrogen peroxide on the surface of doped titania clusters. Density functional theory calculations were performed to investigate the structures and electronic properties of two nanoscale (TiO2)n clusters (n = 5,6) modified by nitrogen and iron dopants. The relative stability of all possible N-doped and Fe-doped isomers has been compared with each other and with the parent cluster. It was found that the Fe-doped clusters are in general more stable than the N-doped counterparts. Moreover, after N/Fe doping an enhanced in the magnetization of the clusters is observed. In the second part, we have investigated different modes of H2O2 adsorption on the lowest-energy isomers of doped clusters. In almost all the cases, the adsorptions on the doped clusters are found to be less exothermic than on the corresponding undoped parent cluster. Our results highlight the essential role of charge transfer into the interaction between H2O2 and doped (TiO2)n clusters, especially for Fe-doped clusters.

  19. Study of silica (Titania) aerogels using MYSANS at MINT 1 MW TRIGA reactor

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Faridah Mohd Idris; Razali Kassim

    2006-01-01

    Small angle neutron scattering (SANS) technique has been widely employed in probing the microstructure of amorphous materials in the nano structure range; 1-100 nm. In this study, SANS was used to study the structure of the silica aerogels with and without titania nanoparticles. In aerogel system, the size range of 1 to 100 nm is of particular interest since the structural units, such as the pores and particles often fall in this range. Data collected was consistent with present models for the structure of silica aerogels, and an increase in mass fractal dimension from 2.3 to 2.6 for titania containing aerogels was observed. Preliminary SANS data was collected using the MYSANS instrument on the MINT PUSPATI TRIGA reactor. The neutron beam has a wavelength of 0.5 nm. The sample in powder form had dimensions 18x37mm 2 and 2 mm path length. The complete data collection consists of three measurements: sample scattering, empty sample holder scattering, and detector dark current. The scattered neutrons were detected by a 128 x 128 array area sensitive detector, proportional counter (PSD). The resulting 2D patterns were reduced to 1D profiles for further analysis. Plots of intensity, I(Q) versus momentum transfer, Q, were derived. For comparison of this work, the samples had been analysed using BATAN SANS facility. This work has demonstrated that SANS facility at MINT, mySANS, is capable to provide information of fractal dimension. (Author)

  20. Controlling Pu behavior on Titania: Implications for LEU Fission-Based Mo-99 Production

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Brown, M. Alex [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Heltemes, Thad A. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Vandegrift, George F. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States

    2017-09-29

    Molybdenum-99 is the parent isotope of the most widely used isotope, technetium-99m, in all diagnostic nuclear medicine procedures. Due to proliferation concerns associated with the use of highly enriched uranium (HEU), the preferred method of fission-based Mo-99 production uses low enriched uranium (LEU) targets. Using LEU versus HEU for Mo-99 production produces similar to 30 times more Pu-239, due to neutron capture on U-238 to produce Np-239, which ultimately decays to Pu-239 (t(1/2) = 24,110 yr). Argonne National Laboratory is supporting a potential US Mo-99 producer in their efforts to produce Mo-99 from an LEU solution. In order to mitigate the generation of large volumes of greater-than-class-C (GTCC) low level waste (Pu-239 concentrations greater than 1 nCi/g), we have focused our efforts on the separation chemistry of Pu and Mo with a titania sorbent in sulfate media. Results from batch and column experiments show that temperature and acid wash concentration can be used to control Pu behavior on titania.

  1. A novel titania/calcium silicate hydrate hierarchical coating on titanium.

    Science.gov (United States)

    Huang, Qianli; Liu, Xujie; Elkhooly, Tarek A; Zhang, Ranran; Shen, Zhijian; Feng, Qingling

    2015-10-01

    Recently, surface micron/nano-topographical modifications have attracted a great deal of attention because it is capable of mimicking the hierarchical characteristics of bone. In the current work, a novel titania/calcium silicate hydrate (CSH) bi-layer coating with hierarchical surface topography was successfully prepared on titanium substrate through micro-arc oxidation (MAO) and subsequent hydrothermal treatment (HT). MAO treatment could lead to a micron-scale topographical surface with numerous crater-like protuberances. The subsequent HT process enables the in situ nucleation and growth of CSH nanoplates on MAO-fabricated titania surface. The nucleation of CSH nanoplates is considered to follow a dissolution-precipitation mechanism. Compared to MAO-fabricated coating with single-scale surface topography, MAO-HT-fabricated coating with hierarchical surface topography exhibits enhanced hydrophilicity, fibronectin adsorption and initial MG-63 cell attachment. The process of cell-material interactions is considered to be triggered by surface properties of the coated layer and indirectly mediated by protein adsorption on coating surface. These results suggest that MAO-HT treatment is an efficient way to prepare coatings with hierarchical surface topography on titanium surface, which is essential for altering protein adsorption and initial cell attachment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst

    International Nuclear Information System (INIS)

    Zhu, T.; Li, J.; Jin, Y. Q.; Liang, Y. H.; Ma, G. D.

    2009-01-01

    Synergistic effect of atmospheric non-thermal plasma generated by dielectric barrier discharge and nano titania photo catalyst for benzene decomposition was tested. The paper indicated the effect of photo catalyst on removal efficiency of benzene, the compare of photo catalyst characteristic in different high temperatures by heat treatment, analysis of by-products. The results showed that the effect of degradation was visible by added photo catalyst in the plasma reactor. When concentration of benzene was 600 mg/m 3 and electric field strength was 10 kV/cm, the removal efficiency of benzene was increased up to 81 % without photo catalyst. At the same condition, the removal efficiency was increased to 15 % higher with photo catalyst. Nano titania crystal was anatase crystal in 450 d eg C heat treatment which is best for benzene removal. The plasma reactor packed with photo catalyst shows a better selectivity of carbon dioxide than that without photo catalyst. By-products are mostly carbon dioxide, water and a small quantity of carbon monoxide

  3. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhang; Xie, Chunlin; Luo, Fei; Li, Ping; Xiao, Xiufeng, E-mail: xfxiao@fjnu.edu.cn

    2015-01-01

    Highlights: • P25 nanoparticles decorated on titania nanotube arrays were prepared by hydrothermal treatment. • P25 nanoparticles were conducive to improve the loading effect of ibuprofen into nanotube arrays. • The diameters of the decorated nanotubes were decrease markedly which led to an effective and prolonged drug release. - Abstract: In this study, uniformly distributed layer of P25 nanoparticles (NPs) decorated on titania (TiO{sub 2}) nanotubes (TNTs) arrays was prepared in a teflon-lined stainless steel autoclave by the hydrothermal treatment. To investigate the influence of the P25 concentration, different concentrations of P25 NPs were added into the solution to obtain the optimal decorative effect. TNTs decorated with P25 (TNTs–P25) and TNTs without P25 decorated on its surface were loaded with ibuprofen (IBU) via vacuum drying and its release properties were investigated. The samples were characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that P25 NPs were successfully decorated on the surface of TNTs by hydrothermal method and the optimal concentration was found to be 7.5 × 10{sup −4} M. P25 NPs decorated on TNTs led to a significant increase in the specific surface area of TNTs which was conducive to improve the loading effect of IBU. Importantly, the diameters of the decorated nanotubes were reduced to 100 ± 10 nm and the increase in roughness led to an effective and prolonged drug release.

  4. Effect of titania content and biomimetic coating on the mechanical properties of the Y-TZP/TiO2 composite.

    Science.gov (United States)

    Miranda, Ranulfo Benedito de Paula; Miranda, Walter Gomes; Lazar, Dolores Ribeiro Ricci; Ussui, Valter; Marchi, Juliana; Cesar, Paulo Francisco

    2018-02-01

    To investigate the effect of titania addition (0, 10 and 30mol%) on the microstructure, relative density, Young's modulus (E), Poisson's ratio (υ), mechanical properties (flexural strength, σ f , and Weibull modulus, m) of a Y-TZP/TiO 2 composite. The effect of the presence of a biomimetic coating on the microstructure and mechanical properties was also evaluated. Y-TZP (3mol% of yttria) and Y-TZP/TiO 2 composite (10 or 30mol% of titania) were synthesized by co-precipitation. The powders were pressed and sintered at 1400°C/2h. The surfaces, with and without biomimetic coating, were characterized by X-ray diffraction analysis and scanning electron microscopy. The relative density was measured by the Archimedes' principle. E and υ were measured by ultrasonic pulse-echo method. For the mechanical properties the specimens (n=30 for each group) were tested in a universal testing machine. Titania addition increased the grain size of the composite and caused a significant decrease in the flexural strength (in MPa, control 815.4 a ; T10 455.7 b and T30 336.0 c ), E (in GPa, control 213.4 a ; T10 155.8 b and T30 134.0 c ) and relative density (control 99.0% a ; T10 94.4% c and T30 96.3% b ) of the Y-TZP/TiO 2 composite. The presence of 30% titania caused substantial increase in m and υ. Biomimetic coating did not affect the mechanical properties of the composite. The Y-TZP/TiO 2 composite coated with a layer of CaP has great potential to be used as implant material. Although addition of titania affected the properties of the composite, the application of a biomimetic coating did not jeopardize its reliability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis of crystalline Si-based nanosheets by extraction of Ca from CaSi2 in inositol hexakisphosphate solution

    Science.gov (United States)

    Meng, Xiang; Sasaki, Kenta; Sano, Koki; Yuan, Peiling; Tatsuoka, Hirokazu

    2017-05-01

    Crystalline Si-based nanosheets were successfully synthesized from CaSi2 by a simple soft chemical synthetic method in solution. By immersing CaSi2 powder or CaSi2/Si substrates in an inositol hexakisphosphate (IP6) solution, Ca atoms were extracted from the CaSi2 particles, then Si-based nanosheets were formed. The morphological, structural and optical properties of the Si-based nanosheets were investigated. It is noted that the thin Si-based nanosheets stacked with a void space formed bundle structures, and the nanosheets were easily exfoliated from the bundles to expose the surfaces corresponding to the Si{111} planes. Meanwhile, the surface of the Si nanosheets might be terminated by O, H, or OH bonds. The Si-based nanosheet bundles were then formed and directly rooted to the Si(111) substrates, and had a remarkably highly symmetrical morphology. This study demonstrated a simple method for preparing Si-based nanosheets, and electro- and photo-chemical applications would possibly be expected, such as in lithium ion batteries.

  6. Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation

    Science.gov (United States)

    Liscio, Andrea; Kouroupis-Agalou, Konstantinos; Diez Betriu, Xavier; Kovtun, Alessandro; Treossi, Emanuele; Pugno, Nicola Maria; De Luca, Giovanna; Giorgini, Loris; Palermo, Vincenzo

    2017-06-01

    2-dimensional (2D) nanosheets such as graphene, graphene oxide, boron nitride or transition metal dichalcogenides can be produced on a large scale by exfoliation techniques. The lateral shape of these 2D materials is typically considered random and irregular, and their average size is often estimated using techniques characterized by strong approximations or poor statistical significance. Here we measure in a quantitative, objective way the size and shape of 2D monoatomic nanosheets using a combination of optical, electronic and scanning probe techniques. We measure, one by one, the size and shape of thousands of sheets of graphene oxide as they undergo a standard ultrasonication treatment. Using automatic image processing and statistical modelling we identify two different fragmentation processes in 2D at the nanoscale, related to two populations of nanosheets described by gamma and exponential size distributions respectively. The two populations of sheets coexist during the fragmentation process, each one retaining its average size and shape. Our results explain the size reduction commonly observed in nanosheets upon sonication as an effect of changes in the respective weights of the two populations of nanosheets present in the material.

  7. Reduction of graphene oxide nanosheets by natural beta carotene and its potential use as supercapacitor electrode

    Directory of Open Access Journals (Sweden)

    Rubaiyi M. Zaid

    2015-07-01

    Full Text Available A green, non-toxic and eco-friendly approach for the reduction of graphene oxide (GO nanosheets using natural β-carotene is reported. The FTIR spectroscopy and thermogravimetric analyses reveal the oxygen scavenging property of β-carotene successfully removes oxygen functionalities on GO nanosheets. Complete GO reduction is achieved within 16 h with 10 mM β-carotene as confirmed by the UV spectroscopy results. The high resolution transmission electron microscopy images provide clear evidence for the formation of few layers of graphene nanosheets. Furthermore, the mechanism of GO reduction by β-carotene has been proposed in this study. The electrochemical testing shows good charge storage properties of β-carotene reduced GO (142 F/g at 10 mV/s; 149 F/g at 1 A/g in Na2SO4, with stable cycling (89% for up to 1000 cycles. The findings suggest the reduction of GO nanosheets by β-carotene is a suitable approach in producing graphene nanosheets for supercapacitor electrode.

  8. Structural analysis of inorganic semiconducting nanosheet colloids with small-angle neutron scattering and photofunctions

    International Nuclear Information System (INIS)

    Miyamoto, Nobuyoshi

    2009-01-01

    I built up an apparatus for in-situ measurements of small-angle neutron scattering (SANS) concurrently with UV-visible spectroscopy under UV-irradiation; by using this apparatus, I investigated the structural change during photoinduced electron transfer reactions in aqueous colloidal systems composed of semiconductor liquid crystalline nanosheets, clay mineral nanosheets, and an electron acceptor methylviologen. In the visible spectrum after UV-irradiation, broad band (600 - 800 nm) due to excited electrons in the niobate nanosheets and a peak (600 nm) due to methylviologen radical cations were observed, accompanied by a SANS signal (a peak at q = 0.095 nm -1 ). The aborbance and SANS intensity varied with irradiation time and intensity of UV-light. I suppose that the structure of the colloid was modified due to the change in nanosheet charges upon photo-induced electron transfer reaction. Similar photochemical reactions were also observed for the colloidal systems containing newly found liquid crystalline clay mineral nanosheets (fluorohectorite and fluortetrasilisic mica) in stead of hectorite. (author)

  9. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Incorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Jenny Lawler

    2016-12-01

    Full Text Available The minimization of the trade-off between the flux and the selectivity of membranes is a key area that researchers are continually working to optimise, particularly in the area of fabrication of novel membranes. Flux versus selectivity issues apply in many industrial applications of membranes, for example the unwanted diffusion of methanol in fuel cells, retention of valuable proteins in downstream processing of biopharmaceuticals, rejection of organic matter and micro-organisms in water treatment, or salt permeation in desalination. The incorporation of nanosheets within membrane structures can potentially lead to enhancements in such properties as the antifouling ability, hydrophilicy and permeability of membranes, with concomitant improvements in the flux/selectivity balance. Graphene nanosheets and derivatives such as graphene oxide and reduced graphene oxide have been investigated for this purpose, for example inclusion of nanosheets within the active layer of Reverse Osmosis or Nanofiltration membranes or the blending of nanosheets as fillers within Ultrafiltration membranes. This review summarizes the incorporation of graphene derivatives into polymeric membranes for water treatment with a focus on a number of industrial applications, including desalination and pharmaceutical removal, where enhancement of productivity and reduction in fouling characteristics have been afforded by appropriate incorporation of graphene derived nanosheets during membrane fabrication.

  11. Alcohol molecules adsorption on graphane nanosheets - A first-principles investigation

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-05-01

    The geometric structure, electronic and adsorption properties of methanol, ethanol and 1-propanol molecules on hydrogenated graphene (graphane) were investigated using first-principles calculations. The stability of graphane base material is confirmed using formation energy and phonon band structures. The adsorption of alcohol molecules on bare graphane and hydrogen vacant graphane nanosheet is found to be prominent and the selectivity of alcohol molecules can be achieved using bare or hydrogen vacant graphane nanosheet. Moreover, the interaction of alcohol molecules on bare and hydrogen vacant graphane nanosheets is studied using the adsorption energy, energy band gap variation, Bader charge transfer and average energy band gap variation. The adsorption energy ranges from -0.149 to -0.383 eV upon alcohol adsorption. The energy gap varies from 4.71 to 2.62 eV for bare graphane and from 4.02 to 3.60 eV for hydrogen vacant graphane nanosheets upon adsorption of alcohol molecules. The adsorption properties of alcohol molecules provide useful information for the possible application of graphane nanosheet as a base material for the detection of alcohol molecules.

  12. Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets

    Science.gov (United States)

    Marques, Thalles M. F.; Strayer, Megan E.; Ghosh, Anupama; Silva, Alexandre; Ferreira, Odair P.; Fujisawa, Kazunori; Alves da Cunha, Jose R.; Abreu, Guilherme J. P.; Terrones, Mauricio; Mallouk, Thomas E.; Viana, Bartolomeu C.

    2017-12-01

    Hexaniobate nanosheets derived from the parent compound K4Nb6O17 have been decorated with CeO2 nanoparticles by ion exchange with aqueous cerium (IV) solution. Very homogeneous CeO2 nanoparticle decoration of the hexaniobate sheets can be achieved by this method and the resulting composites may absorb visible light. HRTEM images show that ∼3.0 nm diameter CeO2 nanoparticles adhere to hexaniobate nanosheets that are exfoliated and then restacked prior to Ce deposition. The interfacial interaction between CeO2 nanoparticles and nanosheets would be due to an electrostatic attraction mechanism. Raman and XRD measurements have given strong evidence that CeO2 nanoparticles have fluorite structure. EDS, FTIR and XPS results suggest almost complete exchange of TBA+ and K+ by Ce4+. Cerium ion exchange on the acid exchanged parent compound, H2.9K1.1Nb6O17, revealed that the extent of Ce ion exchange is much greater in case of nanosheets, which may be rationalized by the larger surface area available after exfoliation. XPS measurements show that the ratio of Ce4+/Ce3+ is around 4.4, in agreement with the formation of fluorite structure (CeO2). Thus, these CeO2 nanoparticle/nanosheet composites may be useful for catalytic processes.

  13. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy

    Science.gov (United States)

    Shah, Pratikkumar; Narayanan, Tharangattu N.; Li, Chen-Zhong; Alwarappan, Subbiah

    2015-08-01

    Transition metal dichalgogenides such as MoS2 have recently emerged as hot two-dimensional (2D) materials due to their superior electronic and catalytic properties. Recently, we have reported the usefulness of MoS2 nanosheets toward the electrochemical detection of neurotransmitters and glucose (Narayanan et al 2014 Nanotechnology 25 335702). Furthermore, there are reports available in the literature that demonstrate the usefulness of MoS2 nanosheets for biosensing and energy storage applications (Zhu et al 2013 J. Am. Chem. Soc. 135 5998-6001 Pumera and Loo 2014 Trends Anal. Chem. 61 49-53 Lee et al 2014 Sci. Rep. 4 7352; Stephenson et al 2014 Energy Environ. Sci. 7 209-31). Understanding the cytotoxic effect of any material is very important prior to employing them for any in vivo biological applications such as implantable sensors, chips, or carriers for drug delivery and cell imaging purposes. Herein, we report the cytotoxicity of the MoS2 nanosheets based on the cytotoxic assay results and electrical impedance analysis using rat pheochromocytoma cells (PC12) and rat adrenal medulla endothelial cells (RAMEC). Our results indicated that the MoS2 nanosheets synthesized in our work are safe 2D nanosheets for futuristic biomedical applications.

  14. Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects.

    Science.gov (United States)

    Huang, Kuo-Chin; Yano, Fumiko; Murahashi, Yasutaka; Takano, Shuta; Kitaura, Yoshiaki; Chang, Song Ho; Soma, Kazuhito; Ueng, Steve W N; Tanaka, Sakae; Ishihara, Kazuhiko; Okamura, Yosuke; Moro, Toru; Saito, Taku

    2017-09-01

    To overcome serious clinical problems caused by large bone defects, various approaches to bone regeneration have been researched, including tissue engineering, biomaterials, stem cells and drug screening. Previously, we developed a free-standing biodegradable polymer nanosheet composed of poly(L-lactic acid) (PLLA) using a simple fabrication process consisting of spin-coating and peeling techniques. Here, we loaded recombinant human bone morphogenetic protein-2 (rhBMP-2) between two 60-nm-thick PLLA nanosheets, and investigated these sandwich-type nanosheets in bone regeneration applications. The PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. Moreover, we implanted the sandwich-type nanosheets with or without rhBMP-2 into critical-sized defects in mouse calvariae. Bone regeneration was evident 4weeks after implantation, and the size and robustness of the regenerated bone had increased by 8weeks after implantation in mice implanted with the rhBMP-2-loaded nanosheets, whereas no significant bone formation occurred over a period of 20weeks in mice implanted with blank nanosheets. The PLLA nanosheets loaded with rhBMP-2 may be useful in bone regenerative medicine; furthermore, the sandwich-type PLLA nanosheet structure may potentially be applied as a potent prolonged sustained-release carrier of other molecules or drugs. Here we describe sandwich-type poly(L-lactic acid) (PLLA) nanosheets loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a novel method for bone regeneration. Biodegradable 60-nm-thick PLLA nanosheets display strong adhesion without any adhesive agent. The sandwich-type PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. The nanosheets with rhBMP-2 markedly enhanced bone regeneration when they were implanted into critical-sized defects in mouse calvariae. In addition to their application for bone regeneration, PLLA

  15. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets.

    Science.gov (United States)

    Li, Hai; Wu, Jumiati; Yin, Zongyou; Zhang, Hua

    2014-04-15

    Although great progress has been achieved in the study of graphene, the small current ON/OFF ratio in graphene-based field-effect transistors (FETs) limits its application in the fields of conventional transistors or logic circuits for low-power electronic switching. Recently, layered transition metal dichalcogenide (TMD) materials, especially MoS2, have attracted increasing attention. In contrast to its bulk material with an indirect band gap, a single-layer (1L) MoS2 nanosheet is a semiconductor with a direct band gap of ~1.8 eV, which makes it a promising candidate for optoelectronic applications due to the enhancement of photoluminescence and high current ON/OFF ratio. Compared with TMD nanosheets prepared by chemical vapor deposition and liquid exfoliation, mechanically exfoliated ones possess pristine, clean, and high-quality structures, which are suitable for the fundamental study and potential applications based on their intrinsic thickness-dependent properties. In this Account, we summarize our recent research on the preparation, characterization, and applications of 1L and multilayer MoS2 and WSe2 nanosheets produced by mechanical exfoliation. During the preparation of nanosheets, we proposed a simple optical identification method to distinguish 1L and multilayer MoS2 and WSe2 nanosheets on a Si substrate coated with 90 and 300 nm SiO2. In addition, we used Raman spectroscopy to characterize mechanically exfoliated 1L and multilayer WSe2 nanosheets. For the first time, a new Raman peak at 308 cm(-1) was observed in the spectra of WSe2 nanosheets except for the 1L WSe2 nanosheet. Importantly, we found that the 1L WSe2 nanosheet is very sensitive to the laser power during characterization. The high power laser-induced local oxidation of WSe2 nanosheets and single crystals was monitored by Raman spectroscopy and atomic force microscopy (AFM). Hexagonal and monoclinic structured WO3 thin films were obtained from the local oxidization of single- to triple

  16. Atomically Dispersed Au-(OH)x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria [Tufts; (ORNL)

    2013-03-27

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au–O–TiOx sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this “excess” gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  17. Solution Growth of Two-Dimensional Bi2Se3 Nanosheets for Two-Color All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Xinghua Wu

    2017-11-01

    Full Text Available Two-dimensional Bi2Se3 nanosheets with hexagonal shape are synthesized by a solution synthetic route. The Bi2Se3 nanosheets are 120 nm in edge width and 7 nm in thickness. The size of the Bi2Se3 nanosheets can be controlled by choosing different kinds of reducing agents including hydroxylamine and ethylenediamine. Subsequently, we demonstrate a configuration of two-color all-optical switching based on plasma channels effect using the as-synthesized Bi2Se3 nanosheets as an optical media. The signal light can be modulated as two states including dot and ring shape by changing the intensity of control light. The modulated signal light exhibits excellent spatial propagation properties. As a type of interesting optical material, ultrathin two-dimensional Bi2Se3 nanosheets might provide an effective option for photoelectric applications.

  18. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    International Nuclear Information System (INIS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-01-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO 4 ) solution (Process 1), and ethylene glycol (EG) mixture with HClO 4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m 2 g −1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube

  19. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Highfield, James, E-mail: James_Highfield@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Pehkonen, Simo O. [Chemical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi (United Arab Emirates); Pichat, Pierre [Photocatalyse et Environnement, CNRS/Ecole Centrale de Lyon (STMS), 69134 Ecully Cedex (France); Schreyer, Martin K. [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Zhong, E-mail: aszchen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of

  20. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    2017-05-15

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract

  1. Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte

    Science.gov (United States)

    Ghosh, Subrata; Sahoo, Gopinath; Polaki, S. R.; Krishna, Nanda Gopala; Kamruddin, M.; Mathews, Tom

    2017-12-01

    Supercapacitors are becoming the workhorse for emerging energy storage applications due to their higher power density and superior cycle life compared to conventional batteries. The performance of supercapacitors depends on the electrode material, type of electrolyte, and interaction between them. Owing to the beneficial interconnected porous structure with multiple conducting channels, vertical graphene nanosheets (VGN) have proved to be leading supercapacitor electrode materials. Herein, we demonstrate a novel approach based on the combination of surface activation and a new organo-aqueous hybrid electrolyte, tetraethylammonium tetrafluoroborate in H2SO4, to achieve significant enhancement in supercapacitor performance of VGN. As-synthesized VGN exhibits an excellent supercapacitance of 0.64 mF/cm2 in H2SO4. However, identification of a novel electrolyte for performance enhancement is the subject of current research. The present manuscript demonstrates the potential of the hybrid electrolyte in enhancing the areal capacitance (1.99 mF/cm2) with excellent retention (only 5.4% loss after 5000 cycles) and Coulombic efficiency (93.1%). In addition, a five-fold enhancement in the capacitance of VGNs (0.64 to 3.31 mF/cm2) with a reduced internal resistance is achieved by the combination of KOH activation and the hybrid electrolyte.

