WorldWideScience

Sample records for titan electron temperatures

  1. Ionic and electronic conductivity in lead-zirconate-titanate (PZT)

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Pham thi ngoc mai, P.T.N.M.; Blank, David H.A.; Bouwmeester, Henricus J.M.

    2004-01-01

    Accurate impedance measurements on differently sized samples of lead–zirconate–titanate (PbZr0.53Ti0.47O3, PZT) have been analyzed with a CNLS procedure, resulting in the separation of the ionic and electronic conductivities over a temperature range from f150 to 630 jC. At 603 jC the electronic

  2. Electronic properties of lithium titanate ceramic

    International Nuclear Information System (INIS)

    Padilla-Campos, Luis; Buljan, Antonio

    2001-01-01

    Research on tritium breeder material is fundamental to the development of deuterium-tritium type fusion reactors for producing clean, non contaminating, electrical energy, since only energy and helium, a harmless gas, are produced from the fusion reaction. Lithium titanate ceramic is one of the possible candidates for the tritium breeder material. This last material is thought to form part of the first wall of the nucleus of the reactor which will provide the necessary tritium for the fusion and will also serve as a shield. Lithium titanate has advantageous characteristics compared to other materials. Some of these are low activation under the irradiation of neutrons, good thermal stability, high density of lithium atoms and relatively fast tritium release at low temperatures. However, there are still several physical and chemical properties with respect to the tritium release mechanism and mechanical properties that have not been studied at all. This work presents a theoretical study of the electronic properties of lithium titanate ceramic and the corresponding tritiated material. Band calculations using the Extended H kel Tight-Binding approach were carried out. Results show that after substituting lithium for tritium atoms, the electronic states for the latter appear in the middle of prohibited band gap which it is an indication that the tritiated material should behave as a semiconductor, contrary to Li 2 TiO 3 which is a dielectric isolator. A study was also carried out to determine the energetically most favorable sites for the substitution of lithium for tritium atoms. Additionally, we analyzed possible pathways for the diffusion of a tritium atom within the crystalline structure of the Li 2 TiO 3

  3. Strontium titanate thin film deposition - structural and electronical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)

    2012-07-01

    Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.

  4. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    University of Denmark (DTU) provides a unique combination of techniques for studying materials of interest to the catalytic as well as the electronics and other communities [5]. DTU’s ETEM is based on the FEI Titan platform providing ultrahigh microscope stability pushing the imaging resolution into the sub...

  5. The atmospheric temperature structure of Titan

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, J. B.; Courtin, Regis; Lunine, Jonathan I.

    1992-01-01

    The contribution of various factors to the thermal structure of Titan's past and present atmosphere are discussed. A one dimensional model of Titan's thermal structure is summarized. The greenhouse effect of Titan's atmosphere, caused primarily by pressure induced opacity of N2, CH4, and H2, is discussed together with the antigreenhouse effect dominated by the haze which absorbs incident sunlight. The implications for the atmosphere of the presence of an ocean on Titan are also discussed.

  6. Description of tritium release from lithium titanate at constant temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pena, L; Lagos, S; Jimenez, J; Saravia, E [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1998-03-01

    Lithium Titanate Ceramics have been prepared by the solid-state route, pebbles and pellets were fabricated by extrusion and their microstructure was characterized in our laboratories. The ceramic material was irradiated in the La Reina Reactor, RECH-1. A study of post-irradiation annealing test, was performed measuring Tritium release from the Lithium Titanate at constant temperature. The Bertone`s method modified by R. Verrall is used to determine the parameters of Tritium release from Lithium Titanate. (author)

  7. SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES

    International Nuclear Information System (INIS)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; Coustenis, A.; Tokano, T.

    2011-01-01

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 μm in two time periods: one in late northern winter (LNW; L s = 335 deg.) and another centered on northern spring equinox (NSE; L s = 0 deg.). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of ∼0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of ΔL S ∼ 9 0 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 0 S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  8. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  9. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  10. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    Science.gov (United States)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  11. Titan

    Science.gov (United States)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  12. Microstructure of lead zirconium titanate (PZT) by electron microscopy

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin

    1989-01-01

    Transmission and high-resolution electron microscopy reveal the microtexture of lead zirconium titanate ceramics. Fine scale (≤ 500 Aangstroem) ferroelastic and ferroelectric twin domains, as well as dislocations were found in a complex texture. Correlations between stoichiometry, microstructure and piezoelectric properties are discussed. 6 refs., 3 figs

  13. Titan!

    Science.gov (United States)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  14. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  15. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  16. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  17. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    International Nuclear Information System (INIS)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E.; Mamoutkine, A.; Gorius, N. J. P.; Coustenis, A.; Tokano, T.

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation

  18. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  19. Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution.

    Science.gov (United States)

    Sutradhar, Narottam; Sinhamahapatra, Apurba; Pahari, Sandip Kumar; Bajaj, Hari C; Panda, Asit Baran

    2011-07-21

    We report the synthesis of peroxo titanium carbonate complex solution as a novel water-soluble precursor for the direct synthesis of layered protonated titanate at room temperature. The synthesized titanates showed excellent removal capacity for Pb(2+) and methylene blue. Based on experimental observations, a probable mechanism for the formation of protonated layered dititanate sheets is also discussed.

  20. Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals

    International Nuclear Information System (INIS)

    Ray, Sugata; Kolen'ko, Yury V; Watanabe, Tomoaki; Yoshimura, Masahiro; Itoh, Mitsuru; Kovnir, Kirill A; Lebedev, Oleg I; Turner, Stuart; Erni, Rolf; Tendeloo, Gustaaf Van; Chakraborty, Tanushree

    2012-01-01

    Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO 3 . The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site and oxygen vacancies and their relative concentrations at the surface and the core of the nanocrystal, which could be controlled by post-synthesis drying and thermal treatments.

  1. Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins

    Science.gov (United States)

    Neish, Catherine; Somogyi, Á.; Smith, M. A.

    2009-09-01

    Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.

  2. Titan's Primordial Soup: Formation of Amino Acids via Low-Temperature Hydrolysis of Tholins

    Science.gov (United States)

    Neish, Catherine D.; Somogyi, Árpád; Smith, Mark A.

    2010-04-01

    Titan organic haze analogues, or "tholins," produce biomolecules when hydrolyzed at low temperature over long timescales. By using a combination of high-resolution mass spectroscopy and tandem mass spectrometry fragmentation techniques, four amino acids were identified in a tholin sample that had been hydrolyzed in a 13 wt % ammonia-water solution at 253 ± 1 K and 293 ± 1 K for 1 year. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions thought to be similar to those found in impact melt pools and cryolavas on Titan, which are at a stage of chemical evolution not unlike the "primordial soup" of the early Earth. Future missions to Titan should therefore carry instrumentation capable of, but certainly not limited to, detecting amino acids and other prebiotic molecules on Titan's surface.

  3. Formation of barium strontium titanate powder by solid state reaction using different calcination temperatures

    International Nuclear Information System (INIS)

    Teoh Wah Tzu; Ahmad Fauzi Mohd Noor; Zainal Arifin Ahmad

    2002-01-01

    The unique electrical properties of large permittivity in Barium Strontium Titanate have been widely used to make capacitors; it can be produced by solid state reaction. In this study, the mixture of Barium Carbonate, Strontium Carbonate and Titanium Dioxide was calcined at 500 degree C, 1000 degree C, 1100 degree C , 1150 degree C, 1200 degree C, 1250 degree C and 1300 degree C. The results of the phases change in each stage were investigated via X ay Diffraction. The results show that the formation of Barium Strontium Titanate started at 1100 degree C with the presence of other phases. The mixture is fully reacted to form Barium Strontium Titanate at 1150 degree C. Only Barium Strontium Titanate was formed as the calcination temperature was set higher. (Author)

  4. Effect of the synthesis temperature of sodium nona-titanate on batch kinetics of strontium-ion adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Merceille, A.; Weinzaepfel, E.; Grandjean, A.; Merceille, A.; Weinzaepfel, E.; Barre, Y.

    2011-01-01

    Sodium titanate materials are promising inorganic ion exchangers for the adsorption of strontium from aqueous solutions. Sodium nona-titanate exhibits a layered structure consisting of titanate layers and exchangeable sodium ions between the layers. The materials used in this study include samples synthesized by a hydrothermal method at temperatures between 60 degrees C and 200 degrees C. Their structure, composition, and morphology were investigated with X-Ray diffraction measurements; thermogravimetric, compositional and surface area analyses, and scanning electron microscopy. The structure, composition, and morphology depended on the synthesis temperature. Batch kinetics experiments for the removal of strontium from aqueous solutions were performed, and the data were fitted by a pseudo-second-order reaction model and a diffusive model. The strontium extraction capacity also depended on the synthesis temperature and exhibited a maximum for samples synthesized at 100 degrees C. The sorption process occurs in one or two diffusion-controlled steps that also depend on the synthesis temperature. These diffusion-limited steps are the boundary-layer diffusion and intra-particle diffusion in the case of pure nona-titanate synthesized at temperatures lower than 170 degrees C, and only intra-particle diffusion in the case of nona-titanate synthesized at 200 degrees C. (authors)

  5. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Uehara, Y.; Underwood, J.H.; Gullikson, E.M.; Perera, R.C.C.

    1997-01-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can be beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L 2,3 absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features

  6. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Mitsubishi Electric Co., Hyogo (Japan); Underwood, J.H.; Gullikson, E.M.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can be beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.

  7. Effect of calcination temperature on the synthesis of potassium titanate with platy morphology

    International Nuclear Information System (INIS)

    Farina, R.; Fredericci, C.; Yoshimura, H.N.

    2011-01-01

    The dramatic increases in the number of pneumoconiosis cases have stimulated the search of new materials for replacement of asbestos fibers. Titanate plates with formula A y Ti 2-x M x O 4 , where A = K, Rb, Cs and M = Li, Mg, Co, Ni, Cu, Zn, Mn (III), Fe (III) have been studied as an alternative for the use of fibers. The effect of the variation of calcination temperature on the reaction of K 2 CO 3 -TiO 2 -Mg(OH) 2 system was studied with the aim of understanding the relationship of this parameter with the morphology and symmetry of the obtained plates. For this study the samples were calcined for 5 hours at temperatures of 950°C, 1000°C, 1050°C and 1100°C. The powders were analyzed by X-ray diffraction and scanning electron microscopy. It was concluded that 1000°C is the better calcination temperature for obtaining more symmetric plates with smaller particle size dispersion. (author)

  8. Electronic structure of layered ferroelectric high-k titanate La2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, Jean-Claude

    2009-01-01

    The electronic structure of binary titanate La2Ti2O7 has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La2Ti2O7 are determined as alpha(Ti) = 872...

  9. Electronic structure of layered ferroelectric high-k titanate Pr2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Gavrilova, T.A.; Grivel, Jean-Claude

    2012-01-01

    The spectroscopic parameters and electronic structure of binary titanate Pr2Ti2O7 have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have...

  10. Electronic structure of layered titanate Nd2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Gavrilova, T.A.; Grivel, Jean-Claude

    2008-01-01

    The electronic structure of the binary titanate Nd2Ti2O7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd2Ti2O7 are determined as alpha...

  11. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  12. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  13. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    Science.gov (United States)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  14. Influence of calcination temperature on sol-gel synthesized single-phase bismuth titanate for high dielectric capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiruramanathan, Pandirengan; Marikani, Arumugam [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Physics; Madhavan, Durairaj [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Chemistry; Bharadwaj, Suresh; Awasthi, Anand Mohan [UGC-DAE Consortium for Scientific Research, Indore (India). Thermodynamics Lab.

    2016-05-15

    An inexpensive sol-gel combustion method using citric acid as fuel has been used to synthesize bismuth titanate, Bi{sub 4}Ti{sub 3}O{sub 12} nanopowders. Thermogravimetric analysis proved that a calcination temperature of 900 C is sufficient for the preparation of single-phase bismuth titanate. X-ray diffraction and Fourier transform infrared spectroscopy are used to examine the influence of calcination temperature on the structural growth of the Bi{sub 4}Ti{sub 3}O{sub 12} nanopowder. The average crystallite size estimated by using the Scherrer method and the Williamson-Hall method was found to increase with calcination temperature. Photoluminescence behavior as a function of calcination temperature was observed at two different excitation wavelengths of 300 nm and 420 nm. The morphology of the particles analyzed using images obtained from field emission scanning electron microscopy displayed irregular, random sized, and spherical-shaped structures. The stoichiometry and purity of the nanopowder are confirmed by energy-dispersive spectroscopy. The broadband dielectric results established the highest dielectric constant (ε{sub r} = 450) for a frequency of 100 Hz achieved with a potential capacitance of 138 pF m{sup -2}. This establishes Bi{sub 4}Ti{sub 3}O{sub 12} as a promising dielectric material for achieving high energy density capacitors for the next-generation passive devices.

  15. High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, Milivoj [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Gajović, Andreja, E-mail: gajovic@irb.hr [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Jakša, Gregor; Žagar, Kristina; Čeh, Miran [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia)

    2014-04-05

    Graphical abstract: The aim of the work is to study how annealing in a reducing atmosphere of titanate nanotubes (TiNT) and Ag decorated titanate nanotubes (TiNT@Ag) influenced on their structure, morphology, phase transitions, UV–ViS-NIR absorbance and photocatalytic activity. An increase of photocatalytic activity after a heat treatment in a reducing atmosphere was observed in the TiNT and TiNT@Ag. We found that the hydrogenated TiNT@Ag samples (TiNT@Ag-HA) had a two-times higher photodegradation impact on the caffeine than the TiNT samples, which is a consequence of the increased absorption of visible light and the synergetic effects between the silver and the TiO{sub 2} nanoparticles that increase the efficiency of the formation of electron–hole pairs and the charge transfer to the surface of the nanoparticles. -- Highlights: • Titanate nanotubes with and without Ag nanoparticles were hydrogenated at 550 °C. • TiO{sub 2} nanostructures obtained by hydrogenation have core–shell structure. • Hydrogenated samples show absorption in the visible spectral region. • Hydrogenated Ag decorated sample show stronger absorption in visible than in UV. • Photocatalytic efficiency is improved by hydrogenation and by Ag nanoparticles. -- Abstract: Titanate nanotubes (TiNTs) and silver-decorated titanate nanotubes (TiNTs@Ag) were synthesized using the hydrothermal method. In the decorated nanotubes the silver particles were obtained by the photoreduction of AgNO{sub 3} under UV light. Pure and Ag-decorated nanotubes were high-temperature heat treated at 550 °C in a hydrogen atmosphere and the “core–shell”-structured TiO{sub 2} nanoparticles were formed. For the structural characterization of all the titanate nanostructures we used conventional and analytical transmission electron microscopy (TEM) techniques, X-ray diffraction (XRD) and Raman spectroscopy. The Ag-decorated titanate nanostructures were additionally studied by X-ray photo-electron

  16. A Pilot Study of Ion - Molecule Reactions at Temperatures Relevant to the Atmosphere of Titan

    Czech Academy of Sciences Publication Activity Database

    Zymak, Illia; Žabka, Ján; Polášek, Miroslav; Španěl, Patrik; Smith, D.

    2016-01-01

    Roč. 46, č. 4 (2016), s. 533-538 ISSN 0169-6149 R&D Projects: GA ČR(CZ) GA14-19693S Grant - others:COST(XE) TD1308 Institutional support: RVO:61388955 Keywords : titan ionosphere * variable temperature selected ions flow tube * ion-molecule reactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.000, year: 2016

  17. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    Science.gov (United States)

    Anderson, C. M.; Samuelson, R. E.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-01-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane V4 band at 1306/cm (7.7 microns) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140/cm (143 microns and 71 microns) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58degS, 15degS, 15degN, and 85degN. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HAS! value of 70.5K by approx. 6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  18. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    Science.gov (United States)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  19. Investigation of the effect of temperature on aging behavior of Fe-doped lead zirconate titanate

    Science.gov (United States)

    Promsawat, Napatporn; Promsawat, Methee; Janphuang, Pattanaphong; Marungsri, Boonruang; Luo, Zhenhua; Pojprapai, Soodkhet

    The aging degradation behavior of Fe-doped Lead zirconate titanate (PZT) subjected to different heat-treated temperatures was investigated over 1000h. The aging degradation in the piezoelectric properties of PZT was indicated by the decrease in piezoelectric charge coefficient, electric field-induced strain and remanent polarization. It was found that the aging degradation became more pronounced at temperature above 50% of the PZT’s Curie temperature. A mathematical model based on the linear logarithmic stretched exponential function was applied to explain the aging behavior. A qualitative aging model based on polar macrodomain switchability was proposed.

  20. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  1. Practical ultrasonic transducers for high-temperature applications using bismuth titanate and Ceramabind 830

    Science.gov (United States)

    Xu, Janet L.; Batista, Caio F. G.; Tittmann, Bernhard R.

    2018-04-01

    Structural health monitoring of large valve bodies in high-temperature environments such as power plants faces several limitations: commercial transducers are not rated for such high temperatures, gel couplants will evaporate, and measurements cannot be made in-situ. To solve this, we have furthered the work of Ledford in applying a practical transducer in liquid form which hardens and air dries directly onto the substrate. The transducer material is a piezoceramic film composed of bismuth titanate and a high-temperature binding agent, Ceramabind 830. The effects of several fabrication conditions were studied to optimize transducer performance and ensure repeatability. These fabrication conditions include humidity, binder ratio, water ratio, substrate roughness, and film thickness. The final product is stable for both reactive and non-reactive substrates, has a quick fabrication time, and has an operating temperature up to the Curie temperature of BIT, 650°C, well beyond the safe operating temperature of PZT (150°C).

  2. Bath temperature effect on magnetoelectric performance of Ni-lead zirconate titanate-Ni laminated composites synthesized by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Y.G., E-mail: yingang.wang@nuaa.edu.c [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Bi, K. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2011-03-15

    Magnetoelectric (ME) Ni-lead zirconate titanate-Ni laminated composites have been prepared by electroless deposition at various bath temperatures. The structure of the Ni layers deposited at various bath temperatures was characterized by X-ray diffraction, and microstructures were investigated by transmission electron microscopy. The magnetostrictive coefficients were measured by means of a resistance strain gauge. The transverse ME voltage coefficient {alpha}{sub E,31} was measured with the magnetic field applied parallel to the sample plane. The deposition rate of Ni increases with bath temperature. Ni layer with smaller grain size is obtained at higher bath temperature and shows higher piezomagnetic coefficient, promoting the ME effect of corresponding laminated composites. It is advantageous to increase the bath temperature, while trying to avoid the breaking of bath constituents. - Research Highlights: Laminated composites without interlayer are prepared by electroless deposition. Bath temperature affects the grain size of the deposited Ni layers. Higher bath temperature is beneficial to obtain stronger ME response.

  3. Lead palladium titanate: A room-temperature multiferroic

    Science.gov (United States)

    Gradauskaite, Elzbieta; Gardner, Jonathan; Smith, Rebecca M.; Morrison, Finlay D.; Lee, Stephen L.; Katiyar, Ram S.; Scott, James F.

    2017-09-01

    There have been a large number of papers on bismuth ferrite (BiFe O3 ) over the past few years, trying to exploit its room-temperature magnetoelectric multiferroic properties. Although these are attractive, BiFe O3 is not the ideal multiferroic due to weak magnetization and the difficulty in limiting leakage currents. Thus there is an ongoing search for alternatives, including such materials as gallium ferrite (GaFe O3 ). In the present work we report a comprehensive study of the perovskite PbT i1 -xP dxO3 with 0

  4. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  5. On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study

    Directory of Open Access Journals (Sweden)

    G. R. Lewis

    2007-11-01

    Full Text Available We present data from the sixth Cassini flyby of Titan (T5, showing that the magnetosphere of Saturn strongly interacts with the moon's ionosphere and exo-ionosphere. A simple electron ionisation model provides a reasonable agreement with the altitude structure of the ionosphere. Furthermore, we suggest that the dense and cold exo-ionosphere (from the exobase at 1430 km and outward to several Titan radii from the surface can be explained by magnetospheric forcing and other transport processes whereas exospheric ionisation by impacting low energy electrons seems to play a minor role.

  6. Plateau on temperature dependence of magnetization of nanostructured rare earth titanates

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Demokritov, S. O.; Perov, D. V.

    2018-05-01

    Magnetic properties of nanocomposite materials containing particles of rare earth titanates of R2Ti2O7 type, where R is a rare earth ion, including "spin ice" materials are investigated. The descending branches of hysteresis loop have been studied in detail in temperature range from 2 to 50 K. It has been shown that nanocomposites with Yb2Ti2O7, Dy2Ti2O7 and Er2Ti2O7 particles have one intersection point of the descending branches in some temperature range unlike many other nanocomposites. It is shown that magnetization has only weak temperature dependence near this point. It has been obtained that nanocomposites with Pr2Ti2O7 and Nd2Ti2O7 particles have no hysteresis loop. All above findings point out to unusual magnetic structures of the studied samples.

  7. Electronic structure of layered ferroelectric high-k titanate Pr2Ti2O7

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Gavrilova, T.A.; Grivel, J.-C.; Kesler, V.G.; Troitskaia, I.B.

    2012-01-01

    The spectroscopic parameters and electronic structure of binary titanate Pr 2 Ti 2 O 7 have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr 2 Ti 2 O 7 have been determined as α Ti =872.8 and α O =1042.3 eV. Variations of cation–anion bond ionicity have been discussed using binding energy differences Δ Ti =(BE O 1s–BE Ti 2p 3/2 )=71.6 eV and Δ Pr =BE(Pr 3d 5/2 )−BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides. Highlights: ► Solid state synthesis of polar titanate Pr 2 Ti 2 O 7 . ► Structural and spectroscopic properties and electronic structure determination. ► Ti–O and Pr–O bonding analysis using Ti 2p 3/2 , Pr 3d 5/2 and O 1s core levels.

  8. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2013-03-01

    Full Text Available We investigate electrical and dielectric properties of cadmium titanate (CdTiO3 nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH in nanofiber mats over the entire temperature range.

  9. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2012-01-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria‐stabilized zirconia (YSZ) and Nb‐doped strontium titanate (STN) to optimize data quality and acquisition time for 3D‐EBSD experiments by FIB...

  10. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    Science.gov (United States)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  11. Probing the Highly Efficient Electron Transfer Dynamics between Zinc Protoporphyrin IX and Sodium Titanate Nanosheets.

    Science.gov (United States)

    Biswas, Sudipta; Mukherjee, Debdyuti; De, Swati; Kathiravan, Arunkumar

    2016-09-15

    Sodium titanate nanosheets (NaTiO2 NS) have been prepared by a new method and completely characterized by TEM, SEM, XRD, EDX, and XPS techniques. The sensitization of nanosheets is carried out with Zn protoporphyrin IX (ZnPPIX). The emission intensity of ZnPPIX is quenched by NaTiO2 NS, and the dominant process for this quenching has been attributed to the process of photoinduced electron injection from excited ZnPPIX to the nanosheets. Time resolved fluorescence measurement was used to elucidate the process of electron injection from the singlet state of ZnPPIX to the conduction band of NaTiO2 NS. Electron injection from the dye to the semiconductor is very fast (ket ≈ 10(11) s(-1)), much faster than previously reported rates. The large two-dimensional surface offered by the NaTiO2 NS for interaction with the dye and the favorable driving force for electron injection from ZnPPIX to NaTiO2 NS (ΔGinj = -0.66 V) are the two important factors responsible for such efficient electron injection. Thus, NaTiO2 NS can serve as an effective alternative to the use of TiO2 nanoparticles in dye sensitized solar cells (DSSCs).

  12. Electronic structure of layered ferroelectric high-k titanate La2Ti2O7

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.

    2009-02-01

    The electronic structure of binary titanate La2Ti2O7 has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La2Ti2O7 are determined as αTi = 872.4 and αO = 1042.3 eV. Chemical bonding effects have been discussed with binding energy (BE) differences ΔTi = (BE O 1s - BE Ti 2p3/2) = 71.6 eV and ΔLa = (BE La 3d5/2 - BE O 1s) = 304.7 eV as key parameters in comparison with those in several titanium- and lanthanum-bearing oxides.