  2. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications.

    Science.gov (United States)

    Xiong, Mengyi; Rong, Qiming; Meng, Hong-Min; Zhang, Xiao-Bing

    2017-03-15

    Two-dimensional graphitic carbon nitride nanosheets (CNNSs) with planar graphene-like structure have stimulated increasingly research interest in recent years due to their unique physicochemical properties. CNNSs possess superior stability, high fluorescence quantum yield, low-toxicity, excellent biocompatibility, unique electroluminescent and photoelectrochemical properties, which make them appropriate candidates for biosensing. In this review, we first introduce the preparation and unique properties of CNNSs, with emphasis on their superior properties for biosensing. Then, recent advances of CNNSs in photoelectrochemical biosensing, electrochemiluminescence biosensing and fluorescence biosensing are highlighted. An additional attention is paid to the marriage of CNNSs and nucleic acids, which exhibits great potentials in both biosensing and intracellular imaging. Finally, current challenges and opportunities of this 2D material are outlined. Inspired by the unique properties of CNNSs and their advantages in biological applications, we expect that more attention will be drawn to this promising 2D material and extensive applications can be found in bioanalysis and diseases diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  4. Graphene nanosheet-induced toughening of yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jianan; Chen, Yao; Huang, Qiqi [Soochow University, School of Mechanical and Electric Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China)

    2017-01-15

    Graphene nanosheet (GNS)-reinforced yttria-stabilized tetragonal zirconia polycrystals (TZP) were synthesized using spark plasma sintering (SPS), and the influences of the added GNSs on microstructure evolution and the microscopic mechanical properties of the sintered composites were investigated. Raman spectroscopy and microstructure observation corroborated that these added GNSs, which can survive the harsh SPS processing condition, homogeneously distribute in the matrix of all composites to hinder significantly the grain growth. In comparison with the monolithic TZP, the indentation fracture toughness of a GNS/TZP composite reaches maximum value and increases by up to ∝36% (from ∝4.1 to ∝5.6 MPa m{sup 0.5}) even at 0.5% weight fraction, GNS pullout, crack bridging, crack deflection, and crack branching are responsible for the increased fracture toughness. The computed energy dissipation by GNS pullout decreases with increasing the number of graphene layers due to weak bonding between them, and therefore, graphene agglomeration would impair toughening effect. Moreover, scratch studies suggest that GNS/TZP composites exhibit improved scratch resistance due to the fact that GNSs are promising reinforcing and lubricating nanofillers in ceramic composites. (orig.)

  5. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  6. Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates

    Directory of Open Access Journals (Sweden)

    A. P. Dral

    2015-05-01

    Full Text Available An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO3, SrRuO3, and BiFeO3 films were grown on Ca2Nb3O10 nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexible substrate was accomplished via acid etching.

  7. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Wang Bei; Park, Jinsoo; Wang Chengyin; Ahn, Hyojun; Wang, Guoxiu

    2010-01-01

    Mn 3 O 4 /graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO 2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn 3 O 4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn 3 O 4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn 3 O 4 /graphene nanocomposites exhibited a high specific capacitance of 175 F g -1 in 1 M Na 2 SO 4 electrolyte and 256 F g -1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn 3 O 4 /graphene nanocomposites could be ascribed to both electrochemical contributions of Mn 3 O 4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  8. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage

    Science.gov (United States)

    Peng, Lele; Xiong, Pan; Ma, Lu; Yuan, Yifei; Zhu, Yue; Chen, Dahong; Luo, Xiangyi; Lu, Jun; Amine, Khalil; Yu, Guihua

    2017-04-01

    Transition metal oxide nanomaterials are promising electrodes for alkali-ion batteries owing to their distinct reaction mechanism, abundant active sites and shortened ion diffusion distance. However, detailed conversion reaction processes in terms of the oxidation state evolution and chemical/mechanical stability of the electrodes are still poorly understood. Herein we explore a general synthetic strategy for versatile synthesis of various holey transition metal oxide nanosheets with adjustable hole sizes that enable greatly enhanced alkali-ion storage properties. We employ in-situ transmission electron microscopy and operando X-ray absorption structures to study the mechanical properties, morphology evolution and oxidation state changes during electrochemical processes. We find that these holey oxide nanosheets exhibit strong mechanical stability inherited from graphene oxide, displaying minimal structural changes during lithiation/delithiation processes. These holey oxide nanosheets represent a promising material platform for in-situ probing the electrochemical processes, and could open up opportunities in many energy storage and conversion systems.

  9. Cascade energy transfer and tunable emission from nanosheet hybrids: locating acceptor molecules through chiral doping.

    Science.gov (United States)

    Goudappagouda; Wakchaure, Vivek Chandrakant; Ranjeesh, Kayaramkodath Chandran; Abhai, Chalona Antony Ralph; Babu, Sukumaran Santhosh

    2017-06-27

    Light harvesting donor-acceptor assemblies are indispensable to efficiently tap photons. In an attempt to improve the light harvesting efficiency of an acceptor doped assembly, we design and synthesize a donor-acceptor-donor triad which exhibits an exceptional intramolecular energy transfer with excellent efficiency. Moreover, a facile cascade energy transfer (energy funnelling) is observed in the presence of a series of second acceptors (63-91% efficiency) with tunable emission colours. Self-assembled nanosheets formed by the triad in the presence of acceptors exhibit cascade energy transfer assisted tunable emission. In addition, use of chiral acceptors induces chirality to the triad and results in the formation of chiral nanosheets along with cascade energy transfer. Here chiral induction, nanosheet formation and cascade energy transfer in the presence of chiral acceptors are used as tools to probe the intercalation of acceptor molecules in the donor scaffold.

  10. Bent silica nanosheets directed from crystalline templates controlled by proton donors

    International Nuclear Information System (INIS)

    Matsukizono, Hiroyuki; Jin, Ren-Hua

    2011-01-01

    Linear poly(ethyleneimine) (LPEI) is easily crystallizable with the formation of various morphologies in the aqueous medium when its hot solution cooled down to room temperature. Herein, we prepared a series of crystalline precipitates of LPEI grown in the presence of proton donating compounds such as Tris–HCl, tartaric acid, amino acids, and used the precipitates in directing silica deposition. Since the proton donating compounds can mediate the pH with donating the proton to LPEI, the crystallization of LPEI evidently depended on the concentrations of the proton donating compounds. It was found that the precipitates grown in the conditions of the pH ranged 8.2–8.5 directed well-controlled bent nanosheet of silica/LPEI composites. The bent nanosheet is constructed by multi-layered structures with a little slippage between layers. The bent nanosheet silica has slit-like pore with ca. 10 nm width.

  11. Hierarchical MnO2 nanosheets synthesized via electrodeposition-hydrothermal method for supercapacitor electrodes

    Science.gov (United States)

    Zheng, Dongdong; Qiang, Yujie; Xu, Shenying; Li, Wenpo; Yu, Shanshan; Zhang, Shengtao

    2017-02-01

    Metal oxides have emerged as one kind of important supercapacitor electrode materials. Herein, we report hierarchical MnO2 nanosheets prepared of indium tin oxide (ITO) coated glass substrates via a hybrid two-step protocol, including a cathodic electrodeposition technique and a hydrothermal process. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), and transmission electron microscope (TEM). SEM and TEM images show that the as-synthesized MnO2 nanosheets are hierarchical and porous, which could increase the active surface and short paths for fast ion diffusion. The results of nitrogen adsorption-desorption analysis indicate that the BET surface area of the MnO2 nanosheets is 53.031 m2 g-1. Furthermore, the electrochemical properties of the MnO2 are elucidated by cyclic voltammograms (CV), galvanostatic charge-discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS) in 0.1 M Na2SO4 electrolyte. The electrochemical results demonstrate that the as-grown MnO2 nanosheet exhibits an excellent specific capacitance of 335 F g-1 at 0.5 A g-1 when it is applied as a potential electrode material for an electrochemical supercapacitor. Additionally, the MnO2 nanosheet electrode also presents high rate capability and good cycling stability with 91.8% retention after 1000 cycles. These excellent properties indicate that the hierarchical MnO2 nanosheets are a potential electrode material for electrochemical supercapacitors.

  12. Hydrothermal synthesis of hexagonal CeO{sub 2} nanosheets and their room temperature ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanming, E-mail: mrmeng@ahu.edu.cn [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zhang, Cheng; Fan, Zhenghua; Gong, Jinfeng; Li, Aixia; Ding, Zongling; Tang, Huaibao; Zhang, Miao; Wu, Guifang [School of Physics and Materials Science, Anhui University, Hefei 230601 (China)

    2015-10-25

    Hexagonal CeO{sub 2} nanosheets of 40–50 nm in thickness and 300–400 nm in side-length have been successfully synthesized via controlling the morphology of CeCO{sub 3}OH precursors by a facile hydrothermal technique using CeCl{sub 3}·7H{sub 2}O as cerium source, ammonium hydrogen carbonate as precipitants, and ethylenediamine as complexant. The reaction time and the amount of CeCl{sub 3}·7H{sub 2}O and ethylenediamine were systematically investigated. The as-synthesized hexagonal CeO{sub 2} nanosheets were examined by XRD, SEM, TEM, XPS, Raman scattering and magnetization measurements. It is found that the amount of CeCl{sub 3}·7H{sub 2}O and ethylenediamine are key parameters for controlling the final morphology. The hexagonal CeO{sub 2} nanosheets have a fluorite cubic structure and there are Ce{sup 3+} ions and oxygen vacancies in surface of samples. The synthesized CeO{sub 2} shows excellent room temperature optical properties. M–H curve exhibits excellent room-temperature ferromagnetism (RTFM) with saturation magnetization (M{sub s}) of 3.02 × 10{sup −2} emu/g, residual magnetization (M{sub r}) of 0.68 × 10{sup −2} emu/g and coercivity (H{sub c}) of 210 Oe, which is likely attributed to the effects of the Ce{sup 3+} ions and oxygen vacancies. - Highlights: • Hexagonal CeO{sub 2} nanosheets with superexerllent RTFM are synthesized by a facile hydrothermal method. • RTFM mechanism of CeO{sub 2} nanosheets can be attributed to the influences of oxygen vacancies and Ce{sup 3+} ions. • A defect driven dissolution–recrystallization mechanism is suggested to explain the transformation from nanowires to nanosheets.

  13. High-quality molybdenum disulfide nanosheets with 3D structure for electrochemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Aiping, E-mail: aipingyin1964@163.com [Department of chemistry, Xinzhou Teachers University, Xinzhou, Shanxi (China); Wei, Xuehong [College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi (China); Cao, Yexia; Li, Huiqing [Department of chemistry, Xinzhou Teachers University, Xinzhou, Shanxi (China)

    2016-11-01

    Graphical abstract: MoS{sub 2} ultrathin nanosheets are successfully synthesized via a facile strategy, one-step pyrolysis of ammonium molybdate, thiourea and layered g-C{sub 3}N{sub 4} template. Possessing hierarchical porous structure and large pore volume as well as good conductivity, MoS{sub 2} ultrathin nanosheets demonstrates significantly improved electrocatalytic activity toward oxidation of AA, DA, and UA. Display Omitted - Highlights: • MoS{sub 2} ultrathin nanosheets are achieved via a facile strategy, one-step pyrolysis of ammonium molybdate, thiourea and layered g-C{sub 3}N{sub 4} template. • The sacrificial template (g-C{sub 3}N{sub 4}) plays a significant role in this synthetic process, which brings ultrathin structure and three-dimensional porous network for MoS{sub 2} materials. • The MoS{sub 2} ultrathin nanosheets sample displays significantly improved electrocatalytic performance toward oxidation of AA, DA, and UA, manifesting enlarged peak separation and increased peak current. • Meantime, simultaneous determination of these biomolecules is achieved in a wide concentration rang with high sensitivity, selectivity, stability and good reproducibility on modified electrode of the MoS{sub 2} nanosheets. - Abstract: An electrochemical sensor has been developed for simultaneous detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) based on pure MoS{sub 2} nanosheets modified electrode. The MoS{sub 2} nanosheets are achieved via a facile strategy, one-step pyrolysis of ammonium molybdate, thiourea and layered g-C{sub 3}N{sub 4} template. Possessing hierarchical porous structure and large pore volume as well as good conductivity, MoS{sub 2} nanosheets demonstrates significantly improved electrocatalytic activity toward oxidation of AA, DA, and UA. In the coexisting system, the peak separation of AA–DA, DA–UA and AA–UA is 208.3 mV, 128.0 mV and 336.3 mV, respectively, which is much larger than for other MoS{sub 2}-based catalyst

  14. Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices

    Science.gov (United States)

    Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng

    2018-01-01

    Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.

  15. Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets

    Science.gov (United States)

    Woo, Jong Seok; Sin, Dong Hun; Kim, Haena; Jang, Jeong In; Kim, Ho Young; Lee, Geon-Woong; Cho, Kilwon; Park, Soo-Young; Han, Joong Tark

    2016-03-01

    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge

  16. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets

    International Nuclear Information System (INIS)

    Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-01-01

    Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed

  17. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  18. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sojic, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Despotovic, Vesna N., E-mail: vesna.despotovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Abazovic, Nadica D., E-mail: kiki@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Comor, Mirjana I., E-mail: mirjanac@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Abramovic, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2010-07-15

    The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light ({lambda} {>=} 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO{sub 2} (rutile/anatase) and of the most frequently used TiO{sub 2} Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results. The results indicate that the efficiency of photocatalytic degradation is greatly influenced by the molecular structure of the compound. Lowering of the band gap of titanium dioxide by doping is not always favorable for increasing photocatalytic efficiency of degradation.

  19. On the morphology and potential application of polydimethylsiloxane-silica-titania composites

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Polydimethylsiloxane-α,ω-diol was used as matrix for the preparation of polysiloxane-SiO2-TiO2 composites through in situ incorporation of silica and titania using a solvent-free sol-gel procedure. For this purpose, oxide precursors tetraethyl-orthosilicate and tetrabutyl-orthotitanate, and a proper condensation catalyst, viz. dibuthyltin dilaurate, were added in pre-established amounts to the polymer. The hydrolysis and condensation reactions take place under mild conditions, with the formation of silicon and titanium oxide networks and polymer crosslinking. The effect of SiO2 and TiO2 mass ratio on the morphology of the composites was investigated by scanning electron microscopy (SEM and X-rays diffraction (XRD, and interpreted in correlation with differential scanning calorimetry (DSC and energy-dispersive X-ray spectroscopy (EDX data. The film samples were tested as active elements in actuation devices.

  20. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Michael Hu

    2012-10-01

    Full Text Available Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs and bulk heterojuntion solar cells (BHJs]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  1. Preparation and Characterization of Highly Spherical Silica-titania Aerogel Beads with High Surface Area

    Directory of Open Access Journals (Sweden)

    YU Yu-xi

    2017-02-01

    Full Text Available The silica-titania aerogel beads were synthesized through sol-gel reaction followed by supercritical drying, in which TEOS and TBT as co-precursors, EtOH as solvents, HAC and NH3·H2O as catalysts. The as-prepared aerogel beads were characterized by SEM,TEM,XRD,FT-IR,TG-DTA and nitrogen adsorption-desorption. The results indicate that the diameter distribution of beads are between 1-8mm, the average diameter of beads is 3.5mm. The aerogel beads have nanoporous network structure with high specific surface area of 914.5m2/g, and the TiO2 particles are distributed in the aerogel uniformly, which keep the anatase crystal under high temperature.

  2. A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

    Directory of Open Access Journals (Sweden)

    Haibo Yao

    2013-01-01

    Full Text Available A simple and widely applicable methodology was presented to synthesize monodisperse micrometer hollow titania spheres (HTS based on the templating method. It was performed by using the preformed poly(styrene-acrylic acid (PSA as template spheres which was mixed with tetrabutyltitanate (TBOT in an ethanol solvent under steam treatment. The HTS which were obtained by the calcination of PSA/TiO2 composite core-shell spheres had a narrow particle size distribution and commendable surface topography characterized by SEM. The calcined HTS at 500°C displayed crystalline reflection peaks that were characteristic to the anatase phase by XRD. Moreover, some key influencing factors including TBOT concentration and reaction time were analyzed. As expected, the diameter of HTS could be readily controlled by altering the size of PSA template spheres. In addition, the approach was also applied to fabricate hollow zirconia spheres and other inorganic spheres.

  3. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  4. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-01-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO 2 ) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility

  5. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Jean-Marie; Guillard, Chantal; Disdier, Jean [URA au CNRS, Photocatalyse, Catalyse et Environment, Ecole Centrale de Lyon, B.P. 163, 69131 Ecully -Cedex (France); Lehaut, Corinne [Millennium Inorganic Chemicals, 85 Avenue Victor Hugo, 92563 Cedex Rueil-Malmaison (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria, CIEMAT, 04200 Tabernas (Spain)

    2002-01-25

    A new series of titania industrial photocatalysts have been elaborated by Millennium Inorganic Chemicals and were denoted Millennium-PC/10, PC/25 and PC/50 with respective specific surface areas equal to 11, 23 and 43m{sup 2}g{sup -1}. Their photocatalytic activities have been determined and compared in the solar pilot CPC-photoreactor at the Plataforma Solar de Almeria (PSA) (Spain) in the photocatalytic degradation of four different representative pollutants (4-chlorophenol, nitrobenzene, 2-chlorobenzoic acid and hydrobutanedioic (malic) acid), whose degradation pathways had previously been elucidated in laboratory experiments with artificial light, using titania Degussa P-25 as a reference photocatalyst. The study concerned the influence of (1) the nature of organic pollutants, (2) the surface area and (3) the concentration of suspended TiO{sub 2}. The affinity of the pollutants for TiO{sub 2} and the presence of heteroatoms in the reactant molecules intervened on the activities of Millennium-PCs when compared to Degussa P-25. The higher the affinity of the organic pollutants for titania, the higher the efficiency of Millennium-PC/10 photocatalyst calibrated on the initial rate of pollutant disappearance. The degradation pathways were found similar for both photocatalysts and the primary steps of the degradation for the different types of molecules were discussed. 4-Chlorophenol (4-CP), a model pollutant for waste waters, was then chosen for the study of the influence of the surface areas and of the concentration of Millennium-PC photocatalysts. The initial apparent rate constants of 4-CP degradation in presence of all Millennium-PC catalysts were all higher than that obtained with Degussa P-25. When choosing the total organic carbon (TOC) disappearance rate as an overall kinetic parameter, Millennium-PC/10 and PC/25 appeared as less active than Degussa P-25, with longer solar exposures (by about 10%) necessary to obtain a total mineralisation. However

  6. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation

    International Nuclear Information System (INIS)

    Ni Jiahua; Shi Yulong; Yan Fengying; Chen Jianzhi; Wang Lei

    2008-01-01

    Hydroxyapatite-containing titania coatings on titanium substrates were formed by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca.H 2 O) and sodium phosphate monobasic dihydrate (NaH 2 PO 4 .2H 2 O) using a pulse power supply. Scanning electron microscopy (SEM) with Energy dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD) were employed to characterize the microstructure, elemental composition and phase components of the coatings. The coatings were rough and porous, without apparent interface to the titanium substrates. All the oxidized coatings contained Ca and P as well as Ti and O, and the porous coatings were made up of anatase, rutile and hydroxyapatite. Such MAO films are expected to have significant applications as artificial bone joints and dental implants

  7. Sulfated Titania Nanoparticles: an Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multicomponent Reaction

    Directory of Open Access Journals (Sweden)

    A. Tadjarodi

    2015-10-01

    Full Text Available Sulfated titania nanoparticles (SO42-/TiO2 NPs were synthesized using titanium tetraisopropoxide (TTIP by the sol-gel method. The structure and morphology of the prepared nanocatalyst was characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and Brunauer–Emmett–Teller (BET methods as well as Fourier transform infrared (FT-IR and energy dispersive X-ray (EDX spectroscopy. The obtained nanoparticles were used as an efficient, reusable and environmentally friendly catalyst for the synthesis of polyhydroquinoline (PHQ derivatives via a one-pot multicomponent reaction of various aldehydes, ammonium acetate and 1,3-dicarbonyl compounds under reflux conditions. The desired Hantzsch esters were obtained in good to excellent yields and short reaction times. The SO42- /TiO2 NPs could be recycled at least three times without significant loss of their catalytic activity.

  8. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster.

    Science.gov (United States)

    Sabat, Debabrat; Patnaik, Abhinandan; Ekka, Basanti; Dash, Priyabrat; Mishra, Monalisa

    2016-12-01

    Titania nanoparticles are used in food, cosmetic, medicine, paint and many more domestic items. Its extensive use has raised the threat to the physiological system and thus the functioning of the body. In the current study, the toxicity of TiO 2 is checked by adding it in food and using Drosophila melanogaster as a model organism. Various concentrations of TiO 2 (50, 100, 200, 250mg·L -1 ) toxicity was assessed via oral route exposure. Survivability, life-cycle, mechanosensory behaviour and structure of various mechanosensory organs were monitored as a read out of nanoparticle toxicity. TiO 2 NPs generate reactive oxygen species which can modify multiple signalling pathways and thus can alter the development and behavioural pattern of the fly. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Computational study of titania-ceria hybrid clusters for electrochemical applications

    Science.gov (United States)

    Majid, Abdul; Bibi, Maryam

    2017-07-01

    First principles calculations were carried out to investigate the electronic and optical properties with spotlight on excitation spectra and circular dichroism (CD) spectra of Ce2O4, Ti2O4 and the hybrid cluster CeTiO4. The calculated UV/Vis spectrum and CD spectrum for Ce2O4 and Ti2O4 clusters found in respective IR and UV regions is shifted to visible region in case of the hybrid cluster. The major singlet-singlet-allowed transitions for the structures are discussed in detail. The hybrid cluster is optically active in the visible region and simultaneously contains titania's appealing catalytic properties as well as ceria's attractive properties for solid state electrolytes. The results point to possibility of adjustable band edges for potential applications in water splitting, coupling semiconductors applicable in dye-sensitized solar cells and other electrochemical devices.

  10. Nafion Titania Nanotubes Nanocomposite Electrolytes for High-Temperature Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nonhlanhla Precious Cele

    2012-01-01

    Full Text Available Nafion-based nanocomposite membranes containing various amounts of titania nanotubes (TNTs as an inorganic filler have been prepared using melt-mixing method and have been investigated for proton exchange membrane applications. The one-dimensional TNTs have been prepared from potassium hydroxide using hydrothermal route and conventional heating. Nafion R1100 in a protonated form was used, and TNT contents were in a range of 0.5–2.0 wt%. The acid-treated composite membranes, at lowest inorganic additive content, exhibited improved properties in terms of thermal stability and methanol (MeOH permeability. The best performing nanocomposite was the membrane containing only 0.5 wt% TNTs showing ionic conductivity value of 7.2×10-2 S·cm-1 at 26°C and 100% of relative humidity.

  11. Photocatalysis of methylene blue contaminated water using titania fiber doped with silicon

    International Nuclear Information System (INIS)

    Ugarteche, C.V.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    In this work, titania fibers doped with silicon were synthesized by electro spinning methodology, using titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone as precursors. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. The photo catalytic activity of the fibers in comparison with the standard TiO 2 Degussa P25 was evaluated using a 20ppm methylene blue solution. The composition containing 30% of silicon kept the anatase phase stable until the heat treatment temperature of 800 deg C. In the other compositions there was a formation of the rutile phase, which is less photoactive. The compositions containing silicon were photo catalytic efficient and some of them were more active that the standard P25. (author)

  12. Detection of Four Distinct Volatile Indicators of Colorectal Cancer using Functionalized Titania Nanotubular Arrays

    Directory of Open Access Journals (Sweden)

    Dhiman Bhattacharyya

    2017-08-01

    Full Text Available Screening of colorectal cancer is crucial for early stage diagnosis and treatment. Detection of volatile organic compounds (VOCs of the metabolome present in exhaled breath is a promising approach to screen colorectal cancer (CRC. Various forms of volatile organic compounds (VOCs that show the definitive signature for the different diseases including cancers are present in exhale breathe. Among all the reported CRC VOCs, cyclohexane, methylcyclohexane, 1,3-dimethyl- benzene and decanal are identified as the prominent ones that can be used as the signature for CRC screening. In the present investigation, detection of the four prominent VOCs related to CRC is explored using functionalized titania nanotubular arrays (TNAs-based sensor. These signature biomarkers are shown to be detected using nickel-functionalized TNA as an electrochemical sensor. The sensing mechanism is based on the electrochemical interaction of nickel-functionalized nanotubes with signature biomarkers. A detailed mechanism of the sensor response is also presented.

  13. Manufacturing a durable superhydrophobic polypropylene coating on aluminum alloy substrate by adding nano-titania nanoparticles.

    Science.gov (United States)

    Jiang, Haiyun; Wu, Ruomei; Hu, Zhongliang; Yuan, Zhiqing; Zhao, Xuehui; Liu, Qilong

    2014-07-01

    A superhydrophobic polypropylene (PP) coating on the surface of aluminum alloy coupons is unstable because of the existence of metastable state in curing process. Nano-titania particles were added into PP solution to form hierarchical micro- and nano-structures of PP coatings on the surface of aluminum alloy coupons. The morphology of the coatings was observed with Scanning Electron Microscopy (SEM), and the corresponding structure and components were investigated with Energy Dispersive Spectrometer (EDS) and X-ray diffractometer (XRD), respectively. The results indicated that nano-TiO2 particles are the main nucleation cores in the curing of the coatings; PP in solution is enclosed in these cores and crystallizes gradually. The coatings can preserve the stable micro- and nano-structure on six months due to the nucleation action of nano-TiO2 particles, and its durable water contact angle (WCA) is about 164 +/- 1.5 degrees.

  14. Solar efficiency of a new deposited titania photocatalyst: Pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Dinh An, C.; Dussaud, J.; Guillard, C.; Disdier, J.; Malato, S.; Herrmann, J.M.

    2002-07-01

    A specially designed titania catalyst was prepared by coating Ahlstrom nonwoven paper with Millennium PC 500 anatase which was therefore used as a flexible photocatalytic support. Simultaneously, a new solar photoreactor (STEP) has been designed based on the multistep cascade falling film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Four reactants were treated: 4-chlorophenol as a basic organic pollutant model, formetanate as a widely used pesticide, indigo carmine and congo res as complex multifunctional dye molecules. Each reaction was performed simultaneously in a slurry solar CPC photoreactor to better evaluate and validate the results obtained in the STEP reactor under identical solar exposure. The STEP solar reactor was found as efficient as the CPC for 4-chlorophenol and formetanate total degradation. By contrast, both dyes required longer treatment in STEP experiments. This new system constitutes a good alternative to slurries, whose final filtration is actually eliminated. (Author) 21 refs.

  15. Probing Water and CO2 Interactions at the Surface of Collapsed Titania Nanotubes Using IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Kaustava Bhattacharyya

    2015-08-01

    Full Text Available Collapsed titania nanotubes (cTiNT were synthesized by the calcination of titania nanotubes (TiNT at 650 °C, which leads to a collapse of their tubular morphology, a substantial reduction in surface area, and a partial transformation of anatase to the rutile phase. There are no significant changes in the position of the XPS responses for Ti and O on oxidation or reduction of the cTiNTs, but the responses are more symmetric than those observed for TiNTs, indicating fewer surface defects and no change in the oxidation state of titanium on oxidative and/or reductive pretreatment. The interaction of H2O and CO2 with the cTiNT surface was studied. The region corresponding to OH stretching absorptions extends below 3000 cm−1, and thus is broader than is typically observed for absorptions of the OH stretches of water. The exchange of protons for deuterons on exposure to D2O leads to a depletion of this extended absorption and the appearance of new absorptions, which are compatible with deuterium exchange. We discuss the source of this extended low frequency OH stretching region and conclude that it is likely due to the hydrogen-bonded OH stretches. Interaction of the reduced cTiNTs with CO2 leads to a similar but smaller set of adsorbed carbonates and bicarbonates as reported for reduced TiNTs before collapse. Implications of these observations and the presence of proton sources leading to hydrogen bonding are discussed relative to potential chemical and photochemical activity of the TiNTs. These results point to the critical influence of defect structure on CO2 photoconversion.

  16. Molecular adsorption of hydrogen peroxide on N- and Fe-doped titania nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Afshan, E-mail: amohajeri@shirazu.ac.ir; Dashti, Nasimeh Lari

    2017-06-15

    Highlights: • The stability and electronic properties of N/Fe-doped (TiO{sub 2}){sub n} clusters with n = 5,6 were studied. • The adsorption H{sub 2}O{sub 2} on the surface of doped clusters has been investigated. • This is the first report of H{sub 2}O{sub 2} adsorption onto the (TiO{sub 2}){sub n} cluster in the presence of metal and non-metal dopants. • The effect of N and Fe dopants on interaction strength was studied. - Abstract: Titanium dioxide (titania) nanoparticles have been extensively investigated for photocatalytic applications such as the decomposition and adsorption of pollutant and undesirable compound in air and waste water. In this context, the present article reports the molecular adsorption of hydrogen peroxide on the surface of doped titania clusters. Density functional theory calculations were performed to investigate the structures and electronic properties of two nanoscale (TiO{sub 2}){sub n} clusters (n = 5,6) modified by nitrogen and iron dopants. The relative stability of all possible N-doped and Fe-doped isomers has been compared with each other and with the parent cluster. It was found that the Fe-doped clusters are in general more stable than the N-doped counterparts. Moreover, after N/Fe doping an enhanced in the magnetization of the clusters is observed. In the second part, we have investigated different modes of H{sub 2}O{sub 2} adsorption on the lowest-energy isomers of doped clusters. In almost all the cases, the adsorptions on the doped clusters are found to be less exothermic than on the corresponding undoped parent cluster. Our results highlight the essential role of charge transfer into the interaction between H{sub 2}O{sub 2} and doped (TiO{sub 2}){sub n} clusters, especially for Fe-doped clusters.

  17. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  18. Regulation of the Electroanalytical Performance of Ultrathin Titanium Dioxide Nanosheets toward Lead Ions by Non-Metal Doping.

    Science.gov (United States)

    Zhang, Junping; Liao, Jianjun; Yang, Fan; Xu, Ming; Lin, Shiwei

    2017-10-14

    Three non-metallic elements, sulfur, fluorine, and iodine, were used to dope the ultrathin two-dimensional TiO₂ nanosheets, which would regulate their electroanalytical properties toward heavy metal ions. Among these doped materials, fluorine-doped TiO₂ nanosheets shows the highest electrochemical sensitivity and a superior detection limit toward Pb(II) when the doping concentration is 10%. When compared with the bare TiO₂ nanosheets, the sensitivity increased by 102%, and the detection limit decreased by 36.4%. Through combining further electrochemical experiments and density-functional theory calculations, the enhanced electrochemical performance stemming from element doping was then investigated in detail. The theoretical calculation demonstrated that fluorine doping could greatly increase the adsorption energy of Pb(II) on the TiO₂ nanosheets and enhance their loading capacity. Both cyclic voltammetric and electrical impedance spectroscopy analysis indicated the enhanced electron transfer rate on the electrode modified by fluorine-doped TiO₂ nanosheets. Further measurement on the desorption performance showed the better stripping response of Pb(II) on the electrode with TiO₂ nanosheets after fluorine doping, which suggests that fluorine doping is beneficial for Pb(II) diffuse onto the electrode surface for the reduction and stripping reaction. Therefore, the element doping of two-dimensional TiO₂ nanosheets provides a facile method to extend the electronic materials toward detection of heavy metal ions in the environment.

  19. Regulation of the Electroanalytical Performance of Ultrathin Titanium Dioxide Nanosheets toward Lead Ions by Non-Metal Doping

    Directory of Open Access Journals (Sweden)

    Junping Zhang

    2017-10-01

    Full Text Available Three non-metallic elements, sulfur, fluorine, and iodine, were used to dope the ultrathin two-dimensional TiO2 nanosheets, which would regulate their electroanalytical properties toward heavy metal ions. Among these doped materials, fluorine-doped TiO2 nanosheets shows the highest electrochemical sensitivity and a superior detection limit toward Pb(II when the doping concentration is 10%. When compared with the bare TiO2 nanosheets, the sensitivity increased by 102%, and the detection limit decreased by 36.4%. Through combining further electrochemical experiments and density-functional theory calculations, the enhanced electrochemical performance stemming from element doping was then investigated in detail. The theoretical calculation demonstrated that fluorine doping could greatly increase the adsorption energy of Pb(II on the TiO2 nanosheets and enhance their loading capacity. Both cyclic voltammetric and electrical impedance spectroscopy analysis indicated the enhanced electron transfer rate on the electrode modified by fluorine-doped TiO2 nanosheets. Further measurement on the desorption performance showed the better stripping response of Pb(II on the electrode with TiO2 nanosheets after fluorine doping, which suggests that fluorine doping is beneficial for Pb(II diffuse onto the electrode surface for the reduction and stripping reaction. Therefore, the element doping of two-dimensional TiO2 nanosheets provides a facile method to extend the electronic materials toward detection of heavy metal ions in the environment.

  20. Regulation of the Electroanalytical Performance of Ultrathin Titanium Dioxide Nanosheets toward Lead Ions by Non-Metal Doping

    Science.gov (United States)

    Zhang, Junping; Liao, Jianjun; Yang, Fan; Xu, Ming; Lin, Shiwei

    2017-01-01

    Three non-metallic elements, sulfur, fluorine, and iodine, were used to dope the ultrathin two-dimensional TiO2 nanosheets, which would regulate their electroanalytical properties toward heavy metal ions. Among these doped materials, fluorine-doped TiO2 nanosheets shows the highest electrochemical sensitivity and a superior detection limit toward Pb(II) when the doping concentration is 10%. When compared with the bare TiO2 nanosheets, the sensitivity increased by 102%, and the detection limit decreased by 36.4%. Through combining further electrochemical experiments and density-functional theory calculations, the enhanced electrochemical performance stemming from element doping was then investigated in detail. The theoretical calculation demonstrated that fluorine doping could greatly increase the adsorption energy of Pb(II) on the TiO2 nanosheets and enhance their loading capacity. Both cyclic voltammetric and electrical impedance spectroscopy analysis indicated the enhanced electron transfer rate on the electrode modified by fluorine-doped TiO2 nanosheets. Further measurement on the desorption performance showed the better stripping response of Pb(II) on the electrode with TiO2 nanosheets after fluorine doping, which suggests that fluorine doping is beneficial for Pb(II) diffuse onto the electrode surface for the reduction and stripping reaction. Therefore, the element doping of two-dimensional TiO2 nanosheets provides a facile method to extend the electronic materials toward detection of heavy metal ions in the environment. PMID:29036918

  1. Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation.

    Science.gov (United States)

    Lin, Chong; Wu, Guanghao; Li, Huiqin; Geng, Yanmin; Xie, Gang; Yang, Jianhui; Liu, Bin; Jin, Jian

    2017-02-02

    We reported a facile and scalable salt-templated approach to produce monodisperse Rh nanoparticles (NPs) on ultrathin carbon nanosheets with the assistance of calcination under inert gas. More importantly, in spite of the essentially poor ORR activity of Rh/C, the acquired Rh/C hybrid nanosheets display a comparable ORR activity to the optimal commercial Pt/C catalyst, which may be due to the extra-small size of Rh NPs and the 2D defect-rich amorphous carbon nanosheets that can facilitate the charge transfer and reactive surface exposure. Moreover, Rh/C nanosheets present the optimal current density and best durability with the minimum decline during the entire test, so that ∼93% activity after 20 000 s is achieved, indicating a good lifetime for ORR. In contrast, commercial Pt/C and commercial Rh/C exhibited worse durability, so that ∼74% and ∼85% activities after 20 000 s are maintained. What's more, in the model system of reduction of 4-nitrophenol (4-NP), the kinetic constant k for Rh/C nanosheets is 3.1 × 10 -3 , which is 4.5 times than that of the commercial Rh/C catalyst, revealing that our Rh/C hybrid nanosheets can be potentially applied in industrial catalytic hydrogenation. This work opens a novel and facile way for the rest of the precious metal NPs to be supported on ultrathin carbon nanosheets for heterogeneous catalysis.

  2. Controllable synthesis of hierarchical MgMoO4 nanosheet-arrays and nano-flowers assembled with mesoporous ultrathin nanosheets

    Science.gov (United States)

    Zhang, Lifeng; He, Wenjie; Shen, Kechao; Liu, Yi; Guo, Shouwu

    2018-04-01

    Self-standing hierarchical mesoporous MgMoO4 nanosheet-arrays and nano-flowers have been built via the self-assembly of ultrathin mesoporous nanosheets. The arrays and flower nanostructures can be facilely controlled by tuning the surfactant dosage. The formation mechanism of such special nanostructures has also been proposed. The flower structure has larger surface area than the arrays, owing to the more mesoporous nature of the former. Additionally, the as-prepared MgMoO4 nanomaterials not doped by any other ion have important optical properties, that enable the generation of strong red light with excitation wavelengths of 369 and 534 nm and emission of bright green light under irradiation by blue light (423 and 451 nm), demonstrating their potential applications in blue phototherapy and fluorescence labeling.

  3. Refining waste hardmetals into tungsten oxide nanosheets via facile method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhifei; Zheng, Guangwei; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi, E-mail: lhy06@bjut.edu.cn; Wu, Junshu; Du, Yucheng [Beijing University of Technology, Key Laboratory of Advanced Functional Materials, School of Materials Science and Engineering (China)

    2016-04-15

    A new hydrothermal system has been designed to recycle waste WC–Co hardmetal with low cobalt (Co) content (3 %). In the solution system, nitric acid was designed to dissolve Co, H{sub 2}O{sub 2} served as oxidant to accelerate the oxidation of the WC–Co hardmetals, and fluorine (F{sup −}) was designed to dissolve and recrystallize generated tungsten oxides, which were found to possess a layered structure using scanning electron microscopy and transmission electron microscopy. The obtained tungsten oxides were identified as WO{sub 3}·0.33H{sub 2}O by X-ray diffraction and their specific surface area was measured as 89.2 m{sup 2} g{sup −1} via N{sub 2} adsorption–desorption techniques. The present layered structure tungsten oxides exhibited a promising capability for removing lead ion (Pb{sup 2+}) and organic species, such as methyl blue. The adsorption model was found to be in agreement with Langmuir isotherm model. Given the facile synthesis procedure and promising properties of final products, this new approach should have great potential for refining some other waste hardmetals or tungsten products.Graphical AbstractA new hydrothermal system was designed to recycle waste hardmetal with low cobalt content. Through this method, waste hardmetal was refined into WO{sub 3}·0.33H{sub 2}O nanosheets which shows excellent adsorption capacities toward methylene blue and lead ion (Pb{sup 2+}).

  4. Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization

    KAUST Repository

    Abdul Kaleel, S. H.

    2012-09-01

    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp 2ZrCl 2 and Cp 2TiCl 2) in combination with methylalumoxane. Titanium(IV) oxide containing 1% Mn as dopant was used as nanofillers. The influence of filler concentration, reaction temperature and pressure on the catalytic activity and polymer properties was investigated. There was a fourfold increase in the activity of zirconocene catalyst by addition of doped-titania. The morphology indicates that the doped-titania nanoparticles have a nucleus effect on the polymerization and caused a homogeneous PE shell around them. The optimum condition for polymerization was found to be 30°C. © 2012 The Korean Society of Industrial and Engineering Chemistry.

  5. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  6. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices.

    Science.gov (United States)

    Lei, Zhouyue; Zhu, Wencheng; Xu, Shengjie; Ding, Jian; Wan, Jiaxun; Wu, Peiyi

    2016-08-17

    A facile poly(vinylpyrrolidone) (PVP)-assisted exfoliation method is utilized to simultaneously exfoliate and noncovalently modify MoSe2 nanosheets. The resultant hydrophilic nanosheets are shown to be promising candidates for biocompatible photothermal therapy (PTT) agents, and they could also be encapsulated into a hydrogel matrix for some intelligent devices. This work not only provides novel insights into exfoliation and modification of transition metal dichalcogenide (TMD) nanosheets but also might spark more research into engineering multifunctional TMD-related nanocomposites, which is in favor of further exploiting the attractive properties of these emerging layered two-dimensional (2D) nanomaterials.

  7. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    of graphene, Since the discovery of graphene, series of two-dimensional (2-D) nanosheets materials such as metal oxides, metal hydroxides, transition metal chalcogenides (TMDs), boron nitride (BN) and black phosphorus have been of great interests, and have been extensively investigated for applications...... in electronics, lithium-ion batteries, catalysis and mechanical properties, etc. 2-D MOF nanosheets materials, as a new member of the 2-D nanomaterials family, are still at the very early stage. However, to the best of our knowledge, the 2-D MOF nanosheets materials for luminescent sensing have been rarely...

  8. An Investigation into W or Nb or ZnFe2O4 Doped Titania Nanocomposites Deposited from Blended Powder Targets for UV/Visible Photocatalysis

    Directory of Open Access Journals (Sweden)

    Vladimir Vishnyakov

    2013-08-01

    Full Text Available The photocatalytic behavior of titania coatings is largely determined by their crystalline structure. Depending on deposition conditions, though, titania may form amorphous, brookite, anatase or rutile structures, with anatase or anatase/rutile mixed phase structures showing the highest levels of activity. Anatase is activated by UV light and, consequently, there is a great deal of interest in doping titania films to both increase activity and extend it into the visible range. In this study, titania and doped titania coatings have been deposited from blended oxide powder targets. This highly versatile and economical technique allows dopant levels to be readily varied. Using this technique, titania coatings doped with W, Nb and ZnFe2O4 have been deposited onto glass substrates by pulsed magnetron sputtering. The as-deposited coatings were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX and micro-Raman spectroscopy. Selected coatings were then annealed at temperatures in the range of 400–700 °C and re-analyzed. Structural transformation of the titania coatings was initiated in the 500–600 °C range, with the coatings annealed at 700 °C having predominantly anatase structures. The photocatalytic activity of the coatings was assessed through measurements of the degradation of organic dyes, such as methyl orange, under the influence of UV and fluorescent light sources. It was found that, after annealing, coatings with photo-active surfaces were produced and that activity varied with dopant content. Activity levels under fluorescent light irradiation were up to 60% of the activity measured under UV irradiation.

  9. An Enthusiastic Glance in to the Visible Responsive Photocatalysts for Energy Production and Pollutant Removal, with Special Emphasis on Titania

    Directory of Open Access Journals (Sweden)

    Padikkaparambil Silija

    2012-01-01

    Full Text Available As a consequence of the rapid growth of industry, major problems are created related to energy and environment. Sunlight being one of the most potential alternative source of energy, the development of efficient solar-energy storage systems is an important subject in the fields of science and technology. Here we have reviewed and summarized some of the recent reports on visible responsive photocatalysts. In this review, the influence of various metal oxide photocatalysts on energy production and pollutant removal are presented with special emphasis on titania based photocatalysts. The photoactivity of titania for various pollutant degradation, modified titania (TiO2 systems, their physical and chemical characteristics, and so forth, are described in detail at this juncture. Different methods used to enhance the visible light absorption of TiO2, like doping with metals and nonmetals, coupling with other metal oxides, and so forth, have been discussed. Various applications of photocatalysts including photocatalytic treatment of waste water, pesticide degradation and water splitting to produce hydrogen are summarized. The development of photocatalysts that function under visible light for the efficient utilization of sunlight is an area of current interest and thus the different methods of preparation for the visible active photocatalysts are also explored.

  10. Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities

    Science.gov (United States)

    Chanhom, Padtaraporn; Charoenlap, Nisanart; Tomapatanaget, Boosayarat; Insin, Numpon

    2017-04-01

    New types of colloidal multifunctional nanocomposites that combine superparamagnetic character and high photocatalytic activity were synthesized and investigated. The superparamagnetic nanocomposites composed of anatase titania, silica, and iron oxide nanoparticles (TSI) were synthesized using thermal decomposition method followed by microemulsion method, without calcination at high temperature. Different techniques including X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize and confirm the structure of the nanocomposites. These nanocomposites showed high photocatalytic activity when used in the photodegradation of methylene blue under irradiation with a black light lamp. Moreover, the nanocomposites exhibited high antibacterial properties. From our study, the nanocomposites can be useful in various applications such as removal of pollutants with readily separation from the environment using an external magnetic field. These composites could effectively photo-degrade the dye at least three cycles without regeneration. The effects of silica shell thickness on the photocatalytic activity was investigated, and the thickness of 6 nm of the silica interlayer is enough for the inhibition of electron translocation between titania and iron oxide nanoparticles and maintaining the efficiency of photocatalytic activity of titania nanoparticles.

  11. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gui-Liang [Chemical; Xiao, Lisong [Center; Sheng, Tian [Collaborative; Liu, Jianzhao [Chemical; Hu, Yi-Xin [Chemical; Department; Ma, Tianyuan [Chemical; Amine, Rachid [Materials; Xie, Yingying [Chemical; Zhang, Xiaoyi [X-ray Science; Liu, Yuzi [Nanoscience; Ren, Yang [X-ray Science; Sun, Cheng-Jun [X-ray Science; Heald, Steve M. [X-ray Science; Kovacevic, Jasmina [Center; Sehlleier, Yee Hwa [Center; Schulz, Christof [Center; Mattis, Wenjuan Liu [Microvast Power Solutions, 12603; Sun, Shi-Gang [Collaborative; Wiggers, Hartmut [Center; Chen, Zonghai [Chemical; Amine, Khalil [Chemical

    2017-12-15

    Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  12. Silica-titania xerogel for solid phase spectrophotometric determination of salicylate and its derivatives in biological liquids and pharmaceuticals.

    Science.gov (United States)

    Morosanova, Maria A; Morosanova, Elena I

    2015-01-01

    Salicylic acid and its derivatives are widely used drugs with potential toxicity. The main areas of salicylate derivatives determination are biological liquids and pharmaceuticals analysis. Silica-titania xerogel has been used for solid phase spectrophotometric determination of various salicylate derivatives (salicylate, salicylamide, methylsalicylate). The reaction conditions influence on the interaction of salicylate derivatives with silica-titania xerogels has been investigated; the characteristics of titanium(IV)-salicylate derivatives complexes in solid phase have been described. The simple solid phase spectrophotometric procedures are based on the formation of xerogel incorporated titanium(IV) colored complexes with salicylate derivatives. A linear response has been observed in the following concentration ranges 0.1-5, 0.5-10 and 0.05-4.7 mM for salicylate, salicylamide, and methylsalicylate, respectively. The proposed procedures have been applied to the analysis of human urine, synthetic serum, and pharmaceuticals. The simple solid phase spectrophotometric procedures of salicylate derivatives determination based on the new sensor materials have been proposed for biological liquids and pharmaceuticals analysis. Graphical abstractComplexation of titanium (IV), incorporated in silica-titania xerogels (Si-Ti), with salicylate derivatives (L) resulting in yellow-colored xerogels (Si-Ti/Ln) has been proposed for salicylate derivatives determination in biological liquids and pharmaceuticals.

  13. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  14. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization.

    Science.gov (United States)

    Serro, A P; Bastos, M; Pessoa, J Costa; Saramago, B

    2004-09-01

    The biocompatibility of implant materials used for substitution of bone tissue depends on its ability to induce the deposition of a hydroxyapatite layer when in contact with body fluids. In previous work, some of the authors found that bovine serum albumin (BSA) promotes calcium phosphate deposition if preadsorbed on hydroxyapatite and retards precipitation if preadsorbed on titania. In the present study, we investigated the adsorption of BSA upon particles of titania and hydroxyapatite in order to understand the different role played by the protein on the mineralization of both biomaterials. The adsorption isotherms were determined and the structural changes induced by adsorption at different surface coverages were investigated by circular dichroism spectroscopy and differential scanning microcalorimetry. At low surface coverages, the adsorbed BSA molecules lost part of their alpha-helix content. However, at high surface coverages, corresponding to the plateau values of the adsorption isotherms, the BSA molecules did not undergo structural rearrangements upon adsorption. In the latter circumstances, the availability of BSA calcium binding sites, which should be responsible for inducing mineralization, depends on the electrostatic interactions between BSA and the sorbent surface. A possible explanation for the different mineralization behavior of hydroxyapatite and titania is advanced. Copyright 2004 Wiley Periodicals, Inc.

  15. Improving the photovoltaic parameters in Quantum dot sensitized solar cells through employment of chemically deposited compact titania blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Prasad, M.B., E-mail: rajendraprasadmb75@gmail.com [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India); National Defence Academy, Khadakwasla, Pune, 411023 (India); Kadam, Vishal [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India); Joo, Oh-Shim [Korea Institute of Science and Technology, PO Box No. 131, Chongryang, Seoul, 130-650 (Korea, Republic of); Pathan, Habib M. [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India)

    2017-06-15

    Incorporation of compact blocking layer at the Transparent Conducting Oxide (TCO)/Electrolyte interface is an effective method to improve the device performance in QDSSC through mitigation of electron recombinations at this interface. This paper reports the most facile and cost effective method of depositing a rutile titania Compact Layer (CL) over Fluorine doped Tin Oxide (FTO) substrate and its application in titania based CdS QD sensitized solar cells. The deposited compact layers are characterized to study their structural, optical, morphological and electrochemical properties using X-Ray Diffractometry, UV–Visible spectroscopy, Scanning electron microscopy, Cyclic Voltammetry and Contact Angle measurements. Sandwich solar cells are fabricated using these CL based electrodes and characterized using Electrochemical Impedance Spectroscopy, Open Circuit Voltage Decay and J-V characteristics. The CL incorporated CdS QDSSC showed more than 100% increase in the photoconversion efficiency (1.68%) as compared to its bare FTO counterpart (0.73%) proving the efficacy of employed strategy. - Highlights: • Deposited titania compact layer by a facile room temperature chemical bath method. • Employed this to mitigate back electron transfer at TCO/Electrolyte interface. • Compact layer incorporation has improved the solar cell performance by 130%.

  16. Preparation and properties of titania based ionogels synthesized using ionic liquid 1-ethyl-3-methyl imidazolium thiocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Y.L.; Tripathi, A.K.; Shalu; Singh, V.K.; Balo, L.; Gupta, H.; Singh, S.K.; Singh, R.K., E-mail: rajendrasingh.bhu@gmail.com

    2017-06-15

    Highlights: • Synthesis of titania based ionogels using non-aqueous sol-gel process. • Ionogels are found to be mesoporous structure with uniform pore size distribution. • Ionic liquid extracted TiO{sub 2} matrix reveals the anatase phase of TiO{sub 2}. • Properties of ionic liquid are found to change in TiO{sub 2} matrix. - Abstract: Present study reports the synthesis of titania (TiO{sub 2}) based ionogels using ionic liquid (IL) 1-ethyl-3-methyl imidazolium thiocyanate ([EMIM][SCN]) by non-aqueous sol-gel process. Ionogels are characterized using N{sub 2} adsorption-desorption, TGA, DSC, SEM, TEM, XRD, and FTIR. N{sub 2}-sorption results show that TiO{sub 2} matrices have meso-pores with uniform pore size distribution. Thermal studies reveal that thermal stability of confined IL decreases while the glass transition temperature (T{sub g}) is found to increase. XRD patterns show that IL containing TiO{sub 2} matrices exhibit amorphous (weak crystalline peaks) nature however after extraction of IL from ionogel, it shows the crystalline (anatase) phase of TiO{sub 2} which has also been found from SAED pattern. SEM micrographs reveal that as the amount of IL is increased, TiO{sub 2} particles are found to agglomerate. FTIR results indicate that the vibrational frequencies of confined IL are found to shift due to interaction of IL molecules with titania pore wall surface.