  13. Electronic structure of layered ferroelectric high-k titanate La2Ti2O7

    International Nuclear Information System (INIS)

    Atuchin, V V; Gavrilova, T A; Grivel, J-C; Kesler, V G

    2009-01-01

    The electronic structure of binary titanate La 2 Ti 2 O 7 has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La 2 Ti 2 O 7 are determined as α Ti = 872.4 and α O = 1042.3 eV. Chemical bonding effects have been discussed with binding energy (BE) differences Δ Ti = (BE O 1s - BE Ti 2p 3/2 ) = 71.6 eV and Δ La = (BE La 3d 5/2 - BE O 1s) = 304.7 eV as key parameters in comparison with those in several titanium- and lanthanum-bearing oxides.

  14. Electronic structure of layered titanate Nd 2Ti 2O 7

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.

    2008-10-01

    The electronic structure of the binary titanate Nd 2Ti 2O 7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd 2Ti 2O 7 are determined as αTi = 873.5 and αO = 1042.2 eV. Chemical bonding effects have been discussed with the binding energies differences ΔTi = (BE O 1s - BE Ti 2p 3/2) = 71.5 eV and ΔNd = (BE Nd 3d 5/2 - BE O 1s) = 452.5 eV as key parameters in comparison with those in other titanium- and neodymium-bearing oxides.

  15. Electronic structure of layered ferroelectric high-k titanate Pr2Ti2O7

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.; Troitskaia, I. B.

    2012-11-01

    The spectroscopic parameters and electronic structure of binary titanate Pr2Ti2O7 have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr2Ti2O7 have been determined as αTi=872.8 and αO=1042.3 eV. Variations of cation-anion bond ionicity have been discussed using binding energy differences ΔTi=(BE O 1s-BE Ti 2p3/2)=71.6 eV and ΔPr=BE(Pr 3d5/2)-BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides.

  16. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-01-01

    Relaxation like dielectric anomaly is observed in Y 3+ and Mn 2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  17. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  18. Laboratory Studies of Low Temperature Rate Coefficients: The Atmospheric Chemistry of the Outer Planets and Titan

    Science.gov (United States)

    Bogan, Denis

    1999-01-01

    Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.

  19. Temperature behavior of electrical properties of high-k lead-magnesium-niobium titanate thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenbin, E-mail: cwb0201@163.com [Electromechanical Engineering College, Guilin University of Electronic Technology (China); McCarthy, Kevin G. [Department of Electrical and Electronic Engineering, University College Cork (Ireland); Copuroglu, Mehmet; O' Brien, Shane; Winfield, Richard; Mathewson, Alan [Tyndall National Institute, University College Cork (Ireland)

    2012-05-01

    This paper reports on the temperature dependence of the electrical properties of high-k lead-magnesium-niobium titanate thin films processed with different compositions (with and without nanoparticles) and with different annealing temperatures (450 Degree-Sign C and 750 Degree-Sign C). These characterization results support the ongoing investigation of the material's electrical properties which are necessary before the dielectric can be used in silicon-based IC applications.

  20. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    Science.gov (United States)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  1. Low temperature fabrication of barium titanate hybrid films and their dielectric properties

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Saito, Hirobumi; Kinoshita, Takafumi; Nagao, Daisuke; Konno, Mikio

    2011-01-01

    A method for incorporating BT nano-crystalline into barium titanate (BT) films is proposed for a low temperature fabrication of high dielectric constant films. BT nanoparticles were synthesized by hydrolysis of a BT complex alkoxide in 2-methoxyethanol (ME)/ethanol cosolvent. As the ME volume fraction in the cosolvent (ME fraction) increased from 0 to 100%, the particle and crystal sizes tended to increase from 13.4 to 30.2 nm and from 15.8 to 31.4 nm, respectively, and the particle dispersion in the solution became more improved. The BT particles were mixed with BT complex alkoxide dissolved in an ME/ethanol cosolvent for preparing a precursor solution that was then spin-coated on a Pt substrate and dried at 150 o C. The dielectric constant of the spin-coated BT hybrid film increased with an increase in the volume fraction of the BT particles in the film. The dissipation factor of the hybrid film tended to decrease with an increase in the ME fraction in the precursor solution. The hybrid film fabricated at a BT fraction of 30% and an ME fraction of 25% attained a dielectric constant as high as 94.5 with a surface roughness of 14.0 nm and a dissipation factor of 0.11.

  2. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  3. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter

    International Nuclear Information System (INIS)

    Yang Mingli; Wang Jin; Li Huaqing; Wu Nianqiang Nick; Zheng Jianguo

    2008-01-01

    Hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes (TNTs) have been synthesized by a one-step hydrothermal processing. Lactate oxidase (LOx) enzyme has been immobilized on the three-dimensional porous TNT network to make an electrochemical biosensor for lactate detection. Cyclic voltammetry and amperometry tests reveal that the LOx enzyme, which is supported on TNTs, maintains their substrate-specific catalytic activity. The nanotubes offer the pathway for direct electron transfer between the electrode surface and the active redox centers of LOx, which enables the biosensor to operate at a low working potential and to avoid the influence of the presence of O 2 on the amperometric current response. The biosensor exhibits a sensitivity of 0.24 μA cm -2 mM -1 , a 90% response time of 5 s, and a linear response in the range from 0.5 to 14 mM and the redox center of enzyme obviates the need of redox mediators for electrochemical enzymatic sensors, which is attractive for the development of reagentless biosensors

  4. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter

    Science.gov (United States)

    Yang, Mingli; Wang, Jin; Li, Huaqing; Zheng, Jian-Guo; Wu, Nianqiang Nick

    2008-02-01

    Hydrogen titanate (H2Ti3O7) nanotubes (TNTs) have been synthesized by a one-step hydrothermal processing. Lactate oxidase (LOx) enzyme has been immobilized on the three-dimensional porous TNT network to make an electrochemical biosensor for lactate detection. Cyclic voltammetry and amperometry tests reveal that the LOx enzyme, which is supported on TNTs, maintains their substrate-specific catalytic activity. The nanotubes offer the pathway for direct electron transfer between the electrode surface and the active redox centers of LOx, which enables the biosensor to operate at a low working potential and to avoid the influence of the presence of O2 on the amperometric current response. The biosensor exhibits a sensitivity of 0.24 µA cm-2 mM-1, a 90% response time of 5 s, and a linear response in the range from 0.5 to 14 mM and the redox center of enzyme obviates the need of redox mediators for electrochemical enzymatic sensors, which is attractive for the development of reagentless biosensors.

  5. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia; Zhang, Yong; Song, Xiaozhen; Zhang, Qian; Yang, Dongliang; Chen, Yongzhou [Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2015-12-15

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    Science.gov (United States)

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  7. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  8. Wolte 5. low temperature electronics

    International Nuclear Information System (INIS)

    Balestra, F.; Dieudonne, F.; Jomaah, J.

    2002-01-01

    This book present the latest research and development results in advanced materials, technologies, devices, circuits and systems for low temperature electronics. The main themes of the papers are ranging from physics and fundamental aspects, modeling and simulation, to device and circuit design. The topics include advanced process and characterization, novel devices and cryogenic instrumentation. The papers are divided into nine sections, reflecting the main research efforts in different areas: i) deep submicron silicon MOSFETs, ii) alternative MOSFETs (SOI, innovating device architectures), iii) III-V devices, iv) other semiconductor devices (Ge devices, p-n junctions, IR sensors, semiconductor microcrystals), v) emerging devices and phenomena (nano Si-based devices, conduction and fluctuations mechanisms), vi) superconducting materials, vii) superconducting detectors, viii) superconducting devices and circuits (RSFQ, SIS mixers, metal-superconducting-semiconductor structures), ix) low temperature electronics for space applications. Six invited papers presented by internationally recognized authors, and 39 contributed papers are presented. The invited papers provide an excellent overview of today's status and progress, as well as tomorrow's challenges and trends in this important discipline for many cryogenic applications. (authors)

  9. Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    Lithium-ion batteries have already gained acceptability for Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) applications because of several reasons such as high theoretical capacity, their cycle-life, and high specific energy density. The intention of this experimental research...... is to study the surface temperature evolution of a 13 Ah Nano Lithium-Titanate battery cell for the usage of rechargeable energy storage system under fast charging conditions. The nominal voltage of the cell is 2.26V and the nominal capacity is 13.4 Ah. In this research, contact thermocouples were employed...

  10. ENHANCING DIRECT ELECTRON TRANSFER OF GLUCOSE OXIDASE USING A GOLD NANOPARTICLE |TITANATE NANOTUBE NANOCOMPOSITE ON A BIOSENSOR

    International Nuclear Information System (INIS)

    Zhao, Ruoxia; Liu, Xiaoqiang; Zhang, Jiamei; Zhu, Jie; Wong, Danny K.Y.

    2015-01-01

    ABSTRACT: In this paper, we have developed a gold nanoparticle (GNP) decorated titanate nanotubes (TNT) nanocomposite that aids in the direct electron transfer of a large enzyme, such as glucose oxidase (GOD), in which the electroactive site of flavin adenine dinucleotide is deeply buried within the enzyme. The ionic liquid, brominated 1-decyl-3-methyl imidazole, was used to immobilise the nanocomposite and the enzyme on a glassy carbon electrode to further aid in the electron transfer between GOD and the electrode surface. Nafion was also added to anchor the biosensor scaffold. Initially, the tubiform geometry of titanate nanomaterials and the GNP-TNT nanocomposite was confirmed by microscopic and spectroscopic techniques before glucose oxidase was entrapped in the nanocomposite. Based on voltammetric results, this biosensor showed a strong electrocatalytic capability towards glucose (with a heterogeneous electron transfer rate constant of 7.1 s −1 at 180 mV s −1 ) and the calibration for glucose exhibited a high sensitivity (5.1 μA mM −1 ) and a wide linear range (0.01–1.2 mM). These results demonstrated superior analytical performance of our biosensor over others fabricated using bulkier TiO 2 nanoparticles or nanobundles, which could be attributed to a high degree of biocompatibility to glucose oxidase and electrical conductivity of the nanocomposite

  11. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives.

    Science.gov (United States)

    Fang, Shaofan; Li, Guangshe; Li, Huixia; Lu, Yantong; Li, Liping

    2018-04-12

    The application of lead halide perovskite nanocrystals is challenged by the lack of strategies in rapid room-temperature synthesis with controlled morphologies. Here, we report on an initial study of adopting organic titanates as a model activator that promotes rapid room-temperature synthesis of shape-controlled, highly luminescent CsPbBr3 nanocrystals and their derivatives.

  12. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-07

    The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  13. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    Science.gov (United States)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  14. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  15. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  16. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2 and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  17. Effects of Thickness, Pulse Duration, and Size of Strip Electrode on Ferroelectric Electron Emission of Lead Zirconate Titanate Films

    Science.gov (United States)

    Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing

    2018-02-01

    Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.

  18. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method

    International Nuclear Information System (INIS)

    Razak, K.A.; Asadov, A.; Yoo, J.; Haemmerle, E.; Gao, W.

    2008-01-01

    The preparation procedure, structural and dielectric properties of hydrothermally derived Ba x Sr 1-x TiO 3 (BST) were studied. BST with initial Ba compositions of 75, 80, 85 and 90 mol.% were prepared by a high temperature hydrothermal synthesis. The obtained powders were pressed into pellet, cold isostatically pressed and sintered at 1200 deg. C for 3 hours. The phase compositions and lattice parameters of the as prepared powders and sintered samples were analysed using X-ray diffractometry. A fitting software was used to analyse the XRD spectra to separate different phases. It was found that BST powder produced by the high temperature hydrothermal possessed a two-phase structure. This structure became more homogeneous during sintering due to interdiffusion but a small amount of minor phase can still be traced. Samples underwent an abnormal grain growth, whereby some grains grow faster than the other due to the presence of two-phase structure. The grain size increased with increasing Ba amount. Dielectric constant and polarisation increased with increasing Ba content but it was also affected by the electronic state and grain size of the compositions

  19. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    Science.gov (United States)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  20. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  1. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  2. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    data suggests that oxygen vacancies and electron holes play the key role in the formation of the equilibrium surface space-charge layers. The oxygen vacancy diffusivities and the oxygen vacancy migration enthalpy are compared to other experimentally and theoretically derived data for barium titanate and a global expression for the temperature dependence of the oxygen vacancy diffusivity is determined. The latter was used for a comparison of the oxygen vacancy diffusivity and the oxygen vacancy migration enthalpy for BaTiO 3 to other perovskite oxides. Furthermore, this work shows results from cation interdiffusion experiments between BaZrO 3 and SrTiO 3 . Thin films of barium zirconate were deposited on strontium titanate single crystals and the cation interdiffusion investigated as a function of temperature. All four cations show a main diffusion profile and an additional fast diffusion profile. Each main diffusion profile can be described independently by the thick-film solution of the diffusion equation suggesting the diffusion coefficients to be concentration independent. The fast diffusion profiles are attributed to fast diffusion of Ba and Zr along dislocations of the SrTiO 3 single crystals and fast diffusion of Sr and Ti along the grain boundaries of the polycrystalline thin-film BaZrO 3 . The migration enthalpies of the bulk profiles for all four cations are very similar. The results suggest a complex diffusion mechanism with coupled diffusion of the cation vacancies on the A and B sites of the perovskite lattice.

  3. Determination of electron temperature and electron density in ...

    African Journals Online (AJOL)

    It is seen that the electron temperature increases from 5.8 × 102 oK to 7.83 × 104 oK as the pd is reduced from 130mm Hg × mm to 60 mm Hg × mm for argon. The electron densities increases from 2.8 × 1011/cm3 to 3.2 × 1011 /cm3 for the same variation of pds. For air the electron temperature increases from 3.6 × 104 oK to ...

  4. Electronic ceramics in high-temperature environments

    International Nuclear Information System (INIS)

    Searcy, A.W.; Meschi, D.J.

    1982-01-01

    Simple thermodynamic means are described for understanding and predicting the influence of temperature changes, in various environments, on electronic properties of ceramics. Thermal gradients, thermal cycling, and vacuum annealing are discussed, as well as the variations of ctivities and solubilities with temperature. 7 refs

  5. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  6. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  7. Low temperature hydrolysis of laboratory tholins in ammonia-water solutions: Implications for prebiotic chemistry on Titan

    Science.gov (United States)

    Neish, Catherine D.; Somogyi, Árpád; Lunine, Jonathan I.; Smith, Mark A.

    2009-05-01

    Laboratory tholins react rapidly in 13 wt% ammonia-water at low temperature, producing complex organic molecules containing both oxygen and altered nitrogen functional groups. These reactions display first-order kinetics with half-lives between 0.3 and 14 days at 253 K. The reaction timescales are much shorter than the freezing timescales of impact melts and volcanic sites on Titan, providing ample time for the formation of oxygenated, possibly prebiotic, molecules on its surface. Comparing the rates of the hydrolysis reactions in ammonia-water to those measured in pure water [Neish, C.D, Somogyi, A., Imanaka, H., Lunine, J.I., Smith, M.A., 2008a. Astrobiology 8, 273-287], we find that incorporation of oxygen into the tholins is faster in the presence of ammonia. The rate increases could be due to the increased pH of the solution, or to the availability of new reaction pathways made possible by the presence of ammonia. Using labeled 15NH 3 water, we find that ammonia does incorporate into some products, and that the reactions with ammonia are largely independent of those with water. A related study in HO18 confirms water as the source of the oxygen incorporated into the oxygen containing products.

  8. Al2O3 - TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    International Nuclear Information System (INIS)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.; Wunderlich, W.; Warrier, K.G.K.

    2008-01-01

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and the observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 μm. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route

  9. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance

    International Nuclear Information System (INIS)

    Zhang, Jingwei; Zhang, Fenli; Li, Jiuhe; Cai, Wei; Zhang, Jiwei; Yu, Laigui; Jin, Zhensheng; Zhang, Zhijun

    2013-01-01

    Nano-sized spinel lithium titanate (Li 4 Ti 5 O 12 ) was synthesized using sodium titanate nanotube as precursor via a facile solution ion-exchange method in association with subsequent calcination treatment at relatively low temperature. The influences of precursors, ion-exchange condition, and calcination temperature on the microstructure and electrochemical performance of the products were studied. Results indicate that pure-phase Li 4 Ti 5 O 12 can be harvested from sodium titanate nanotube precursor through an ion-exchanging at room temperature and calcination at 500 °C. The products exhibit a better performance as Li-ion battery anode material than the counterparts prepared from protonic titanate nanotube (H-titanate) precursor. The reason may lie in that sodium titanate nanotube is easier than protonic titanate nanotube to synthesize lithium titanate without TiO 2 impurity, resulting in reduced electron transfer ability and Li-ion transport ability. The capacity of Li 4 Ti 5 O 12 prepared from sodium titanate nanotube is 146 mAh/g at 10 C, and it has only 0.7 % decay after 200 charge/discharge cycles

  10. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  11. A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations

    Science.gov (United States)

    Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric

    2018-02-01

    A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.

  12. Microwave heating behavior and microwave absorption properties of barium titanate at high temperatures

    Directory of Open Access Journals (Sweden)

    K. Kashimura

    2016-06-01

    Full Text Available The temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated over various frequencies and temperatures of 25-1000 ∘C. First, using both the coaxial transmission line method and the cavity perturbation method by a network analyzer, the real and imaginary parts of the relative permittivity of BaTiO3 ( ε r ′ and ε r ″ , respectively were measured, in order to improve the reliability of the data obtained at 2.45 GHz. The imaginary parts of the relative permittivity as measured by the two methods were explored by their heating behaviors. Furthermore, the temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated for frequencies of 2.0-13.5 GHz and temperatures of 25-1000 ∘C using the coaxial transmission line method.

  13. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  14. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  15. Experimental investigation on tritium release from lithium titanate pebble under high temperature of 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: howartre@onid.oregonstate.edu [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Edao, Yuki; Kawamura, Yoshinori [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Ohta, Masayuki; Sato, Satoshi; Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2015-10-15

    Highlights: • We have performed the tritium recovery experiment with the DT neutron source at 1073 K. • The tritium recovery corresponded with the calculated tritium production. • The chemical form of recovered tritium is affected by the temperature and kind of sweep gas. • The recovered HT increases at higher temperature and dry hydrogen circumstance. - Abstract: The temperature of Li{sub 2}TiO{sub 3} pebble breeder in a fusion DEMO blanket is assumed to be more than 1000 K. For the investigation of tritium release from a Li{sub 2}TiO{sub 3} pebble breeder blanket at such a high temperature, we have carried out a tritium release experiment with the DT neutron source at the JAEA-FNS. The Li{sub 2}TiO{sub 3} pebble (1.0–1.2 mm in diameter) of 70 g was put into a stainless steel container and installed into an assembly stratified with beryllium and Li{sub 2}TiO{sub 3} layers. During the DT neutron irradiation, the temperature was kept at 1073 K with wire heaters in the blanket container. Helium gas including 1% hydrogen gas (H{sub 2}/He) mainly flowed inside the container as the purge gas. Two chemical forms, HT and HTO, of extracted tritium were separately collected during the DT neutron irradiation by using water bubblers and CuO bed. The tritium activity in the water bubbler was measured by a liquid scintillation counter. To investigate the effect of moisture in the purge gas, we also performed the same experiments with H{sub 2}O/He gas (H{sub 2}O content: 1%) or pure helium gas. From our experiment at 1073 K, in the case of the purge gas includes H{sub 2}, it is indicated that the increasing tendency of HT release is similar to that of the dry H{sub 2}/He.

  16. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    Science.gov (United States)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  17. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  18. Preparation and characterization of titanate nanotubes/carbon composites

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pan Hui; Xue Xiaoxiao; Qian Junjie; Yu Laigui; Yang Jianjun; Zhang Zhijun

    2011-01-01

    Highlights: → Titanate nanotubes/carbon composites were synthesized from TiO 2 -carbon composites. → The carbon shell of TiO 2 particles obstructed the reaction between TiO 2 and NaOH. → TEM, XRD, and Raman spectra reveal the formation processes of the TNT/CCs. - Abstract: Titanate nanotubes/carbon composites(TNT/CCs) were synthesized by allowing carbon-coated TiO 2 (CCT) powder to react with a dense aqueous solution of NaOH at 120 deg. C for a proper period of time. As-prepared CCT and TNT/CCs were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectrometry. The processes for formation of titanate nanotubes/carbon composites were discussed. It was found that the TiO 2 particles in TiO 2 -carbon composite were enwrapped by a fine layer of carbon with a thickness of about 4 nm. This carbon layer functioned to inhibit the transformation from anatase TiO 2 to orthorhombic titanate. As a result, the anatase TiO 2 in CCT was incompletely transformed into orthorhombic titanate nanotubes upon 24 h of reaction in the dense and hot NaOH solution. When the carbon layers were gradually peeled off along with the formation of more orthorhombic titanate nanotubes at extended reaction durations (e.g., 72 h), anatase TiO 2 particles in CCT were completely transformed into orthorhombic titanate nanotubes, yielding TNT/CCs whose morphology was highly dependent on the reaction time and temperature.

  19. Ion Irradiation Damage in Zirconate and Titanate Ceramics for Pu Disposition

    International Nuclear Information System (INIS)

    Stewart, Martin W.; Begg, Bruce D.; Finnie, K.; Colella, Michael; Li, H.; McLeod, Terry; Smith, Katherine L.; Zhang, Zhaoming; Weber, William J.; Thevuthasan, Suntharampillai

    2004-01-01

    In this paper, we discuss the effect of ion irradiation on pyrochlore-rich titanate and defect-fluorite zirconate ceramics designed for plutonium immobilization. Samples, with Ce as an analogue for Pu, were made via oxide routes and consolidated by cold-pressing and sintering. Ion irradiation damage was carried out with 2 MeV Au2+ ions to a fluence of 5 ions nm-2 in the accelerator facilities within the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. Irradiated and non-irradiated samples were examined by x-ray diffraction, scanning and transmission electron microscopy, x-ray photoelectron and infrared spectroscopy, and spectroscopic ellipsometry. Samples underwent accelerated leach testing at pH 1.75 (nitric acid) at 90 C for 28 days. The zirconate samples were more ion-irradiation damage resistant than the titanate samples, showing little change after ion-irradiation whereas the titanate samples formed an amorphous surface layer ∼ 500 nm thick. While all samples had high aqueous durability, the titanate leach rate was ∼ 5 times that of the zirconate. The ion-irradiation increased the leach rate of the titanate without impurities by ∼ 5 times. The difference in the leach rates between irradiated and unirradiated zirconate samples is small. However, the zirconates were less able to incorporate impurities than the titanate ceramics and required higher sintering temperatures, ∼ 1500 C compared to 1350 C for the titanates.

  20. On low temperature glide of dissociated 〈1 1 0〉 dislocations in strontium titanate

    Science.gov (United States)

    Ritterbex, Sebastian; Hirel, Pierre; Carrez, Philippe

    2018-05-01

    An elastic interaction model is presented to quantify low temperature plasticity of SrTiO3 via glide of dissociated 〈1 1 0〉{1 1 0} screw dislocations. Because 〈1 1 0〉 dislocations are dissociated, their glide, controlled by the kink-pair mechanism at T good quantitative agreement with the observed non-monotonic mechanical behaviour of SrTiO3. This agreement allows to explain the experimental results in terms of a (progressive) change in 〈1 1 0〉{1 1 0} glide mechanism, from simultaneous nucleation of two kink-pairs along both partials at low stress, towards nucleation of single kink-pairs on individual partials if resolved shear stress exceeds a critical value of 95 MPa. High resolved shear stress allows thus for the activation of extra nucleation mechanisms on dissociated dislocations impossible to occur under the sole action of thermal activation. We suggest that stress condition in conjunction with core dissociation is key to the origin of non-monotonic plastic behaviour of SrTiO3 at low temperatures.

  1. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  2. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.; Barasheed, Abeer Z.; Alshareef, Husam N.