  17. Facile Hydrothermal Synthesis and Enhanced Methane Sensing Properties of Pt-Decorated ZnO Nanosheets.

    Science.gov (United States)

    Zhou, Qu; Hong, Changxiang; Li, Zhiguang; Peng, Shudi; Wu, Gaolin; Wang, Qian; Zhang, Qingyan; Xu, Lingna

    2018-05-01

    Pure and Pt-decorated ZnO nanosheets were synthesized via a facile and environment-friendly hydrothermal process, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS), respectively. Side-heated chemical gas sensors were fabricated with the synthesized ZnO based powders and their sensing properties to methane CH4, an important characteristic hydrocarbon contaminant extracted from power transformer oil with overheating or discharging fault, were systemically investigated. Interestingly, Pt decoration not only obviously increased the gas response of sensor fabricated with the synthesized ZnO nanosheets to CH4, but also effectively reduced its optimum operating temperature. Its highest response to 50 ppm of CH4 was about 63.45 at 240 °C, which was about two times larger when compared with the pure one. Meanwhile, the Pt-decorated ZnO nanosheets sensor exhibited shorter response-recovery characteristic, good linearity in low concentration range and excellent stability towards CH4. Those superior sensing features indicate the synthesized Pt-decorated ZnO nanosheets is a promising candidate for fabricating high-performance CH4 sensor.

  18. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets

    Science.gov (United States)

    Bayan, Sayan; Gogurla, Narendar; Midya, Anupam; Singha, Achintya; Ray, Samit K.

    2017-12-01

    We demonstrate surface plasmon induced enhancement and tunablilty in optical emission properties of two dimensional graphitic carbon nitride (g-C3N4) nanosheets through the attachment of gold (Au) nanoparticles. Raman spectroscopy has revealed surface enhanced Raman scattering that arises due to the combined effect of the charge transfer process and localized surface plasmon induced enhancement in electromagnetic field, both occurring at the nanoparticle–nanosheet interface. Photoluminescence studies suggest that at an optimal concentration of nanoparticles, the emission intensity can be enhanced, which is maximum within the 500–525 nm region. Further, the fabricated electroluminescent devices reveal that the emission feature can be tuned from bluish-green to red (∼160 nm shift) upon attaching Au nanoparticles. We propose that the π*→π transition in g-C3N4 can trigger surface plasmon oscillation in Au, which subsequently increases the excitation process in the nanosheets and results in enhanced emission in the green region of the photoluminescence spectrum. On the other hand, electroluminescence of g-C3N4 can induce plasmon oscillation more efficiently and thus can lead to red emission from Au nanoparticles through the radiative damping of particle plasmons. The influence of nanoparticle size and coverage on the emission properties of two dimensional g-C3N4, nanosheets has also been studied in detail.

  19. Removal of nickel (II from aqueous solution by graphene and boron nitride nanosheets

    Directory of Open Access Journals (Sweden)

    Jafar Azamat

    2017-01-01

    Full Text Available Molecular dynamics simulations were carried out to study the removal of Ni2+ as a heavy metal from the water by the functionalized graphene nanosheet (GNS and boron nitride nanosheet (BNNS. Nickel causes asthma, conjunctivitis and inflammatory reactions and nickel salts act as emetics when swallowed; therefore, removal of nickel is necessary from the aqueous solutions. The systems were comprised of a nanosheet (GNS or BNNS with a pore in its center that it is containing an aqueous ionic solution of nickel chloride. For the removal of Ni2+ from an aqueous solution, the pores of nanosheet were functionalized by passivating each atom at the pores edge and then an external electric field was applied along the z-axis of the simulated system. To justify the passage of ions through the pores, the potential of the mean force (PMF of ions was calculated. To evaluate the properties of the system, the ion retention time and the radial distribution functions of species were measured. Based on the findings of this study, these nanostructure membranes can be recommended as a model for removal of heavy metals.

  20. ZnS nanosheets: Egg albumin and microwave-assisted synthesis and optical properties

    Science.gov (United States)

    Tian, Xiuying; Wen, Jin; Hu, Jilin; Chen, Zhanjun; Wang, Shumei; Peng, Hongxia; Li, Jing

    2016-09-01

    ZnS nanosheets were prepared via egg albumin and microwave-assisted method. The phases, crystalline lattice structures, morphologies, chemical and optical properties were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscope(FE-SEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and fluorescence(FL) spectrometer and growth mechanism of ZnS nanosheets was investigated. The results showed that all samples were pure cubic zinc blende with polycrystalline structure. The width of ZnS nanosheets with a rectangular nanostructure was in the range of 450-750 nm. The chemical interaction existed between egg albumin molecules and ZnS nanoparticles via the amide/carboxylate group. The band gap value calculated was 3.72 eV. The band at around 440 nm was attributed to the sulfur vacancies of the ZnS nanosheets. With increasing volumes of egg albumin, the photoluminescence (PL) intensity of ZnS samples firstly increased and then decreased, attributed to concentration quenching.

  1. Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption

    Directory of Open Access Journals (Sweden)

    N.V. Svarovskaya

    2017-04-01

    Full Text Available In this work, in situ method of producing hybrid fibrous adsorbents in which boehmite nanosheets with high sorption properties formed on the surface of hydrophilic microfibres, such as cellulose acetate and glass fibre, was described. The boehmite nanosheets were fabricated by the reaction of composite AlN/Al nanoparticles with water at 60 °C. The synthesized samples were characterized by X-ray diffractometer, scanning, transmission electron microscopy, Fourier transform infrared spectrometer (FT-IR, zeta-potential and specific surface area analyzers. The introduction of microfibres into a diluted aqueous suspension of nanopowders causes heteroadagulation of the nanoparticles and accelerates their further transformation. This effect is most substantial with the glass microfibre, which is thought to have a higher concentration of surface groups capable of generating hydrogen bonds that act as heteroadagulation and nucleation centres. The experimental results showed that the morphology of the resultant hybrid fibrous adsorbents differed accordingly: the nanosheets were attached on-edge to the glass microfibre surface, while on the surface of the cellulose acetate microfibre, they were secured in the form of spherical “nanoflowers” of agglomerated nanosheets. The effect of the morphology of hybrid fibrous adsorbents on adsorption bacteria Escherichia coli was also investigated.

  2. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    Science.gov (United States)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  3. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol.

    Science.gov (United States)

    Meng, Lingqian; Zhu, Xiaochun; Hensen, Emiel J M

    2017-04-07

    Fe/ZSM-5 nanosheet zeolites of varying thickness were synthesized with di- and tetraquaternary ammonium structure directing agents and extensively characterized for their textural, structural, and catalytic properties. Introduction of Fe 3+ ions in the framework of nanosheet zeolites was slightly less effective than in bulk ZSM-5 zeolite. Steaming was necessary to activate all catalysts for N 2 O decomposition and benzene oxidation. The higher the Fe content, the higher the degree of Fe aggregation was after catalyst activation. The degree of Fe aggregation was lower when the crystal domain size of the zeolite or the Fe content was decreased. These two parameters had a substantial influence on the catalytic performance. Decreasing the number of Fe sites along the b -direction strongly suppressed secondary reactions of phenol and, accordingly, catalyst deactivation. This together with the absence of diffusional limitations in nanosheet zeolites explains the much higher phenol productivity obtainable with nanostructured Fe/ZSM-5. Steamed Fe/ZSM-5 zeolite nanosheet synthesized using C 22-6-3 ·Br 2 (domain size in b -direction ∼3 nm) and containing 0.24 wt % Fe exhibited the highest catalytic performance. During the first 24 h on stream, this catalyst produced 185 mmol phenol g -1 . Calcination to remove the coke deposits completely restored the initial activity.

  4. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Zhou, Yan, E-mail: yanzhou@upc.edu.cn [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Wang, Zhaojie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); An, Changhua [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Zhang, Jun, E-mail: zhangj@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China)

    2017-05-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS{sub 2} nanosheets assembled nanorods with the interlayer of MoS{sub 2} nanosheets expanded to 0.89 nm, namely layer expanded MoS{sub 2} nanorods (LE-MoS{sub 2} NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS{sub 2} nanosheets. N{sub 2} adsorption-desorption isotherms of LE-MoS{sub 2} NRs indicated high specific area up to 37.0 m{sup 2} g{sup −1}. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS{sub 2} interlayers. The as-prepared electrode material showed capacitance up to 231 F g{sup −1} at 1 A g{sup −1} charge-discharge current and cycling stability test indicated high capacitance of 177 F g{sup −1} was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS{sub 2} to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS{sub 2}. • MoS{sub 2} nanosheets assembled incompact nanorods.

  5. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  6. Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance

    Science.gov (United States)

    Yang, Qiu; Lu, Zhiyi; Sun, Xiaoming; Liu, Junfeng

    2013-12-01

    Constructing nanostructures with desirable morphology and size is a critical issue for pursuing high performance electrode materials. Ultrathin Co3O4 nanosheet arrays, which are composed of well aligned uniform long-range (~5 μm in length) and thin (~10 nm in thickness) nanosheets, with reasonable mass loading on Ni foam are prepared by a two-step hydrothermal reaction. As a supercapacitor electrode, a superior specific capacitance (~1782 F g-1) is obtained at current density of 1.8 A g-1 (5 mA cm-2), much larger than that of the thicker nanostrucutures (~300 F g-1). The ultrathin nanosheet arrays electrode exhibits good rate capabilities, maintaining 51% of the initial capacity at current density of 30 mA cm-2, and excellent long-term stability, remaining >90% of capacitance after 2000 cycles. Such high performance is attributed to the desirable morphologies, uniform architecture and high surface area. The results manifest that ultrathin Co3O4 nanosheet arrays are promising electrode material for supercapacitor in future application.

  7. High-performance flexible photodetectors based on GaTe nanosheets

    Science.gov (United States)

    Wang, Zhenxing; Safdar, Muhammad; Mirza, Misbah; Xu, Kai; Wang, Qisheng; Huang, Yun; Wang, Fengmei; Zhan, Xueying; He, Jun

    2015-04-01

    2D layered GaTe materials have attracted a great deal of attention for optoelectronic applications due to their direct band structure, whether in bulk or as a single layer. In this paper, for the first time, we have synthesized high quality, single crystalline GaTe nanosheets by employing a facile CVD method. The size of the GaTe nanosheets reached several tens of micrometers, and some of them even exceeded 100 μm. In particular, planar GaTe nanosheets were achieved on a mica substrate following a van der Waals epitaxial growth mechanism. Further, through a systematic comparison of the performances under various conditions, we found that adsorbates on the GaTe surface under ambient conditions strongly deteriorated the GaTe photodetector device performance. After removing the adsorbates in a ~7 × 10-5 torr vacuum, a flexible, fast response GaTe photodetector with a high photoresponse, high mechanical stability and an excellent linear input-output relationship was obtained. The results presented in this study suggest that the GaTe nanosheets grown by a CVD method are promising candidates for optoelectronic applications in the future.

  8. Metal–semiconductor transition in atomically thin Bi2Sr2Co2O8 nanosheets

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-09-01

    Full Text Available Two-dimensional layered materials have attracted considerable attention since the discovery of graphene. Here we demonstrate that the layered Bi2Sr2Co2O8 (BSCO can be mechanically exfoliated into single- or few-layer nanosheets. The BSCO nanosheets with four or more layers display bulk metallic characteristics, while the nanosheets with three or fewer layers have a layer-number-dependent semiconducting characteristics. Charge transport in bilayer or trilayer BSCO nanosheets exhibits Mott 2D variable-range-hopping (VRH conduction throughout 2 K–300 K, while the charge transport in monolayers follows the Mott-VRH law above a crossover temperature of 75 K, and is governed by Efros and Shklovskii-VRH laws below 75 K. Disorder potentials and Coulomb charging both contribute to the transport gap of these nanodevices. Our study reveals a distinct layer number-dependent metal-to-semiconductor transition in a new class of 2D materials, and is of great significance for both fundamental investigations and practical devices.

  9. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.

    Science.gov (United States)

    Bayan, Sayan; Gogurla, Narendar; Midya, Anupam; Singha, Achintya; Ray, Samit K

    2017-12-01

    We demonstrate surface plasmon induced enhancement and tunablilty in optical emission properties of two dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets through the attachment of gold (Au) nanoparticles. Raman spectroscopy has revealed surface enhanced Raman scattering that arises due to the combined effect of the charge transfer process and localized surface plasmon induced enhancement in electromagnetic field, both occurring at the nanoparticle-nanosheet interface. Photoluminescence studies suggest that at an optimal concentration of nanoparticles, the emission intensity can be enhanced, which is maximum within the 500-525 nm region. Further, the fabricated electroluminescent devices reveal that the emission feature can be tuned from bluish-green to red (∼160 nm shift) upon attaching Au nanoparticles. We propose that the π*→π transition in g-C 3 N 4 can trigger surface plasmon oscillation in Au, which subsequently increases the excitation process in the nanosheets and results in enhanced emission in the green region of the photoluminescence spectrum. On the other hand, electroluminescence of g-C 3 N 4 can induce plasmon oscillation more efficiently and thus can lead to red emission from Au nanoparticles through the radiative damping of particle plasmons. The influence of nanoparticle size and coverage on the emission properties of two dimensional g-C 3 N 4 , nanosheets has also been studied in detail.

  10. Amphiphilic nanosheet self-assembly at the water/oil interface: computer simulations.

    Science.gov (United States)

    Xiang, Wenjun; Zhao, Shuangliang; Song, Xianyu; Fang, Shenwen; Wang, Fen; Zhong, Cheng; Luo, Zhaoyang

    2017-03-15

    In this paper, dissipative particle dynamics simulations are performed to study the interfacial and emulsion stabilizing properties of various systems of amphiphilic nanosheets (ANs) self-assembled at the oil/water (O/W) interface. The ANs have a dimensional symmetry structure that encompasses a triangular-plate at the center and two soft comb-like shells constructed with hydrophilic and hydrophobic polymers. As the simulation results show, the AN molecules are highly oriented in interfacial films with their triangular nanosheets parallel to the O/W interface, while their hydrophobic and hydrophilic segments attempt to immerse into the oil phase and aqueous phase, respectively. These results reveal that the rotation of ANs at oil/water interfaces is greatly restricted, meanwhile, their nanosheet (or planar) configuration facilitates their favorable orientation thereby, thus making the emulsion more stable. At higher concentrations, a wrapped-like or micelle morphology is observed. The O/W emulsions stabilized by ANs were also simulated, and it is interesting to find AN 'patches' at the O/W interface which resembles the leather patches on a football. By introducing the "amphiphilic nanosheet balance" concept, the hydrophilic-lipophilic balance (HLB) values of ANs were calculated. Due to their properties of two-dimensional symmetry, the HLB values of ANs tend to approximately 1 which reveals a stronger stability for emulsions.

  11. Preparation of nanosheet by exfoliation of layered iron phenyl phosphate under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Okumiya, Takeshi; Ueda, Shun-kichi; Taketani, Yukihiko; Murakami, Masahiko

    2009-01-01

    Synthetic layered iron phenyl phosphate (Fe(OH)(C 6 H 5 PO 4 H) 1.6 (H 2 PO 4 ) 0.4 .5.1H 2 O: FePP), which is composed of a multilayer alternating bilayer of phenyl groups of the phosphates and amorphous iron phosphate phase, was exfoliated in ethanol under ultrasonic irradiation. The exfoliation of FePP was recognized at 10-10,000 ppm of FePP concentration. No reaggregation and reprecipitation of the nanosheets took place for at least 6 months of standing at room temperature. The UV-vis measurements indicated that the nanosheet dispersing solution possessed a UV absorption property which would be due to the charge transfer transition of Fe-O. The FePP nanosheet-doped silica gel with UV absorption property could be prepared by sol-gel process. The Beer's plot and EDX elemental mapping analysis for Fe and P revealed that the nanosheets are homogeneously dispersed in the silica gels

  12. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets

    Science.gov (United States)

    Luo, Yongfeng; Zhou, Yan; Tang, Yulong; Xu, Jianqiu; Hu, Chenxia; Gao, Linfeng; Zhang, Haoli; Wang, Qiang

    2017-11-01

    Solution based nanosheets of iron-doped graphitic carbon nitrides (Fe-g-CN) have been prepared and their optical properties (both linear and nonlinear) are studied. These two-dimensional (2D) nanosheets show an absorption spectrum extending to over 2 µm, and in particular they possess strong nonlinear (saturable) absorption in the 2 µm spectral region. A saturable absorber (SA) manufactured from 2D Fe-g-CN nanosheets gives a modulation depth and saturation intensity of 12.9% and 8.9 MW cm‑2, respectively. This SA is further used to mode-lock thulium-doped fiber lasers, producing 2 µm laser pulses with a duration of 16.6 ps (dechirped to 2.2 ps), an average power of 96.4 mW, a pulse energy of 6.3 nJ, and a repetition rate of 15.3 MHz. As a new type of 2D nonlinear material with strong modulation capabilities, solution-based Fe-g-CN nanosheets can be potentially integrated into photonic and optoelectrionic devices, particuarly in the 2 µm spectral region.

  13. Incorporation of titanate nanosheets to enhance mechanical properties of water-soluble polyamic acid

    Science.gov (United States)

    Harito, C.; Bavykin, Dmitry V.; Walsh, Frank C.

    2017-07-01

    Pyromeliticdianhydride (PMDA) and 4’,4’-oxydianiline (ODA) were used as monomers of polyimide. To synthesise a water soluble polyimide precursor (polyamic acid salt), triethylamine (TEA) was added to polyamic acid with a TEA/COOH mole ratio of 1:1. Titanate nanosheets were synthesised by solid-state reaction, ion-exchanged with acid, and exfoliated by TEA. Exfoliated titanate nanosheets were mixed with water soluble polyamic acid salt as reinforcing filler. Drop casting was deployed to synthesise polyamic acid/titanate nanosheet nanocomposite films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the morphology and dispersion of nanosheets in the colloidal dispersion and the solid film composite. Modulus and hardness of nanocomposites was provided by nanoindentation. Hardness increased by 90% with addition of 2% TiNS while modulus increased by 103% compared to pure polymer. This behaviour agrees well with Halpin-Tsai theoretical predictions up to 2 wt% filler loading; agglomeration occurs at higher concentrations.

  14. Pillared MFI zeolite nanosheets of a single-unit-cell thickness.

    Science.gov (United States)

    Na, Kyungsu; Choi, Minkee; Park, Woojin; Sakamoto, Yasuhiro; Terasaki, Osamu; Ryoo, Ryong

    2010-03-31

    Zeolite MFI nanosheets of 2-nm thickness have been hydrothermally synthesized via cooperative assembly between silica and an organic surfactant, which is functionalized with a diquaternary ammonium group. The zeolite nanosheets have been further assembled into their ordered multilamellar mesostructure through hydrophobic interactions between the surfactant tails located outside the zeolite nanosheet. This assembly process involves successive transformations from an initially hexagonal mesophase to a multilamellar mesophase without crystallinity and then to a lamellar mesophase with a crystalline zeolite framework. The mesopore volume in the interlamellar space could be retained by supporting the zeolite nanosheets with silica pillars, as in pillared clays, even after surfactant removal by calcination. The mesopore diameters could be controlled according to the surfactant tail lengths. Due to the interlamellar structural coherence, the hierarchically mesoporous/microporous zeolite could exhibit small-angle X-ray diffraction peaks up to the fourth-order reflections corresponding to the interlayer distance. In addition, an Ar adsorption analysis and transmission electron microscopic investigation indicated that the pillars were highly likely to be built with an MFI structure. The present approach using a zeolite structure-directing functional group contained in a surfactant would be suitable for the synthesis of other related nanomorphous zeolites in the future.

  15. Solution-Processable Ultrathin Size- and Shape-Controlled Colloidal Cu2-xS Nanosheets

    NARCIS (Netherlands)

    van der Stam, Ward; Akkerman, Quinten A.; Ke, Xiaoxing; van Huis, Marijn A.|info:eu-repo/dai/nl/304097586; Bals, Sara; Donega, Celso de Mello|info:eu-repo/dai/nl/125593899

    2015-01-01

    Ultrathin two-dimensional (2D) nanosheets (NSs) possess extraordinary properties that are attractive for both fundamental studies and technological devices. Solution-based bottom-up methods are emerging as promising routes to produce free-standing NSs, but the synthesis of colloidal NSs with

  16. Facilely prepared, N, O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes

    Science.gov (United States)

    Wang, Jun; Yang, Ting; Zeng, Zheling; Deng, Shuguang

    2018-04-01

    Nitrogen and oxygen codoped carbon nanosheets derived from pre-functionalized polymer were prepared using a facile direct pyrolysis method. The carbon microstructures are tunable with micro- and mesopore size distribution and a large specific surface area (1628.9-2146.1 m2 g-1). Furthermore, a significant morphology change, from carbon granules to carbon nanosheets, occurred at an annealing temperature of 1273 K. The unique carbon sheet morphology guaranteed a good specific capacitance of 246.4 F g-1 at 0.5 A g-1 in 1 M H2SO4 aqueous solution and an excellent rate capability with a retention of 87.9% at 5 A g-1 as coin cell. The outstanding capacitance attributes to the combination of pseudocapacitance due to the N,O dual-doping and unique nanosheet morphology. Moreover, its outstanding cycling performance with 95% retention over 10,000 cycles at 10 A g-1 and an acceptable energy density of 8.6 Wh kg-1 at 0.2 A g-1 make the N,O-codoped carbon nanosheet potent and promising electrode material for high performance supercapacitors.

  17. Effect of Polysulfone and Graphene Nanosheets on the Flexibility of Epoxy Coatings

    Directory of Open Access Journals (Sweden)

    Bahareh Razavi

    2017-05-01

    Full Text Available Epoxy resin has remarkable properties including excellent mechanical and electrical properties, thermal and chemical stability, and resistance to creep. On the other side, these resins are brittle with low resistance toward crack initiation and its growth. In order to solve this problem, thermoplastic polysulfone and graphene nanosheets have been used as filler for improving the flexibility of epoxy coatings. The effect of adding different amounts (1, 0.5, 2.5, 5 wt% of polysulfone and 0.5 wt% of graphene nanosheets on the epoxy properties was investigated by thermal analysis (DSC, tensile strength, impact resistance and determining the gel content of samples. The results showed that the tensile strength of epoxy resin increased by adding polysulfone, and the graphene nanosheets could improve flexibility of the sample containing 1 wt% polysulfone. The study of thermal properties of cured samples by means of DSC analysis showed that the addition of polysulfone into the epoxy network resulted in changing the glass transition (Tg of the resin. With incorporation of graphene nanosheets into the polymer matrix, the modulus decreased due to the reduction in number of crosslinks. The study in impact resistance of the samples showed that those containing 1 wt% polysulfone and 0.5 wt% graphene displayed high strength and impact resistance. These types of compounds can be used in flexible and anticorrosion coatings.

  18. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    Science.gov (United States)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  19. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    Science.gov (United States)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  20. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.

    Science.gov (United States)

    Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2013-01-01

    Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Chemically Linked Metal-Matrix Nanocomposites of Boron Nitride Nanosheets and Silver as Thermal Interface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Yegin, Cengiz [Texas A& M University; Oh, Jun Kyun [Texas A& M University; Scholar, Ethan Adam [Texas A& M University; Akbulut, Mustafa [Texas A& M University

    2018-01-31

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  2. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  3. Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: Insights from simulations.

    Science.gov (United States)

    Azamat, Jafar; Sattary, Batoul Shirforush; Khataee, Alireza; Joo, Sang Woo

    2015-09-01

    A computer simulation was performed to investigate the removal of Zn(2+) as a heavy metal from aqueous solution using the functionalized pore of a graphene nanosheet and boron nitride nanosheet (BNNS). The simulated systems were comprised of a graphene nanosheet or BNNS with a functionalized pore containing an aqueous ionic solution of zinc chloride. In order to remove heavy metal from an aqueous solution using the functionalized pore of a graphene nanosheet and BNNS, an external voltage was applied along the z-axis of the simulated box. For the selective removal of zinc ions, the pores of graphene and BNNS were functionalized by passivating each atom at the pore edge with appropriate atoms. For complete analysis systems, we calculated the potential of the mean force of ions, the radial distribution function of ion-water, the residence time of ions, the hydrogen bond, and the autocorrelation function of the hydrogen bond. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. 2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application

    KAUST Repository

    Al-Hadeethi, Yas

    2016-11-10

    In this paper, we report the synthesis, characterizations and gas sensing application of 2D Sn-doped ZnO ultrathin nanosheet networks synthesized by a simple and facile hydrothermal process. The synthesized nanosheets were characterized using several techniques in terms of their morphological, structural, optical and compositional properties. The detailed characterizations confirmed that the nanosheets are pure, grown in high-density, possessing well-crystalline wurtzite hexagonal phase and exhibiting good optical properties. Further, the synthesized nanosheets were used as functional material to develop nanosensor device by coating it on the alumina substrate with suitable electrodes. The fabricated sensor device was tested towards acetone gas which exhibited a maximum sensitivity of 5.556 (Ra/Rg) for 200 ppm of acetone at 320 °C.