    2013-01-01

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  3. Electron temperature measurement in Z-pinch

    International Nuclear Information System (INIS)

    Gerusov, A.V.; Orlov, M.M.; Terent'ev, A.R.; Khrabrov, V.A.

    1987-01-01

    Measurement of temperature of emitting plasma sheath in noncylindrical Z-pinch in neon at the stage of convergence to the axis, based on comparing the intensity of spectral lines belonging to Ne1, Ne2, is performed. Line intensity relation dependence was determined using calculations according to emitting-collision model. Spectra were recorded by electron-optical converter and relative intensity was determined by subsequent photometry of photolayer. Cylindric symmetrical MHD-calculations during which temperature and the observed line intensity relation were determined, are conducted

  4. High temperature reactivity of Li-titanates with H2 contained in Ar purge

    International Nuclear Information System (INIS)

    Alvani, C.; Casadio, S.; Contini, V.; Giorgi, R.; Mancini, M.R.; Pierdominici, F.; Salernitano, E.; Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2004-01-01

    The reduction of stoichiometric and Li-depleted Li 2 TiO 3 (Li-Ti) pebbles was studied by isothermal step-annealing at 900degC in Ar + 0.1%H 2 sweep gas (R-gas, TPR cycle) followed by their re-oxidation (TPO ramps) performed in O 2 and in H 2 O vapor doped inert gases. The pebbles were found to react by a complex process whose characteristics (reaction rate and reduction degree) seem to depend mainly on the compound Li-depletion degree. When the depletion degree is high a new phase could be observed to nucleate at their grain surfaces. A fine powder of Li 4 Ti 5 O 12 spinel oxide was also studied by TPR/TPO and by Thermo-analysis. Under reduction at 1000degC in flowing Ar + 3%H 2 gas the spinel powder was found to react decomposing into orthorhombic Li 0.14 TiO 2 phase and Li 2 O. TG-DTA patterns were consistent with the relative TPR/TPO spectra, including those performed on the Li-Ti pebbles. The high temperature reduction rate and degree of these materials were then assumed to depend on their spinel phase content which decomposes with nucleation of orthorhombic type Li x TiO 2 phases (with 0.14 ≤ x < 0.45) at the Li-depleted grain boundary surfaces. (author)

  5. First principle electronic, structural, elastic, and optical properties of strontium titanate

    Directory of Open Access Journals (Sweden)

    Chinedu E. Ekuma

    2012-03-01

    Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

  6. Titan's greenhouse and antigreenhouse effects

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  7. Seasonal Changes in Titan's Meteorology

    Science.gov (United States)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  8. Calorimetric measurements on hafnium titanate

    International Nuclear Information System (INIS)

    Kandan, R.; Prabhakara Reddy, B.; Panneerselvam, G.; Nagarajan, K.

    2012-01-01

    Owing to its desirable nuclear and mechanical properties such as good absorption cross-section for thermal neutrons (105 barns), hafnium titanate (HfTiO 4 ) finds application as control rods for nuclear reactors. An accurate knowledge of the thermo physical properties of this material is necessary for design of control rod and for modeling its performance. Heat capacity is an important thermodynamic property that determines the temperature dependent variation of all other thermodynamic properties. Hence enthalpy increments of hafnium titanate (HfTiO 4 ) were measured in the temperature range 803-1663 K by employing the method of inverse drop calorimetry using high temperature differential calorimeter

  9. Electronic structure of layered ferroelectric high-k titanate Pr{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Gavrilova, T.A. [Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Grivel, J.-C. [Materials Research Division, National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000, Roskilde (Denmark); Kesler, V.G. [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Troitskaia, I.B. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-11-15

    The spectroscopic parameters and electronic structure of binary titanate Pr{sub 2}Ti{sub 2}O{sub 7} have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr{sub 2}Ti{sub 2}O{sub 7} have been determined as {alpha}{sub Ti}=872.8 and {alpha}{sub O}=1042.3 eV. Variations of cation-anion bond ionicity have been discussed using binding energy differences {Delta}{sub Ti}=(BE O 1s-BE Ti 2p{sub 3/2})=71.6 eV and {Delta}{sub Pr}=BE(Pr 3d{sub 5/2})-BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides. Highlights: Black-Right-Pointing-Pointer Solid state synthesis of polar titanate Pr{sub 2}Ti{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Structural and spectroscopic properties and electronic structure determination. Black-Right-Pointing-Pointer Ti-O and Pr-O bonding analysis using Ti 2p{sub 3/2}, Pr 3d{sub 5/2} and O 1s core levels.

  10. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  11. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  12. Obtaining and electrical characterization of silicone/barium titanate composite for variable capacitor applications; Obtencao e caracterizacao eletrica de composito silicone/titanato de bario para aplicacoes em capacitor variavel

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.A.; Souza, P.S.S.; Souza, C.P., E-mail: debora.vieira@cear.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Energias Alternativas e Renovaveis. Departamento de Engenharia Eletrica; Menezes, P.C.F. [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    Silicone/barium titanate composites are excellent candidates for applications in the production of electronics components. In this work, silicone/barium titanate composite was obtained for the production of capacitors with variable dielectric distance. The mixture of composite (20% of barium titanate) was performed in a mixer with stem type propellers, at room temperature for 20 minutes. The cure was held in vacuum kiln. After obtaining the composite, was mounted a parallel plate capacitor, using composite as dielectric. The composite obtained was subjected to x-ray diffraction, scanning electron microscopy and capacitive electrical test. The DRX confirms the presence of ceramic charge in composite with the presence of broad peaks of barium titanate and micrographs show the barium titanate particles dispersed in polymer matrix. The capacitance of the sample was approximately 28,7pF. (author)

  13. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  14. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  15. Electronic structure of layered ferroelectric high-k titanate La{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V V [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Gavrilova, T A [Laboratory of Electron Microscopy and Submicron Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Grivel, J-C [Materials Research Department, National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000, Roskilde (Denmark); Kesler, V G, E-mail: atuchin@thermo.isp.nsc.r [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2009-02-07

    The electronic structure of binary titanate La{sub 2}Ti{sub 2}O{sub 7} has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La{sub 2}Ti{sub 2}O{sub 7} are determined as alpha{sub Ti} = 872.4 and alpha{sub O} = 1042.3 eV. Chemical bonding effects have been discussed with binding energy (BE) differences DELTA{sub Ti} = (BE O 1s - BE Ti 2p{sub 3/2}) = 71.6 eV and DELTA{sub La} = (BE La 3d{sub 5/2} - BE O 1s) = 304.7 eV as key parameters in comparison with those in several titanium- and lanthanum-bearing oxides.

  16. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  17. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  18. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  19. Modeling the Chemical Complexity in Titan's Atmosphere

    Science.gov (United States)

    Vuitton, Veronique; Yelle, Roger; Klippenstein, Stephen J.; Horst, Sarah; Lavvas, Panayotis

    2018-06-01

    Titan's atmospheric chemistry is extremely complicated because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and ionization of the most abundant species, N2 and CH4, by a variety of energy sources, i.e. solar UV and X-ray photons, suprathermal electrons (reactions involving radicals as well as positive and negative ions, all possibly in some excited electronic and vibrational state. Heterogeneous chemistry at the surface of the aerosols could also play a significant role. The efficiency and outcome of these reactions depends strongly on the physical characteristics of the atmosphere, namely pressure and temperature, ranging from 1.5×103 to 10-10 mbar and from 70 to 200 K, respectively. Moreover, the distribution of the species is affected by molecular diffusion and winds as well as escape from the top of the atmosphere and condensation in the lower stratosphere.Photochemical and microphysical models are the keystones of our understanding of Titan's atmospheric chemistry. Their main objective is to compute the distribution and nature of minor chemical species (typically containing up to 6 carbon atoms) and haze particles, respectively. Density profiles are compared to the available observations, allowing to identify important processes and to highlight those that remain to be constrained in the laboratory, experimentally and/or theoretically. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide while neutral-neutral radiative association reactions are a significant source of alkanes. We find that negatively charged macromolecules (m/z ~100) attract the abundant positive ions, which ultimately leads to the formation of the aerosols. We also discuss the possibility that an incoming flux of oxygen from Enceladus, another Saturn's satellite, is responsible for the presence of oxygen-bearing species in Titan's reductive

  20. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles.

    Science.gov (United States)

    Dowsett, D; Wirtz, T

    2017-09-05

    The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.

  1. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  2. Chemistry and evolution of Titan's atmosphere

    International Nuclear Information System (INIS)

    Strobel, D.F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere is reviewed in the light of the scientific findings from the Voyager mission. It is argued that the present N 2 atmosphere may be Titan's initial atmosphere rather than photochemically derived from an original NH 3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH 4 is irreversibly converted to less hydrogen rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of approximately 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N 2 into hot, escaping N atoms to remove approximately 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar e.u.v. energy deposition in Titan's atmosphere by an order of magnitude and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region. (author)

  3. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  4. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  5. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  6. Titan Aerial Daughtercraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  7. Titanic: A Statistical Exploration.

    Science.gov (United States)

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  8. Ceria and strontium titanate based electrodes

    DEFF Research Database (Denmark)

    2010-01-01

    A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate......, vanadium-doped strontium titanate, tantalum-doped strontium titanate, and mixtures thereof, (b) sintering the slurry of step (a), (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the resulting sintered structure of step (b...

  9. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  10. Cryovolcanism on Titan

    Science.gov (United States)

    Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R. M.

    2008-12-01

    Remote sensing observations yield evidence for cryovolcanism on Titan, and evolutionary models support (but do not require) the presence of an ammonia-water subsurface ocean. The impetus for invoking ammonia as a constituent in an internal ocean and cryovolcanic magma comes from two factors. First, ammonia-water liquid has a lower freezing temperature than pure liquid water, enabling cryovolcanism under the low- temperature conditions prevalent in the outer Solar System. Second, pure water is negatively buoyant with respect to pure water ice, which discourages eruption from the subsurface ocean to the surface. In contrast, the addition of ammonia to the water decreases its density, hence lessening this problem of negative buoyancy. A marginally positive buoyant ammonia-water mixture might allow effusive eruptions from a subsurface ocean. If the subsurface ocean were positively buoyant, all the ammonia would have been erupted very early in Titan's history. Contrary to this scenario, Cassini-Huygens has so far observed neither a global abundance nor a complete dearth of cryovolcanic features. Further, an ancient cryovolcanic epoch cannot explain the relative youth of Titan's surface. Crucial to invoking ammonia-water resurfacing as the source of the apparently recent geological activity is not how to make ammonia-water volcanism work (because the near neutral buoyancy of the ammonia-water mixture encourages an explanation), but rather how to prevent eruption from occurring so easily that cryovolcanic activity is over early on. Although cryovolcanism by ammonia-water has been proposed as a resurfacing process on Titan, few models have specifically dealt with the problem of how to transport ammonia-water liquid onto the surface. We proposed a model of cryovolcanism that involve cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. While the ammonia-water pockets cannot easily become neutral buoyant and promote effusive eruptions

  11. The greenhouse and antigreenhouse effects on Titan

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  12. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  13. Mechanical behaviour of substitutional body centered cubic Fe-Ti solid solutions at temperatures between 77 and 900 K; Plasticite des solutions solides cubiques centrees substitutionnelles fer-titane aux temperatures comprises entre 77 et 900 K

    Energy Technology Data Exchange (ETDEWEB)

    Dubots, Patrick

    1976-05-11

    Plastic behavior of body-centered cubic, interstitial free, Fe-Ti substitutional solid solutions has been characterised. We obtained the following results: at temperatures below 500 K, the thermal component τ* of the critical resolved shear stress τ greatly increases. Solute additions (c >0.12 wt pc) results in: softening at temperatures below 200 K, hardening at temperatures between 200 and 500 K. Results are discussed on Peierls mechanism. At temperatures below 200 K, screw dislocation motion is controlled.by the nucleation of dislocation pairs over the Peierls'hill. Substitutional solute favoring this process gives account of the softening. At temperatures above 200 K, edge dislocation motion controls the strain. The observed hardening is explained by the interaction occurring between edge-dislocations and foreign atoms. At temperatures between 500 and 800 K, a Portevin-Le Chatelier effect is observed. This effect is characterised by two types of serrations. The activation energy of the PLC effect has been determined (E = 1,4 eV). The origin of this phenomenon is the diffusion of solute towards dislocation by a vacancy-mechanism. Two maxima have been observed on the (σ{sub ε} - T) curves. These are due to superposition of overstraining (hardening) and creation of dislocations (softening). The athermal component τ{sub μ} is increased by titanium additions. This hardening has been explained by modulus and size effects. (author) [French] La caracterisation des mecanismes controlant la deformation plastique des solutions solides cubiques centrees substitutionnelles fer-titane, libres d'interstitiels pour les teneurs en solute superieures a 0,12pc pds, a donne les resultats suivants: aux temperatures inferieures a 500 K, la composante thermique τ* de la contrainte critique de cisaillement resolue τ augmente fortement. L'introduction du solute se traduit (pour c>0,12 pc pds): par un adoucissement pour θ < 200 K; par un durcissement pour 200 K< θ < 500 K. Le

  14. Electron temperature determination in LTE and non-LTE plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.

    1983-01-01

    This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures

  15. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  16. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    International Nuclear Information System (INIS)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-01-01

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO 2 ) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 °C) do not show significant activity under our conditions, while the one annealed at 450 °C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: ► Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. ► Titania crystal is formed by annealing hydrogen titanate at different temperatures. ► Best visible-light activity is achieved by Ag-loaded titania annealed at 450 °C. ► The visible light activity is attributed to the surface plasmonic resonance effect.

  17. Synthesis of Barium Titanate (BT) Nano Particles via Hydrothermal Route for the Production of BT-Polymer Nanocomposite

    Science.gov (United States)

    Habib, A.; Haubner, R.; Jakopic, G.; Stelzer, N.

    2007-08-01

    Barium titanate (high-k dielectric material) nano-powders (approx. 30 nm to 60 nm) were synthesised using hydrothermal route under moderate conditions. Effect of temperature and time was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction techniques. Obtained barium titanate nano-powders were dispersed in thermoplastic polymethyl methacrylate (PMMA) to get homogeneous dispersions. Thin layers were obtained using these dispersions to achieve BaTiO3 endorsed polymer layers by dip-coating for improved polymer insulators on various substrates e.g., glass, and Au sputtered silicon wafers. SEM and focused ion beam (FIB) techniques were used to study the dispersion of barium titanate nano-particles in PMMA. The layers obtained showed homogenous distribution of BaTiO3 nano particles with no agglomeration.

  18. Martian Electron Temperatures in the Sub Solar Region.

    Science.gov (United States)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  19. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  20. MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, Jr., C. C.; McBee, W. D.

    1963-10-15

    Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)

  1. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  2. Electron Density and Temperature Measurements, and Abundance ...

    Indian Academy of Sciences (India)

    tribpo

    tics—emission lines. Dwivedi, Curdt & Wilhelm (1997, 1999a) carried out an observing sequence based on a theoretical study by Dwivedi & Mohan (1995), with intercombination/forbidden. Ne VI and Mg VI lines, which are formed at essentially the same temperature. (4 × 105 K), according to Arnaud & Rothenflug (1985).

  3. What makes the difference in perovskite titanates?

    Science.gov (United States)

    Bussmann-Holder, Annette; Roleder, Krystian; Ko, Jae-Hyeon

    2018-06-01

    We have investigated in detail the lattice dynamics of five different perovskite titanates ATiO3 (A = Ca, Sr, Ba, Pb, Eu) where the A sites are occupied by +2 ions. In spite of the largely ionic character of these ions, the properties of these compounds differ substantially. They range from order/disorder like, to displacive ferroelectric, quantum paraelectric, and antiferromagnetic. All compounds crystallize in the cubic structure at high temperature and undergo structural phase transitions to tetragonal symmetry, partly followed by further transitions to lower symmetries. Since the TiO6 moiety is the essential electronic and structural unit, the question arises, what makes the significant difference between them. It is shown that the lattice dynamics of these compounds are very different, and that mode-mode coupling effects give rise to many distinct properties. In addition, the oxygen ion nonlinear polarizability plays a key role since it dominates the anharmonicity of these perovskites and determines the structural instability.

  4. Monosodium titanate particle characterization

    International Nuclear Information System (INIS)

    Chandler, G.T.; Hobbs, D.T.

    1993-01-01

    A characterization study was performed on monosodium titanate (MST) particles to determine the effect of high shear forces expected from the In-Tank Precipitation (ITP) process pumps on the particle size distribution. The particles were characterized using particle size analysis and scanning electron microscopy (SEM). No significant changes in particle size distributions were observed between as-received MST and after 2--4 hours of shearing. Both as-received and sheared MST particles contained a large percentage of porosity with pore sizes on the order of 500 to 2,000 Angstroms. Because of the large percentage of porosity, the overall surface area of the MST is dominated by the internal surfaces. The uranium and plutonium species present in the waste solution will have access to both interior and exterior surfaces. Therefore, uranium and plutonium loading should not be a strong function of MST particle size

  5. Observation of electron plasma waves in plasma of two-temperature electrons

    International Nuclear Information System (INIS)

    Ikezawa, Shunjiro; Nakamura, Yoshiharu.

    1981-01-01

    Propagation of electron plasma waves in a large and unmagnetized plasma containing two Maxwellian distributions of electrons is studied experimentally. Two kinds of plasma sources which supply electrons of different temperature are used. The temperature ratio is about 3 and the density ratio of hot to cool electrons is varied from 0 to 0.5. A small contamination of hot electrons enhances the Landau damping of the principal mode known as the Bohm-Gross mode. When the density of hot electrons is larger than about 0.2, two modes are observed. The results agree with theoretical dispersion relations when excitation efficiencies of the modes are considered. (author)

  6. Thermoluminescence in KBr:D electron irradiated at room temperature

    International Nuclear Information System (INIS)

    Paredes Campoy, J.C.; Lopez Carranza, E.

    1991-07-01

    The thermoluminescence of KBr:D samples electron irradiated at room temperature after thermal annealing at 673 K for 1 hour have been studied in the temperature range 360-730 K. The experimental TL-curve was discomposed by computer analysis in seven overlapping TL peaks, giving for them the order of the kinetics of thermal stimulation, the activation energy, the frequency factor, the relative values of the electronic concentration in traps at the initial heating temperature and the temperature at the maximum of the peak. (author). 18 refs, 1 fig., 3 tabs

  7. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  8. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  9. Methane rain on Titan

    Science.gov (United States)

    Toon, Owen B.; Mckay, Christopher P.; Courtin, Regis; Ackerman, Thomas P.

    1988-01-01

    The atmosphere of Titan is characterized by means of model computations based on Voyager IRIS IR spectra and published data from laboratory determinations of absorption coefficients and cloud refractive indices. The results are presented in tables and graphs, and it is pointed out that the presence of Ar is not required in the model. Particular attention is given to the role of CH4, which is found to form patchy clouds (with particle radii of 50 microns or greater and visible/IR optical depths of 2-5) at altitudes up to about 30 km. The mechanisms by which such rain-sized particles could form are discussed, and it is suggested that the observed 500-600/cm spectrum is affected much less by the CH4 clouds than by H2 or variations in the temperature of the high-altitude haze.

  10. Electronic Monitoring Of Storage And Transport Temperatures Of ...

    African Journals Online (AJOL)

    Electronic Monitoring Of Storage And Transport Temperatures Of Thermostable Newcastle ... 22) were monitored during storage and transport from vaccine production laboratory in Temeke, Dar es ... EMAIL FULL TEXT EMAIL FULL TEXT

  11. Electronic Modeling and Design for Extreme Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  12. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Abuelma'atti, Muhammad Taher; Khan, Muhammad Haroon

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  13. Coupled atmosphere-ocean models of Titan's past

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis

    1993-01-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  14. Reduced-graphene-oxide-and-strontium-titanate-based double

    Indian Academy of Sciences (India)

    Microwave-absorbing materials based on reduced graphene oxide (r-GO)/ strontium titanate were prepared by embedding in epoxy matrix. R-GO and strontium titanate were synthesized and characterized before composite fabrication. Microstructures of the constituent elements were studied by scanning electron ...

  15. Plutonium Elastic Moduli, Electron Localization, and Temperature

    International Nuclear Information System (INIS)

    Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B.

    2008-01-01

    In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)

  16. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented

  17. Nonthermal atmospheric escape from Mars and Titan

    International Nuclear Information System (INIS)

    Lammer, H.; Bauer, S.J.

    1991-01-01

    Energy flux spectra and particle concentrations of the hot O and N coronae from Mars and Titan, respectively, resulting primarily from dissociative recombination of molecular ions, have been calculated by means of a Monte Carlo method. The calculated energy flux spectra lead to an escape flux null esc ∼ 6 x 10 6 cm -2 s -1 for Mars and null esc ∼ 2 x 10 6 cm -2 s -1 for Titan, corresponding to a mass loss of about 0.14 kg/s for Mars and about 0.3 kg/s for Titan. (The contribution of electron impact ionization on N 2 amounts to only about 25% of Titan's mass loss.) Mass loss via solar and magnetospheric wind is also estimated using newly calculated mass loading limits. The mass loss via ion pickup from the extended hot atom corona for Mars amounts to about 0.25 kg/s (O + ) and for Titan to about 50 g/s (N 2 + or H 2 CN + ). Thus, the total mass loss rate from Mars and Titan is about the same, i.e., 0.4 kg/s

  18. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  19. Chemistry in Titan

    Science.gov (United States)

    Plessis, S.; Carrasco, N.; Pernot, P.

    2009-04-01

    Modelling the chemical composition of Titan's ionosphere is a very challenging issue. Latest works perform either inversion of CASSINI's INMS mass spectra (neutral[1] or ion[2]), or design coupled ion-neutral chemistry models[3]. Coupling ionic and neutral chemistry has been reported to be an essential feature of accurate modelling[3]. Electron Dissociative Recombination (EDR), where free electrons recombine with positive ions to produce neutral species, is a key component of ion-neutral coupling. There is a major difficulty in EDR modelling: for heavy ions, the distribution of neutral products is incompletely characterized by experiments. For instance, for some hydrocarbon ions only the carbon repartition is measured, leaving the hydrogen repartition and thus the exact neutral species identity unknown[4]. This precludes reliable deterministic modelling of this process and of ion-neutral coupling. We propose a novel stochastic description of the EDR chemical reactions which enables efficient representation and simulation of the partial experimental knowledge. The description of products distribution in multi-pathways reactions is based on branching ratios, which should sum to unity. The keystone of our approach is the design of a probability density function accounting for all available informations and physical constrains. This is done by Dirichlet modelling which enables one to sample random variables whose sum is constant[5]. The specifics of EDR partial uncertainty call for a hierarchiral Dirichlet representation, which generalizes our previous work[5]. We present results on the importance of ion-neutral coupling based on our stochastic model. C repartition H repartition (measured) (unknown ) → C4H2 + 3H2 + H .. -→ C4 . → C4H2 + 7H → C3H8. + CH C4H+9 + e- -→ C3 + C .. → C3H3 + CH2 + 2H2 → C2H6 + C2H2 + H .. -→ C2 + C2 . → 2C2H2 + 2H2 + H (1) References [1] J. Cui, R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak

  20. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  1. Fabrication and properties of yttrium doped barium titanate film by RF sputtering

    International Nuclear Information System (INIS)

    Igarashi, H.; Yuasa, M.; Okazaki, K.

    1985-01-01

    Semiconductive barium titanate films were fabricated by RF sputtering on fused quartz, alumina and barium titanate ceramic substrates using barium titanate ceramic with a small amount of yttria as a target. The films on the barium titanate substrates turned blue color and showed a small PTC effect by heat-treating at 1000 0 C in the air after deposition at the substrate temperature of 600 0 C

  2. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    Science.gov (United States)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  3. Temperature gradient driven electron transport in NSTX and Tore Supra

    International Nuclear Information System (INIS)

    Horton, W.; Wong, H.V.; Morrison, P.J.; Wurm, A.; Kim, J.H.; Perez, J.C.; Pratt, J.; Hoang, G.T.; LeBlanc, B.P.; Ball, R.