  5. Polymer-derived Ceramic SiCN-MoS2 Nanosheet Composite for Lithium Ion Battery Anodes

    Science.gov (United States)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a novel SiCN-MoS2 nanosheet composite for use as Li-ion battery anode for high power applications. The nanosheet composite was prepared by thermal decomposition of polysilazane (SiCN precursor) on exfoliated MoS2 surfaces. The morphology and chemical structure was studied using a range of spectroscopy techniques that revealed a sidewall functionalization of exfoliated MoS2 by the polymeric precursor. The thermodynamic stability of SiCN-MoS2 nanosheets was also confirmed by thermo-gravimetric analysis (1000 degree C). Batteries assembled using MoS2-SiCN nanosheets as active anode material showed that lithium can be reversibly intercalated in the voltage range of 0-2.5 V with first cycle discharge capacity of 620 mAh/g at a current density of 100 mA/g.

  6. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media.

    Science.gov (United States)

    Long, Xia; Li, Guixia; Wang, Zilong; Zhu, HouYu; Zhang, Teng; Xiao, Shuang; Guo, Wenyue; Yang, Shihe

    2015-09-23

    We report on the synthesis of iron-nickel sulfide (INS) ultrathin nanosheets by topotactic conversion from a hydroxide precursor. The INS nanosheets exhibit excellent activity and stability in strong acidic solutions as a hydrogen evolution reaction (HER) catalyst, lending an attractive alternative to the Pt catalyst. The metallic α-INS nanosheets show an even lower overpotential of 105 mV at 10 mA/cm(2) and a smaller Tafel slope of 40 mV/dec. With the help of DFT calculations, the high specific surface area, facile ion transport and charge transfer, abundant electrochemical active sites, suitable H(+) adsorption, and H2 formation kinetics and energetics are proposed to contribute to the high activity of the INS ultrathin nanosheets toward HER.

  7. Synthesis of carbon–titania composite and its application as catalyst support

    International Nuclear Information System (INIS)

    Zhu Jie; Lu Mohong; Li Mingshi; Zhu Jianjun; Shan Yuhua

    2012-01-01

    Graphical abstract: SEM images of the carbon-titania composite (the surface and the cross section of the material, respectively). Highlights: ► C/TiO 2 composite was prepared by methane decomposition over formed TiO 2 . ► C/TiO 2 contained 38% of carbon composed of CNFs (90%) and amorphous carbon (10%) ► 97% of the pore space in Pd/C/TiO 2 catalyst was mesopore ► Pd/C/TiO 2 catalyst exhibited high selectivity to citronellal in citral hydrogenation. - Abstract: We reported the synthesis of a promising carbon–titania composite material, C/TiO 2 , and its application as the catalyst support in citral hydrogenation. The composite was synthesized by methane decomposition over formed TiO 2 using Ni–Cu as a catalyst. C/TiO 2 synthesized was subsequently employed to prepare its supported palladium catalyst, Pd/C/TiO 2 . The textural and structural properties of C/TiO 2 and Pd/C/TiO 2 were characterized by BET, SEM/EDS, TEM, ICP-AES, XRD and TG-DTG. The catalytic properties of Pd/C/TiO 2 were evaluated in selective hydrogenation of citral to citronellal. Results revealed that the addition of a little promoter Cu in composite synthesis helped to the improvement in textural and structural properties of C/TiO 2 . The optimal composite prepared had a BET surface area of 60 m 2 g −1 and 97% of its pore space were mesopore. It contained 38% of carbon composed of 90% of carbon nanofibers and 10% of amorphous carbon. Pd/C/TiO 2 prepared held the similar textural and structural properties as C/TiO 2 did. Although the comparatively lower catalytic activity caused by the lower palladium dispersion, Pd/C/TiO 2 exhibited the high citronellal selectivity (90%) at 90% citral conversion, which was attributed to the elimination of internal diffusion limitations due to its mesoporous structure.

  8. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells

    International Nuclear Information System (INIS)

    Shalan, A.E.; Rashad, M.M.; Yu, Youhai; Lira-Cantú, Mónica; Abdel-Mottaleb, M.S.A.

    2013-01-01

    Graphical abstract: (a) A highly ordered, vertically oriented TiO 2 nanorods compared with TiO 2 nanopaticles and (b) Dye sensitized solar cell fabricated using sealing technique. Highlights: ► TiO 2 nanorods particles size of 3–5 nm was synthesized hydrothermally at 100 °C. ► S BET was 78.14 m 2 /g and the band gap energy was 3.2 eV. ► (J sc ) and (V oc ) of the DSSC were in the range 10.84–13.23 mA cm −2 and 0.71–0.78 V. ► Conversion efficiency of DSSCs was 7.2%. ► IPCE analyses of the DSSC showed two peaks, at ∼350 and 520 nm. -- Abstract: A low temperature hydrothermal process have been developed to synthesize titania nanorods (NRs) and nanoparticles (NPs) with controlled size for dye sensitized solar cells (DSSCs). Effect of calcination temperature on the performance of TiO 2 nanoparticles for solar cells was investigated and discussed. The crystallite size and the relative crystallinity of the anatase phase were increased with increasing the calcination temperature. The structures and morphologies of both (TiO 2 nanorods and nanoparticles) were characterized using XRD, SEM, TEM/HRTEM, UV–vis Spectroscopy, FTIR and BET specific surface area (S BET ) as well as pore-size distribution by BJH. The size of the titania nanorods was 6.7 nm width and 22 nm length while it was 13 nm for nanoparticles. Efficiency of dye-sensitized solar cells (DSSCs) fabricated with oriented TiO 2 nanorods was reported to be more superior compared to DSSC based on mesoporous TiO 2 nanoparticles due to their high surface area, hierarchically mesoporous structures, low charge recombination and fast electron-transfer rate. With increasing calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency (η) decreased. The efficiency of the assembly solar cells was decreased due to the agglomeration of the particles and difficulty of electron movement. The power efficiency was enhanced from 1.7% for TiO 2 nanoparticles cells at

  9. Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-02

    We present a study on the properties of iron (Fe)-doped and carbon (C)-coated titania (TiO2) nanoparticles (NPs) which has been compiled by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). These TiO2 NPs were prepared by using the flame synthesis method. This method allows the simultaneous C coating and Fe doping of TiO2 NPs. XRD investigations revealed that the phase of the prepared NPs was anatase TiO2. Conventional TEM analysis showed that the average size of the TiO2 NPs was about 65 nm and that the NPs were uniformly coated with the element C. Furthermore, from the x-ray energy dispersive spectrometry analysis, it was found that about 8 at.% Fe was present in the synthesized samples. High-resolution TEM (HRTEM) revealed the graphitized carbon structure of the layer surrounding the prepared TiO2 NPs. HRTEM analysis further revealed that the NPs possessed the crystalline structure of anatase titania. Energy-filtered TEM (EFTEM) analysis showed the C coating and Fe doping of the NPs. The ratio of L3 and L2 peaks for the Ti-L23 and Fe-L23 edges present in the core loss electron energy loss spectroscopy (EELS) revealed a +4 oxidation state for the Ti and a +3 oxidation state for the Fe. These EELS results were further confirmed with XPS analysis. The electronic properties of the samples were investigated by applying Kramers-Kronig analysis to the low-loss EELS spectra acquired from the prepared NPs. The presented results showed that the band gap energy of the TiO2 NPs decreased from an original value of 3.2 eV to about 2.2 eV, which is quite close to the ideal band gap energy of 1.65 eV for photocatalysis semiconductors. The observed decrease in band gap energy of the TiO2 NPs was attributed to the presence of Fe atoms at the lattice sites of the anatase TiO2 lattice. In short, C-coated and Fe-doped TiO2 NPs were synthesized with a rather cost-effective and comparatively easily scalable method. The

  10. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  11. Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection

    Science.gov (United States)

    Wang, Wenjing; Hao, Qing; Wang, Wei; Bao, Lei; Lei, Jianping; Wang, Quanbo; Ju, Huangxian

    2014-02-01

    This work reports the synthesis of novel CdTe quantum dot (QD)-functionalized porous ZnO nanosheets via a covalent binding method with (3-aminopropyl)triethoxysilane as a linker. The functional nanosheets showed an excellent visible-light absorbency and much higher photoelectrochemical activity than both CdTe QDs and ZnO nanosheets due to the porous structure and appropriate band alignment between the CdTe QDs and ZnO nanosheets. Using hydrogen peroxide as an electron acceptor the nanosheet-modified electrode showed a sensitive photocurrent response. This speciality led to a novel methodology for the design of hydrogen peroxide-related biosensors by the formation or consumption of hydrogen peroxide. Using biotin-labeled DNA as capture probe, a model biosensor was proposed by immobilizing the probe on a nanosheet-modified electrode to recognize target DNA in the presence of an assistant DNA, which produced a ``Y'' junction structure to trigger a restriction endonuclease-aided target recycling. The target recycling resulted in the release of biotin labeled to the immobilized DNA from the nanosheet-modified electrode, thus decreased the consumption of hydrogen peroxide by horseradish peroxidase-mediated electrochemical reduction after binding the left biotin with horseradish peroxidase-labeled streptavidin, which produced an increasing photoelectrochemical response. The `signal on' strategy for photoelectrochemical detection of DNA showed a low detection limit down to the subfemtomole level and good specificity to single-base mismatched oligonucleotides. The sensitized porous ZnO nanosheets are promising for applications in both photovoltaic devices and photoelectrochemical biosensing.

  12. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    Science.gov (United States)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-12-03

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  13. Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol

    Science.gov (United States)

    Mao, Hui; Ji, Chunguang; Liu, Meihong; Cao, Zhenqian; Sun, Dayin; Xing, Zhiqiang; Chen, Xia; Zhang, Yu; Song, Xi-Ming

    2018-03-01

    High-density and well-dispersed Ag nanoparticles (Ag NPs) with a mean size of 20 nm have been successfully supported on the surface of polyacrylamide functionalized polypyrrole/graphene oxide (PAM/PPy/GO) nanosheets. The obtained Ag/PAM/PPy/GO composite nanosheets exhibited an excellent catalytic activity for reduction of 4-nitrophenol by NaBH4 with the kinetic reaction rate constant of 3.38 × 10-2 s-1 due to the synergistic effect of all the components of the composite nanosheets. The corresponding catalytic mechanism has been revealed by investigating the effect of different components of Ag/PAM/PPy/GO composite nanosheets on the catalytic performance: GO with the excellent two-dimensional structures offered large surface area for the immobilization of more Ag NPs; PPy with a high electric conductivity promoted the electron transport in the reduction of 4-NP; PAM did not only act as a good linker between Ag NPs and PPy/GO nanosheets for the synthesis of Ag/PAM/PPy/GO composite nanosheets, but also could facilitate the efficient contact between 4-NP and Ag NPs; Ag NPs were the catalytic active site for the reduction of 4-NP, respectively.

  14. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    Science.gov (United States)

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  15. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Zheng, Xusheng; Chen, Yizhen; Wu, Wenlong; Qiu, Jianxiang; Zhao, Xiangchen; Zhao, Xiao; Dai, Yizhou; Zeng, Jie

    2017-11-01

    Hydrogenation of CO2 into fuels and useful chemicals could help to reduce reliance on fossil fuels. Although great progress has been made over the past decades to improve the activity of catalysts for CO2 hydrogenation, more efficient catalysts, especially those based on non-noble metals, are desired. Here we incorporate N atoms into Co nanosheets to boost the catalytic activity toward CO2 hydrogenation. For the hydrogenation of CO2, Co4N nanosheets exhibited a turnover frequency of 25.6 h-1 in a slurry reactor under 32 bar pressure at 150 °C, which was 64 times that of Co nanosheets. The activation energy for Co4N nanosheets was 43.3 kJ mol-1, less than half of that for Co nanosheets. Mechanistic studies revealed that Co4N nanosheets were reconstructed into Co4NHx, wherein the amido-hydrogen atoms directly interacted with the CO2 to form HCOO* intermediates. In addition, the adsorbed H2O* activated amido-hydrogen atoms via the interaction of hydrogen bonds.

  16. Synthesis and Characterization of Flower-Like Bundles of ZnO Nanosheets by a Surfactant-Free Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Jijun Qiu

    2014-01-01

    Full Text Available Flower-like bundles of ZnO nanosheets have been prepared by using preheating hydrothermal process without any surfactants. The flower-like bundles consist of many thin and uniform hexagonal-structured ZnO nanosheets, with a thickness of 50 nm. The selected area electronic diffraction (SAED and high-resolution transmission electron microscope (HRTEM images indicate that the ZnO nanosheets are single crystal in nature. The growth mechanism of the flower-like bundles of ZnO nanosheets is discussed based on the morphology evolution with growth times and reaction conditions. It is believed that the formation of flower-like bundles of ZnO nanosheets is related to the shielding effect of OH− ions and the self-assembly process, which is dominated by a preheating time. Room temperature photoluminescence spectra results show that the annealing atmosphere strongly affects the visible emission band, which is sensitive to intrinsic and surface defects, especially oxygen interstitials, in flower-like bundles of ZnO nanosheets.

  17. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    Directory of Open Access Journals (Sweden)

    José Vergara

    2017-12-01

    Full Text Available We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM. Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  18. Synthesis of Si nanosheets by using Sodium Chloride as template for high-performance lithium-ion battery anode material

    Science.gov (United States)

    Wang, P. P.; Zhang, Y. X.; Fan, X. Y.; Zhong, J. X.; Huang, K.

    2018-03-01

    Due to the shorter path length and more channels for lithium ion diffusion and insertion, the two-dimensional (2D) Si nanosheets exhibit superior electrochemical performances in the field of electrochemical energy storage and conversion. Recently, various efforts have been focused on how to synthesize 2D Si nanosheets. However, there are many difficulties to achieve the larger area, high purity of 2D Si nanosheets. Herein, we developed a facile and scalable synthesis strategy to fabricate 2D Si nanosheets, utilizing the unique combination of the water-soluble NaCl particles as the sacrificial template and the hydrolyzed tetraethyl orthosilicate as the silica source, and assisting with the magnesium reduction method. Importantly, the obtained Si nanosheets have a larger area up to 10 μm2. Through combining with reduced graphene oxides (rGO), the Si nanosheets@rGO composite electrode exhibits excellent electrochemical performances. It delivers high reversible capacity about 2500 mAh g-1 at the current density of 0.2 A g-1, as well as an excellent rate capability over 900 mAh g-1 at 2 A g-1 even after 200 cycles.

  19. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe.

    Science.gov (United States)

    Vaughn, Dimitri D; In, Su-Il; Schaak, Raymond E

    2011-11-22

    The availability of high-quality colloidal nanosheets underpins a diverse range of applications and investigations into dimension-dependent physical properties. To facilitate this, synthetic methods that yield single-crystal colloidal nanosheets with regular shapes, uniform lateral dimensions, and tunable thicknesses are critically important. Most strategies that yield colloidal nanosheets achieve some, but not all, of these morphological characteristics. Here, we describe a synthetic pathway that generates colloidal nanosheets of SnSe with uniform lateral dimensions and tunable thicknesses. SnSe represents an excellent prototype system for studying the formation of colloidal nanosheets because of its layered crystal structure and the growing interest in its potential application as an absorption layer in low-cost photovoltaic devices. Freestanding colloidal SnSe nanosheets were synthesized by slowly heating a one-pot reaction mixture of SnCl(2), oleylamine, trioctylphosphine selenide (TOP-Se), and hexamethyldisilazane (HMDS) to 240 °C. The SnSe nanostructures adopt a uniform square-like morphology with lateral dimensions of approximately 500 nm × 500 nm, and the average nanosheet thicknesses can be tuned from approximately 10 to 40 nm by adjusting the concentrations of the SnCl(2) and TOP-Se reagents. Aliquot studies reveal fundamental insights into how the nanosheets form: they first "grow out" laterally via coalescence of individual nanoparticle building blocks to yield a single-crystal nanosheet template and then "grow up" vertically (through nanoparticle attachment to the nanosheet template) in a pseudo layer-by-layer fashion. Vertical growth is therefore limited, and can be controlled, by reagent concentration. Drop-cast films of the SnSe nanosheets are photoactive and have a bandgap of approximately 1 eV. These studies, demonstrated for SnSe but potentially applicable to other systems, establish a straightforward pathway for tuning the thicknesses of

  20. Morphology-controlled graphene nanosheets as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ahn, Wook; Song, Hoon Sub; Park, Sang-Hoon; Kim, Kwang-Bum; Shin, Kyoung-Hee; Lim, Sung Nam; Yeon, Sun-Hwa

    2014-01-01

    Highlights: • Graphene nanosheets was manufactured using a simple modified version of a previously improved Hummers method. • The wrinkle-free graphene was easily manufactured from prepared graphene by post-process treatment. • Morphology-controlled graphene nanosheets showed excellent discharge performance. • Morphology-controlled graphene has the potential to be easily applied to graphene-wrapped composite. - Abstract: Morphology-controlled graphene nanosheets can be easily synthesized as anode material for application in high-capacity lithium-ion batteries. A modified version of an improved method for higher degree of oxidation of graphite oxide (GO) has been developed and characterized. X-ray diffraction analysis shows that GO prepared using this method has a higher degree of oxidation than that of using the improved method. The interlayer d-spacing increases from 0.87 nm (using the improved method) to 0.92 nm (using the modified-improved method). Also, it is confirmed by XPS analysis that the O/C ratio in GO increases from 2.51 (improved method) to 8.27 (modified-improved method). It is hypothesized that GO, which has a higher degree of oxidation, is more reducible to graphene. The more reduced graphene has a larger amount of free π-bonds and fewer layers, and it can be easily altered to morphology-controlled graphene. Graphene nanosheets prepared using the modified-improved method exhibits discharge capacities of 1079 mAh g −1 (at a constant current of 40 mA g −1 ) and 1002 mAh g −1 after 50 cycles. The capacity retention of the synthesized graphene nanosheets is 1070 mAh g −1 at a current of 40 mA g −1 after the rate capability test, and their rate capability is 463 mAh g −1 at a current of 400 mA g −1 . The morphology-controlled graphene nanosheets prepared by the modified-improved method shows better discharge performance compared to graphene prepared by the improved method

  1. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2017-03-01

    Full Text Available Bacterial infection and tissue inflammation are the major causes of early failure of titanium-based orthopedic implants; thus, surgical implants with tunable drug releasing properties represent an appealing way to address some of these problems of bacterial infection and tissue inflammation in early age of orthopedic implants. In this work, a hybrid surface system composed of biodegradable poly(lactic-co-glycolic acid (PLGA and titania nanotubes (TNTs has been successfully constructed on Ti implants with the aim of preventing bacterial infection via long-term drug release. By varying the size of the TNTs and the thickness of the polymer film, the drug release profile can be tuned to achieve the optimal therapeutic action throughout the treatment time. The size of TNTs plays a dominant role in the drug loading dose of TNTs/PLGA hybrid coatings. In this work, TNTs with an average size of 80 nm can achieve the largest loading dose. Depending on the polymer thickness, significant improvement in the drug release characteristics is attained, for instance, reduced burst release (from 84% to 27% and overall release time extended from 5 to over 40 days. In addition, the PLGA layers may favor the proliferation and osteogenesis of MC3T3-E1 mouse cells at an earlier stage. Therefore, this TNT/PLGA hybrid surface system can be employed as an effective bioplatform for improving both self-antibacterial performance and biocompatibility of Ti-based biomaterials.

  2. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Hao; Guo, Zhiguang; Wang, Shimin; Liu, Weimin

    2014-01-01

    One-dimensional (1D) titania (TiO 2 ) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO 2 nanostructures and the applications of 1D TiO 2 nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO 2 nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO 2 nanostructures in DSCs into four parts, that is, 1D TiO 2 nanostructures only, 1D TiO 2 nanostructure/nanoparticle composites, branched 1D TiO 2 nanostructures, and 1D TiO 2 nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO 2 nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO 2 nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO 2 nanostructures in DSCs are summarized in this review article.

  3. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.

    2017-02-04

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  4. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.

    Science.gov (United States)

    Snook, Graeme A; McGregor, Katherine; Urban, Andrew J; Lanyon, Marshall R; Donelson, R; Pownceby, Mark I

    2016-08-15

    The direct electrochemical reduction of solid titanium dioxide in a chloride melt is an attractive method for the production of titanium metal. It has been estimated that this type of electrolytic approach may reduce the costs of producing titanium sponge by more than half, with the additional benefit of a smaller environmental footprint. The process utilises a consumable carbon anode which releases a mixture of CO2 and CO gas during electrolysis, but suffers from low current efficiency due to the occurrence of parasitic side reactions involving carbon. The replacement of the carbon anode with a cheap, robust inert anode offers numerous benefits that include: elimination of carbon dioxide emissions, more efficient cell operation, opportunity for three-dimensional electrode configurations and reduced electrode costs. This paper reports a study of Nb-doped titania anode materials for inert anodes in a titanium electrolytic reduction cell. The study examines the effect of niobium content and sintering conditions on the performance of Nb-doped TiO2 anodes in laboratory-scale electrolysis tests. Experimental findings, including performance in a 100 h laboratory electrolysis test, are described.

  5. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  6. The Study of growth and coagulation of titania nanoparticles by chemical vapor synthesis

    International Nuclear Information System (INIS)

    Rahiminezhad-Soltani, M.; Saberyan, K.; Shahri, F.; Simchi, A.

    2010-01-01

    Chemical Vapor Synthesis route was used for synthesis of titanium dioxide (TiO 2 ) nanoparticles in hot-walled reactor at 800 d egree C using TiCl 4 as precursor. The effect of processing parameters e.g., temperature and amount of precursor on phase structure, size, purity, coagulation and agglomeration of nanoparticles were investigated in this respect. Also, the H 2 O effects on the size, crystallinity, phase transformation and purity of nanoparticles were studied. Comprehensive experimental observations were confirmed by transmission electron microscopy, X-ray diffraction analysis and thermal gravimetric-differential thermal analysis results. The obtained results showed that by increasing the precursor amount and temperature, no phase transformation can be observed but the size, coagulation and agglomeration of titania nanoparticles increase. Also, the results showed that by introducing water vapor, the average particle sizes decrease saliently and no phase transformation and impurity were observed. Titanium dioxide nanoparticles can be used for synthesis of nano fluids. Nano fluids (nano-TiO 2 +water) as a cooling agent can be used for the enhanced economy and safety of the nuclear reactors.

  7. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    Science.gov (United States)

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  8. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  9. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  10. Fabrication and characterization of titania/poly (3-dodecylthiopene)/red seaweed as hybrid solar cell

    Science.gov (United States)

    Ghazali, Salmah Mohd; Salleh, Hasiah; Dagang, Ahmad Nazri; Ghazali, Mohd Sabri Mohd; Khamsan, Muhammad Emmer Ashraf; Ahmad, Zakiyah; Aziz, Nik; Ali, Nik

    2017-03-01

    In this research, hybrid solar cells which consist of a combination of organic red seaweed (RS) (Kappaphycus alvarezii) and poly (3-dodecylthiophene) (P3DT) with inorganic titania nanocrystals (TiO2 NCs) materials are fabricated. These hybrid solar cells are fabricated in bilayer heterojunction of ITO/TiO2 NCs/P3DT/RS/Au via electrochemistry method using Electrochemical Impedance Spectroscopy (EIS). The optical, electrical properties and power conversion efficiency (PCE) of these hybrid solar cells that can absorb over a broad range of light spectrum were studied. The UV-Vis spectra showed that TiO2 NCs, P3DT and RS were absorbed over a wide range of light spectrum which were 200-300 nm, 300-900 nm and 250-670 nm; respectively. The FTIR spectra of the RS showed the presence of carbonyl and hydroxyl group which was responsible for a good sensitizer for these hybrid solar cells. The electrical conductivity of ITO/ (1) TiO2 NCs/P3DT/RS thin film under the light radiation of 100 Wm-2 was 0.288 Scm-1, while for PCE, it was 2.0 %.

  11. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xu

    2015-01-01

    Full Text Available Titanium (Ti implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.. Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants.

  12. Surface-Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions.

    Science.gov (United States)

    Dai, Yunqian; Formo, Eric; Li, Haoxuan; Xue, Jiajia; Xia, Younan

    2016-10-20

    Precious metals are widely used as catalysts in industry. It is of critical importance to keep the precious metal ions leached from catalysts at a level below one part per million (ppm) in the final products and to recycle the expensive precious metals. Here we demonstrate a simple and effective method for scavenging precious metal ions from an aqueous solution and thereby reduce their concentrations down to the parts per billion (ppb) level. The key component is a filtration membrane comprised of titania (TiO 2 ) nanofibers whose surface has been functionalized with a silane bearing amino or thiol group. When operated under continuous flow at a rate of 1 mL min -1 and at room temperature, up to 99.95 % of the Pd 2+ ions could be removed from a stock solution with an initial concentration of 100 ppm. This work offers a viable strategy not only for the removal of precious metal ions but also for recovering and further recycling them for use as catalysts. For example, the captured Pd 2+ ions could be converted to nanoparticles and used as catalysts for organic reactions such as Suzuki coupling in a continuous flow reactor. This system can be potentially applied to pharmaceutical industry and waste stream treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of Co-Electrospun Lead Selenide Nanostructures within Anatase Titania Nanotubes for Advanced Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2015-06-01

    Full Text Available Inorganic nano-scale heterostructures have many advantages over hybrid organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells, including their resistance to photo-bleaching, thermal stability, large specific surface areas, and general robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase titania (PbSe/TiO2 nanotube heterostructure material for photovoltaic applications. Herein, PbSe nanostructures have been co-electrospun within a hollow TiO2 nanotube with high connectivity for highly efficient charge carrier flow and electron-hole pair separation. This material has been characterized by transmission electron microscopy (TEM, electron diffraction, energy dispersive X-ray spectroscopy (EDX to show the morphology and material composition of the synthesized nanocomposite. Photovoltaic characterization has shown this newly synthesized proof-of-concept material can easily produce a photocurrent under solar illumination, and, with further refinement, could reveal a new direction in photovoltaic materials.