    2005-01-01

    Electron thermal fluxes are derived from the power balance for Tore Supra (TS) and NSTX discharges with centrally deposited fast wave electron heating. Measurements of the electron temperature and density profiles, combined with ray tracing computations of the power absorption profiles, allow detailed interpretation of the thermal flux versus temperature gradient. Evidence supporting the occurrence of electron temperature gradient turbulent transport in the two confinement devices is found. With control of the magnetic rotational transform profile and the heating power, internal transport barriers are created in TS and NSTX discharges. These partial transport barriers are argued to be a universal feature of transport equations in the presence of invariant tori that are intrinsic to non-monotonic rotational transforms in dynamical systems

  4. ELECTRON ENERGY DECAY IN HELIUM AFTERGLOW PLASMAS AT CRYOGENIC TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Goldan, P. D.; Cahn, J. H.; Goldstein, L.

    1963-10-15

    Studies of decaying afterglow plasmas in helium were ined near 4 deg K by immersion in a liquid helium bath. By means of a Maser Radiometer System, the electron temperature was followed below 200 deg K. Guided microwave propagation and wave interaction techniques premit determination of election number density and collision frequencies for momentum transfer. Electron temperature decay rates of the order of 150 mu sec/p(mm Hg alpha 4.2 deg K) were found. Since thermal relaxation by elastic collisions should be some two orders of magnitude faster than this, the electrons appear to be in quasiequilibrium with a slowly decaying internal heating source. Correlation of the expected decay rates of singlet metastable helium atoms with the electron temperature decay gives good agreement with the present experiment. (auth)

  5. The Titan Sky Simulator ™ - Testing Prototype Balloons in Conditions Approximating those in Titan's Atmosphere

    Science.gov (United States)

    Nott, Julian

    This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical

  6. Analysis of electron cyclotron emission spectra of high electron temperature, supershot plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Arunasalam, V.; Efthimion, P.C.; Grek, B.

    1993-01-01

    A primary objective of the TFTR program since 1986 has been the study and optimization of deuterium Supershot plasmas. These plasmas are predominantly heated by 90-110 keV neutral deuterium beams (P NBI /P OH >30), central ion temperatures are ∝30 keV and central electron temperatures from ECE (T ECE ) often exceed 10 keV. Central electron temperature data measured with a TV Thomson scattering (TVTS) system (T TVTS ) during the period 1987-1990 have been compared with data from three different ECE instruments on TFTR. Although T ECE ∝T TVTS for temperatures below 6 keV, there is a systematically increasing disagreement at higher electron temperatures, with T ECE ∝1.2 T TVTS for T TVTS in the range 9-10 keV. Recent theoretical work on the ECE radiation temperature of non-equilibrium plasmas indicates that for a bi-Maxwellian electron velocity distribution with a ratio of tail to bulk electron density η, a bulk temperature T b , and a hot tail temperature T h , the perpendicular ECE radiation temperature is given by T ECE ∝T b {1+η(T h /T b )}, for η ECE would be enhanced over T TVTS by a factor which depends on η and T h . This paper investigates whether the discrepancy between T TVTS and T ECE seen in TFTR Supershots at high electron temperatures is due to the presence of a hot electron tail component. The extraordinary mode ECE spectrum at the second, third and fourth harmonics is measured on the horizontal midplane by an absolutely calibrated ECE Michelson interferometer. This ECE spectrum is compared with the output from a time-independent transport code with relativistic opacity which solves the three-dimensional ECE radiation transport in a toroidally symmetric, two-dimensional geometry and uses measured electron density and temperature profiles from the TVTS system. (orig.)

  7. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  8. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  9. Effects of lower hybrid fast electron populations on electron temperature measurements at JET

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Bartlett, D.V.; Schunke, B.

    1993-01-01

    The Lower Hybrid Current Drive (LHCD) system on JET has to date achieved up to 1.5 MA of driven current. This current is carried by a fast electron population with energies more than ten times the electron temperature and density about 10 -4 of the bulk plasma. This paper discusses the effects of this fast electron population on our ability to make reliable temperature measurements using ECE and reviews the effects on other plasma diagnostics which rely on ECE temperature measurements for their interpretation. (orig.)

  10. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  11. The relationship between ionospheric temperature, electron density and solar activity

    International Nuclear Information System (INIS)

    McDonald, J.N.; Williams, P.J.S.

    1980-01-01

    In studying the F-region of the ionosphere several authors have concluded that the difference between the electron temperature Tsub(e) and the ion temperature Tsub(i) is related to the electron density N. It was later noted that solar activity (S) was involved and an empirical relationship of the following form was established: Tsub(e)-Tsub(i) = A-BN+CS. The present paper extends this work using day-time data over a four year period. The results are given and discussed. A modified form of the empirical relation is proposed. (U.K.)

  12. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  13. Electron temperature measurement of tungsten inert gas arcs

    International Nuclear Information System (INIS)

    Tanaka, Manabu; Tashiro, Shinichi

    2008-01-01

    In order to make clear the physical grounds of deviations from LTE (Local Thermodynamic Equilibrium) in the atmospheric helium TIG arcs electron temperature and LTE temperature obtained from electron number density were measured by using of line-profile analysis of the laser scattering method without an assumption of LTE. The experimental results showed that in comparison with the argon TIG arcs, the region where a deviation from LTE occurs tends to expand in higher arc current because the plasma reaches the similar state to LTE within shorter distance from the cathode due to the slower cathode jet velocity

  14. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  15. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  16. Electron microscopic observation at low temperature on superconductors

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.

    1991-01-01

    The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)

  17. Determining coronal electron temperatures from observations with UVCS/SOHO

    Science.gov (United States)

    Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.

    1995-01-01

    The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.

  18. Critical ionization velocity as a mechanism for producing Titan's plasma tail

    International Nuclear Information System (INIS)

    Galeev, A.A.; Khabibrakhmanov, I.KH.

    1984-01-01

    The phenomenon of a critical ionization velocity may explain the anomalous interaction between the magnetospheric plasma corotating with Saturn and the atmosphere of Titan. Although the dominant role will be played by the lower-hybrid instability due to the counterstreaming of the magnetospehric plasma and newly formed atmospheric ions, charge-separation effects caused by the very large Larmor radius of the new nitrogen ions also may trigger instability. The kinetic energy of the newly formed ions will be conveyed to the electrons by plasma waves generated in the counterflow, thereby exciting the atmospheric atoms to emit radiation. The limiting plasma density and electron temperature in Titan's plasma tail and the frequency spectrum of the waves that develop are determined and compared against the Voyager measurements. 11 references

  19. Survey of potential electronic applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Hammond, R.B.; Bourne, L.C.

    1991-01-01

    In this paper the authors present a survey of the potential electronic applications of high temperature superconductor (HTSC) thin films. During the past four years there has been substantial speculation on this topic. The authors will cover only a small fraction of the potential electronic applications that have been identified. Their treatment is influenced by the developments over the past few years in materials and device development and in market analysis. They present their view of the most promising potential applications. Superconductors have two important properties that make them attractive for electronic applications. These are (a) low surface resistance at high frequencies, and (b) the Josephson effect

  20. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  1. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    pressure and temperature. The data suggests that oxygen vacancies and electron holes play the key role in the formation of the equilibrium surface space-charge layers. The oxygen vacancy diffusivities and the oxygen vacancy migration enthalpy are compared to other experimentally and theoretically derived data for barium titanate and a global expression for the temperature dependence of the oxygen vacancy diffusivity is determined. The latter was used for a comparison of the oxygen vacancy diffusivity and the oxygen vacancy migration enthalpy for BaTiO{sub 3} to other perovskite oxides. Furthermore, this work shows results from cation interdiffusion experiments between BaZrO{sub 3} and SrTiO{sub 3}. Thin films of barium zirconate were deposited on strontium titanate single crystals and the cation interdiffusion investigated as a function of temperature. All four cations show a main diffusion profile and an additional fast diffusion profile. Each main diffusion profile can be described independently by the thick-film solution of the diffusion equation suggesting the diffusion coefficients to be concentration independent. The fast diffusion profiles are attributed to fast diffusion of Ba and Zr along dislocations of the SrTiO{sub 3} single crystals and fast diffusion of Sr and Ti along the grain boundaries of the polycrystalline thin-film BaZrO{sub 3}. The migration enthalpies of the bulk profiles for all four cations are very similar. The results suggest a complex diffusion mechanism with coupled diffusion of the cation vacancies on the A and B sites of the perovskite lattice.

  2. Measurements of plasma temperature and electron density in laser

    Indian Academy of Sciences (India)

    The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions.

  3. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    International Nuclear Information System (INIS)

    Niez, J.J.

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  4. Electron-dislocation interaction at low temperatures. Progress report

    International Nuclear Information System (INIS)

    1978-01-01

    The interaction of mobile dislocations with electrons in copper and copper alloys has shown that dislocation motion in copper, at low temperature, can be treated as an analog of an underdamped oscillator. We have also shown that the viscous drag on mobile dislocations in type II superconductors can be treated as an acoustic attenuation of an elastic wave

  5. Low latitude electron temperature observed by the CHAMP satellite

    DEFF Research Database (Denmark)

    Stolle, Claudia; Truhlik, V.; Richards, P.

    2012-01-01

    Te morning overshoot (MO). Both, data and model revealed an anti-correlation between the equatorial MO amplitude and solar EUV flux at these altitudes. The CHAMP observations also reveal a post sunset electron temperature anomaly in analogy to the equatorial ionisation anomaly at altitudes below 400...

  6. Temperature dependence of electron concentration in cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Blom, F.A.P.

    1979-01-01

    From measurements of the temperature dependence of the electron concentration in Cd 3 As 2 , we found values for the conduction-band parameters that are in good agreement with those recently reported by Aubin, Caron, and Jay-Gerin. However, in contrast with these authors we found no small overlap,

  7. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  8. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.

    Science.gov (United States)

    Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin

    2016-02-19

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.

  9. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    Science.gov (United States)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  10. Electronic temperature control and measurements reactor fuel rig circuits

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC).

  11. The electronic temperature control and measurements reactor fuel rig circuits

    International Nuclear Information System (INIS)

    Glowacki, S.W.

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC). (author)

  12. Effect of re-heating on the hot electron temperature

    International Nuclear Information System (INIS)

    Estabrook, K.; Rosen, M.

    1980-01-01

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density [10 21 (1.06 μm/lambda 0 ) 2 cm -3 ]. The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e/ 0 25 ([I(W/cm 2 )/10 16 ](lambda 0 /1.06 μm) 2 ) 0 4 . This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not

  13. Collisional drift waves in a plasma with electron temperature inhomogeneity

    International Nuclear Information System (INIS)

    Drake, J.F.; Hassam, A.B.

    1981-01-01

    A fluid theory of collisional electrostatic drift waves in a plasma slab with magnetic shear is presented. Both electron temperature and density gradients are included. The equations are solved analytically in all relevant regions of the parameter space defined by the magnetic shear strength and the perpendicular wavelength and explicit expressions for the growth rates are given. For shear strengths appropriate for present-day tokamak discharges the temperature gradient produces potential wells which localize the mode in the electron resistive region, well inside the ion sound turning points. Mode stability arises from a competition between the destabilizing influence of the time dependent thermal force and the stabilizing influence of electron energy dissipation. Convective energy loss is not important for shear parameters of present-day fusion devices

  14. Electron temperature in the E-region of the ionosphere

    International Nuclear Information System (INIS)

    Zalpuri, K.S.; Oyama, K.-I.

    1991-06-01

    Various heating and cooling mechanisms which are operative in the lower E-region are discussed and their relative importance in different altitude range is shown. These heating and cooling rates are then used to derive the electron temperature T e . The calculated values of electron temperature are found to be higher than neutral temperature through out the altitude range 100 ∼ 150 km, with the difference increasing with increase in altitude. However, compared to observed values of T e , the calculated values are still smaller below about 130 km. Above this altitude, the calculated values become larger. Estimation of T e for different, suggested values of heating efficiency due to dissociative recombination, show that T e profile obtained even be assuming a constant value of 1.3 eV is in fairly good agreement with those derived based on variable values of this parameter. (author)

  15. Technological properties and structure of titanate melts

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  16. Titan Casts Revealing Shadow

    Science.gov (United States)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  17. Raising the Titanic.

    Science.gov (United States)

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  18. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  19. Impurities in barium titanate posistor ceramics

    Czech Academy of Sciences Publication Activity Database

    Korniyenko, S. M.; Bykov, I. P.; Glinchuk, M. J.; Laguta, V. V.; Belous, A. G.; Jastrabík, Lubomír

    2000-01-01

    Roč. 239, - (2000), s. 1209-1218 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z1010914 Keywords : barium titanate phase transition * ESR * positive temperature coefficient of resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.547, year: 2000

  20. Clash of the Titans

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  1. Titan's Ammonia Feature

    Science.gov (United States)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  2. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  3. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  4. Modeling Chemical Growth Processes in Titan's Atmosphere: 1. Theoretical Rates for Reactions between Benzene and the Ethynyl (C2H) and Cyano (CN) Radicals at Low Temperature and Pressure

    Science.gov (United States)

    Woon, David E.

    2006-01-01

    Density functional theory calculations at the B3LYP/6-31+G** level were employed to characterize the critical points for adducts, isomers, products, and intervening transition states for the reactions between benzene and the ethynyl (C2H) or cyano (CN) radicals. Both addition reactions were found to have no barriers in their entrance channels, making them efficient at the low temperature and pressure conditions that prevail in the haze-forming region of Titan's atmosphere as well as in the dense interstellar medium (ISM). The dominant products are ethynylbenzene (C6H5C2H) and cyanobenzene (C6H5CN). Hydrogen abstraction reactions were also characterized but found to be non-competitive. Trajectory calculations based on potentials fit to about 600 points calculated at the ROMP2/6-31+G** level for each interaction surface were used to determine reaction rates. The rates incorporated any necessary corrections for back reactions as ascertained from a multiwell treatment used to determine outcome distributions over the range of temperatures and pressures pertinent to Titan and the ISM and are in good agreement with the limited available experimental data.

  5. Electronic structure of the high-temperature oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1989-01-01

    Since the discovery of superconductivity above 30 K by Bednorz and Mueller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa 2 Cu 3 O 7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections (''correlations'') are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials

  6. SPECTROSCOPIC DIAGNOSIS IN ELECTRONIC TEMPERATURE OF PHOTOIONISE PLASMAS

    Directory of Open Access Journals (Sweden)

    A. K. Ferouani

    2015-08-01

    Full Text Available In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, which have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l towards the fundamental level 1s2 1S0, like appropriate lines. More precisely, the line of resonance w due to the transition 1s2p 1P1 --- 1s2 1 S0, the line of intercombinaison (x,y 1s2p 3 P2,1 --- 1s2 1 S0  as well as prohibited line z due to the transition 1s2 3 S1 --- 1s2 1 S0. These lines appear clearly in the spectra of astrophysical plasmas. As helium-like ion, we chose two, the oxygen O6+ (Z=8 and neon Ne8+ (Z=10. We carried out calculations of the ration of lines intensity G=(z+x+y/w of O6+ and Ne8+  according to the electronic temperature in the range going from 105 to 107 K. We will see that, like it was shown by Gabriel and Jordan in 1969 [1], this intensity ration can be very sensitive to the temperature electronic and practically independent of the electronic density. Consequently, the ration G can be used to determine in a reliable way the electronic temperature of plasma observed [2].

  7. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    International Nuclear Information System (INIS)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120 0 C, and was found to be approximately five times greater at -120 0 C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane

  8. Electron temperature diagnostics in the RFX reversed field pinch experiment

    International Nuclear Information System (INIS)

    Bartiromo, R.; Carraro, L.; Marrelli, L.; Murari, A.; Pasqualotto, R.; Puiatti, M.E.; Scarin, P.; Valisa, M.; Franz, P.; Martin, P.; Zabeo, L.

    2000-01-01

    The paper presents an integrated approach to the problem of electron temperature diagnostics of the plasma in a reversed field pinch. Three different methods, sampling different portions of the electron distribution function, are adopted, namely Thomson scattering, soft X-ray spectroscopy by pulse-height analysis and filtered soft X-ray intensity ratio. A careful analysis of the different sources of systematic errors is performed and a novel statistical approach is adopted to mutually validate the three independent measurements. A satisfactory agreement is obtained over a large range of experimental conditions, indicating that in the plasma core the energy distribution function is well represented by a maxwellian. (author)

  9. Electron temperature measurements in lowdensity plasmas by helium spectroscopy

    International Nuclear Information System (INIS)

    Brenning, N.

    1977-09-01

    This method to use relative intensities of singlet and triplet lines of neutral helium to measure electron temperature in low-density plasmas is examined. Calculations from measured and theoretical data about transitions in neutral helium are carried out and compared to experimental results. It is found that relative intensities of singlet and triplet lines from neutral helium only can be used for TE determination in low-density, short-duration plasmas. The most important limiting processes are excitation from the metastable 2 3 S level and excitation transfer in collisions between electrons and excited helium atoms. An evaluation method is suggested, which minimizes the effect of these processes. (author)

  10. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  11. Heat capacity measurements on dysprosium titanate

    International Nuclear Information System (INIS)

    Kandan, R.; Prabhakara Reddy, B.; Panneerselvam, G.; Nagarajan, K.

    2014-01-01

    Dysprosium titanate is considered as a candidate material for use in the control rods of future nuclear reactors. The Dy 2 TiO 5 compound was prepared by solid-state synthesis and characterized by XRD technique. The high temperature enthalpy increments of dysprosium titanates have been measured for the first time by employing the method of inverse drop calorimetry in the temperature range 748-1645 K by using high temperature drop calorimeter. The calorimeter, the method of measurement and the procedure adopted for enthalpy increment measurements and analysis of the measured data to compute thermodynamic functions have been described elsewhere. The measured enthalpy increments were fitted to polynomial in temperature by using the least squares method. The fit equation in the temperature range from 298 to 1800 K is given

  12. State of the art of High Temperature Power Electronics

    OpenAIRE

    Buttay , Cyril; Planson , Dominique; Allard , Bruno; Bergogne , Dominique; Bevilacqua , Pascal; Joubert , Charles; Lazar , Mihai; Martin , Christian; Morel , Hervé; Tournier , Dominique; Raynaud , Christophe

    2009-01-01

    International audience; High temperature power electronics has become possible with the recent availability of silicon carbide devices. This material, as other wide-bandgap semiconductors, can operate at temperatures above 500°C, whereas silicon is limited to 150-200°C. Applications such as transportation or deep oil and gas wells drilling can benefit. A few converters operating above 200°C have been demonstrated, but work is still ongoing to design and build a power system able to operate in...

  13. Temperature distribution induced by electron beam in a closed cavity

    International Nuclear Information System (INIS)

    Molhem, A.G.; Soulayman, S.Sh.

    2004-01-01

    In order to investigate heat transfer phenomena induced by EB in a closed cavity an experimental arrangement, which allows generating and focusing an electron beam in to closed cavity within 1 mm in diameter and measuring temperature all over any perpendicular section to the EB, is used for this purpose. Experimental data show that the radial distribution of current density and temperature is normal with pressure and location dependent parameters. Moreover, there is two distinguishable regions in the EB: one is central while the other surrounds the first one. (orig.)

  14. Ferromagnetism and temperature-dependent electronic structure in metallic films

    International Nuclear Information System (INIS)

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  15. First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5

    Directory of Open Access Journals (Sweden)

    Hui Niu

    2012-09-01

    Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

  16. Effects of electrons on the solar wind proton temperature anisotropy

    International Nuclear Information System (INIS)

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H.

    2014-01-01

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  17. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  18. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  19. Electron temperature anisotropy constraints in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Marsch, E.; Fazakerley, A.; Scime, E. E.

    2008-01-01

    Roč. 113, A3 /2008/ (2008), A03103/1-A03103/10 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420602 Grant - others:EU(XE) ESA-PECS project No. 98024 Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind electrons * temperature anisotropy * radial Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.147, year: 2008

  20. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2001-03-09

    Mar 9, 2001 ... kinematics and local thermodynamic equilibrium (LTE) electron temperature (Te) of this region. H109α RRL observations by Wilsonet al.(1970) with a resolution of 4 and by Pankonin et al. (1979) with a resolution of 2.6 show that Te ∼ 6000 K in G49.5-0.4. Lower frequency observations for H137β and ...

  1. Deriving the coronal hole electron temperature: electron density dependent ionization / recombination considerations

    International Nuclear Information System (INIS)

    Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf

    2010-01-01

    Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.

  2. Titan's hydrodynamically escaping atmosphere

    Science.gov (United States)

    Strobel, Darrell F.

    2008-02-01

    The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].

  3. Active silicon x-ray for measuring electron temperature

    International Nuclear Information System (INIS)

    Snider, R.T.

    1994-07-01

    Silicon diodes are commonly used for x-ray measurements in the soft x-ray region between a few hundred ev and 20 keV. Recent work by Cho has shown that the charge collecting region in an underbiased silicon detector is the depletion depth plus some contribution from a region near the depleted region due to charge-diffusion. The depletion depth can be fully characterized as a function of the applied bias voltage and is roughly proportional to the squart root of the bias voltage. We propose a technique to exploit this effect to use the silicon within the detector as an actively controlled x-ray filter. With reasonable silicon manufacturing methods, a silicon diode detector can be constructed in which the sensitivity of the collected charge to the impinging photon energy spectrum can be changed dynamically in the visible to above the 20 keV range. This type of detector could be used to measure the electron temperature in, for example, a tokamak plasma by sweeping the applied bias voltage during a plasma discharge. The detector samples different parts of the energy spectrum during the bias sweep, and the data collected contains enough information to determine the electron temperature. Benefits and limitations of this technique will be discussed along with comparisons to similar methods for measuring electron temperature and other applications of an active silicon x-ray filter

  4. 12th International Workshop on Low Temperature Electronics

    International Nuclear Information System (INIS)

    2017-01-01

    The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 12th International Workshop on Low Temperature Electronics held in Tempe, Arizona, USA from September 18-21, 2016. The conference was organized by the School of Earth and Space Exploration at Arizona State University.The International Workshop on Low Temperature Electronics (WOLTE) is a biennial conference devoted to the presentation and exchange of the most recent advances in the field of low temperature electronics and its applications. This international forum is open to everyone in the field.The technical program included oral presentations and posters on fundamental properties of cryogenic materials, cryogenic transistors, quantum devices and systems, astronomy and physics instrumentation, and fabrication of cryogenic devices. More than 50 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, and the Americas attended the conference.We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to express our sincerest gratitude to our sponsors: Lake Shore Cryotronics, ASU NewSpace, ASU School of Earth and Space Exploration, and IRA A. Fulton Schools of Engineering for making this conference possible. (paper)

  5. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  6. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  7. Potentialities in electronics of new high critical temperature superconductors

    International Nuclear Information System (INIS)

    Hartemann, P.

    1989-01-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed [fr

  8. Temperature profiles on the gadolinium surface during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-03-01

    The distributions of surface temperature of gadolinium in a water-cooled copper crucible during electron beam evaporation were measured by optical pyrometry. The surface temperatures were obtained from the radiation intensity ratio of the evaporating surface and a reference light source using Planck`s law of radiation. The emitted radiation from the evaporating surface and a reference source was detected by a CCD sensor through a band pass filter of 650 nm. The measured surface temperature generally agreed with those estimated from the deposition rate and the data of the saturated vapor pressure. At high input powers, it was found that the measured value had small difference with the estimated one due to variation of the surface condition. (author).