  14. Stability of erbium and silver implanted in silica-titania sol-gel films

    International Nuclear Information System (INIS)

    Ramos, A.R.; Marques, C.; Alves, E.; Marques, A.C.; Almeida, R.M.

    2005-01-01

    We implanted silica-titania sol-gel films with 3 x 10 15 at./cm 2 , 180 keV Er + and 6 x 10 16 at./cm 2 , 140 keV Ag + ions. The energies were chosen so that the profiles of Ag and Er overlap. RBS and ERDA were used to study the behaviour of Ag, Er and H during the heat treatments used to density the films. Implantation causes H depletion at the film surface and an increase in H concentration just beneath the implanted Ag and Er profiles. The total H content decreases by 27% to 75% during implantation. During annealing the H content decreases, with an almost complete H loss after annealing for 35 min at 800 deg. C. The Ag profile remains stable up to 600 deg. C. Above 700 deg. C Ag becomes increasingly mobile. Annealing at 800 deg. C for 35 min results in a nearly constant Ag distribution in the film. The Er profile remains unchanged with heat treatment up to the maximum temperature used (800 deg. C)

  15. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    Science.gov (United States)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  16. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    Science.gov (United States)

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A new approach to the preparation of nitrogen-doped titania visible light photocatalyst

    KAUST Repository

    Kachina, Anna

    2012-02-28

    A new simple method is described, allowing introduction of nitrogen into the TiO 2 lattice at low temperatures. The technique is based on the introduction of oxophilic molecules, such as CCl 4, into the reaction mixture. The treatment of titanium dioxide powders by NH 3-CCl 4 mixtures leads to highly dispersed N-doped TiO 2. As compared to bare TiO 2 or to the same oxide treated with sole NH 3, the solids treated with NH 3-CCl 4 mixtures showed a stronger red shift in optical absorption and enhanced photocatalytic activity under visible light, as demonstrated for two reactions of formic acid oxidation and photocatalytic production of hydrogen from methanol. The nitridation temperature can be significantly decreased by introducing CCl 4, because of a favorable change of the reaction thermodynamics. Not only can higher specific surface area of materials be obtained as a result of avoiding sintering but a higher amount of nitrogen is introduced in a position beneficial for the enhanced catalytic activity. The X-ray photoelectron spectroscopy study demonstrated increased surface concentration of nitrogen having N 1s binding energy near 399 eV. As established by ESR, the nature of paramagnetic species generated by treatments is strongly dependent on the titania polymorph variety and crystallinity as well as on the treatment conditions, but in all cases the major part of introduced nitrogen remains ESR-silent. © 2012 American Chemical Society.

  18. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    International Nuclear Information System (INIS)

    Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S.C.; Chicot, D.; Velard, F.; Khireddine, H.

    2017-01-01

    Titania-Hydroxyapatite (TiO 2 /HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO 2 /HAP composite and TiO 2 /HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO 2 /HAP composite once incubated in physiological conditions for 7 days whereas the TiO 2 /HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO 2 /HAP bilayer whereas on TiO 2 /HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO 2 /HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO 2 /HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO 2 reinforced HAP coatings were investigated and compared. • TiO 2 /HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO 2 /HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications

  19. Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania

    KAUST Repository

    Mendez, Violaine

    2010-01-01

    Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influence on gold intrinsic activity but more on the apparent reaction rates which are a combination of catalytic activity and diffusion limitations. These are here minimized by using gadolinium-doped titania nanocrystallites as support for gold nanoparticles. This material is obtained by mild hydrolysis of a new Gd4TiO(OiPr)14 bimetallic oxoalkoxide. It leads to enhanced wettability of the < 3 nm gold particles in the tert-butyl hydroperoxide (TBHP)-initiated epoxidation of stilbene in methylcyclohexane; Au/TiO2:Gd3+ is in turn as active as the state-of-the-art hydrophobic Au/SiO2 catalyst. The rate-determining step of this reaction is identified as the gold-catalyzed homolytic decomposition of TBHP generating radicals and initiating the methylcyclohexane-mediated epoxidation of stilbene, yielding a methylcyclohexan-1-ol/trans-stilbene oxide mixture. Methylcyclohexan-1-ol can also be obtained in the absence of the alkene in the gold-catalyzed solvent-free autoxidation of methylcyclohexane, evidencing the catalytic potential of gold nanoparticles for low temperature C-H activation. © 2010 The Royal Society of Chemistry.

  20. Viscous Behavior of Alumina and Titania in Amphoteric Slags and Their Influence on Refractory Corrosion

    Science.gov (United States)

    Kaußen, Frank; Friedrich, Bernd

    Recovering iron from bauxite residue (red mud) by carbothermic reduction creates, depending on the composition of bauxite, slag phases with high amounts of alumina and titania which are commonly known as amphoteric slag components. In this case the prediction of slag properties and even the calculation of basicity are very difficult since the slag consists of about 50 wt.-% amphoteric components. As a consequence the correct choice of refractory materials has to be taken into consideration as well. In this study synthetic slags similar to the compositions which occur during the reductive smelting of bauxite residue are mixed and melted. By the addition of CaO and Na2O and SiO2 the basicity is constantly adjusted to 1 [(CaO+Na2O)/SiO2] to monitor the influence of the addition of amphoteric compounds regarding the viscosity and refractory corrosion. In advance thermodynamic calculations concerning the liquidus temperature and viscosity of the examined slag are done by the software FactSage (vers. 6.4). The molten slags are qualitatively examined regarding the viscosity and later on exposed to three different types of refractory materials (MgO, Al2O3, mullite) in order to observe the refractory corrosion and infiltration behavior.

  1. Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes.

    Science.gov (United States)

    Shao, Zhen; Yang, Youngjun; Lee, Hyunsuk; Kim, Jin Woong; Osuji, Chinedum O

    2012-11-15

    Titania nanoparticles were modified by free-radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) at the particle surface, resulting in the formation of a 1-2 nm thick polymer brush. The zwitterionic nature of the polymer layer suggests that the suspension stability is a delicate function of pH, as well as volume fraction, salt concentration and the presence of charged or un-charged additives which may act as depletants or to screen charge interactions in the system. In this context, we characterized the suspension rheology as a function of volume fraction, pH, ionic strength and the concentration of surfactants in the suspension. Near-neutral pH, the brush layer is effective in stabilizing particles against aggregation with Newtonian behavior observed for volume fractions approaching 14%. Flocculation of particles and an onset of shear-thinning behavior was observed on decreasing pH from near-neutral. Conversely, suspension stability was maintained on increasing pH from near-neutral. Likewise, flocculation could be quickly induced by the addition of salt and cationic surfactant in small amounts, but the suspensions displayed greater stability to anionic and non-ionic surfactant additives. These results have important implications for the successful formulation of complex fluids employing zwitterionic colloids. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  3. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells

    Science.gov (United States)

    Liu, Ting-Chien; Wu, Chih-Chung; Huang, Chih-Hsiang; Chen, Chih-Ming

    2016-12-01

    Ethyl cellulose (EC) was added to a titania (TiO2) paste from 2 wt.% to 18 wt.% as a binder/dispersant, and its effects on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The TiO2 mesoporous film constructed on the photoanode exhibited a dense and network structure composed of well-interconnected TiO2 nanoparticles when using a proper amount of EC (10 wt.%). Excessive and deficient addition of EC resulted in aggregation of TiO2 nanoparticles and formation of pores, respectively, in the TiO2 film. The power conversion efficiency (PCE) of DSSC showed a strong dependence on the EC content and the highest PCE of 7.53% with the highest short-circuit current density ( J SC) of 12.7 mA/cm2 was achieved when the content of EC was 10 wt.%. The incident photon-to-current conversion efficiency (IPCE) results indicated that the TiO2 mesoporous film fabricated using a proper EC addition was beneficial for electron generation (also confirmed by dye desorption experiments) and electron transport, and, therefore, improved the photovoltaic performance of DSSCs.

  4. Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays

    Science.gov (United States)

    Bhattacharyya, Dhiman; Smith, York R.; Misra, Mano; Mohanty, Swomitra K.

    2015-02-01

    Sensing and detection of volatile organic compounds (VOCs) from exhaled breath is a possible method for early diagnosis of several pulmonary diseases. The use of solid-state TiO2 nanotube array sensors for VOC sensing applications has been of great interest. In this study, titania nanotubular arrays (TNAs) were synthesized through electrochemical anodization and used for the electrochemical detection of methyl nicotinate biomarker vapor. Functionalization of the TNA with cobalt was found to be necessary for methyl nicotinate detection. Titanium dioxide films synthesized through high temperature oxidation and functionalized with cobalt were also compared with cobalt functionalized TNA. The ordered TNA demonstrated itself to be an effective substrate for cobalt deposition and subsequent biomarker detection over thin titanium dioxide films. Surface analysis of the cobalt functionalized TNA by x-ray photoelectron spectroscopy (XPS) studies observed cobalt deposits exist as cobalt hydroxide on the surface. Exposure of the sensor surface to methyl nicotinate vapor results in the reduction of cobalt hydroxide to cobalt metal on the surface. Two mechanisms have been proposed to describe the binding of the nicotinate biomarker to cobalt functionalized TNA consistent with the XPS studies and band theory.

  5. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  6. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  7. Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Li, Jian

    2015-07-01

    In this paper, a facile easy method for room-temperature embedment of anatase titania (TiO2) nanoparticles into porous cellulose aerogels was reported. The obtained anatase TiO2/cellulose (ATC) aerogels were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption measurements, and thermogravimetric analysis. The results showed that high-purity anatase TiO2 nanoparticles with sizes of 3.69 ± 0.77 nm were evenly dispersed in the cellulose aerogels, which leaded to the significant improvement in specific surface area and pore volume of ATC aerogels. Meanwhile, the hybrid ATC aerogels also had a high loading content of TiO2 (ca. 17.7 %). Furthermore, through a simple photocatalytic degradation test of indigo carmine dye under UV light, ATC aerogels exhibited superior photocatalytic activity and shape stability, which might be useful in some fields like governance of water pollution, and chemical leaks.

  8. Solar efficiency of a new deposited titania photocatalyst. Chlorophenol, pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, Chantal; Disdier, Jean; Maldonado, Manuel I.; Herrmann, Jean-Marie [Laboratoire D' Application de la Chimie a l' Environnement LACE (UMR 5634), Universite Claude Bernard Lyon I, Bat Jules Raulin, 69622 Villeurbanne Cedex (France); Monnet, Christine; Dussaud, Joseph [AHLSTROM Research and Services, ZI de l' Abbaye, 38780 Pont-Eveque (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2003-11-10

    A specially designed titania photocatalyst was prepared by coating Ahlstrom non-woven paper, used as a flexible photocatalytic support, with Millennium PC500 anatase. At the same time, a new solar photoreactor (STEP) was designed based on the multi-step cascade falling-film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Several types of reactants were treated: 4-chlorophenol as a model organic pollutant; formetanate, a widely used pesticide in horticulture; a mixture of pesticides used in vineyards; and indigo carmine (IC) and Congo red (CR), which are complex multifunctional dye molecules. Each reaction was performed simultaneously in a solar CPC slurry photoreactor and in the STEP photoreactor under identical solar exposure to better evaluate and validate the results obtained. The STEP solar reactor was found to be as efficient as the CPC for 4-chlorophenol and formetanate total degradation. In contrast, both dyes required longer treatment in STEP experiments. This new system, in which the final tedious filtration can actually be avoided, constitutes a good alternative to slurries.

  9. Kinetic modeling of liquefied petroleum gas (LPG) reduction of titania in MATLAB

    Science.gov (United States)

    Yin, Tan Wei; Ramakrishnan, Sivakumar; Rezan, Sheikh Abdul; Noor, Ahmad Fauzi Mohd; Izah Shoparwe, Noor; Alizadeh, Reza; Roohi, Parham

    2017-04-01

    In the present study, reduction of Titania (TiO2) by liquefied petroleum gas (LPG)-hydrogen-argon gas mixture was investigated by experimental and kinetic modelling in MATLAB. The reduction experiments were carried out in the temperature range of 1100-1200°C with a reduction time from 1-3 hours and 10-20 minutes of LPG flowing time. A shrinking core model (SCM) was employed for the kinetic modelling in order to determine the rate and extent of reduction. The highest experimental extent of reduction of 38% occurred at a temperature of 1200°C with 3 hours reduction time and 20 minutes of LPG flowing time. The SCM gave a predicted extent of reduction of 82.1% due to assumptions made in the model. The deviation between SCM and experimental data was attributed to porosity, thermodynamic properties and minute thermal fluctuations within the sample. In general, the reduction rates increased with increasing reduction temperature and LPG flowing time.

  10. Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

    Directory of Open Access Journals (Sweden)

    Hoai Nga Le

    2015-12-01

    Full Text Available The effectiveness of photocatalytic materials increases with the specific surface area, thus nanoscale photocatalyst particles are preferred. However, such nanomaterials are frequently found in an aggregated state, which may reduce the photocatalytic activity due to internal obscuration and the extended diffusion path of the molecules to be treated. This paper investigates the effect of aggregate size on the photocatalytic activity of pyrogenic titania (Aeroxide® P25, Evonik, which is widely used in fundamental photocatalysis research. Well-defined and reproducible aggregate sizes were achieved by ultrasonic dispersion. The photocatalytic activity was examined by the color removal of methylene blue (MB with a laboratory-scale setup based on a plug flow reactor (PFR and planar UV illumination. The process parameters such as flow regime, optical path length and UV intensity are well-defined and can be varied. Our results firstly show that a complete dispersion of the P25 aggregates is not practical. Secondly, the photocatalytic activity is not further increased beyond a certain degree of dispersion, which probably corresponds to a critical size for which UV irradiation can penetrate the aggregate without significant obscuration.

  11. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; Garten, Lauren M.; Ginley, David S.; Gorman, Brian P.

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.

  12. Preparation and Characterization of Titania-silica Composite Particles by Pechini Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Wu Yuanting

    2016-01-01

    Full Text Available Two Pechini sol-gel processes were used to prepare titania-silica composite particles. The dynamic oxidation behavior of the TiO2-SiO2 powders has been characterized by thermogravimetry-differential scanning calorimetry (TG-DTG-DSC. The crystal phase and microstructure of the composite particles were investigated by X-ray diffraction (XRD and field emission scanning electron microscope (FE-SEM. The effects of Si:Ti molar ratio and sol-gel process on the TiO2-SiO2 powders were studied. The preparation of the polymeric precursors can influence the morphology of obtained TiO2-SiO2 composite particles. The spherical TiO2-SiO2 composite particles which are 20 nm~400 nm in diameter appear in gel-1 system. However, the TiO2-SiO2 powders obtained by gel-2 system are irregular in shape and 2~15 μm in diameter which show a loose porous structure consisted of very fine granules.

  13. Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances

    Science.gov (United States)

    Wu, Xuan; Xu, Rui; Zhu, Rongjiao; Wu, Rui; Zhang, Bin

    2015-05-01

    Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained hierarchical nanosheet-based ZnSe microspheres exhibited outstanding performance in visible light photocatalytic degradation of methyl orange and were highly active for photocatalytic H2 production.Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained

  14. High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation

    Science.gov (United States)

    Yang, Jiao; Jiang, Yi-Lin; Li, Lin-Jie; Muhire, Elisée; Gao, Mei-Zhen

    2016-04-01

    Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system.Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following

  15. Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors

    Science.gov (United States)

    Lv, Longfei; Xu, Yibing; Fang, Hehai; Luo, Wenjin; Xu, Fangjie; Liu, Limin; Wang, Biwei; Zhang, Xianfeng; Yang, Dong; Hu, Weida; Dong, Angang

    2016-07-01

    All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets combined with their unique 2D geometry and large lateral dimensions make them ideal building blocks for building functional devices. To demonstrate their potential applications in optoelectronics, photodetectors based on CsPbBr3 nanosheets are fabricated, which exhibit high on/off ratios with a fast response time.All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets

  16. Preparation, characterization and tribological properties of ultrathin MoS2 nanosheets

    Science.gov (United States)

    Zhang, Xianghua; Xue, Yaping; Ye, Xia; Xu, Hongxiang; Xue, Maoquan

    2017-11-01

    In this work, ultrathin MoS2 nanosheets were prepared via a solid-state reaction route. The structure and morphology of the obtained samples were characterized by x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The influences of the reaction durations and raw materials molar ratio on the sizes and morphologies of the MoS2 nanostructures were discussed. And according to the experimental results, a formation mechanism of the ultrathin MoS2 nanosheets was proposed. The tribological behaviors of the synthesized MoS2 samples as additives in paraffin oil were determined on an UMT-2 tribometer. The experimental results indicated that the obtained samples possessed great anti-friction and anti-wear properties as lubrication additive in paraffin oil.

  17. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation.

    Science.gov (United States)

    Zhao, Yufei; Zhao, Yunxuan; Waterhouse, Geoffrey I N; Zheng, Lirong; Cao, Xingzong; Teng, Fei; Wu, Li-Zhu; Tung, Chen-Ho; O'Hare, Dermot; Zhang, Tierui

    2017-11-01

    Semiconductor photocatalysis attracts widespread interest in water splitting, CO 2 reduction, and N 2 fixation. N 2 reduction to NH 3 is essential to the chemical industry and to the Earth's nitrogen cycle. Industrially, NH 3 is synthesized by the Haber-Bosch process under extreme conditions (400-500 °C, 200-250 bar), stimulating research into the development of sustainable technologies for NH 3 production. Herein, this study demonstrates that ultrathin layered-double-hydroxide (LDH) photocatalysts, in particular CuCr-LDH nanosheets, possess remarkable photocatalytic activity for the photoreduction of N 2 to NH 3 in water at 25 °C under visible-light irradiation. The excellent activity can be attributed to the severely distorted structure and compressive strain in the LDH nanosheets, which significantly enhances N 2 chemisorption and thereby promotes NH 3 formation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance

    Science.gov (United States)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-06-01

    Novel hierarchical MoS2/graphene (MoS2/G) nanobelts were synthesized through a facile hydrothermal reaction. In this work, the MoO3 nanobelts and graphene nanosheets played the important roles in the preparation of the nanosheet-built nanobelt architecture. Ascribed to the ordered porous hierarchical nanobelt structure and introduction of graphene, the hybrid electrode exhibits much higher electrochemical capacity than pure MoS2 particles. Moreover, the unique ordered hierarchical architecture could greatly relieve the volume change and stack during the electrochemical process, resulting in the excellent cycling stability. Specifically, the hybrid electrode possesses a capacitance of 445.71 F g-1 at 0.8 A g-1 with a high capacity retention of 96.75% at 2 A g-1 after 1000 cycles.

  19. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation

    KAUST Repository

    Hu, Li-Fang

    2015-12-10

    Layered HNbWO6HNbWO6 nanosheet aggregation (e-HNbWO6e-HNbWO6) has been assembled by HNbWO6HNbWO6 nanosheet via an exfoliation-restaking route. The as-prepared samples are characterized by means of powder x-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, laser Raman spectroscopy, ultraviolet-vis diffuse reflectance spectroscopy, and N2N2 adsorption-desorption isotherms. The photocatalytic performances of the as-prepared samples are evaluated by degradation of methylene blue (MB). The results revealed that e-HNbWO6e-HNbWO6 has a specific surface area of about 156.5  m2 g−1156.5  m2 g−1, and exhibits a relatively excellent photocatalytic performance for degradation of MB under UV light.

  20. Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs).

    Science.gov (United States)

    Mitra, Shouvik; Kandambeth, Sharath; Biswal, Bishnu P; Khayum M, Abdul; Choudhury, Chandan K; Mehta, Mihir; Kaur, Gagandeep; Banerjee, Subhrashis; Prabhune, Asmita; Verma, Sandeep; Roy, Sudip; Kharul, Ulhas K; Banerjee, Rahul

    2016-03-02

    Covalent organic nanosheets (CONs) have emerged as functional two-dimensional materials for versatile applications. Although π-π stacking between layers, hydrolytic instability, possible restacking prevents their exfoliation on to few thin layered CONs from crystalline porous polymers. We anticipated rational designing of a structure by intrinsic ionic linker could be the solution to produce self-exfoliated CONs without external stimuli. In an attempt to address this issue, we have synthesized three self-exfoliated guanidinium halide based ionic covalent organic nanosheets (iCONs) with antimicrobial property. Self-exfoliation phenomenon has been supported by molecular dynamics (MD) simulation as well. Intrinsic ionic guanidinium unit plays the pivotal role for both self-exfoliation and antibacterial property against both Gram-positive and Gram-negative bacteria. Using such iCONs, we have devised a mixed matrix membrane which could be useful for antimicrobial coatings with plausible medical benefits.

  1. Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Benavente, Eglantina; Durán, Flor; Sotomayor-Torres, C.; González, Guillermo

    2018-02-01

    A series of novel heterostructured hybrid layered ZnO and MoS2 nanosheets composites were successfully prepared with different MoS2 contents. Among all the prepared materials, ZnO/MoS2 (1:0.05) composite showed enhanced photocatalytic activity for methylene blue degradation under direct solar light compared with pristine ZnO. The MoS2 component played a key role for the visible light activity of the composite system at longer wavelengths. The kinetic equations of photocatalytic reaction and possible photocatalytic degradation mechanism were investigated. The results indicated that it belongs to the zero order kinetic and the photogenerated electrons are transferred from hybrid layered ZnO to the MoS2 nanosheets, facilitating an interfacial electron transfer suppressing the recombination of charge carriers during the photocatalytic degradation.

  2. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage

    Science.gov (United States)

    Yun, Y. S.; Kim, D.-H.; Hong, S. J.; Park, M. H.; Park, Y. W.; Kim, B. H.; Jin, H.-J.; Kang, K.

    2015-09-01

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors.We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04231c

  3. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  4. Preparation and tribological behaviors of poly (ether ether ketone) nanocomposite films containing graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: shj6922@163.com; Li Na; Yang Jin; Min Chunying [Jiangsu University, School of Materials Science and Engineering (China); Zhang Zhaozhu [Chinese Academy of Sciences, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics (China)

    2013-02-15

    The composite films of poly (ether ether ketone) (PEEK) filled with different proportions of graphene oxide (GO) nanosheets were prepared by the cast method. The tribological behaviors of the composite films under boundary lubrication (water and liquid paraffin oil lubrication) were investigated and compared with that under dry sliding on an UMT-2 friction and wear machine, by running a steel sphere against the composite films. The results were as follows: GO nanosheets as the filler greatly improve the wear resistance of PEEK under boundary lubrication, though the composites show a different dependence of wear resistance on the filler content. Scanning electron microscopy and optical microscopy performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of GO could be attributed to their small size and extremely thin laminated structure, which allow the GO to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  5. Series-Interconnected Plastic Dye-Sensitized Solar Cells Prepared by Low- Temperature Binder-Free Titania Paste

    Directory of Open Access Journals (Sweden)

    Erlyta Septa Rosa

    2014-10-01

    Full Text Available The aim of this research is to study dye-sensitized solar cells (DSSC. This was implemented on a flexible polyethylene terephthalate (PET substrate using a mixture of transparent and scattered mesoporous anatase-titania as the electron transport layer for the photoelectrode. This mixture of anatase titania performed a dual function of light scattering and efficient dye absorption. In this study, a porous nano-TiO2 film was prepared on indium tin oxide (ITO coated polyethylene terephthalate (PET by using a binder-free titania paste; on it, a DSSC was fabricated. The paste which contained a mixture of TiO2 nanoparticles, acid chloride, and ethanol was printed on two patterns of 1x6 cm2 active areas followed by sintered at 120 ºC to form TiO2 films. A commercial dye, N719, was adsorbed on the surface of TiO2 films and assembled to two platinized conductive plastic patterns to form a counter electrode and thus a sandwich-type dye cell. Finally, a solution of KI/I2 electrolytes was injected into the cell in which a couple of sandwich-type dye cells with an active area of 6 cm2 for each cell were series interconnected with a z-type interconnection between the photoelectrode of one cell and the counter electrode of another cell. The cell performance was characterized by employing simulated solar light at an intensity of 50 mW/cm2. The results showed interconnected cells generating a short-circuit photocurrent density of 2.34 mA/cm2, an open-circuit voltage of 1.10 volt, and overall 0.172% power conversion efficiency.

  6. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  7. TaS2 nanosheet-based room-temperature dosage meter for nitric oxide

    Directory of Open Access Journals (Sweden)

    Qiyuan He

    2014-09-01

    Full Text Available A miniature dosage meter for toxic gas is developed based on TaS2 nanosheets, which is capable of indicating the toxic dosage of trace level NO at room temperature. The TaS2 film-based chemiresistor shows an irreversible current response against the exposure of NO. The unique non-recovery characteristic makes the TaS2 film-based device an ideal indicator of total dosage of chronicle exposure.

  8. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets.

    Science.gov (United States)

    Yang, Yanqin; Goh, Kunli; Wang, Rong; Bae, Tae-Hyun

    2017-04-11

    Two-dimensional (2-D) CuBDC nanosheets (ns-CuBDC) with high-aspect-ratios were deliberately paired with polymers possessing high free volumes to fabricate high performance gas separation membranes. Owing to the molecular sieving effect of the filler, a small ns-CuBDC loading (2-4 wt%) could significantly improve the CO 2 /CH 4 selectivities of membranes, resulting in performances that surpass the upper bound limit for polymer membranes.

  9. Nickel hydroxide ultrathin nanosheets as building blocks for electrochemically active layers

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Pleštil, Josef; Janda, Pavel; Bohuslav, Jan; Ihiawakrim, D.; Ersen, O.; Rogez, G.; Lang, Kamil

    2013-01-01

    Roč. 1, č. 37 (2013), s. 11429-11437 ISSN 2050-7488 R&D Projects: GA ČR GAP207/10/1447; GA ČR GP13-09462P Institutional support: RVO:61388980 ; RVO:61389013 ; RVO:61388955 Keywords : layered hydroxide * delamination * nanosheet * batteries Subject RIV: CA - Inorganic Chemistry; CD - Macromolecular Chemistry (UMCH-V); CF - Physical ; Theoretical Chemistry (UFCH-W)

  10. Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability

    Science.gov (United States)

    Zhang, Shupeng; Xiong, Pan; Yang, Xujie; Wang, Xin

    2011-05-01

    A series of polyethylene glycol (PEG) functionalized graphene sheet hybrid materials (FGHMs) have been successfully synthesized via ester linkages. Interestingly, our products can be dispersed in both polar/protic solvents and nonpolar/nonprotic ones, which differ significantly from previously reported systems and are of great value in the wide-spread application of these ``carbon nanosheet'' based materials by solution-phase processing. Furthermore, the addition of PEG-modified carbon nanosheets as nanofillers significantly improves the thermal stability of the bulk polymers. In our case, an increase of 35 K in thermal stability can be obtained for PEG4000 after filling with as low as 1 wt % of the PEG modified carbon sheets, suggesting their great potential as novel nanofillers in industry.A series of polyethylene glycol (PEG) functionalized graphene sheet hybrid materials (FGHMs) have been successfully synthesized via ester linkages. Interestingly, our products can be dispersed in both polar/protic solvents and nonpolar/nonprotic ones, which differ significantly from previously reported systems and are of great value in the wide-spread application of these ``carbon nanosheet'' based materials by solution-phase processing. Furthermore, the addition of PEG-modified carbon nanosheets as nanofillers significantly improves the thermal stability of the bulk polymers. In our case, an increase of 35 K in thermal stability can be obtained for PEG4000 after filling with as low as 1 wt % of the PEG modified carbon sheets, suggesting their great potential as novel nanofillers in industry. Electronic Supplementary Information (ESI) available: Table S1: Digital pictures of several typical hybrid materials dispersed in water and 22 organic solvents; Video 1: GO-PEG400 can be re-dispersed in the isooctane by simply turning the vials up and down. See DOI: 10.1039/c0nr00923g

  11. CdS nanobubbles and Cd-DMS nanosheets: solvothermal synthesis and formation mechanism.

    Science.gov (United States)

    Feng, Miao; Zhan, Hongbing

    2013-02-01

    CdS nanobubbles and Cd-DMS nanosheets have been prepared by a solvothermal method from a solution of Cd2+ in dimethyl sulfoxide in the absence of elemental S. A formation mechanism for the nanobubble morphology arising during the CdS nanocrystal growth has been proposed, based on the results of transmission electron microscopy and photoluminescence spectrophotometry. The correlation of the morphology with reaction time was also suggested, and may be applicable to the solvothermal synthesis of other nanomaterials.

  12. Synthesis and characterization of vertically standing MoS2 nanosheets

    OpenAIRE

    Li, Han; Wu, Huaqiang; Yuan, Shuoguo; Qian, He

    2016-01-01

    Molybdenum disulfide (MoS2) has been attracting much attentions due to its excellent electrical and optical properties. We report here the synthesis of large-scale and uniform MoS2 nanosheets with vertically standing morphology using chemical vapor deposition method. TEM observations clearly reveal the growth mechanism of these vertical structures. It is suggested that the vertical structures are caused by the compression and extrusion between MoS2 islands. More importantly, the vertical morp...

  13. Reorientation of Magnetic Graphene Oxide Nanosheets in Crosslinked Quaternized Polyvinyl Alcohol as Effective Solid Electrolyte

    OpenAIRE

    Jia-Shuin Lin; Wei-Ting Ma; Chao-Ming Shih; Bor-Chern Yu; Li-Wei Teng; Yi-Chun Wang; Kong-Wei Cheng; Fang-Chyou Chiu; Shingjiang Jessie Lue

    2016-01-01

    This work aims to clarify the effect of magnetic graphene oxide (GO) reorientation in a polymer matrix on the ionic conduction and methanol barrier properties of nanocomposite membrane electrolytes. Magnetic iron oxide (Fe3O4) nanoparticles were prepared and dispersed on GO nanosheets (GO-Fe3O4). The magnetic GO-Fe3O4 was imbedded into a quaternized polyvinyl alcohol (QPVA) matrix and crosslinked (CL-) with glutaraldehyde (GA) to obtain a polymeric nanocomposite. A magnetic field was applied ...

  14. Laser-induced transformation of GaS and GaSe nanosheets to ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Experimental evidence for the transformation of nanosheets of GaS and GaSe into onion struc- tures on UV excimer pulsed laser irradiation is presented. Few-layer GaS and GaSe on Si substrates were exposed to KrF pulsed laser with wavelength of 248 nm and the effect was studied as a function of number of.

  15. Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets

    KAUST Repository

    Ansari, Seema

    2010-01-18

    Graphite oxide-Nafion hybrids with a high degree of alignment are cast from aqueous solution in the absence of any external field and reduced in situ by exposure to hydrazine to produce graphene-Nafion hybrids. Dramatic enhancement of electrical conductivity indicates sufficient accessibility of the inorganic nanosheets to the reducing agent, through the nanochannels formed by the polymeric ionic domains. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  17. Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance

    OpenAIRE

    Lepcha, A.; Maccato, C.; Mettenbörger, A.; Andreu, T.; Mayrhofer, L.; Walter, M.; Olthof, S.; Ruoko, T.P.; Klein, A.; Moseler, M.; Meerholz, K.; Morante, J.R.; Barreca, D.; Mathur, S.

    2015-01-01

    This work encompasses a facile method for tailoring surface defects in electrospun TiO2 nanofibers by employing hydrogen plasma treatments. This amiable processing method was proven with SQUID, EPR, and XPS to be highly effective in generating oxygen vacancies, accompanied by the reduction of Ti4+ centers to Ti3+, resulting in the formation of black titania. The treatment temperature was found to affect the Ti3+/Ti4+ ratios and surface valence, while preserving the original 1D morphology of t...

  18. Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape

    Czech Academy of Sciences Publication Activity Database

    Klementová, Mariana; Motlochová, Monika; Boháček, Jaroslav; Kupčík, Jaroslav; Palatinus, Lukáš; Pližingrová, Eva; Szatmáry, L.; Šubrt, Jan

    2017-01-01

    Roč. 17, č. 12 (2017), s. 6762-6769 ISSN 1528-7483 R&D Projects: GA TA ČR(CZ) TH02020110; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 ; RVO:68378271 Keywords : metatitanic acid * titania * pseudomorph * titanyl sulfate dihydrate structure * morphology control * sorption * radionuclides Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Inorganic and nuclear chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 4.055, year: 2016

  19. Copper supported on nanostructured mesoporous ceria-titania composites as catalysts for sustainable environmental protection: Effect of support composition

    Czech Academy of Sciences Publication Activity Database

    Issa, G. S.; Tsoncheva, T.; Mileva, A.; Dimitrov, M.D.; Kovacheva, D.; Henych, Jiří; Štengl, Václav

    2017-01-01

    Roč. 49, SI D (2017), s. 55-62 ISSN 0324-1130 Grant - others:AV ČR(CZ) BAS-17-13 Program:Bilaterální spolupráce Institutional support: RVO:61388980 Keywords : Mesoporous nanostructured ceria-titania doped with copper * template-assisted hydrothermal synthesis * ethyl acetate oxidation * methanol decomposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 0.238, year: 2016 http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Special_D_2017/BCC2017-49-SE-D-055-062.pdf

  20. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  1. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun

    2017-12-27

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  2. Wettability and friction of water on a MoS{sub 2} nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Binquan, E-mail: bluan@us.ibm.com, E-mail: ruhongz@us.ibm.com; Zhou, Ruhong, E-mail: bluan@us.ibm.com, E-mail: ruhongz@us.ibm.com [IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States)

    2016-03-28

    The molybdenum disulfide (MoS{sub 2}) nanosheet is a promising two-dimensional (2D) material and has recently been used in biological sensing. While the electronic structure of 2D MoS{sub 2} sheet has been actively studied, the role of its atomic structure and thus the interfacial interactions with bio-fluids are still elusive. Using Molecular dynamics simulations, we developed MoS{sub 2} force field parameters to reproduce the experimentally determined water contact angle of the MoS{sub 2} nanosheet and then predicted the slip-length of water that has not been measured in experiment yet. Simulation results suggest that the MoS{sub 2} nanosheet is a hydrophobic and low-friction surface, despite its seemingly significant charges of surface atoms and relatively strong strength of van der Waals potentials. We expect that the developed force fields for depicting surface atoms of MoS{sub 2} will facilitate future research in understanding biomolecule-MoS{sub 2} interactions in MoS{sub 2}-based biosensors.

  3. Experimental and theoretical evidence for the ferromagnetic edge in WSe2nanosheets.

    Science.gov (United States)

    Tao, Lei; Meng, Fanchen; Zhao, Shudong; Song, Yongli; Yu, Jianxin; Wang, Xianjie; Liu, Zhiguo; Wang, Yi; Li, Bingsheng; Wang, Yang; Sui, Yu

    2017-04-13

    Bulk TMDCs are diamagnetic materials; however, two-dimensional TMDCs exhibit spin polarized edge states, which results in a coupling between the unsaturated transition metal and chalcogenide atoms at the edges. The magnetism in two-dimensional TMDCs broadens their applications in spintronic and multi-functional devices. Herein, by combining macro/micro-magnetic experimental measurements and density functional theory (DFT) calculations, we demonstrate that among five possible edge-terminated WSe 2 nanosheets only two types have a magnetic ground state, corresponding to the 100% Se edge terminated and 50% Se edge terminated nanosheets, respectively. The calculation results on WSe 2 clusters and WSe 2 zig-zag nanoribbons with different terminations and Se coverage rate confirmed that the unpaired electrons of the edge atoms play a crucial role in the appearance of ferromagnetism in WSe 2 nanosheets. Furthermore, due to the possible quantum confinement effect and surface effect, there exist thickness-dependent magnetic properties, and the magnitude of magnetism at the edge increases as the number of layers decreases.

  4. 2D nickel oxide nanosheets with highly porous structure for high performance capacitive energy storage

    Science.gov (United States)

    Li, Zijiong; Zhang, Weiyang; Liu, Yanyue; Guo, Jinjin; Yang, Baocheng

    2018-01-01

    Developing advanced electrochemical electrode materials with excellent performance is critical to their future energy storage devices. Herein, we design and synthesize two-dimensional (2D) porous structure nickel oxide (NiO) nanosheets via a facile and scalable hydrothermal approach, and further heating. The effects of heating time on the electrochemical performances are investigated. The results indicate that the maximum specific capacitance is achieved for NiO nanosheets when heating temperature and time are 300 °C and 3 h, respectively (namely NiO-3). The as-prepared NiO-3 nanosheet are grown uniform on the skeleton of reduced graphene oxide (rGO). The optimum NiO/rGO displays a reversible discharge capacity of 781.7 F g-1 at 1 A g-1, and shows an ultra-long life-span with over 94% capacitance retention after 4000 cycles. The enhanced electrochemical properties for NiO/rGO can be ascribed to a collaborative effect between NiO and rGO, which possess high capacitance storage ability and excellent conductivity, respectively.

  5. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    Science.gov (United States)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  6. Photocatalytic Reduction of CO2 to Methane on Pt/TiO2 Nanosheet Porous Film

    Directory of Open Access Journals (Sweden)

    Li Qiu-ye

    2014-01-01

    Full Text Available Anatase TiO2 nanosheet porous films were prepared by calcination of the orthorhombic titanic acid films at 400°C. They showed an excellent photocatalytic activity for CO2 photoreduction to methane, which should be related to their special porous structure and large Brunauer-Emmett-Teller (BET surface area. In order to further improve the photocatalytic activity, Pt nanoparticles were loaded uniformly with the average size of 3-4 nm on TiO2 porous films by the photoreduction method. It was found that the loading of Pt expanded the light absorption ability of the porous film and improved the transformation efficiency of CO2 to methane. The conversion yield of CO2 to methane on Pt/TiO2 film reached 20.51 ppm/h·cm2. The Pt/TiO2 nanosheet porous film was characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscope (TEM, and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS. Moreover, the transient photocurrent-time curves showed that the Pt/TiO2 nanosheet porous film exhibited higher photocurrent, indicating that the higher separation efficiency of the photogenerated charge carriers was achieved.

  7. Graphene Quantum Dots Embedded in Bi2Te3Nanosheets To Enhance Thermoelectric Performance.

    Science.gov (United States)

    Li, Shuankui; Fan, Tianju; Liu, Xuerui; Liu, Fusheng; Meng, Hong; Liu, Yidong; Pan, Feng

    2017-02-01

    Novel Bi 2 Te 3 /graphene quantum dots (Bi 2 Te 3 /GQDs) hybrid nanosheets with a unique structure that GQDs are homogeneously embedded in the Bi 2 Te 3 nanosheet matrix have been synthesized by a simple solution-based synthesis strategy. A significantly reduced thermal conductivity and enhanced powder factor are observed in the Bi 2 Te 3 /GQDs hybrid nanosheets, which is ascribed to the optimized thermoelectric transport properties of the Bi 2 Te 3 /GQDs interface. Furthermore, by varying the size of the GQDs, the thermoelectric performance of Bi 2 Te 3 /GQDs hybrid nanostructures could be further enhanced, which could be attributed to the optimization of the density and dispersion manner of the GQDs in the Bi 2 Te 3 matrix. A maximum ZT of 0.55 is obtained at 425 K for the Bi 2 Te 3 /GQDs-20 nm, which is higher than that of Bi 2 Te 3 without hybrid nanostrucure. This work provides insights for the structural design and synthesis of Bi 2 Te 3 -based hybrid thermoelectric materials, which will be important for future development of broadly functional material systems.

  8. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhang, Junjun; Zhang, Chenhui; Wang, Zhenyu; Zhu, Jian; Wen, Zhiwei; Zhao, Xingzhong; Zhang, Xixiang; Xu, Jun; Lu, Zhouguang

    2018-03-01

    A simple one-pot solvothermal method is reported to synthesize VS 2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS 2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm -2 , a small Tafel slope of 36 mV dec -1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS 2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆G H ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. N-doped ZnO nanosheets: towards high performance two dimensional catalysts

    Science.gov (United States)

    Guo, Na; Meng Yam, Kah; Wang, Xiaolu; Zhang, Chun

    2018-03-01

    Recently, catalytic activity of atomically thin two dimensional (2D) materials has attracted great interest. In this paper, via first principles calculations, we show for the first time that N-doped 2D one-atom-thick ZnO nanosheets exhibit high catalytic activity towards CO oxidation. A pristine 2D ZnO nanosheet is chemically inert and as a result, CO and O2 molecules do not chemically bind on the nanosheet. Our calculations predict that the N doping activates the ZnO sheet, leading to strong CO and O2 adsorptions. We further show that the CO oxidation catalyzed by the N-doped 2D ZnO sheet has a low reaction barrier around 0.5 eV. Besides high catalytic activity, the N-doped 2D ZnO sheet also demonstrates intriguing electronic and magnetic properties. These findings provide new opportunities for the future development of high performance 2D catalysts.

  10. Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO2Gas Sensibility.

    Science.gov (United States)

    Chen, Zhuo; Wang, Jinrong; Umar, Ahmad; Wang, Yao; Li, Hao; Zhou, Guofu

    2017-04-05

    It is well-established that the structures dominate the properties. Inspired by the highly contorted and crumpled maxilloturbinate inside dog nose, herein an artificial nanostructure, i.e., 3D crumpled graphene-based nanosheets, is reported with the simple fabrication, detailed characterizations, and efficient gas-sensing applications. A facile supramolecular noncovalent assembly is introduced to modify graphene with functional molecules, followed with a lyophilization process to massively transform 2D plane graphene-based nanosheets to 3D crumpled structure. The detailed morphological characterizations reveal that the bioinspired nanosheets exhibit full consistency with maxilloturbinate. The fabricated 3D crumpled graphene-based sensors exhibit ultrahigh response (R a /R g = 3.8) toward 10 ppm of NO 2 , which is mainly attributed to the specific maxilloturbinate-mimic structure. The sensors also exhibit excellent selectivity and sensing linearity, reliable repeatability, and stability. Interestingly, it is observed that only 4 mg of graphene oxide (GO) raw materials can produce more than 1000 gas sensors, which provides a new insight for developing novel 3D biomimetic materials in large-scale gas sensor production.

  11. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  12. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    Science.gov (United States)

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; Neuefeind, Joerg; Xu, Wenqian; Teng, Xiaowei

    2017-05-01

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because the large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g-1 in half-cells at a scan rate of 5 mV s-1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g-1 in full cells after 5,000 cycles at 10 C). The promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.

  13. Highly Concentrated, Ultrathin Nickel Hydroxide Nanosheet Ink for Wearable Energy Storage Devices.

    Science.gov (United States)

    Shi, Peipei; Chen, Rong; Hua, Li; Li, Li; Chen, Ruyi; Gong, Yujiao; Yu, Chenyang; Zhou, Jinyuan; Liu, Bin; Sun, Gengzhi; Huang, Wei

    2017-10-01

    Solution-based techniques are considered as a promising strategy for scalable fabrication of flexible electronics owing to their low-cost and high processing speed. The key to the success of these techniques is dominated by the ink formulation of active nanomaterials. This work successfully prepares a highly concentrated two dimensional (2D) crystal ink comprised of ultrathin nickel hydroxide (Ni(OH) 2 ) nanosheets with an average lateral size of 34 nm. The maximum concentration of Ni(OH) 2 nanosheets in water without adding any additives reaches as high as 50 mg mL -1 , which can be printed on arbitrary substrates to form Ni(OH) 2 thin films. As a proof-of-concept application, Ni(OH) 2 nanosheet ink is coated on commercialized carbon fiber yarns to fabricate wearable energy storage devices. The thus-fabricated hybrid supercapacitors exhibit excellent flexibility with a capacitance retention of 96% after 5000 bending-unbending cycles, and good weavability with a high volumetric capacitance of 36.3 F cm -3 at a current density of 0.4 A cm -3 , and an energy density of 11.3 mWh cm -3 at a power density of 0.3 W cm -3 . As a demonstration of practical application, a red light emitting diode can be lighted up by three hybrid devices connected in series. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries

    Science.gov (United States)

    Sun, Haiyan; Hanlon, Damien; Dinh, Duc Anh; Boland, John B.; Esau Del Rio Castillo, Antonio; Di Giovanni, Carlo; Ansaldo, Alberto; Pellegrini, Vittorio; Coleman, Jonathan N.; Bonaccorso, Francesco

    2018-01-01

    The search for novel nanomaterials driving the development of high-performance electrodes in lithium ion batteries (LIBs) is at the cutting edge of research in the field of energy storage. Here, we report on the synthesis of single wall carbon nanotube (SWNT)-bridged molybdenum trioxide (MoO3) nanosheets as anode material for LIBs. We exploit liquid phase exfoliation of layered MoO3 crystallites to produce multilayer MoO3 nanosheets dispersed in isopropanol, which are then mixed with solution processed SWNTs in the same solvent. The addition of SWNTs to the MoO3 nanosheets provides the conductive framework for electron transport, as well as a bridge structure, which buffers the volume expansion upon lithiation/de-lithiation. We demonstrate that the hybrid SWNT-bridged MoO3 structure is beneficial for both the mechanical stability and the electrochemical characteristics of the anodes leading to a specific capacity of 865 mAh g‑1 at 100 mA g‑1 after 100 cycles, with a columbic efficiency approaching 100% and a capacity fading of 0.02% per cycle. The low-cost, non-toxic, binder-free hybrid MoO3/SWNT here developed represents a step forward for the applicability of exfoliated MoO3 in LIB anodes, delivering high energy and power densities as well as long lifetime.

  15. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.

    Science.gov (United States)

    Lukowski, Mark A; Daniel, Andrew S; Meng, Fei; Forticaux, Audrey; Li, Linsen; Jin, Song

    2013-07-17

    Promising catalytic activity from molybdenum disulfide (MoS2) in the hydrogen evolution reaction (HER) is attributed to active sites located along the edges of its two-dimensional layered crystal structure, but its performance is currently limited by the density and reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst. Here we report dramatically enhanced HER catalysis (an electrocatalytic current density of 10 mA/cm(2) at a low overpotential of -187 mV vs RHE and a Tafel slope of 43 mV/decade) from metallic nanosheets of 1T-MoS2 chemically exfoliated via lithium intercalation from semiconducting 2H-MoS2 nanostructures grown directly on graphite. Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites. These distinct and previously unexploited features of 1T-MoS2 make these metallic nanosheets a highly competitive earth-abundant HER catalyst.

  16. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongjian [Beijing; Huang, Hongwei [Beijing; Xu, Kang [Center; Hao, Weichang [Center; Guo, Yuxi [Beijing; Wang, Shuobo [Beijing; Shen, Xiulin [Beijing; Pan, Shaofeng [Beijing; Zhang, Yihe [Beijing

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.

  17. Study of the Gemini Surfactants' Self-Assembly on Graphene Nanosheets: Insights from Molecular Dynamic Simulation.

    Science.gov (United States)

    Poorsargol, M; Sohrabi, B; Dehestani, M

    2018-04-06

    Understanding the mechanism of adsorption and self-assembly of surfactants on graphene is highly important to perform better optimization of the graphene dispersion process. Because of Gemini surfactants' special structure, they have a high charge capacity, high hydrophobicity, and unique self-assembly properties compared to single-chain surfactants. Therefore, Gemini surfactants with their small concentrations are expected to disperse and stabilize graphene nanosheets in aqueous solutions more effectively. We conducted molecular dynamics simulations to study adsorption and self-assembly of single-chain cationic surfactant dodecyltrimethylammonium bromide (C 12 TAB) and its same family Gemini surfactant dimethylene-α,β-bis(dodecyldimethylammonium bromide) ([12-2-12]Br 2 ) on graphene nanosheets. The results showed that assemblies morphology formed on graphene is affected by surfactant structure. We observed that increasing surface coverage, especially for [12-2-12]Br 2 , leads to a transmission in adsorption mechanism and most [12-2-12]Br 2 head groups tend toward the aqueous phase and prevent water molecules from accessing graphene surface. It can be concluded from morphological assessments that [12-2-12]Br 2 is more effective than C 12 TAB in stabilizing graphene aqueous suspensions. Moreover, we investigated the effect of graphene sheet size and Gemini surfactant spacer length on the structure of surfactant assemblies on graphene. The present study results can expand our comprehension of dispersion mechanism of graphene nanosheets by Gemini surfactants.

  18. Anisotropic MoS2Nanosheets Grown on Self-Organized Nanopatterned Substrates.

    Science.gov (United States)

    Martella, Christian; Mennucci, Carlo; Cinquanta, Eugenio; Lamperti, Alessio; Cappelluti, Emmanuele; Buatier de Mongeot, Francesco; Molle, Alessandro

    2017-05-01

    Manipulating the anisotropy in 2D nanosheets is a promising way to tune or trigger functional properties at the nanoscale. Here, a novel approach is presented to introduce a one-directional anisotropy in MoS 2 nanosheets via chemical vapor deposition (CVD) onto rippled patterns prepared on ion-sputtered SiO 2 /Si substrates. The optoelectronic properties of MoS 2 are dramatically affected by the rippled MoS 2 morphology both at the macro- and the nanoscale. In particular, strongly anisotropic phonon modes are observed depending on the polarization orientation with respect to the ripple axis. Moreover, the rippled morphology induces localization of strain and charge doping at the nanoscale, thus causing substantial redshifts of the phonon mode frequencies and a topography-dependent modulation of the MoS 2 workfunction, respectively. This study paves the way to a controllable tuning of the anisotropy via substrate pattern engineering in CVD-grown 2D nanosheets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate.

    Science.gov (United States)

    Han, Na; Wang, Yu; Yang, Hui; Deng, Jun; Wu, Jinghua; Li, Yafei; Li, Yanguang

    2018-04-03

    Electrocatalytic carbon dioxide reduction to formate is desirable but challenging. Current attention is mostly focused on tin-based materials, which, unfortunately, often suffer from limited Faradaic efficiency. The potential of bismuth in carbon dioxide reduction has been suggested but remained understudied. Here, we report that ultrathin bismuth nanosheets are prepared from the in situ topotactic transformation of bismuth oxyiodide nanosheets. They process single crystallinity and enlarged surface areas. Such an advantageous nanostructure affords the material with excellent electrocatalytic performance for carbon dioxide reduction to formate. High selectivity (~100%) and large current density are measured over a broad potential, as well as excellent durability for >10 h. Its selectivity for formate is also understood by density functional theory calculations. In addition, bismuth nanosheets were coupled with an iridium-based oxygen evolution electrocatalyst to achieve efficient full-cell electrolysis. When powered by two AA-size alkaline batteries, the full cell exhibits impressive Faradaic efficiency and electricity-to-formate conversion efficiency.