  9. Temperature profiles on the gadolinium surface during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    1995-01-01

    The distributions of surface temperature of gadolinium in a water-cooled copper crucible during electron beam evaporation were measured by optical pyrometry. The surface temperatures were obtained from the radiation intensity ratio of the evaporating surface and a reference light source using Planck's law of radiation. The emitted radiation from the evaporating surface and a reference source was detected by a CCD sensor through a band pass filter of 650 nm. The measured surface temperature generally agreed with those estimated from the deposition rate and the data of the saturated vapor pressure. At high input powers, it was found that the measured value had small difference with the estimated one due to variation of the surface condition. (author)

  10. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  11. Plasma discharge in N2 + CH4 at low pressures - Experimental results and applications to Titan

    Science.gov (United States)

    Thompson, W. Reid; Henry, Todd J.; Schwartz, Joel M.; Khare, B. N.; Sagan, Carl

    1991-01-01

    Results are reported from laboratory continuous-flow plasma-discharge experiments designed to simulate the formation of hydrocarbons and nitriles from N2 and CH4 in the atmosphere of Titan. Gas-chromatography and mass-spectrometry data were obtained in experiments lasting up to 100 h at temperature 295 K and pressure 17 or 0.24 mbar, modeling (1) cosmic-ray-induced processes in the Titan troposphere and (2) processes related to stratospheric aurorae excited by energetic electrons and ions from the Saturn magnetosphere, respectively. The results are presented in extensive tables and graphs, and the 0.24-mbar yields are incorporated into an eddy-mixing model to give stratospheric column abundances and mole fractions in good agreement with Voyager IRIS observations.

  12. To the problem of electron temperature control in plasma

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Anna, P.R.

    1995-01-01

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO 2 laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall

  13. To the problem of electron temperature control in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Galechyan, G.A. [Institute of Applied Problem of Physics, Yerevan (Armenia); Anna, P.R. [Raritan Valley Community College, Somerville, NJ (United States)

    1995-12-31

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2} laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.

  14. Exfoliation and thermal transformations of Nb-substituted layered titanates

    DEFF Research Database (Denmark)

    Song, H.; Sjåstad, Anja O.; Fjellvåg, Helmer

    2011-01-01

    Single-layer Nb-substituted titanate nanosheets of ca. 1 nm thickness were obtained by exfoliating tetrabutylammonium (TBA)-intercalated Nb-substituted titanates in water. AFM images and turbidity measurements reveal that the exfoliated nanosheets crack and corrugate when sonicated. Upon heating...... factors for increasing the transformation temperatures for conversion of the nanosheets to anatase and finally into rutile. It is further tempting to link the delay in crystallization to morphology limitations originating from the nanosheets. The present work shows that layered Nb-titanates...

  15. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  16. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  17. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  18. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  19. Infrared characterization of strontium titanate thin films

    International Nuclear Information System (INIS)

    Almeida, B.G.; Pietka, A.; Mendes, J.A.

    2004-01-01

    Strontium titanate thin films have been prepared at different oxygen pressures with various post-deposition annealing treatments. The films were deposited by pulsed laser ablation at room temperature on Si(0 0 1) substrates with a silica buffer layer. Infrared reflectance measurements were performed in order to determine relevant film parameters such as layer thicknesses and chemical composition. The infrared reflectance spectra were fitted by using adequate dielectric function forms for each layer. The fitting procedure provided the extraction of the dielectric functions of the strontium titanate film, the silica layer and the substrate. The as-deposited films are found to be amorphous, and their infrared spectra present peaks corresponding to modes with high damping constants. As the annealing time and temperature increases the strontium titanate layer becomes more ordered so that it can be described by its SrTiO 3 bulk mode parameters. Also, the silica layer grows along with the ordering of the strontium titanate film, due to oxidation during annealing

  20. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  1. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  2. Crystal structure of red lead titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L.A.; Peng, J.L.; Jiang, B. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Li, X. [Jilin Univ., Changchun, JL (China). Dept of Chemistry

    1998-09-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate 7 refs., 1 tab., 4 figs.

  3. Crystal structure of red lead titanate thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, J.L.; Jiang, B.; Li, X.

    1998-01-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate

  4. AB initio energetics of lanthanum substitution in ferroelectric bismuth titanate

    International Nuclear Information System (INIS)

    Shah, S.H.

    2012-01-01

    Density functional theory based electronic structure calculations play a vital role in understanding, controlling and optimizing physical properties of materials at microscopic level. In present study system of interest is bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/)/(BIT) which has wide range of applications such as a high temperature piezoelectric and one of the best material for memory devices. However, it also suffers from serious issues such as oxygen vacancies which degrade its performance as a memory element and piezoelectric material. In this context, the bulk and defect properties of orthorhombic bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/) and bismuth lanthanum titanate (Bi/sub 3.25/La/sub 0.75/Ti/sub 3/O/sub 12/)/(BLT, x=0.75) were investigated by using first principles calculations and atomistic thermodynamics. Heats of formation, valid chemical conditions for synthesis, lanthanum substitution energies and oxygen and bismuth vacancy formation energies were computed. The study improves understanding of how native point defects and substitutional impurities influence the ferroelectric properties of these layered perovskite materials. It was found that lanthanum incorporation could occur on either of the two distinct bismuth sites in the structure and that the effect of substitution is to increase the formation energy of nearby native oxygen vacancies. The results provide direct atomistic evidence over a range of chemical conditions for the suggestion that lanthanum incorporation reduces the oxygen vacancy concentration. Oxygen vacancies contribute to ferroelectric fatigue by interacting strongly with domain walls and therefore a decrease in their concentration is beneficial. (orig./A.B.)

  5. The tides of Titan.

    Science.gov (United States)

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  6. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  7. Electron temperature gradient driven instability in the tokamak boundary plasma

    International Nuclear Information System (INIS)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-01-01

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t -1/2 e γmt

  8. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    Science.gov (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  9. The mechanochemical stability of hydrogen titanate nanostructures

    International Nuclear Information System (INIS)

    Plodinec, M.; Friscic, I.; Ivekovic, D.; Tomasic, N.; Su, D.S.; Zhang, J.; Gajovic, A.

    2010-01-01

    The structural stability of some nanostructured titanates was investigated in terms of their subsequent processing and possible applications. With the aim to investigate their mechanochemical stability, we applied high-energy ball milling and studied the resulting induced phase transitions. Hydrogen titanates with two different morphologies, microcrystals and nanotubes, were taken into consideration. The phase-transition sequence was studied by Raman spectroscopy and X-ray powder diffraction, while the morphology and crystal structure, on the nanoscale, were analyzed by high-resolution transmission electron microscopy. During the mechanochemical treatment of both morphologies, the phase transitions from hydrogen titanate to TiO 2 anatase and subsequently to TiO 2 rutile were observed. In the case of hydrogen trititanate crystals, the phase transition to anatase starts after a longer milling time than in the case of the titanate nanotubes, which is explained by the larger particle size of the crystalline powder. However, the phase transition from anatase to rutile occurred more quickly in the crystalline powder than in the case of the nanotubes.

  10. The Titan haze revisted: Magnetospheric energy sorces quantitative tholin yields

    Science.gov (United States)

    Thompson, W. Reid; Mcdonald, Gene D.; Sagan, Carl

    1994-01-01

    We present laboratory measurements of the radiation yields of complex organic solids produced from N2/CH4 gas mixtures containing 10 or 0.1% CH4. These tholins are thought to resemble organic aerosols produced in the atmospheres of Titan, Pluto, and Triton. The tholin yields are large compared to the total yield of gaseous products: nominally, 13 (C + N)/100 eV for Titan tholin and 2.1 (C + N)/100 eV for Triton tholin. High-energy magnetospheric electrons responsible for tholin production represents a class distinct from the plasma electrons considered in models of Titan's aiglow. Electrons with E greater than 20 keV provide an energy flux approximately 1 x 10(exp -2) erg/cm/sec, implying from our measured tholin yields a mass flux of 0.5 to 4.0 x 10(exp -14) g/sq cm/sec of tholin. (The corresponding thickness of the tholin sedimentary column accumulated over 4 Gyr on Titan's surface is 4 to 30 m). This figure is in agreement with required mass fluxes computed from recent radiative transfer and sedimentation models. If, however, theses results, derived from experiments at approximately 2 mb, are applied to lower pressure levels toward peak auroral electron energy deposition and scaled with pressure as the gas-phase organic yields, the derived tholin mass flux is at least an order of magnitude less. We attrribute this difference to the fact that tholin synthesis occurs well below the level of maximum electron energy depositon and to possible contributions to tholis from UV-derived C2-hydrocarbons. We conclude that Tita tholin, produced by magnetospheric electrons, is alone sufficient to supply at least a significant fraction of Titan's haze-a result consistent with the fact that the optical properties of Titan tholin, among all proposed material, are best at reproducing Titan's geometric albedo spectrum from near UV to mid-IR in light-scattering models.

  11. Experimental study of water absorption of electronic components and internal local temperature and humidity into electronic enclosure

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in large spans of temperature and humidity during day and night shifts. Corrosion failures are still seen due to the effects of temperature, humidity......, differential humidity, and temperature effects simulating day/night, and the use of desiccants....

  12. Radiation effects in uranium-niobium titanates

    International Nuclear Information System (INIS)

    Lian, J.; Wang, S.X.; Wang, L.M.; Ewing, R.C.

    2000-01-01

    Pyrochlore is an important actinide host phase proposed for the immobilization of high level nuclear wastes and excess weapon plutonium.[1] Synthetic pyrochlore has a great variety of chemical compositions due to the possibility of extensive substitutions in the pyrochlore structure.[2] During the synthesis of pyrochlore, additional complex titanate phases may form in small quantities. The response of these phases to radiation damage must be evaluated because volume expansion of minor phases may cause micro-fracturing. In this work, two complex uranium-niobium titanates, U 3 NbO 9.8 (U-rich titanate) and Nb 3 UO 10 (Nb-rich titanate) were synthesized by the alkoxide/nitrate route at 1300 deg. C under an argon atmosphere. The phase composition and structure were analyzed by EDS, BSE, XRD, EMPA and TEM techniques. An 800 KeVKr 2+ irradiation was performed using the IVEM-Tandem Facility at Argonne National Laboratory in a temperature range from 30 K to 973 K. The radiation effects were observed by in situ TEM

  13. Titan's icy scar

    Science.gov (United States)

    Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.

    2017-09-01

    We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.

  14. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S; Chrisey, Douglas B; Tomozawa, M

    2011-01-01

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr 0.2 Ti 0.80 )O 3 ] 1-x -[(Ba 0.70 Ca 0.30 )TiO 3 ] x (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P s ∼ 3-6 μC cm -2 ) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/ε versus (T) plots revealed ferroelectric DPT behaviour with estimated γ values of ∼1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of ∼47-73 kV cm -1 with an energy density of 0.05-0.6 J cm -3 for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  15. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S [SPECLAB, Department of Physics, University of Puerto Rico, San Juan, PR 00936 (Puerto Rico); Chrisey, Douglas B; Tomozawa, M, E-mail: rkatiyar@uprrp.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States)

    2011-10-05

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr{sub 0.2}Ti{sub 0.80})O{sub 3}]{sub 1-x}-[(Ba{sub 0.70}Ca{sub 0.30})TiO{sub 3}]{sub x} (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P{sub s} {approx} 3-6 {mu}C cm{sup -2}) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/{epsilon} versus (T) plots revealed ferroelectric DPT behaviour with estimated {gamma} values of {approx}1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of {approx}47-73 kV cm{sup -1} with an energy density of 0.05-0.6 J cm{sup -3} for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  16. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    Science.gov (United States)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  17. Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CF...

  18. Effective temperature of the non-equilibrium electrons in a degenerate semiconductor at low lattice temperature

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.; Basu, A.; Das, J.; Bhattacharya, D.P., E-mail: d_p_bhattacharya@rediffmail.com

    2015-10-01

    The energy balance equation for the electron–phonon system is recast taking the degeneracy of the carrier ensemble into account. The effect of degeneracy on the field dependence of the temperature of the non-equilibrium carriers has been studied by solving the same equation. The high field distribution function of the carriers is assumed to be given by the Fermi Dirac function at the field dependent carrier temperature. The distribution function has been approximated in a way that facilitates analytical solution of the problem without any serious loss of accuracy. The field dependence of the electron temperature thus obtained seems to be significantly different from what follows had the degeneracy not been taken into account. The agreement of the results obtained from the present analysis with the available experimental data for Ge and InSb are quite satisfactory. The scope of further refinement of the present theory is highlighted.

  19. Cosmic-rays induced Titan tholins and their astrobiological significances

    Science.gov (United States)

    Kobayashi, Kensei; Taniuchi, Toshinori; Hosogai, Tomohiro; Kaneko, Takeo; Takano, Yoshinori; Khare, Bishun; McKay, Chris

    Titan is the largest satellite of Saturn. It is quite unique satellite since it has a dense atmosphere composed of nitrogen and methane, and has been sometimes considered as a model of primitive Earth. In Titan atmosphere, a wide variety of organic compounds and mists made of complex organics. Such solid complex organics are often referred to as tholins. A number of laboratory experiments simulating reactions in Titan atmosphere have been conducted. In most of them, ultraviolet light and discharges (simulating actions of electrons in Saturn magnetosphere) were used, which were simulation of the reactions in upper dilute atmosphere of Titan. We examined possible formation of organic compounds in the lower dense atmosphere of Titan, where cosmic rays are major energies. A Mixture of 35 Torr of methane and 665 Torr of nitrogen was irradiated with high-energy protons (3 MeV) from a van de Graaff accelerator (TIT, Japan) or from a Tandem accelerator (TIARA, QUBS, JAEA, Japan). In some experiments, 13 C-labelled methane was used. We also performed plasma discharges in a mixture of methane (10 %) and nitrogen (90 %) to simulate the reactions in the upper atmosphere of Titan. Solid products by proton irradiation and those by plasma discharges are hereafter referred to as PI-tholins and PD-tholins, respectively. The resulting PI-tholins were observed with SEM and AFM. They were characterized by pyrolysis-GC/MS, gel permeation chromatography, FT-IR, etc. Amino acids in PI-and PD-tholins were analyzed by HPLC, GC/MS and MALDI-TOF-MS after acid hydrolysis. 18 O-Labelled water was used in some cases during hydrolysis. Filamentary and/or globular-like structures were observed by SEM and AFM. By pyrolysis-GC/MS of PI-tholins, ammonia and hydrogen cyanide were detected, which was the same as the results obtained in Titan atmosphere during the Huygens mission. A wide variety of amino acids were detected after hydrolysis of both tholins. It was proved that oxygen atoms in the amino

  20. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2008-01-01

    been synthesized with a recently developed modified glycine-nitrate process. The synthesized powders have been calcined and sintered in air or in 9% H(2) / N(2) between 800 - 1400 degrees C. After calcination the samples were single phase Nb-doped strontium titanate with grain sizes of less than 100 nm...... in diameter on average. The phase purity, defect structure, and microstructure of the materials have been analyzed with SEM, XRD, and TGA. The electrical conductivity of the Nb-doped titanate decreased with increasing temperature and showed a phonon scattering conduction mechanism with sigma > 120 S...... ability of the Nb-doped titanates to be used as a part of a SOFC anode. However, the catalytic activity of the materials was not sufficient and it needs to be improved if titanate based materials are to be realized as constituents in SOFC anodes....

  1. Simulating the 3-D Structure of Titan's Upper Atmosphere

    Science.gov (United States)

    Bell, J. M.; Waite, H.; Westlake, J.; Magee, B.

    2009-05-01

    We present results from the 3-D Titan Global Ionosphere-Thermosphere Model (Bell et al [2009], PSS, in review). We show comparisons between simulated N2, CH4, and H2 density fields and the in-situ data from the Cassini Ion Neutral Mass Spectrometer (INMS). We describe the temperature and wind fields consistent with these density calculations. Variations with local time, longitude, and latitude will be addressed. Potential plasma heating sources can be estimated using the 1-D model of De La Haye et al [2007, 2008] and the impacts on the thermosphere of Titan can be assessed in a global sense in Titan-GITM. Lastly, we will place these findings within the context of recent work in modeling the 2-D structure of Titan's upper atmosphere (Mueller-Wodarg et al [2008]).

  2. The thermal structure of Titan's atmosphere

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1989-01-01

    The present radiative-convective model of the Titan atmosphere thermal structure obtains the solar and IR radiation in a series of spectral intervals with vertical resolution. Haze properties have been determined with a microphysics model encompassing a minimum of free parameters. It is determined that gas and haze opacity alone, using temperatures established by Voyager observations, yields a model that is within a few percent of the radiative convective balance throughout the Titan atmosphere. Model calculations of the surface temperature are generally colder than the observed value by 5-10 K; better agreement is obtained through adjustment of the model parameters. Sunlight absorption by stratospheric haze and pressure-induced gas opacity in the IR are the most important thermal structure-controlling factors.

  3. FEI Titan 80-300 STEM

    Directory of Open Access Journals (Sweden)

    Marc Heggen

    2016-02-01

    Full Text Available The FEI Titan 80-300 STEM is a scanning transmission electron microscope equipped with a field emission electron gun, a three-condenser lens system, a monochromator unit, and a Cs probe corrector (CEOS, a post-column energy filter system (Gatan Tridiem 865 ER as well as a Gatan 2k slow scan CCD system. Characterised by a STEM resolution of 80 pm at 300 kV, the instrument was one of the first of a small number of sub-ångström resolution scanning transmission electron microscopes in the world when commissioned in 2006.

  4. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  5. Titan: a laboratory for prebiological organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  6. The Exploration of Titan and the Saturnian System

    Science.gov (United States)

    Coustenis, Athena

    Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of recent exploration, in particular on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the planet and the other satellites and rings. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. In particular, I will describe the future exploration of Titan and the Saturnian System with TSSM, a mission studied jointly by ESA and NASA in 2008 [1] and prioritized second for a launch around 2023-2025. TSSM comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: a montgolfiere and a lake-landing lander. The mission would arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfiere would last at least 6 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a —2-year orbit around Titan. References 1. TSSM and EJSM NASA/ESA Joint Summary Report, 16 January 2009 2. Coustenis et al. (2008

  7. Sheath and heat flow of a two-electron-temperature plasma in the presence of electron emission

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-01-01

    The electrostatic sheath and the heat flow of a two-electron-temperature plasma in the presence of electron emission are investigated analytically. It is shown that the energy flux is markedly enhanced to a value near the electron free-flow energy flux as a result of considerable reduction of the sheath potential due to electron emission if the fraction of hot electrons at the sheath edge is much smaller than one. If the hot- to cold-electron temperature ratio is of the order of ten and the hot electron density is comparable to the cold electron density, the action of the sheath as a thermal insulator is improved as a result of suppression of electron emission due to the space-charge effect of hot electrons. (author)

  8. Low-temperature radiative recombination of electrons with bare nuclei

    International Nuclear Information System (INIS)

    Omidvar, K.

    1993-01-01

    Aside from empirical formulas, the radiative-recombination cross section and coefficient are usually given in tabulated forms instead of analytic formulas. Here, we give analytic expressions in the form of expansions for the recombination cross section as a function of the electron energy E for low E, and for the recombination coefficient as a function of the temperature T for low T. The expansion coefficients are combinations of confluent hypergeometric functions, and are tabulated for a large number of the final principal and angular-momentum quantum numbers n and l. It is shown that the recombination cross section for arbitrary nuclear charge number Z is independent of Z, while the recombination coefficient for T/Z 2 much-lt 1.58x10 5 K increases as Z 2 . Excellent agreement is found with the published tabulated values

  9. Modified electron-acoustic and lower-hybrid drift dissipative instability in a two-electron temperature plasma

    International Nuclear Information System (INIS)

    Bose, M.

    1989-01-01

    It is often found, in fusion devices as well as in the auroral ionosphere, that the electrons consist of two distinct group, viz., hot and cold. These two-temperature electron model is sometimes convenient for analytical purposes. Thus the authors have considered a two-temperature electron plasma. In this paper, they investigated analytically the drift dissipative instabilities of modified electron-acoustic and lower-hybrid wve in a two-electron temperature plasma. It is found that the modified electron-acoustic drift dissipative mode are strongly dependent on the number density of cold electrons. From the expression of the growth rate, it is clear that these cold electrons can control the growth of this mode as well

  10. Solitary Langmuir waves in two-electron temperature plasma

    Science.gov (United States)

    Prudkikh, V. V.; Prudkikh

    2014-06-01

    Nonlinear interaction of Langmuir and ion-acoustic waves in two-electron temperature plasma is investigated. New integrable wave interaction regime was discovered, this regime corresponds to the Langmuir soliton with three-hump amplitude, propagating with a speed close to the ion-sound speed in the conditions of strong non-isothermality of electronic components. It was discovered that besides the known analytical solution in the form of one- and two-hump waves, there exists a range of solutions in the form of solitary waves, which in the form of envelope has multi-peak structure and differs from the standard profiles described by hyperbolic functions. In case of fixed plasma parameters, different group velocities correspond to the waves with different number of peaks. It is found that the Langmuir wave package contains both even and uneven numbers of oscillations. Low-frequency potential here has uneven number of peaks. Interrelation of obtained and known earlier results are also discussed.

  11. Low-temperature epitaxy of silicon by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, B. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany); Dogan, P. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)], E-mail: pinar.dogan@hmi.de; Sieber, I.; Fenske, F.; Gall, S. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)

    2007-07-16

    In this paper we report on homoepitaxial growth of thin Si films at substrate temperatures T{sub s} = 500-650 deg. C under non-ultra-high vacuum conditions by using electron beam evaporation. Si films were grown at high deposition rates on monocrystalline Si wafers with (100), (110) and (111) orientations. The ultra-violet visible reflectance spectra of the films show a dependence on T{sub s} and on the substrate orientation. To determine the structural quality of the films in more detail Secco etch experiments were carried out. No etch pits were found on the films grown on (100) oriented wafers. However, on films grown on (110) and (111) oriented wafers different types of etch pits could be detected. Films were also grown on polycrystalline silicon (poly-Si) seed layers prepared by an Aluminum-Induced Crystallisation (AIC) process on glass substrates. Electron Backscattering Diffraction (EBSD) shows that the film growth proceeds epitaxially on the grains of the seed layer. But a considerably higher density of extended defects is revealed by Secco etch experiments.

  12. CHARACTERISTICS OF LITHIUM LANTHANUM TITANATE THIN FILMS MADE BY ELECTRON BEAM EVAPORATION FROM NANOSTRUCTURED La0.67-xLi 3xTiO3 TARGET

    Directory of Open Access Journals (Sweden)

    Nguyen Nang Dinh

    2017-11-01

    Full Text Available Bulk nanostructured perovskites of La0.67-xLi3xTiO3 (LLTO were prepared by using thermally ball-grinding from compounds of La2O3, Li2CO3 and TiO2. From XRD analysis, it was found that LTTO materials were crystallized with nano-size grains of an average size of 30 nm. The bulk ionic conductivity was found strongly dependent on the Li+ composition, the samples with x = 0.11 (corresponding to a La0.56Li0.33TiO3 compound have the best ionic conductivity, which is ca. 3.2 x 10-3 S/cm at room temperature. The LLTO amorphous films were made by electron beam deposition. At room temperature the smooth films have ionic conductivity of 3.5 x 10-5  S/cm and transmittance of 80%. The optical bandgap of the films was found to be of 2.3 eV. The results have shown that the perovskite La0.56Li0.33TiO3  thin films can be used for a transparent solid electrolyte in ionic battery and in all-solid-state electrochromic devices, in particular.

  13. Deposition barium titanate (BaTiO3) doped lanthanum with chemical solution deposition

    International Nuclear Information System (INIS)

    Iriani, Y.; Nurhadi, N.; Jamaludin, A.

    2016-01-01

    Deposition of Barium Titanate (BaTiO 3 ) thin films used Chemical Solution Deposition (CSD) method and prepared with spin coater. BaTiO 3 is doped with lanthanum, 1%, 2%, and 3%. The thermal process use annealing temperature 900°C and holding time for 3 hours. The result of characterization with x-ray diffraction (XRD) equipment show that the addition of La 3+ doped on Barium Titanate caused the change of angle diffraction.The result of refine with GSAS software shows that lanthanum have been included in the structure of BaTiO 3 . Increasing mol dopant La 3+ cause lattice parameter and crystal volume become smaller. Characterization result using Scanning Electron Microscopy (SEM) equipment show that grain size (grain size) become smaller with increasing mole dopant (x) La 3+ . The result of characterization using Sawyer Tower methods show that all the samples (Barium Titanante and Barium Titanate doped lanthanum) are ferroelectric material. Increasing of mole dopant La 3+ cause smaller coercive field and remanent polarization increases. (paper)

  14. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  15. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  16. Titanic exploration with GIS

    Science.gov (United States)

    Kerski, J.J.

    2004-01-01

    To help teachers and students investigate one of the world's most famous historical events using the geographic perspective and GIS tools and methods, the U.S. Geological Survey (USGS) created a set of educational lessons based on the RMS Titanic's April 1912 sailing. With these lessons, student researchers can learn about latitude and longitude, map projections, ocean currents, databases, maps, and images through the analysis of the route, warnings, sinking, rescue, and eventual discovery of the submerged ocean liner in 1985. They can also consider the human and physical aspects of the maiden voyage in the North Atlantic Ocean at a variety of scales, from global to regional to local. Likewise, their investigations can reveal how the sinking of the Titanic affected future shipping routes.

  17. Ethane ocean on Titan

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  18. Ion emission from laser-produced plasmas with two electron temperatures

    International Nuclear Information System (INIS)

    Wickens, L.M.; Allen, J.E.; Rumsby, P.T.

    1978-01-01

    An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented

  19. Experimental basis for a Titan probe organic analysis

    International Nuclear Information System (INIS)

    Mckay, C.P.; Scattergood, T.W.; Borucki, W.J.; Kasting, J.F.; Miller, S.L.; California Univ., San Diego, La Jolla)

    1986-01-01

    The recent Voyager flyby of Titan produced evidence for at least nine organic compounds in that atmosphere that are heavier than methane. Several models of Titan's atmosphere, as well as laboratory simulations, suggest the presence of organics considerably more complex that those observed. To ensure that the in situ measurements are definitive with respect to Titan's atmosphere, experiment concepts, and the related instrumentation, must be carefully developed specifically for such a mission. To this end, the possible composition of the environment to be analyzed must be bracketed and model samples must be provided for instrumentation development studies. Laboratory studies to define the optimum flight experiment and sampling strategy for a Titan entry probe are currently being conducted. Titan mixtures are being subjected to a variety of energy sources including high voltage electron from a DC discharge, high current electric shock, and laser detonation. Gaseous and solid products are produced which are then analyzed. Samples from these experiements are also provided to candidate flight experiments as models for instrument development studies. Preliminary results show that existing theoretical models for chemistry in Titan's atmosphere cannot adequetely explain the presence and abundance of all trace gases observed in these experiments

  20. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  1. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  2. Electron temperature measurements during electron cyclotron heating on PDX using a ten channel grating polychromator

    International Nuclear Information System (INIS)

    Cavallo, A.; Hsuan, H.; Boyd, D.; Grek, B.; Johnson, D.; Kritz, A.; Mikkelsen, D.; LeBlanc, B.; Takahashi, H.

    1984-10-01

    During first harmonic electron cyclotron heating (ECH) on the Princeton Divertor Experiment (PDX) (R 0 = 137 cm, a = 40 cm), electron temperature was monitored using a grating polychromator which measured second harmonic electron cyclotron emission from the low field side of the tokamak. Interference from the high power heating pulse on the broadband detectors in the grating instrument was eliminated by using a waveguide filter in the transmission line which brought the emission signal to the grating instrument. Off-axis (approx. 4 cm) location of the resonance zone resulted in heating without sawtooth or m = 1 activity. However, heating with the resonance zone at the plasma center caused very large amplitude sawteeth accompanied by strong m = 1 activity: ΔT/T/sub MAX/ approx. = 0.41, sawtooth period approx. = 4 msec, m = 1 period approx. = 90 μ sec, (11 kHz). This is the first time such intense MHD activity driven by ECH has been observed. (For both cases there was no sawtooth activity in the ohmic phase of the discharge before ECH.) At very low densities there is a clear indication that a superthermal electron population is created during ECH

  3. Electron-temperature-gradient-driven drift waves and anomalous electron energy transport

    International Nuclear Information System (INIS)

    Shukla, P.K.; Murtaza, G.; Weiland, J.

    1990-01-01

    By means of a kinetic description for ions and Braginskii's fluid model for electrons, three coupled nonlinear equations governing the dynamics of low-frequency short-wavelength electrostatic waves in the presence of equilibrium density temperature and magnetic-field gradients in a two-component magnetized plasma are derived. In the linear limit a dispersion relation that admits new instabilities of drift waves is presented. An estimate of the anomalous electron energy transport due to non-thermal drift waves is obtained by making use of the saturated wave potential, which is deduced from the mixing-length hypothesis. Stationary solutions of the nonlinear equations governing the interaction of linearly unstable drift waves are also presented. The relevance of this investigation to wave phenomena in space and laboratory plasmas is pointed out. (author)

  4. Landscape Evolution of Titan

    Science.gov (United States)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  5. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    OpenAIRE

    F. Touati; F. Mnif; A. Lawati

    2006-01-01

    This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Elec...

  6. Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Tomita, Yusuke; Furushima, Ryoichi; Uematsu, Keizo; Shimizu, Hiroyuki; Doshida, Yutaka

    2009-01-01

    High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 deg. C.

  7. Modified titanate perovskites in photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczak, M.; Ludwiczak, M.; Laniecki, M. [A. Mickiewicz Univ. (Poland)

    2010-07-01

    Received materials have structure of perovskite, what was shown by XRD diffraction patterns. Perovskite structure is present in all samples with strontium, barium and one sample with calcium. Moreover, received barium and strontium titanate are very similar to pattern materials. XRD results show, that temperature 500 C is too low to create perovskite structure in CaTiO{sub 3}. However, it is high enough in case of SrTiO{sub 3} and BaTiO{sub 3}. One regularity is obvious, surface area increases for samples calcined in lower temperature. There is a connection between surface area and dispersion of platinum. Both of them reach the greatest value to the calcium titanate. Catalytic activity was shown by all of received samples. Measurable values were received to samples calcined in 700 C. Calcium titanate had the best catalytic activity, both an amount of hydrogen and a ratio of hydrogen to platinum. There is one regularity to all samples, the ration of hydrogen to platinum increase when amount of platinum decrease. (orig.)

  8. Titan's methane clock

    Science.gov (United States)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  9. Electron temperature measurements of FRX-C/LSM

    International Nuclear Information System (INIS)

    Rej, D.J.

    1989-01-01

    The electron temperature T/sub e/ has been measured with Thomson scattering field-reversed configurations (FRCs) on the Los Alamos FRX-C/LSM experiment. FRCs formed and trapped in-situ in the θ-pinch source are studied. These experiments mark the first comprehensive FRC T/sub e/ measurements in over five years with data gathered on over 400 discharges. Measurements are performed at a single point in space and time on each discharge. The Thomson scattering diagnostic consist of a Q-switched ruby laser focused from one end to a point 0.2 m from the axial midplane of the θ-pinch coil and at radius of either 0.00 or 0.10 m. Scattered light is collected, dispersed and detected with a 7-channel, triple-grating polychromator configured to detect light wavelengths between 658 and 692 nm. Photomultiplier currents are measured with gated A/D converters, with plasma background signals recorded 100-ns before and 100-ns after the laser pulse. Electron temperatures are measured at either radial position during the time interval, 10 ≤ t ≤ 70 μs, between FRC formation and the onset of the n = 2 instability which usually terminates the discharge. A variety of plasma conditions have been produced by adjusting three external parameters: the initial deuterium fill pressure p/sub O/; the reversed bias magnetic field B/sub b/; and the external magnetic field B/sub w/. The fill-pressure scan has been performed at B/sub b/ ≅ 60 mT and B/sub w/ ≅ 0.4 T with p/sub o/ set at either 2, 3, 4 or 5 mtorr. The bias-field scan, 37 ≤ B/sub b/ ≤ 95 mT, has been performed at p/sub o/ = 3 mtorr and B/sub w/ ≅ 0.4 T. 7 refs., 3 figs., 3 tabs

  10. Dielectric response, functionality and energy storage in epoxy nanocomposites: Barium titanate vs exfoliated graphite nanoplatelets

    International Nuclear Information System (INIS)

    Patsidis, A.C.; Kalaitzidou, K.; Psarras, G.C.

    2012-01-01

    Barium titanate/epoxy and exfoliated graphite nanoplatelets/epoxy nanocomposites were prepared and studied varying the filler content. Morphological characteristics were examined via scanning electron microscopy, while structural changes occurring in barium titanate as a function of temperature were investigated by means of X-ray diffraction. Broadband dielectric spectroscopy was employed for determining the dielectric response of the prepared systems. Based on the conducted analysis it was found that three relaxation processes are present in the spectra of the examined materials. From the slower to the faster one, these are interfacial polarization, glass to rubber transition of the polymer matrix, and rearrangement of polar side groups of the polymer chain. Systems' functionality and energy storing efficiency were assessed in terms of dielectric reinforcing function. Finally, the energy density of all systems was evaluated. Composite systems with embedded graphite nanoplatelets exhibit higher energy storing efficiency, while thermally induced structural changes in ferroelectric particles provide functional behavior to barium titanate composites. -- Graphical abstract: Systems' functionality, electrical relaxations and energy storing efficiency were assessed in terms of dielectric permittivity, electric modulus and dielectric reinforcing function (G). Further, the energy density (U) of all systems was evaluated. Composite systems with embedded graphite nanoplatelets exhibit higher energy storing efficiency, while thermally induced structural changes in ferroelectric particles provide functional behavior to barium titanate composites. Highlights: ► Relaxation phenomena were found to be present in all studied systems. ► Two processes emanate from the polymer matrix (α-mode and β-mode). ► Systems' electrical heterogeneity gives rise to interfacial polarization. ► BaTiO 3 /epoxy composites exhibit functional behavior due to structural changes. ► x

  11. Titan after Cassini Huygens

    Science.gov (United States)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  12. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  13. Temperature dependence of electron mean free path in molybdenum from ultrasonic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Almond, D P; Detwiler, D A; Rayne, J A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-09-08

    The temperature dependence of the electronic mean free path in molybdenum has been obtained from ultrasonic attenuation measurements.For temperature up to 30 K a T/sup -2/ law is followed suggesting the importance of electron-electron scattering in the attenuation mechanism.

  14. Titan's Methane Cycle is Closed

    Science.gov (United States)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  15. Electron temperatures of inductively coupled Cl2-Ar plasmas

    International Nuclear Information System (INIS)

    Fuller, N.C.M.; Donnelly, Vincent M.; Herman, Irving P.

    2002-01-01

    Trace rare gases optical emission spectroscopy has been used to measure the electron temperature, T e , in a high-density inductively coupled Cl 2 -Ar plasma at 18 mTorr as function of the 13.56 MHz radio frequency power and Ar fraction. Only the Kr and Xe emission lines were used to determine T e , because of evidence of radiation trapping when the Ar emission lines were also used for larger Ar fractions. At 600 W (10.6 W cm-2), T e increases from ∼4.0±0.5 eV to ∼6.0±2.0 eV as the Ar fraction increases from 1% to 96%. In the H (inductive, bright) mode, T e , for a 'neat' chlorine plasma (including 1% of each He/Ne/Ar/Kr/Xe) increases only slightly from ∼3.8 to 4.0 eV as power increases from 450 to 750 W. This increase is much larger for larger Ar fractions, such as from ∼4.0 to 7.3 eV for 78% Ar. Most of these effects can be understood using the fundamental particle balance equation

  16. Rf breakdown studies in room temperature electron linac structures

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.W.

    1988-05-01

    This paper is an overall review of studies carried out by the authors and some of their colleagues on RF breakdown, Field Emission and RF processing in room temperature electron linac structure. The motivation behind this work is twofold: in a fundamental way, to contribute to the understanding of the RF breakdown phenomenon, and as an application, to determine the maximum electric field gradient that can be obtained and used safely in future e/sup +-/ linear colliders. Indeed, the next generation of these machines will have to reach into the TeV (10 12 eV) energy range, and the accelerating gradient will be to be of the crucial parameters affecting their design, construction and cost. For a specified total energy, the gradient sets the accelerator length, and once the RF structure, frequency and pulse repetition rate are selected, it also determines the peak and average power consumption. These three quantities are at the heart of the ultimate realizability and cost of these accelerators. 24 refs., 19 figs., 4 tabs

  17. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    International Nuclear Information System (INIS)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-01-01

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  18. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    International Nuclear Information System (INIS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-01-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3

  19. Model of electron capture in low-temperature glasses

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Swiatla, D.; Kroh, J.

    1983-01-01

    The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)

  20. Cassini/CIRS Observations of Water Vapor in Titan's Stratosphere

    Science.gov (United States)

    Bjoraker, Gordon L.; Achterberg, R. K.; Anderson, C. M.; Samuelson, R. E.; Carlson, R. C.; Jennings, D. E.

    2008-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained spectra of Titan during most of the 44 flybys of the Cassini prime mission. Water vapor on Titan was first detected using whole-disk observations from the Infrared Space Observatory (Coustenis et al 1998, Astron. Astrophys. 336, L85-L89). CIRS data permlt the retrieval of the latitudinal variation of water on Titan and some limited information on its vertical profile. Emission lines of H2O on Titan are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. Water abundances were retrieved in nadir spectra at 55 South, the Equator, and at 19 North. Limb spectra of the Equator were also modeled to constrain the vertical distribution of water. Stratospheric temperatures in the 0.5 - 4.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304/cm. The temperature in the lower stratosphere (4 - 20 mbar) was derived from fitting pure rotation lines of CH4 between 80 and 160/cm. The origin of H2O and CO2 is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of water originates either within the Saturn system or from the interplanetary medium. Recently, Horst et al (J. Geophys. Res. 2008, in press) developed a photochemical model of Titan in which there are two external sources of oxygen. Oxygen ions (probably from Enceladus) precipitate into Titan's atmosphere to form CO at very high altitudes (1100 km). Water ice ablation at lower altitudes (700 km) forms H2O and subsequent chemistry produces CO2. CIRS measurements of CO, CO2, and now of H2O will provide valuable constraints to these photochemical models and - improve our understanding of oxygen chemistry on Titan.

  1. Ionization balance in Titan's nightside ionosphere

    Science.gov (United States)

    Vigren, E.; Galand, M.; Yelle, R. V.; Wellbrock, A.; Coates, A. J.; Snowden, D.; Cui, J.; Lavvas, P.; Edberg, N. J. T.; Shebanits, O.; Wahlund, J.-E.; Vuitton, V.; Mandt, K.

    2015-03-01

    Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, nP = (nenI)1/2 (ne and nI being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The nP model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to nP and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere.

  2. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  3. Barium Titanate Nanoparticles for Biomarker Applications

    International Nuclear Information System (INIS)

    Matar, O; Hondow, N S; Brydson, R M D; Milne, S J; Brown, A P; Posada, O M; Wälti, C; Saunders, M; Murray, C A

    2015-01-01

    A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO 3 ) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L 3 -edge energy separation of the t 2g , e g peaks. The results show a change in energy separation between the t 2g and e g peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO 3 nanoparticles, highlighting the potential for application as biomarkers. (paper)

  4. dual – temperature electron distribution in a laboratory plasma

    African Journals Online (AJOL)

    DEVEERERRY

    continuum, calculations show that a collision transition between close neighbouring ... depend on the energy distribution of free electrons but on both the excitation and ..... Germany. Postma, A. J., 1969. Calculated electron energy distribution ...

  5. Criteria governing electron plasma waves in a two-temperature plasma

    International Nuclear Information System (INIS)

    Dell, M.P.; Gledhill, I.M.A.; Hellberg, M.A.

    1987-01-01

    Using a technique based on the saddle-points of the dielectric function, criteria are found which govern the behaviour of electron plasma waves in plasmas with two electron populations having different temperatures. (orig.)

  6. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  7. Instability and transport driven by an electron temperature gradient close to critical

    International Nuclear Information System (INIS)

    Dong, J.Q.; Jian, G.D.; Wang, A.K.; Sanuki, H.; Itoh, K.

    2003-01-01

    Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with respect to ratio of electron temperature over ion temperature and to toroidicity are given. An estimation for turbulence induced transport is presented. (author)

  8. Acetylene on Titan

    Science.gov (United States)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779-784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 - 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 - 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111-168 (Springer, 2004).

  9. Titan's Radioactive Haze : Production and Fate of Radiocarbon On Titan

    Science.gov (United States)

    Lorenz, R. D.; Jull, A. J. T.; Swindle, T. D.; Lunine, J. I.

    Just as cosmic rays interact with nitrogen atoms in the atmosphere of Earth to gener- ate radiocarbon (14C), the same process should occur in Titan`s nitrogen-rich atmo- sphere. Titan`s atmosphere is thick enough that cosmic ray flux, rather than nitrogen column depth, limits the production of 14 C. Absence of a strong magnetic field and the increased distance from the sun suggest production rates of 9 atom/cm2/s, approx- imately 4 times higher than Earth. On Earth the carbon is rapidly oxidised into CO2. The fate and detectability of 14C on Titan depends on the chemical species into which it is incorporated in Titan's reducing atmosphere : as methane it would be hopelessly diluted even in only the atmosphere (ignoring the other, much more massive carbon reservoirs likely to be present on Titan, like hydrocarbon lakes.) However, in the more likely case that the 14C attaches to the haze that rains out onto the surface (as tholin, HCN or acetylene and their polymers - a much smaller carbon reservoir) , haze in the atmosphere or recently deposited on the surface would therefore be quite intrinsically radioactive. Such activity may modify the haze electrical charging and hence its coag- ulation. Measurements with compact instrumentation on future in-situ missions could place useful constraints on the mass deposition rates of photochemical material on the surface and identify locations where surface deposits of such material are `freshest`.

  10. Investigations of the Structure of Titanate Nanoscrolls

    International Nuclear Information System (INIS)

    Sheppard, D.A.; Buckley, C.E.

    2005-01-01

    Full text: Nanosized materials have attracted much research lately due to their unique properties and their potential application in nanoelectronic and optoelectronic devices. Nanostructured materials have also sparked interest as possible hydrogen storage candidates. Research at Curtin University has shown titanate nanoscrolls to absorb modest amounts of hydrogen at low temperatures. Whether or not this capacity can be improved will be dependent on a thorough understanding of the structure and the way it interacts with hydrogen. Titanate nanoscrolls are made via a soft chemical process that involves ageing TiO 2 powder in a concentrated NaOH solution. The resultant nanoscrolls, once filtered and washed, are typically 8-10 nm in diameter and hundreds of nanometers long. The walls consist of 3-5 layers and the diameter of the hollow centre is typically 5 nm. A number of different structures have been assigned to nanoscrolls produced via the soft chemical process. These include anatase, H 2 Ti 3 O 7 , lepidocrocite-type structure and H 2 Ti 4 O 9 .H 2 O. Many of these structures are similar, consisting of titanate type layers, and qualitatively reproduce the X-ray diffraction data. However, preliminary data suggests that these structures are inconsistent with neutron diffraction data. Here we attempt a more quantitative analysis of the structure than those published previously using neutron and X-ray diffraction. (authors)

  11. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  12. Production of a large diameter ECR plasma with low electron temperature

    International Nuclear Information System (INIS)

    Koga, Mayuko; Hishikawa, Yasuhiro; Tsuchiya, Hayato; Kawai, Yoshinobu

    2006-01-01

    A large diameter plasma over 300 mm in diameter is produced by electron cyclotron resonance (ECR) discharges using a cylindrical vacuum chamber of 400 mm in inner diameter. It is found that the plasma uniformity is improved by adding the nitrogen gas to pure Ar plasma. The electron temperature is decreased by adding the nitrogen gas. It is considered that the electron energy is absorbed in the vibrational energy of nitrogen molecules and the electron temperature decreases. Therefore, the adjunction of the nitrogen gas is considered to be effective for producing uniform and low electron temperature plasma

  13. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  14. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    Science.gov (United States)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  15. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tokuzawa, T.

    2006-10-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)

  16. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.

    2007-01-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma

  17. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  18. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  19. Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations

    Science.gov (United States)

    Sittler, E. C.; Burlaga, L. F.

    1998-08-01

    We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.

  20. Effect of two-temperature electrons distribution on an electrostatic plasma sheath

    International Nuclear Information System (INIS)

    Ou, Jing; Xiang, Nong; Gan, Chunyun; Yang, Jinhong

    2013-01-01

    A magnetized collisionless plasma sheath containing two-temperature electrons is studied using a one-dimensional model in which the low-temperature electrons are described by Maxwellian distribution (MD) and high-temperature electrons are described by truncated Maxwellian distribution (TMD). Based on the ion wave approach, a modified sheath criterion including effect of TMD caused by high-temperature electrons energy above the sheath potential energy is established theoretically. The model is also used to investigate numerically the sheath structure and energy flux to the wall for plasmas parameters of an open divertor tokamak-like. Our results show that the profiles of the sheath potential, two-temperature electrons and ions densities, high-temperature electrons and ions velocities as well as the energy flux to the wall depend on the high-temperature electrons concentration, temperature, and velocity distribution function associated with sheath potential. In addition, the results obtained in the high-temperature electrons with TMD as well as with MD sheaths are compared for the different sheath potential

  1. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  2. Saturation mechanism of decaying ion temperature gradient driven turbulence with kinetic electrons

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro

    2016-01-01

    We present full-f gyrokinetic simulations of the ion temperature gradient driven (ITG) turbulence including kinetic electrons. By comparing decaying ITG turbulence simulations with adiabatic and kinetic electron models, an impact of kinetic electrons on the ITG turbulence is investigated. It is found that significant electron transport occurs even in the ITG turbulence, and both ion and electron temperature profiles are relaxed. In steady states, both cases show upshifts of nonlinear critical ion temperature gradients from linear ones, while their saturation mechanisms are qualitatively different. In the adiabatic electron case, the ITG mode is stabilized by turbulence driven zonal flows. On the other hand, in the kinetic electron case, passing electrons transport shows fine resonant structures at mode rational surfaces, which generate corrugated density profiles. Such corrugated density profiles lead to fine radial electric fields following the neoclassical force balance relation. The resulting E × B shearing rate greatly exceeds the linear growth rate of the ITG mode. (author)

  3. Co-catalyst free Titanate Nanorods for improved Hydrogen ...

    Indian Academy of Sciences (India)

    Herein, we report a simplified method for the preparation of photo-active titanate nanorods catalyst .... The TEM images were taken with Philips Technai G2 FEI F12 trans- mission electron microscope operating at 80-100 kV. Optical properties were measured in DRS ..... Chen X, Shen S, Guo L and Mao S S 2010 Chem. Rev ...

  4. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-01-01

    We extend the definition of the electronic chemical potential (μ e ) and chemical hardness (η e ) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ e . Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness

  5. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  6. The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

    International Nuclear Information System (INIS)

    Bezuglyi, A.I.; Shklovskii, V.A.

    1997-01-01

    The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by 'hot' electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate

  7. Positronium formation at low temperatures: The role of trapped electrons

    DEFF Research Database (Denmark)

    Hirade, T.; Maurer, F.H.J.; Eldrup, Morten Mostgaard

    2000-01-01

    Measurements have been carried out of electron spin densities (by electron spin resonance technique) and positronium (Ps) formation probability as functions of Co-60 gamma-irradiation dose in poly(methyl methacrylate) and linear poly(ethylene) at 77 K. We observe a linear relationship between...

  8. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  9. The Greenhouse and Anti-Greenhouse Effects on Titan

    Science.gov (United States)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  10. Multi-wavelength search for complex molecules in Titan's Atmosphere

    Science.gov (United States)

    Nixon, C. A.; Cordiner, M. A.; Greathouse, T. K.; Richter, M.; Kisiel, Z.; Irwin, P. G.; Teanby, N. A.; Kuan, Y. J.; Charnley, S. B.