  20. One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors

    KAUST Repository

    Chen, Wei

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50 000 cycles.

  1. Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications

    International Nuclear Information System (INIS)

    Huang, Tzu-Yen; Kung, Chung-Wei; Wang, Jen-Yuan; Lee, Min-Han; Chen, Lin-Chi; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-01-01

    Highlights: • Novel composite materials contain 2D rGO nanosheets and 1D PEDOT nanotubes. • 3D nanocomposite film effectively improved the sensitivity for analyte detection. • The rGO/PEDOT NTs film shows good catalytic activities toward hydrazine and H 2 O 2 . • The rGO/PEDOT NTs film also exhibits high selectivity from the interference test. -- Graphical abstract: Display Omitted -- Abstract: In this study, we developed the novel composite materials containing reduced graphene oxide (rGO) nanosheets and poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) for electrochemical biosensing applications. Transmission electron microscopy, scanning electron microscopy and atomic force microscopy suggested that the rGO nanosheets cover the substrate uniformly, and the PEDOT NTs act as a conducting bridge to connect the rGO sheets. By combining the two materials, it's expected to enhance the conductivity of the film and improve the surface coverage. We applied the rGO/PEDOT NTs composite for electrochemical detection of hydrazine and hydrogen peroxide; noticeable improvements in electrochemical activity and reactivity were observed compared to those of the pristine rGO and PEDOT NTs electrodes. This may be attributed to the better surface coverage of the rGO/PEDOT NTs modified electrode with superior conductivity. Furthermore, interference tests indicate that the rGO/PEDOT NTs composite film exhibits high selectivity toward the analyte. The rGO/PEDOT NTs composite thus provides a potential platform for biosensing applications

  2. Highly exposed surface area of {001} facets dominated BiOBr nanosheets with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Duan, Fang; Wang, Xiaofeng; Tan, Tingting; Chen, Mingqing

    2016-02-17

    Two groups of BiOBr nanosheets with different sizes and similar exposure percentages of {001} facets were selectively synthesized by simple hydrothermal methods. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity was estimated from the degradation of organic pollutants under visible-light irradiation. The results indicated that BiOBr nanosheets with similar exposure percentages of {001} facets but smaller sizes exhibited higher photocatalytic activity. Furthermore, the effects of the size, including the thickness and length, of BiOBr nanosheets were also studied. The results showed that the impact of thickness was more significant than that of length. It was found that reducing the thickness of BiOBr nanosheets can significantly increase the exposed surface areas of {001} facets (S{001}), but not necessarily the exposure percentage of {001} facets. Moreover, in our experiment, the photocatalytic activity of BiOBr nanosheets increased linearly with an increase in S{001} in the range of 0.022 to 0.111 nm(-1). Therefore, the photocatalytic activity of BiOBr nanosheets depended on the exposed surface areas of {001} facets rather than the exposure percentage of {001} facets. The enhancement of the photocatalytic activity of ultrathin BiOBr nanosheets with large exposed surface areas of {001} facets can be mainly ascribed to their enhanced absorption of visible light and improved separation efficiency of charge carriers.

  3. Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Link, Elisa M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Benson, Eric E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Hanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nanayakkara, Sanjini U [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bronstein, Noah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schuman, Samuel [Formerly NREL; Ferrere, Suzanne [Formerly NREL

    2017-12-27

    We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS2) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS2 functionalized with the most electron donating functional group (p-(CH3CH2)2NPh-MoS2) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS2. The p-(CH3CH2)2NPh-MoS2 is more stable than unfunctionalized metallic MoS2 and outperforms unfunctionalized metallic MoS2 for continuous H2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS2 nanosheet. The functional groups preserve the metallic nature of the MoS2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.

  4. Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hua; Gan, Mengyu; Ma, Li, E-mail: mlsys607@126.com; Yu, Lei; Hu, Haifeng; Yang, Fangfang; Li, Yanjun; Ge, Chengqiang

    2015-05-05

    Highlights: • The PANI/graphene/TiO{sub 2} nanotube arrays were fabricated firstly. • The composite shows a high specific capacitance and superior rate capability. • A high capacity retention rate of 91% after 1000 cycles can be achieved. • The composite possesses a novel three-dimensional (3D) highly ordered nanostructure. • TiO{sub 2} NTs enhance the adhesion between PANI and substrate. - Abstract: Polyaniline/graphene/titania nanotube arrays (PGTNs) nanocomposite as a supercapacitor electrode is fabricated by in-situ polymerization for the first time. Herein, the PGTNs possesses a novel three-dimensional (3D) highly ordered hybrid nanostructure consisting of coaxial polyaniline (PANI)/TiO{sub 2} nanotube arrays and graphene coated with PANI on the surface of TiO{sub 2} in some degree. The synthesized three-dimensional PGTNs is characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy, and its electrochemical performance is measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The maximum specific capacitance of PGTNs is as high as 933 F g{sup −1} at current density of 0.75 A g{sup −1} and the specific capacitance retains 91% of the initial after constant charge–discharge 1000 cycles. The improved electrochemical performance is due to the 3D nanostructure, which effectively prevents the mechanical deformation during the fast charge/discharge process and favors the diffusion of the electrolyte ions into the inner region of active materials. The composite electrode material is very promising for the next generation of high-performance electrochemical supercapacitors.

  5. Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts

    Science.gov (United States)

    Senanayake, Sanjaya D.; Pappoe, Naa Adokaley; Nguyen-Phan, Thuy-Duong; Luo, Si; Li, Yuanyuan; Xu, Wenqian; Liu, Zongyuan; Mudiyanselage, Kumudu; Johnston-Peck, Aaron C.; Frenkel, Anatoly I.; Heckler, Ilana; Stacchiola, Dario; Rodriguez, José A.

    2016-10-01

    We have studied the catalytic carbon monoxide (CO) oxidation (CO + 0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5 wt.% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface states or intermediates of this reaction. With the aid of several ex situ characterization techniques including transmission electron microscopy (TEM), the local catalyst morphology and structure were also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggest that surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.

  6. Selective catalytic reduction of nitric oxide by propane over vanadia-titania aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zegaoui, O.; Karroua, M. [Laboratoire de Chimie-Physique: Cinetique et Catalyse, Departement de Chimie, Faculte des Sciences, Universite Mohamed Ier, Oujda (Morocco); Hoang-Van, C. [URA au CNRS Photocatalyse, Catalyse et Environnement, Ecole Centrale de Lyon, Ecully (France)

    1996-09-02

    An investigation has been carried out of the effect of vanadia loading on the activity and selectivity of V{sub 2}O{sub 5}/TiO{sub 2} aerogel catalysts, prepared by a two-step procedure, for the reduction of NO by propane. The structure of catalysts have been characterized by laser Raman spectroscopy and XRD measurements. At vanadia loading levels below circa 4.4 wt%, the vanadia is present in the form of coordinated polymeric species, whereas crystallites of V{sub 2}O{sub 5} are formed at higher vanadia contents. At this critical level of 4.4 wt% V{sub 2}O {sub 5}, the kinetic measurements showed also a maximum in the activity per mass of catalyst which very likely indicated that the coordinated polymeric surface species are more active than crystalline V{sub 2}O {sub 5}. The selectivity towards the formation of dinitrogen decreased as the loading increased, presumably because of the formation of larger polymeric species and V{sub 2}O{sub 5} crystallites, below and above the critical loading level, respectively. For the reduction of NO by propane, titania supported vanadia aerogel catalysts are significantly more active, per mass of catalyst, and more selective towards N{sub 2} formation than conventional V{sub 2}O{sub 5}/TiO{sub 2} and V{sub 2}O{sub 5}/Al{sub 2}O{sub 3} aerogel catalysts, at vanadia loading levels below ca. 11 wt%

  7. The hardness of the hydroxyapatite-titania bilayer coatings by microindentation and nanoindentation testing

    Science.gov (United States)

    SIDANE, Djahida; KHIREDDINE, Hafit; YALA, Sabeha

    2017-12-01

    The aim of this paper is to investigate the effect of the addition of titania (TiO2) inner-layer on the morphological and mechanical properties of hydroxyapatite (HAP) bioceramic coatings deposited on 316L stainless steel (316L SS) by sol-gel method in order to improve the properties of hydroxyapatite and expand its clinical application. The addition of TiO2 as sublayer of a hydroxyapatite coating results in changes in surface morphology as well as an increase of the microhardness. The deposition of the inner-layer provides the formation of new types of hydroxyapatite coatings at the same condition of annealing. This represents an advantage for the various applications of the hydroxyapatite bioceramic in the medical field. Classical hardness measurements conducted on the coated systems under the same indentation load (10g) indicated that the microhardness of the HAP coating is improved by the addition of TiO2 inner-layer on the 316L stainless steel substrate. The hardness values obtained from both classical tests in microindentation and the continuous stiffness measurement mode in nanoindentation are slightly different. This is because nanoindentation is more sensitive to the surface roughness and the influence of defects that could be present into the material. Moreover, nanoindentation is the most useful method to separate the contribution of each layer in the bilayer coatings. In this study, the hardness is comparable with those reported previously for pure HAP ceramics (1.0-5.5 GPa) which are close to the properties of natural teeth.

  8. Silica-Titania Composite (STC)'s Performance in the Photocatalytic Oxidation of Polar VOCs

    Science.gov (United States)

    Levine, Lanfang H.; Coutts, Janelle; Richards, Jeffrey; Mazyck, David; Mazyck, David

    2011-01-01

    The objective of this paper is to determine the performance of a Silica-Titania Composite (STC) in the photocatalytic oxidation (PCO) of polar VOCs for potential applications in trace contaminant control within space habitats such as the ISS and CEV Orion. Tests were carried out in a bench scale STC-packed annular reactor under continuous illumination by either a UV-C germicidal lamp(lambda (sub max) = 254 nm) or UV-A fluorescent BLB (lambda(sub max) = 365 nm) for the removal of ethanol (a predominant polar VOC in the ISS cabin). The STC's performance was evaluated in terms of the ethanol mineralization rate, mineralization efficiency, and the extent of its oxidation intermediate (acetaldehyde) formation in response to the type of light source (photon energy and photon flux) and relative humidity (RH) implemented. Results demonstrated that acetaldehyde was the only quantifiable intermediate in the effluent under UV illumination, but was not found in the dark adsorption experiments. The mineralization rate increased with an increase in photon energy (UV-C greater than UV-A), even though both lamps were adjusted to emit the same incident photon flux, and also increased with increasing photon flux. However, photonic efficiency decreased as the photon flux increased. More importantly, a higher photon flux gave rise to a lower effluent acetaldehyde concentration. The effect of RH on PCO was complex and intriguing because it affected both physical adsorption and photocatalytic oxidation. In general, increasing RH caused a decrease in adsorption capacity for ethanol and reduced the mineralization efficiency with a concomitant higher acetaldehyde evolution rate. The effect of RH was less profound than that of photon flux.

  9. Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon)

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Zhang, Jason

    2011-01-01

    Research highlights: → Dyes were decolorized and degraded using novel immobilized composite photocatalyst. → Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO 2 . → Nitrate, chloride and sulfate anions were detected as the photocatalytic mineralization products of dyes. → Novel immobilized composite photocatalyst is the most effective novel immobilized composite photocatalyst to degrade of textile dyes. - Abstract: An immobilized composite photocatalyst, titania (TiO 2 ) nanoparticle/activated carbon (AC), was prepared and its photocatalytic activity on the degradation of textile dyes was tested. AC was prepared using Canola hull. Basic Red 18 (BR18) and Basic Red 46 (BR46) were used as model dyes. Fourier transform infrared (FTIR), wavelength dispersive X-ray spectroscopy (WDX), scanning electron microscopy (SEM), UV-vis spectrophotometry, chemical oxygen demand (COD) and ion chromatography (IC) analyses were employed. The effects of reaction parameters such as weight percent (wt.%) of activated carbon, pH, dye concentration and anions (NO 3 - , Cl - , SO 4 2- , HCO 3 - and CO 3 2- ) were investigated on dye degradation. Data showed that dyes were decolorized and degraded using novel immobilized composite photocatalyst. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO 2 . Nitrate, chloride and sulfate anions were detected as the photocatalytic mineralization products of dyes. Results show that novel immobilized composite photocatalyst with 2 wt.% of AC is the most effective novel immobilized composite photocatalyst to degrade of textile dyes.

  10. One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Benjwal, Poonam [Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Kar, Kamal K., E-mail: kamalkk@iitk.ac.in [Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-06-15

    Highly oriented undoped and Zn-doped titania (TiO{sub 2}) nanotubes were electrochemically fabricated by one-step anodization of titanium foil in a freshly prepared aqueous solution of zinc fluoride (ZnF{sub 2}) and ethylene glycol (EG). XRD and Raman spectroscopy unveiled the typical characteristic of anatase phase of TiO{sub 2} nanotube without any distinct dopant related peaks. SEM and AFM observation confirmed the formation of nanotubes and revealed that the Zn doping did not distort the tube morphology of TiO{sub 2}. The doping of Zn was confirmed by energy dispersive X-ray as well as X-ray photospectroscopy. Due to one-step anodization process, instead of surface doping, the Zn{sup 2+} ions were incorporated into the bulk of TiO{sub 2} nanotubes. With increasing Zn doping in nanotubes, a gradual decrease in the band gap of TiO{sub 2} (2.84 eV) was observed. Photoluminescence measurements revealed that the doping of Zn enhanced the number of charge carriers, which eventually boosted the photocatalytic activity of TiO{sub 2} nanotubes. Compared to undoped nanotubes, the as prepared Zn-doped TiO{sub 2}-nanotubes showed excellent photocatalytic activity for methylene blue degradation (reaction rate constant k = 0.19 min{sup −1}) under visible light irradiation. - Highlights: • A facile one-step anodization method is used for Zn doped TiO{sub 2}-nanotubes synthesis. • Zn{sup 2+} ions are doped into the bulk of TiO{sub 2} nanotubes. • Doped TiO{sub 2}-nanotubes unveil pure anatase phase and reduced band gap. • Compared to undoped, doped TiO{sub 2} nanotubes exhibit enhanced photocatalytic activity.

  11. Titania Nanotubes Grown on Carbon Fibers for Photocatalytic Decomposition of Gas-Phase Aromatic Pollutants

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2014-03-01

    Full Text Available This study aimed to prepare titania (TiO2 nanotube (TNT arrays grown on un-activated carbon fibers (UCFs, with the application of different TiO2 loadings based on the coating-hydrothermal process, and to evaluate their photocatalytic activity for the degradation of sub-ppm levels of aromatic pollutants (benzene, toluene, ethyl benzene, and o-xylene (BTEX using a plug-flow photocatalytic reactor. The characteristics of the prepared photocatalysts were determined by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX, transmission electron microscopy (TEM, UV-visible absorption spectroscopy (UV-Vis and X-ray diffraction (XRD analyses. Spectral analysis showed that the prepared photocatalysts were closely associated with the characteristics of one-dimensional nanostructured TiO2 nanotubes for TNTUCFs and spherical shapes for TiO2-coated UCF (TUCF. The photocatalytic activities of BTEX obtained from TNTUCFs were higher than those obtained from a reference photocatalyst, TUCF. Specifically, the average degradation efficiencies of BTEX observed for TNTUCF-10 were 81%, 97%, 99%, and 99%, respectively, while those observed for TUCF were 14%, 42%, 52%, and 79%, respectively. Moreover, the photocatalytic activities obtained for TNTUCFs suggested that the degradation efficiencies of BTEX varied with changes in TiO2 loadings, allowing for the optimization of TiO2 loading. Another important finding was that input concentrations and air flow rates could be important parameters for the treatment of BTEX, which should be considered for the optimization of TNTUCFs application. Taken together, TNTUCFs can be applied to effectively degrade sub-ppm levels of gas-phase aromatic pollutants through the optimization of operational conditions.

  12. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qun [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019 (China); Tang, Shan [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); Fang, Chen [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); Second Affiliated Hospital, Soochow University, Suzhou, 215004 (China); Tu, Yi-Feng, E-mail: tuyf@suda.edu.cn [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China)

    2016-09-14

    A glycated hemoglobin (HbA1c) biosensor with high performance has been constructed in this work. Here the fructosyl amino acid oxidase was immobilized onto a pre-functionalized indium tin oxide glass with titania nanotubes decorated with gold nanoparticles. The property of nanocomposite was characterized by transmission electromicroscopy, scanning electron microscopy, electrochemistry and spectroscopy. Under the optimum conditions, fructosyl valine was detected by this biosensor. It exhibited a linear detection range from 4.0 × 10{sup −9} M to 7.2 × 10{sup −7} M, and a limit of detection for 3.8 × 10{sup −9} M at the signal-to-noise ratio of 3. Thus the HbA1c level in whole blood samples of healthy individuals or diabetic patients were evaluated with designed biosensor after pre-treatment of hydrolysis. The results of our detection were closely consistent with that of the standard method. At the same time, our biosensor has some advantages including high sensitivity, disposable usage and low cost, which implies its great promising application in point-of-care testing of HbA1c. - Highlights: • The enhanced electrochemiluminescence of luminol by AuNPs/TiNTs. • An ECL biosensor for HbA1c assay with ultra-high sensitivity. • A promising disposable device for diabetic diagnosis and treatment even for POCT. • The excellent regression of detected results with gold-standard method.

  13. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis

    International Nuclear Information System (INIS)

    Sitko, Rafal; Zawisza, Beata; Talik, Ewa; Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa

    2014-01-01

    Highlights: • Graphene oxide (GO) covalently bonded to the spherical silica. • Very stable sorbent for SPE of metal ions. • Excellent contact with solution due to the softness and flexibility of GO nanosheets. • Several adsorption–elution cycles without any loss of adsorptive properties. • High adsorption capacity due to the wrinkled structure of GO nanosheets. - Abstract: Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO 2 ). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g −1 , respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO 2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and detection

  14. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland); Zawisza, Beata [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland); Talik, Ewa [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland)

    2014-06-27

    Highlights: • Graphene oxide (GO) covalently bonded to the spherical silica. • Very stable sorbent for SPE of metal ions. • Excellent contact with solution due to the softness and flexibility of GO nanosheets. • Several adsorption–elution cycles without any loss of adsorptive properties. • High adsorption capacity due to the wrinkled structure of GO nanosheets. - Abstract: Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO{sub 2}). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g{sup −1}, respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO{sub 2} was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and

  15. Adsorption of choline benzoate ionic liquid on graphene, silicene, germanene and boron-nitride nanosheets: a DFT perspective.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-07-07

    The adsorption of choline benzoate ([CH][BE]) ionic liquid (IL) on the surface of different hexagonal nanosheets has been studied using Density Functional Theory (DFT) methods. For this, the interaction mechanism, binding energies and electronic structure of [CH][BE] ionic liquid on four types of nanosheets, i.e., graphene, silicene, germanene and boron-nitride, were estimated and compared. The adsorption of [CH][BE] ionic liquid on different nanosheets is mainly featured by van der Waals forces, leading to strong benzoate ion-surface π-stacking. Likewise, there is also an important charge transfer from the anion to the sheet. The electronic structure analysis shows that Si- and Ge-based sheets lead to the largest changes in the HOMO and LUMO levels of choline benzoate. This paper provides new insights into the capability of DFT methods to provide useful information about the adsorption of ionic liquids on nanosheets and how ionic liquid features could be tuned through the adsorption on the suitable nanosheet.

  16. Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI removal in aqueous solution.

    Directory of Open Access Journals (Sweden)

    Shangkun Li

    Full Text Available In this paper, we report on the simple, reliable synthesis of polypyrrole (PPy/graphene oxide (GO composite nanosheets by using sacrificial-template polymerization method. Herein, MnO(2 nanoslices were chosen as a sacrificial-template to deposit PPy, which served as the oxidant as well. During the polymerization of pyrrole on surface of GO nanosheets, MnO(2 component was consumed incessantly. As a result, the PPy growing on the surface of GO nanosheets has the morphology just like the MnO(2 nanoslices. This method can provide the fabrication of PPy nanostructures more easily than conventional route due to its independence of removing template, which usually is a complex and tedious experimental process. The as-prepared PPy/GO composite nanosheets exhibited an enhanced properties for Cr(VI ions removal in aqueous solution based on the synergy effect. The adsorption capacity of the PPy/GO composite nanosheets is about two times as large as that of conventional PPy nanoparticles. We believe that our findings can open a new and effective avenue to improve the adsorption performance in removing heavy metal ions from waste water.

  17. Archimedean (4,8)-tessellation of haeckelite ultrathin nanosheets composed of boron and aluminum-group V binary materials.

    Science.gov (United States)

    Brown, Paul A; Shuford, Kevin L

    2016-11-24

    A compendium of unique haeckelite boron and aluminum-group V binary materials have been assessed for their fundamental thermodynamic and ground state electronic properties within density functional theory. We explore their thermodynamic stability relative to new bulk haeckelite crystal structures and find a number of stable polymorphs of planar and buckled ultrathin nanosheets. The bulk boron and aluminum haeckelite crystals display semiconducting and metallic behavior. From the dispersion curves, we predict the formation of both indirect and direct bandgap crystals. We also discover the existence of a five-coordinate aluminum antimonide crystal hitherto never before observed. Moreover, it is found that a number of the Archimedean four and eight membered ring tessellation planar nanosheets could form should synthesis be attempted. It is predicted that these nanosheets can attain two configurations - planar and buckled. From this work we find that combinations of elements such as boron and nitrogen or phosphorus, and aluminum and nitrogen will likely become true single-atom thick nanosheets. These materials show intrinsic indirect bandgap character, which spans the ultraviolet, visible, and infrared spectrum. In the boron series of these materials, the planar structures show double extrema in the bandstructures with van Hove singularities in the projected density of states at the Fermi energy suggesting strong light-matter interactions. The aluminum series we observe strong charge transfer and larger indirect bandgap nanosheets. This study serves as a starting point for a new class of inorganic bulk and ultrathin film materials, which can have many varied applications in nanotechnology.

  18. Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds

    International Nuclear Information System (INIS)

    Ma, Qiliang; Zhang, Zhaochun; Yu, Zhenwei

    2015-01-01

    Highlights: • Thermodynamic and kinetic analysis of porous MOFs. • One step synthesis of CQDs and ZnO nanosheets. • The coexistence of CQDs and ZnO nanosheets show strong ultraviolet emission. - Abstract: Here, the carbon quantum dots and zinc oxide nanosheets with novel superstructures are successfully synthesized simultaneously from a hydrothermal preparation and thermal decomposition of a porous precursor of metal–organic frameworks. Porous metal–organic frameworks are prepared by the hydrothermal process by using zinc nitrate hexahydrate, 4,4′-oxybisbenzoic acid and 4,4′-bipyridine as the starting materials. Fluorescence spectrophotometer, X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the structure and property. The results show the coexistence of carbon quantum dots and zinc oxide nanosheets. The carbon quantum dots size is about 4 nm. Particularly, zinc oxide nanosheets show a new triangular sheet structure that has almost the same size. Strong ultraviolet emission of this coexistence system should be useful in developing visible light-emitting and nanophotonic devices

  19. Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiliang; Zhang, Zhaochun, E-mail: zhangzhaochun@shu.edu.cn; Yu, Zhenwei

    2015-09-05

    Highlights: • Thermodynamic and kinetic analysis of porous MOFs. • One step synthesis of CQDs and ZnO nanosheets. • The coexistence of CQDs and ZnO nanosheets show strong ultraviolet emission. - Abstract: Here, the carbon quantum dots and zinc oxide nanosheets with novel superstructures are successfully synthesized simultaneously from a hydrothermal preparation and thermal decomposition of a porous precursor of metal–organic frameworks. Porous metal–organic frameworks are prepared by the hydrothermal process by using zinc nitrate hexahydrate, 4,4′-oxybisbenzoic acid and 4,4′-bipyridine as the starting materials. Fluorescence spectrophotometer, X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the structure and property. The results show the coexistence of carbon quantum dots and zinc oxide nanosheets. The carbon quantum dots size is about 4 nm. Particularly, zinc oxide nanosheets show a new triangular sheet structure that has almost the same size. Strong ultraviolet emission of this coexistence system should be useful in developing visible light-emitting and nanophotonic devices.

  20. Fabrication of fluorographene nanosheets with high yield and good quality based on supercritical fluid-phase exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; Ji, Yan; Zhang, Danying; Shi, Jia [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, College of Chemical Engineering (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Nanjing Normal University, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science (China); Che, Jianfei, E-mail: xiaoche@mail.njust.edu.cn [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, College of Chemical Engineering (China)

    2016-07-15

    This article presents a novel and simple method of supercritical fluid-phase exfoliation to fabricate fluorographene (FG) nanosheets with high yield and good quality. After soaking with supercritical CO{sub 2} and glycol at 10 MPa and 50 °C for 24 h, fluoride graphite powder was exfoliated by the intercalated CO{sub 2} and glycol molecules during an abrupt depressurization step. Here, supercritical CO{sub 2} acted as a penetrant and glycol acted as a “molecular wedge” to exfoliate fluoride graphite very well. The properties of FG nanosheets were detected by TEM, AFM, UV spectra, FTIR, XPS, Raman spectra, and XRD, which show the possibility of producing thickness-controlled FG nanosheets by varying numbers of supercritical CO{sub 2} process and the high yield of pure FG nanosheets of 32 wt%, four times higher than that of the sample treated only by the traditional method of sonication. Its simplicity, high productivity, low cost, and short processing time make this technique suitable for large-scale manufacturing of FG nanosheets.