    2017-12-01

    Titan's atmosphere is one of the most complex astrochemical environments known: the photochemistry of methane and nitrogen, induced by solar UV and Saturn magnetospheric electron impacts, creates a bonanza of organic molecules like no other place in the solar system. Cassini has unveiled the first glimpses of Titan's chemical wonderland, but many gaps remain. In particular, interpreting the mass spectra of Titan's upper atmosphere requires external knowledge, to disentangle the signature of molecules from their identical-mass brethren. Cassini infrared spectroscopy with CIRS has helped to some extent, but is also limited by low spectral resolution. Potentially to the rescue, comes high-resolution spectroscopy from the Earth at infrared and sub-millimeter wavelengths, where molecules exhibit vibrational and rotational transitions respectively. In this presentation, we describe the quest to make new, unique identifications of large molecules in Titan's atmosphere, focusing specifically on cyclic molecules including N-heterocycles. This molecular family is of high astrobiological significance, forming the basic ring structure for DNA nucleobases. We present the latest spectroscopic observations of Titan from ALMA and NASA's IRTF telescope, discussing present findings and directions for future work.

  11. Effective temperature of an ultracold electron source based on near-threshold photoionization

    NARCIS (Netherlands)

    Engelen, W.J.; Smakman, E.P.; Bakker, D.J.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an

  12. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    Room temperature Compton profiles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the conduction electron wave functions are determined in a temperature-dependent non-local model potential. The profiles calculated along the crystallographic directions, ...

  13. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    Directory of Open Access Journals (Sweden)

    F. Touati

    2006-12-01

    Full Text Available This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Electric Aircraft and Vehicles necessitating distributed control systems, and environmental protection issues stress the need to use and develop high-temperature electronics. This makes high-temperature electronics a key-enabling technology in the 21st century. Actual applications using high-temperature electronics are discussed in some details. Also information and guidelines are included about supporting electronics needed to make a complete high-temperature system. The technology has been making major advancements and is expected to account for 20% of the electronics market by 2010. However, many technical challenges have to be solved.

  14. Electron-dislocation interaction at low temperatures. Progress report

    International Nuclear Information System (INIS)

    1976-01-01

    Studies of the interaction of mobile dislocations with electrons have shown that dislocation motion can be, in part, described by treating the dislocation as an underdamped oscillator. In particular, studies in lead alloys have shown tht dislocation motion can be considered as the motion of string, slightly damped by electrons, without regard for any other lattice friction. In addition we have shown that silver solutes, in lead crystals, occupy, partially, interstitial sites. Finally, we have shown that dislocations in copper interact, unexpectedly, with electrons. This is shown by measuring the influence of a magnetic field on the flow stress of copper crystals at 4.2 0 K

  15. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  16. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    Science.gov (United States)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  17. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Yuan, H.; van den Nieuwenhuijzen, Karin Jacqueline Huberta; Lette, W.; Schipper, Dirk J.; ten Elshof, Johan E.

    2016-01-01

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H1.07Ti1.73O4) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray

  18. Barium titanate inverted opals-synthesis, characterization, and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Soten, I.; Miguez, H.; Yang, S.M.; Petrov, S.; Coombs, N.; Tetreault, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry; Matsuura, N.; Ruda, H.E. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2002-01-01

    The engineering of cubic or tetragonal polymorphs of nanocrystalline barium titanate inverted opals has been achieved by thermally induced transformations. Optical characterization demonstrated photonic crystal behavior of the opals. The tuning of the ferroelectric-paraelectric transition around the Curie temperature is shown in this paper. (orig.)

  19. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  20. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

    NARCIS (Netherlands)

    Kamel, T.M.; With, de G.

    2007-01-01

    The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric

  1. Pressure-assisted sintering of high purity barium titanate

    NARCIS (Netherlands)

    van den Cruijsem, S.; Varst, van der P.G.T.; With, de G.; Bortzmeyer, D.; Boussuge, M.; Chartier, Th.; Hausonne, J.M.; Mocellin, A.; Rousset, A.; Thevenot, F.

    1997-01-01

    The dielectric behaviour of High Purity Barium titanate (HPB) ceramics is strongly dependent on the grain size and porosity. For applications, control of grain size and porosity is required. Pressure-assisted sintering techniques at relatively low temperatures meet these requirements. In this study,

  2. SSVD Extreme Temperature Electronics for Planned Venus Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to demonstrate, based on a new class of electronic devices called solid state vacuum devices (SSVD?s), a highly promising enabling...

  3. High temperature, radiation hardened electronics for application to nuclear power plants

    International Nuclear Information System (INIS)

    Gover, J.E.

    1980-01-01

    Electronic circuits were developed and built at Sandia for many aerospace and energy systems applications. Among recent developments were high temperature electronics for geothermal well logging and radiation hardened electronics for a variety of aerospace applications. Sandia has also been active in technology transfer to commercial industry in both of these areas

  4. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y.; Lazar, M.; Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Heverlee (Belgium); Viñas, A., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD 20771 (United States)

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  5. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  6. The age of Titan's surface

    Science.gov (United States)

    Neish, C. D.; Lorenz, R. D.

    2010-04-01

    High-resolution images of the surface of Titan taken by the Cassini spacecraft reveal a world with an extreme paucity of impact craters. Planetary surfaces are commonly dated by dividing the number of impact craters by the estimated impactor flux, but this approach has been confounded at Titan by several difficulties. First, high-resolution imaging of the surface of Titan is far from complete (in the near-infrared as well as radar). As of December 2007, Cassini RADAR images covered only 22% of its surface. However, we can use Monte-Carlo models to explore how many craters of a given size (with large or very large craters being of particular interest) may be present in the unobserved areas. Second, literature descriptions of the crater formation rate (e.g. Korycansky and Zahnle 2005 and Artemieva and Lunine 2005) are apparently not in agreement. We discuss possible resolutions. Third, since surface modification processes are ongoing, the actual number of craters on Titan's surface remains uncertain, as craters may be eroded beyond recognition, or obscured by lakes or sand seas. In this connection, we use the Earth as an analogue. The Earth is in many ways the most "Titan-like" world in the solar system, with extensive modification by erosion, burial, tectonism, and volcanism. We compare the observed number of terrestrial craters to the expected terrestrial impactor flux to determine the crater reduction factor for a world similar to Titan. From this information, we can back out the actual number of craters on Titan's surface and estimate its crater retention age. An accurate age estimate will be critical for constraining models of Titan's formation and evolution.

  7. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  8. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  9. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures

  10. Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons

    Science.gov (United States)

    2014-01-30

    mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the

  11. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    Science.gov (United States)

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  12. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  13. A low temperature cryostat with a refrigerator for studying electron-irradiation effects on solids, 2

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Shono, Yoshihiko

    1978-01-01

    A convenient cryostat with a small cryogenic refrigerator for studying electron-irradiation effects on solids is reported. The lowest temperature at the sample room is about 10 K or less. In a temperature region below 80 K, the sample temperature can be controlled within 0.05 K. (auth.)

  14. Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel

    International Nuclear Information System (INIS)

    Yahya, Noor Yahida; Ngadi, Norzita; Jusoh, Mazura; Halim, Noor Amirah Abdul

    2016-01-01

    Highlights: •Simple synthesis of mesoporous calcium titanate by sol-gel-hydrothermal method. •Improvement of characteristics and catalytic activity from commercial CaO. • Production of biodiesel at relatively mild reaction conditions. - Abstract: Mesoporous calcium titanate (MCT) catalyst was synthesized via a sol-gel-hydrothermal method and investigated as a catalyst for biodiesel production from waste cooking oil (WCO). Calcium was supported on titanate in order to increase their surface area, stability and consequently, improve its performance in the transesterification of WCO to biodiesel. Synthesized catalyst was characterized with powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N_2 physisorption, Fourier transform-infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and carbon dioxide temperature-programmed desorption (CO_2-TPD). The catalyst possessed high surface area, basicity and stability than calcium oxide (CaO) catalyst. The highest biodiesel yield achieved was 80.0% in 3:1 of methanol to WCO molar ratio, 0.2 wt.% of MCT catalyst for 1 h at 65 °C. Reusability study suggested that this catalyst can be recycled for five successive runs.

  15. Methane, Ethane, and Nitrogen Stability on Titan

    Science.gov (United States)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  16. FEI Titan G2 60-300 HOLO

    Directory of Open Access Journals (Sweden)

    Chris Boothroyd

    2016-02-01

    Full Text Available The FEI Titan G2 60-300 HOLO is a unique fourth generation transmission electron microscope, which has been specifically designed for the investigation of electromagnetic fields of materials using off-axis electron holography. It has a Lorentz lens to allow magnetic field free imaging plus two electron biprisms, which in combination enable more uniform holographic fringes to be used. The instrument also has an ultra-wide objective lens pole piece gap which is ideal for in situ experiments. For these purposes, the FEI Titan G2 60-300 HOLO is equipped with a Schottky type high-brightness electron gun (FEI X-FEG, an image Cs corrector (CEOS, a post-column energy filter system (Gatan Tridiem 865 ER as well as a 4 megapixel CCD system (Gatan UltraScan 1000 XP. Typical examples of use and technical specifications for the instrument are given below.

  17. Electron-electron attractive interaction in Maxwell-Chern-Simons QED3 at zero temperature

    International Nuclear Information System (INIS)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A.; Ferreira Junior, M.M.

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED 3 with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  18. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  19. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  20. Anomaly in the Kumakhov radiation temperature dependence at axial channeling of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F.F.; Telegin, V.I.; Khokonov, M.Kh.

    1983-01-01

    The results of numerical solution of a kinetic equation for distribution function of axially channelled electrons obtained by Belostritsky and Kumakhov at different temperatures of crystals and calculated for the determined electron distributions spectral density of radiation are given. Analysis of the obtained dependence of the number of channelled 5 GeV electrons in tungsten along the <111> axis on depth Z has revealed that 2% of incidence beam electrons have anomalously large depths of dechannelling. Ratio of electrons with large by modulus cross section energies grows at decreasing crystal temperature from 293 to 40 K and, therefore, radiation intensity increases. Two-fold increase of radiation intensity can be attained at axial channelling of 1 GeV electrons in tungsten <111> at the temperatures of the crystal equal to 40 and 293 K and its thickness equal to 220 ..mu..m.

  1. Hydrothermal crystallization of Na2Ti6O13, Na2Ti3O7, and Na16Ti10O28 in the NaOH-TiO2-H2O system at a temperature of 500 deg. C and a pressure of 0.1 GPa: The structural mechanism of self-assembly of titanates from suprapolyhedral clusters

    International Nuclear Information System (INIS)

    Hyushin, G. D.

    2006-01-01

    An increase in the NaOH concentration in the NaOH-TiO 2 (rutile)-H 2 O system at a temperature of 500 deg. C and a pressure of 0.1 GPa leads to the crystallization R-TiO 2 + Na 2 Ti 6 O 13 → Na 2 Ti 3 O 7 → Na 16 Ti 10 O 28 . Crystals of the Na 2 Ti 6 O 13 titanate (space group C2/m) have the three-dimensional framework structure Ti 6 O 13 . The structure of the Na 2 Ti 3 O 7 titanate (space group P2 1 /m) contains the two-dimensional layers Ti 3 O 7 . The structure of the Na 16 Ti 10 O 28 titanate (space group P-1) is composed of the isolated ten-polyhedron cluster precursors Ti 10 O 28 . In all the structures, the titanium atoms have an octahedral coordination (MTiO 6 ). The matrix self-assembly of the Na 2 Ti 6 O 13 and Na 2 Ti 3 O 7 (Na 4 Ti 6 O 14 ) crystal structures from Na 4 M 12 invariant precursors is modeled. These precursors are clusters consisting of twelve M polyhedra linked through the edges. It is demonstrated that the structurally rigid precursors Na 4 M 12 control all processes of the subsequent evolution of the crystal-forming titanate clusters. The specific features of the self-assembly of the Na 2 Ti 3 O 7 structure that result from the additional incorporation of twice the number of sodium atoms into the composition of the high-level clusters are considered

  2. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  3. The Characterization of Lithium Titanate Microspheres Synthesized by a Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available Lithium titanate microspheres were synthesized by a hydrothermal method. The structure and morphology of samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, respectively. The specific surface area and average pore diameter of samples were studied by N2 adsorption-desorption isotherms. The results indicated that amorphous phase changed to lithium titanium oxide hydrate, accompanying mesopores formed between agglomerated primary particles in hydrothermal reaction. After sintering, mesoporous Li4Ti5O12 microspheres assembled by nanosized particle were obtained and had a diameter of about 400–700 nm. Then, a possible formation process analogous to the Kirkendall effect was proposed. Moreover, the effect of sintering temperature on the electrochemical properties of Li4Ti5O12 microspheres was investigated.

  4. Hotspot electron temperature from x-ray continuum measurements on the NIF

    International Nuclear Information System (INIS)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-01-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  5. Hotspot electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  6. Hotspot electron temperature from x-ray continuum measurements on the NIF.

    Science.gov (United States)

    Jarrott, L C; Benedetti, L R; Chen, H; Izumi, N; Khan, S F; Ma, T; Nagel, S R; Landen, O L; Pak, A; Patel, P K; Schneider, M; Scott, H A

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  7. Hotspot electron temperature from x-ray continuum measurements on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Jarrott, L. C., E-mail: jarrott1@llnl.gov; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  8. Titan Montgolfiere Terrestrial Test Bed, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. To better plan this mission and create a...

  9. Titan Montgolfiere Terrestrial Test Bed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. In order to better plan this mission and...

  10. Nonlocal collisionless and collisional electron transport in low temperature plasmas

    Science.gov (United States)

    Kaganovich, Igor

    2009-10-01

    The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and

  11. Mite Biodiversity Under the Low Temperature Scanning Electron Microscope

    Science.gov (United States)

    To date, more than 55,000 mite species have been described and only a few of them have been studied. Some mites are adapted to live deep in soil, others in fresh or sea water, some are on plants, algae, fungi or animals, and others are able to survive in both extreme cold and hot temperatures. The...

  12. Dual – Temperature Electron distribution in a Laboratory Plasma ...

    African Journals Online (AJOL)

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  13. Defects in low temperature electron irradiated InP

    International Nuclear Information System (INIS)

    Suski, J.; Bourgoin, J.

    1984-01-01

    n and p-InP has been irradiated at 25K with 1MeV electrons and the created defects were studied by deep level transient spectroscopy (DLTS) in the range 25K-400K. In n-InP, four traps are directly observed, with low introduction rates except for one. They anneal in three stages, and four new centers of still lower concentration appear after 70 0 C heat treatment. In p-InP, two dominant traps stable up to approx.= 400K with introduction rates close to the theoretical ones, which might be primary defects are found, while another one is clearly a secondary defect likely associated to Zn dopant. At least two of the low concentration irradiation induced electron traps, created between 25K and 100K are also secondary defects, which implies a mobility of some primary defects down to 100K at least. (author)

  14. Junction Temperature Control for More Reliable Power Electronics

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Buticchi, Giampaolo

    2018-01-01

    The thermal stress of power electronic components is one of the most important causes of their failure. Proper thermal management plays an important role for more reliable and cost-effective energy conversion. As one of the most vulnerable and expensive components, power semiconductor components ...... the desired cost-benefit tradeoff. This paper analyzes also the many open questions of this research area. Among them, it is worth highlighting that a verification of the actual lifetime extension is still missing....

  15. Blocking layer modeling for temperature analysis of electron transfer ...

    African Journals Online (AJOL)

    In this article, we simulate thermal effects on the electron transfer rate from three quantum dots CdSe, CdS and CdTe to three metal oxides TiO2, SnO2 and ZnO2 in the presence of four blocking layers ZnS, ZnO, TiO2 and Al2O3, in a porous quantum dot sensitized solar cell (QDSSC) structure, using Marcus theory.

  16. Formation of presheath and current-free double layer in a two-electron-temperature plasma

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-02-01

    Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)

  17. Chemistry of the galactic cosmic ray induced ionosphere of Titan

    Science.gov (United States)

    Molina-Cuberos, G. J.; López-Moreno, J. J.; Rodrigo, R.; Lara, L. M.

    1999-09-01

    Titan's lower ionosphere (from 1 to 400 km) has been studied with a one-dimensional ion-neutral model. In this region of the atmosphere, galactic cosmic rays (GCRs) are the main ionization source. They penetrate to the deeper atmosphere and ionize the neutral constituents of Titan's atmosphere (mainly N2, CH4, Ar, H2, and CO) to produce N2+, N+, Ar+, CH4+, CH3+, CH2+, H2+, H+, and CO+. Fast reactions with the neutrals convert these ions into ions such as CH5+, C2H5+, and N2H+. Different pathways are proposed to obtain the ion and electron densities. The most abundant ions are cluster ions, like CH5+.CH4, HCO+.H2, and HCNH+.C2H4, and long chain hydrocarbon ions. In atmospheres very rich in N2, such as Titan's, ions like H4C7N+ and CH3CNH+ also represent an important contribution to the total positive ion density. Three-body reactions may play an important role in the dense atmosphere of Titan, and special attention is devoted to them. The calculated electron density in the lower atmosphere reaches a peak of ~2150 cm-3 at an altitude of 90 km.

  18. 3D hybrid simulation of the Titan's plasma environment

    Science.gov (United States)

    Lipatov, Alexander; Sittler, Edward, Jr.; Hartle, Richard

    2007-11-01

    Titan plays an important role as a simulation laboratory for multiscale kinetic plasma processes which are key processes in space and laboratory plasmas. A development of multiscale combined numerical methods allows us to use more realistic plasma models at Titan. In this report, we describe a Particle-Ion--Fluid-Ion--Fluid--Electron method of kinetic ion-neutral simulation code. This method takes into account charge-exchange and photoionization processes. The model of atmosphere of Titan was based on a paper by Sittler, Hartle, Vinas et al., [2005]. The background ions H^+, O^+ and pickup ions H2^+, CH4^+ and N2^+ are described in a kinetic approximation, where the electrons are approximated as a fluid. In this report we study the coupling between background ions and pickup ions on the multiple space scales determined by the ion gyroradiis. The first results of such a simulation of the dynamics of ions near Titan are discussed in this report and compared with recent measurements made by the Cassini Plasma Spectrometer (CAPS, [Hartle, Sittler et al., 2006]). E C Sittler Jr., R E Hartle, A F Vinas, R E Johnson, H T Smith and I Mueller-Wodarg, J. Geophys. Res., 110, A09302, 2005.R E Hartle, E C Sittler, F M Neubauer, R E Johnson, et al., Planet. Space Sci., 54, 1211, 2006.

  19. Saturn's Magnetosphere Interaction with Titan for T9 Encounter: 3D Hybrid Modeling and Comparison with CAPS Observations

    Science.gov (United States)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    Global dynamics of ionized and neutral gases in the environment of Titan plays an important role in the interaction of Saturn s magnetosphere with Titan. Several hybrid simulations of this problem have already been done (Brecht et al., 2000; Kallio et al., 2004; Modolo et al., 2007a; Simon et al., 2007a, 2007b; Modolo and Chanteur, 2008). Observational data from CAPS for the T9 encounter (Sittler et al., 2009) indicates an absence of O(+) heavy ions in the upstream that change the models of interaction which were discussed in current publications (Kallio et al., 2004; Modolo et al., 2007a; Simon et al., 2007a, 2007b; Ma et al., 2007; Szego et al., 2007). Further analysis of the CAPS data shows very low density or even an absence of H(+) ions in upstream. In this paper we discuss two models of the interaction of Saturn s magnetosphere with Titan: (A) high density of H(+) ions in the upstream flow (0.1/cu cm), and (B) low density of H(+) ions in the upstream flow (0.02/cu cm). The hybrid model employs a fluid description for electrons and neutrals, whereas a particle approach is used for ions. We also take into account charge-exchange and photoionization processes and solve self-consistently for electric and magnetic fields. The model atmosphere includes exospheric H(+), H(2+), N(2+)and CH(4+) pickup ion production as well as an immobile background ionosphere and a shell distribution for active ionospheric ions (M(sub i)=28 amu). The hybrid model allows us to account for the realistic anisotropic ion velocity distribution that cannot be done in fluid simulations with isotropic temperatures. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of Alfven wing-like structures. The results of the ion dynamics in Titan s environment are compared with Cassini T9 encounter data (CAPS).

  20. On the electron-ion temperature ratio established by collisionless shocks

    Science.gov (United States)

    Vink, Jacco; Broersen, Sjors; Bykov, Andrei; Gabici, Stefano

    2015-07-01

    Astrophysical shocks are often collisionless shocks, in which the changes in plasma flow and temperatures across the shock are established not through Coulomb interactions, but through electric and magnetic fields. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature (non-equilibration of temperatures), or whether they quickly equilibrate in the shock region. Here we provide a simple, thermodynamic, relation for the minimum electron-ion temperature ratios that should be expected as a function of Mach number. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the shock, in order for the plasma to remain charge neutral. The only form of additional electron heating that we allow for is adiabatic heating, caused by the compression of the electron gas. These assumptions result in an analytic treatment of expected electron-ion temperature ratio that agrees with observations of collisionless shocks: at low sonic Mach numbers, Ms ≲ 2, the electron-ion temperature ratio is close to unity, whereas for Mach numbers above Ms ≈ 60 the electron-ion temperature ratio asymptotically approaches a temperature ratio of Te/Ti = me/ ⟨ mi ⟩. In the intermediate Mach number range the electron-ion temperature ratio scales as Te/Ti ∝ Ms-2. In addition, we calculate the electron-ion temperature ratios under the assumption of adiabatic heating of the electrons only, which results in a higher electron-ion temperature ratio, but preserves the Te/Ti ∝ Ms-2 scaling. We also show that for magnetised shocks the electron-ion temperature ratio approaches the asymptotic value Te/Ti = me/ ⟨ mi ⟩ for lower magnetosonic Mach numbers (Mms), mainly because for a strongly magnetised shock the sonic Mach number is larger than the magnetosonic Mach number (Mms ≤ Ms). The predicted scaling of the electron

  1. Titan's cold case files - Outstanding questions after Cassini-Huygens

    Science.gov (United States)

    Nixon, C. A.; Lorenz, R. D.; Achterberg, R. K.; Buch, A.; Coll, P.; Clark, R. N.; Courtin, R.; Hayes, A.; Iess, L.; Johnson, R. E.; Lopes, R. M. C.; Mastrogiuseppe, M.; Mandt, K.; Mitchell, D. G.; Raulin, F.; Rymer, A. M.; Todd Smith, H.; Solomonidou, A.; Sotin, C.; Strobel, D.; Turtle, E. P.; Vuitton, V.; West, R. A.; Yelle, R. V.

    2018-06-01

    The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004-2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008-2010) and Solstice Mission (2010-2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim.

  2. Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas

    International Nuclear Information System (INIS)

    Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.

    2007-01-01

    Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K

  3. Characteristics of (Ti,Ta)N thin films prepared by using pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Li Li [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Lv Guohua [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Xianhui [College of Science, Changchun University of Science and Technology, Changchun 130022, Jilin Province (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-07-21

    (Ti,Ta)N films were prepared by pulsed high energy density plasma (PHEDP) from a coaxial gun in N{sub 2} gas. The coaxial gun is composed of a tantalum inner electrode and a titanium outer one. Material characteristics of the (Ti,Ta)N film were investigated by x-ray photoelectron spectroscopy and x-ray diffraction. The microstructure of the film was observed by a scanning electron microscope. The elemental composition and the interface of the film/substrate were analysed using Auger electron spectrometry. Our results suggest that the binary metal nitride film (Ti,Ta)N, can be prepared by PHEDP. It also shows that dense nanocrystalline (Ti,Ta)N film can be achieved.

  4. Thin Film Technology of High-Critical-Temperature Superconducting Electronics.

    Science.gov (United States)

    1985-12-11

    ANALISIS OF THIN-FILM SUPERCONDUCTORS J. Talvacchio, M. A. Janocko, J. R. Gavaler, and A...in the areas of substrate preparation, niobum nitride, nlobium-tin, and molybdenum-rhenium. AN INTEGRATED DEPOSITION AND ANALISI - FACILITT The four...mobility low (64). The voids are separating 1-3 nm clusters of dense deposit. At low deposition temperatures this microstructure will persist near

  5. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  6. Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-01-01

    We examine the characteristics of large amplitude slow electron-acoustic solitons supported in a four-component unmagnetised plasma composed of cool, warm, hot electrons, and cool ions. The inertia and pressure for all the species in this plasma system are retained by assuming that they are adiabatic fluids. Our findings reveal that both positive and negative potential slow electron-acoustic solitons are supported in the four-component plasma system. The polarity switch of the slow electron-acoustic solitons is determined by the number densities of the cool and warm electrons. Negative potential solitons, which are limited by the cool and warm electron number densities becoming unreal and the occurrence of negative potential double layers, are found for low values of the cool electron density, while the positive potential solitons occurring for large values of the cool electron density are only limited by positive potential double layers. Both the lower and upper Mach numbers for the slow electron-acoustic solitons are computed and discussed

  7. Microstructural and electron-structural anomalies and high temperature superconductivity

    International Nuclear Information System (INIS)

    Gao, L.; Huang, Z.J.; Bechtold, J.; Hor, P.H.; Chu, C.W.; Xue, Y.Y.; Sun, Y.Y.; Meng, R.L.; Tao, Y.K.

    1989-01-01

    Microstructural and electron-structural anomalies have been found to exist in all HYSs by x-ray diffraction and positron annihilation experiments. These anomalies are induced either by doping near the metal-insulator phase boundary at 300 K, or by cooling the HTSs below T c . This has been taken as evidence for a charge transfer between the CuO 2 -layers and their surroundings, which suggests the importance of charge transfers and implies the importance of charge fluctuations in HTS. Several new compounds with the T'- and T*-phases have been found. Further implications of these observations are discussed

  8. Temperature and 8 MeV electron irradiation effects on GaAs solar cells

    Indian Academy of Sciences (India)

    1Department of Physics, Mangalore Institute of Technology and Engineering, ... strate were irradiated with 1 MeV electrons, they showed high radiation tolerance ... under both forward and reverse bias in the temperature range of 270–315 K ...

  9. Formation of hot spots in a superconductor observed by low-temperature scanning electron microscopy

    International Nuclear Information System (INIS)

    Eichele, R.; Seifert, H.; Huebener, R.P.

    1981-01-01

    Low-temperature scanning electron microscopy can be used for the direct observation of hot spots in a superconductor. Experiments performed at 2.10 K with tim films demonstrating the method are reported

  10. Effects of irradiation and isochronal anneal temperature on hole and electron trapping in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Shaneyfelt, M.R.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1998-02-01

    Capacitance-voltage and thermally-stimulated-current techniques are used to estimate trapped hole and electron densities in MOS oxides as functions of irradiation and isochronal anneal temperature. Trapped-charge annealing and compensation effects are discussed

  11. Temperature impact on the primary radiolysis yields concerning the hydrous electron

    International Nuclear Information System (INIS)

    Baldacchino, G.; Vigneron, G.; Pommeret, St.

    2005-01-01

    We have studied the impact of temperature on the water radiolysis formation rate of the hydrous electron in presence of selenate di-anion SeO 4 2+ . We have used a high temperature (up to 500 Celsius degrees) optical cell coupled to the electron accelerator Alienor. It appears that the capture of the hydrous electron by selenate follows an Arrhenius law till the sub-critical range, beyond this range the kinetics of the reaction seems more erratic. We have also studied the capture of the hydrous electron by methyl-viologen (MV 2+ ) at 20 and 380 Celsius degrees. It seems that at high temperature more hydrous electrons are produced, it might be interpreted as a consequence of the shift toward the right of the following equilibrium reaction: OH - + H . ↔ e - (aq) + H 2 O. All these results need to be confirmed. (A.C.)

  12. Current profile reconstruction using electron temperature imaging diagnostics

    International Nuclear Information System (INIS)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-01-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by T e measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q 0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ∼x4 better statistics for comparable final errors

  13. Relaxor properties of barium titanate crystals grown by Remeika method

    Science.gov (United States)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle "butterfly wing" BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  14. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  15. Spectroscopic measurements of the density and electronic temperature at the plasma edge in Tore Supra

    International Nuclear Information System (INIS)

    Lediankine, A.

    1996-01-01

    The profiles of temperature and electronic density at the plasma edge are important to study the wall-plasma interaction and the radiative layers in the Tokamak plasmas. The laser ablation technique of the lithium allows to measure the profile of electronic density. To measure the profile of temperature, it has been used for the first time, the injection of a fluorine neutral atoms beam. The experiments, the results are described in this work. (N.C.)

  16. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  17. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  18. Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators

    Science.gov (United States)

    Li, Min

    High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a

  19. Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate

    Science.gov (United States)

    Burnett, T. L.; Weaver, P. M.; Blackburn, J. F.; Stewart, M.; Cain, M. G.

    2010-08-01

    The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nanostructure, crystallographic orientation, and structural geometry. In this paper, we show how, by combining textural analysis, through electron backscattered diffraction, with piezoresponse force microscopy, quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to obtain data on the domain-resolved effective single crystal piezoelectric response of individual crystallites in Pb(Zr0.4Ti0.6)O3 ceramics. The results offer insight into the science of domain engineering and provide a tool for the future development of new nanostructured ferroelectric materials for memory, nanoactuators, and sensors based on magnetoelectric multiferroics.

  20. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    Science.gov (United States)

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  1. Phase 1 Final Report: Titan Submarine

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of

  2. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Simoes, A.Z.; Moura, F.; Onofre, T.B.; Ramirez, M.A.; Varela, J.A.; Longo, E.

    2010-01-01

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 o C. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba 0.8 Sr 0.2 TiO 3 ) nanoparticles (BST) in the temperature range of 100-130 o C. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO 3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  3. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining

    International Nuclear Information System (INIS)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R.

    2009-01-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO 3 formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  4. Heating power at the substrate, electron temperature, and electron density in 2.45 GHz low-pressure microwave plasma

    Science.gov (United States)

    Kais, A.; Lo, J.; Thérèse, L.; Guillot, Ph.

    2018-01-01

    To control the temperature during a plasma treatment, an understanding of the link between the plasma parameters and the fundamental process responsible for the heating is required. In this work, the power supplied by the plasma onto the surface of a glass substrate is measured using the calorimetric method. It has been shown that the powers deposited by ions and electrons, and their recombination at the surface are the main contributions to the heating power. Each contribution is estimated according to the theory commonly used in the literature. Using the corona balance, the Modified Boltzmann Plot (MBP) is employed to determine the electron temperature. A correlation between the power deposited by the plasma and the results of the MBP has been established. This correlation has been used to estimate the electron number density independent of the Langmuir probe in considered conditions.

  5. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    NARCIS (Netherlands)

    Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed

  6. Profile modification and hot electron temperature from resonant absorption at modest intensity

    International Nuclear Information System (INIS)

    Albritton, J.R.; Langdon, A.B.

    1980-01-01

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented

  7. Study of the growth of CeO2 nanoparticles onto titanate nanotubes

    Science.gov (United States)

    Marques, Thalles M. F.; Ferreira, Odair P.; da Costa, Jose A. P.; Fujisawa, Kazunori; Terrones, Mauricio; Viana, Bartolomeu C.

    2015-12-01

    We report the study of the growth of CeO2 nanoparticles on the external walls and Ce4+ intercalation within the titanate nanotubes. The materials were fully characterized by multiple techniques, such as: Raman spectroscopy, infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The ion exchange processes in the titanate nanotubes were carried out using different concentrations of Ce4+ in aqueous solution. Our results indicate that the growth of CeO2 nanoparticles grown mediated by the hydrolysis in the colloidal species of Ce and the attachment onto the titanate nanotubes happened and get it strongly anchored to the titanate nanotube surface by a simple electrostatic interaction between the nanoparticles and titanate nanotubes, which can explain the small size and even distribution of nanoparticles on titanate supports. It was demonstrated that it is possible to control the amount and size of CeO2 nanoparticles onto the nanotube surface, the species of the Ce ions intercalated between the layers of titanate nanotubes, and the materials could be tuned for using in specific catalysis in according with the amount of CeO2 nanoparticles, their oxygen vacancies/defects and the types of Ce species (Ce4+ or Ce3+) present into the nanotubes.

  8. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  9. A novel transparent charged particle detector for the CPET upgrade at TITAN

    Science.gov (United States)

    Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.

    2017-10-01

    The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.

  10. Scanning and Transmission Electron Microscopy of High Temperature Materials

    Science.gov (United States)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  11. MICROSTRUCTURE CHARACTERISTIC OF ALUMINUM TITANATE SYNTHESIED BY BOTH SOLID- STATE AND SOL-GEL PROCESSES

    Directory of Open Access Journals (Sweden)

    M. Khosravi Saghezchi

    2015-12-01

    Full Text Available A comparing study on formation and microstructure features of aluminum titanate is investigated through both solid-state and sol-gel processes. Aluminum titanate formed by firing at 1350ºC and 1450ºC for 4h in solid-state process. In the sol-gel process formation of submicron sized particles is followed by addition of sucrose into the transparent sol. XRD analysis was confirmed the formation of aluminum titanate at 1400ºC  in lower duration of calcination (3h without any additives in the sol-gel process. In this work 2wt% MgO is added to the samples as the additive for forming acceleration of aluminum titanate. The influence of MgO addition and heat treatment are studied on phase formation and microstructure development of aluminum titanate in both procedures. Additive optimizes aluminum titanate formation at lower temperatures (1300-1350ºC. Phase and microstructure studies of Mg containing samples optimally show significance in aluminum titanate formation.

  12. Pulse pileup effects of plasma electron temperature measurements by soft x-ray energy analysis

    International Nuclear Information System (INIS)

    Dyer, G.R.; Neilson, G.H.; Kelley, G.G.

    1978-10-01

    The electron temperature of hot plasmas is conveniently derived from bremsstrahlung spectra obtained by pulse-height analysis using a lithium-compensated silicon detector. Time-resolved temperature measurements require high counting rates, with ultimate rate limited by pulse pileup. To evaluate this limit, spectral distortion due to pileup and consequent effects on temperature determination are investigated. Expressions for distorted spectra are derived as functions of Maxwellian temperature and pileup fraction for both square and triangular pulse shapes. A comparison of temperatures obtained from distorted spectra with actual values indicates that measurements with less than 10% error can be made in the absence of line radiation, even from spectra containing 40% pileup

  13. Temporal evolutions of electron temperature and density of turbulently-heated tokamak plasmas in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-04-01

    The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.

  14. Interaction of Titan's atmosphere with Saturn's magnetosphere

    International Nuclear Information System (INIS)

    Hartle, R.E.

    1985-01-01

    The Voyager 1 measurements made during the Titan flyby reveal that Saturn's rotating magnetospheric plasma interacts directly with Titan's neutral atmosphere and ionosphere. This results from the lack of an intrinsic magnetic field at Titan. The interaction induces a magnetosphere which deflects the flowing plasma around Titan and forms a plasma wake downstream. Within the tail of the induced magnetosphere, ions of ionospheric origin flow away from Titan. Just outside Titan's magnetosphere, a substantial ion-exosphere forms from an extensive hydrogen-nitrogen exosphere. The exospheric ions are picked up and carried downstream into the wake by the plasma flowing around Titan. Mass loading produced by the addition of exospheric ions slows the wake plasma down considerably in the vicinity of the magnetopause. 36 references

  15. Nonlocal effects in a bounded low-temperature plasma with fast electrons

    International Nuclear Information System (INIS)

    DeJoseph, C. A. Jr.; Demidov, V. I.; Kudryavtsev, A. A.

    2007-01-01

    Effects associated with nonlocality of the electron energy distribution function (EEDF) in a bounded, low-temperature plasma containing fast electrons, can lead to a significant increase in the near-wall potential drop, leading to self-trapping of fast electrons in the plasma volume, even if the density of this group is only a small fraction (∼0.001%) of the total electron density. If self-trapping occurs, the fast electrons can substantially increase the rate of stepwise excitation, supply additional heating to slow electrons, and reduce their rate of diffusion cooling. Altering the source terms of these fast electrons will, therefore, alter the near-wall sheath and, through modification of the EEDF, a number of plasma parameters. Self-trapping of fast electrons is important in a variety of plasmas, including hollow-cathode discharges and capacitive rf discharges, and is especially pronounced in an afterglow plasma, which is a key phase of any pulse-modulated discharge. In the afterglow, the electron temperature is less than a few tenths of an electron volt, and the fast electrons will have energies typically greater than an electron volt. It is shown that in the afterglow plasma of noble gases, fast electrons, arising from Penning ionization of metastable atoms, can lead to the above condition and significantly change the plasma and sheath properties. Similar effects can be important in technologically relevant electronegative gas plasmas, where fast electrons can arise due to electron detachment in collisions of negative ions with atomic species. Both experimental and modeling results are presented to illustrate these effects

  16. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    Science.gov (United States)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  17. Phonon and electron temperature and non-Fourier heat transport in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, I.; Cimmelli, V.A. [Department of Mathematics, Computer Science and Economics, University of Basilicata, Campus Macchia Romana, Viale dell' Ateneo Lucano 10, 85100 Potenza (Italy); Sellitto, A. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2017-04-15

    We present a thermodynamic model of heat conductor which allows for different temperatures of phonons and electrons. This model is applied to calculate the steady-state radial temperature profile in a circular thin layer. The compatibility of the obtained temperature profiles with the second law of thermodynamics is investigated in view of the requirement of positive entropy production and of a nonlocal constitutive equation for the entropy flux.

  18. Tunnel probes for measurements of the electron and ion temperature in fusion plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Schrittwieser, R.; Balan, P.; Ionita, C.; Stöckel, Jan; Adámek, Jiří; Ďuran, Ivan; Hron, Martin; Pánek, Radomír; Bařina, O.; Hrach, R.; Vicher, M.; Van Oost, G.; Van Rompuy, T.; Martines, E.

    2004-01-01

    Roč. 75, č. 10 (2004), s. 4328-4330 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/15th./. San Diego, 19.04.2004-22.04.2004] R&D Projects: GA ČR GA202/03/0786 Institutional research plan: CEZ:AV0Z2043910 Keywords : Tokamak * electron temperature * ion temperature * plasma diagnostics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.226, year: 2004

  19. Fluctuations of the electron temperature measured by intensity interferometry on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Sattler, S.

    1993-12-01

    Fluctuations of the electron temperature can cause a significant amount of the anomalous electron heat conductivity observed on fusion plasmas, even with relative amplitudes below one per cent. None of the standard diagnostics utilized for measuring the electron temperature in the confinement region of fusion plasmas is provided with sufficient spatial and temporal resolution and the sensitivity for small fluctuation amplitudes. In this work a new diagnostic for the measurement of electron temperature fluctuations in the confinement region of fusion plasmas was developed, built up, tested and successfully applied on the W7-AS Stellarator. Transport relevant fluctuations of the electron temperature can in principle be measured by radiometry of the electron cyclotron emission (ECE), but they might be buried completely in natural fluctuations of the ECE due to the thermal nature of this radiation. Fluctuations with relative amplitudes below one per cent can be measured with a temporal resolution in the μs-range and a spatial resolution of a few cm only with the help of correlation techniques. The intensity interferometry method, developed for radio astronomy, was applied here: two independent but identical radiometers are viewing the same emitting volume along crossed lines of sight. If the angle between the sightlines is chosen above a limiting value, which is determined by the spatial coherence properties of thermal radiation, the thermal noise is uncorrelated while the temperature fluctuations remain correlated. With the help of this technique relative amplitudes below 0.1% are accessible to measurement. (orig.)

  20. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  1. Determining of electron temperature profile on the cross section of a Tokamak, using ECE technique

    Directory of Open Access Journals (Sweden)

    M. Hosseinpour

    2007-06-01

    Full Text Available  In this paper we have used plasma electron cyclotron emissions at the second harmonic frequency of extraordinary mode to determine the temperature profile of the plasma produced in IR-T1 Tokamak. The emissions obtained at different frequencies by a 5-channel heterodyne receiver, have been analyzed to determine the spatial variation of the electron temperature on the plasma cross section. The results have been also used to show the three-dimensional time evolution of the temperature profile during the period of confinement.

  2. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    International Nuclear Information System (INIS)

    Robben, F.

    1968-03-01

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty

  3. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    Science.gov (United States)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  4. Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon

    International Nuclear Information System (INIS)

    Dance, R J; Butler, N M H; Gray, R J; MacLellan, D A; Rusby, D R; Xu, H; Neely, D; McKenna, P; Scott, G G; Robinson, A P L; Zielbauer, B; Bagnoud, V; Desjarlais, M P

    2016-01-01

    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-10 20 Wcm −2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime. (paper)

  5. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-03-15

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty.

  6. A Moessbauer Spectral Study of the Hull Steel and Rusticles Recovered from the Titanic

    Energy Technology Data Exchange (ETDEWEB)

    Long, Gary J., E-mail: glong@umr.edu; Hautot, Dimitri [University of Missouri-Rolla, Department of Chemistry (United States); Grandjean, Fernande; Vandormael, D. [University of Liege, Institute of Physics, B5 (Belgium); Leighly, H. P. [University of Missouri-Rolla, Department of Metallurgical Engineering (United States)

    2004-09-15

    The recent recovery of steel from the Titanic has permitted a 295 K conversion electron Moessbauer spectral study of the Titanic hull plate steel oriented with the gamma-ray direction either perpendicular or parallel to the microstructural banding directions. The two spectra reveal virtually identical average orientations of the magnetization close to the plane of the plate. The hyperfine parameters are virtually identical to those of {alpha}-iron, a finding which agrees with the chemical analysis which reveals at most 0.21 wt% carbon corresponding to 3 wt% of cementite in pearlite. A 4.2 to 295 K transmission Moessbauer spectral study of the rusticles reveals small particles of geothite undergoing superparamagnetic relaxation with a blocking temperature of ca. 300 K. In addition approximately two percent of the Moessbauer spectral absorption area corresponds to a quadrupole doublet with hyperfine parameters typical of green rust. The identified iron containing components in therusticles agree with the powder X-ray diffraction results which reveal the predominant presence of small particles of poorly crystallized goethite and traces of quartz and green rust. An average size of 20{+-}5 nm for the goethite particles is obtained from both the average hyperfine field and the broadening of the X-ray diffraction peaks. The magnetic anisotropy constant of the goethite particles deduced from the hyperfine field and the particle size is 8x10{sup 3} J/m{sup 3}.

  7. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Co-crystal formation between two organic solids on the surface of Titan

    Science.gov (United States)

    Cable, M. L.; Vu, T. H.; Maynard-Casely, H. E.; Hodyss, R. P.

    2017-12-01

    Laboratory experiments of Titan molecular materials, informed by modeling, can help us to understand the complex and dynamic surface processes occurring on this moon at cryogenic temperatures. We previously demonstrated that two common organic materials on Titan, ethane and benzene, form a unique and stable co-crystalline structure at Titan surface temperatures. We have now characterized a second co-crystal that is stable on Titan, this time between two solids: acetylene and ammonia. The co-crystal forms within minutes at Titan surface temperature, as evidenced by new Raman spectral features in the lattice vibration and C-H bending regions. In addition, a red shift of the C-H stretching mode suggests that the acetylene-ammonia co-crystal is stabilized by a network of C-H···N interactions. Thermal stability studies indicate that this co-crystal remains intact to >110 K, and experiments with liquid methane and ethane reveal the co-crystal to be resistant to fluvial or pluvial exposure. Non-covalently bound structures such as these co-crystals point to far more complex surface interactions than previously believed on Titan. New physical and mechanical properties (deformation, plasticity, density, etc.), differences in storage of key species (i.e., ethane versus methane), variations in surface transport and new chemical gradients can all result in diverse surface features and chemistries of astrobiological interest.

  9. Effective temperature of an ultracold electron source based on near-threshold photoionization.

    Science.gov (United States)

    Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.

  10. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  11. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael [Univ. of Dallas, Irving, TX (United States)

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  12. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  13. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  14. Electron temperature measurement by a helium line intensity ratio method in helicon plasmas

    International Nuclear Information System (INIS)

    Boivin, R.F.; Kline, J.L.; Scime, E.E.

    2001-01-01

    Electron temperature measurements in helicon plasmas are difficult. The presence of intense rf fields in the plasma complicates the interpretation of Langmuir probe measurements. Furthermore, the non-negligible ion temperature in the plasma considerably shortens the lifetime of conventional Langmuir probes. A spectroscopic technique based on the relative intensities of neutral helium lines is used to measure the electron temperature in the HELIX (Hot hELicon eXperiment) plasma [P. A. Keiter et al., Phys. Plasmas 4, 2741 (1997)]. This nonintrusive diagnostic is based on the fact that electron impact excitation rate coefficients for helium singlet and triplet states differ as a function of the electron temperature. The different aspects related to the validity of this technique to measure the electron temperature in rf generated plasmas are discussed in this paper. At low plasma density (n e ≤10 11 cm -3 ), this diagnostic is believed to be very reliable since the population of the emitting level can be easily estimated with reasonable accuracy by assuming that all excitation originates from the ground state (steady-state corona model). At higher density, secondary processes (excitation transfer, excitation from metastable, cascading) become more important and a more complex collisional radiative model must be used to predict the electron temperature. In this work, different helium transitions are examined and a suitable transition pair is identified. For an electron temperature of 10 eV, the line ratio is measured as a function of plasma density and compared to values predicted by models. The measured line ratio function is in good agreement with theory and the data suggest that the excitation transfer is the dominant secondary process in high-density plasmas

  15. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  16. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography.

    Science.gov (United States)

    Hirsch, J E

    2013-10-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    International Nuclear Information System (INIS)

    Palomares, J.M.; Iordanova, E.; Veldhuizen, E.M. van; Baede, L.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2010-01-01

    The axial profiles of the electron density n e and electron temperature T e of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10 18 e 19 m -3 and 1.1 e e and T e down to 8% and 3%, respectively. It is found that n e decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T e does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  18. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  19. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    Science.gov (United States)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process

  20. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  1. Hubble Observes Surface of Titan

    Science.gov (United States)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker

  2. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  3. Crater relaxation on Titan aided by low thermal conductivity sand infill

    Science.gov (United States)

    Schurmeier, Lauren R.; Dombard, Andrew J.

    2018-05-01

    Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.

  4. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    Science.gov (United States)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan

  5. Descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe of Titan

    Science.gov (United States)

    Tomasko, Martin G.; Doose, Lyn R.; Smith, Peter H.; Fellows, C.; Rizk, B.; See, C.; Bushroe, M.; McFarlane, E.; Wegryn, E.; Frans, E.; Clark, R.; Prout, M.; Clapp, S.

    1996-10-01

    The Huygen's probe of the atmosphere of Saturn's moon Titan includes one optical instrument sensitive to the wavelengths of solar radiation. The goals of this investigation fall into four broad areas: 1) the measurement of the profile of solar heating to support an improved understanding of the thermal balance of Titan and the role of the greenhouse effect in maintaining Titan's temperature structure; 2) the measurement of the size, vertical distribution, and optical properties of the aerosol and cloud particles in Titan's atmosphere to support studies of the origin, chemistry, life cycles, and role in the radiation balance of Titan played by these particles; 3) the composition of the atmosphere, particularly the vertical profile of the mixing ratio of methane, a condensable constituent in Titan's atmosphere; and 4) the physical state, composition, topography, and physical processes at work in determining the nature of the surface of Titan and its interaction with Titan's atmosphere. In order to accomplish these objectives, the Descent Imager/Spectral Radiometer (DISR) instrument makes extensive use of fiber optics to bring the light from several different sets of foreoptics to a silicon CCD detector, to a pair of InGaAs linear array detectors, and to three silicon photometers. Together these detectors permit DISR to make panoramic images of the clouds and surface of Titan, to measure the spectrum of upward and downward streaming sunlight from 350 to 1700 nm at a resolving power of about 200, to measure the reflection spectrum of >= 3000 locations on the surface, to measure the brightness and polarization of the solar aureole between 4 and 30 degrees from the sun at 500 and 935 nm, to separate the direct and diffuse downward solar flux at each wavelength measured, and to measure the continuous reflection spectrum of the ground between 850 and 1600 nm using an onboard lamp in the last 100 m of the descent.

  6. The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films

    Directory of Open Access Journals (Sweden)

    Kristina BOČKUTĖ

    2013-09-01

    Full Text Available Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, scanning electron microscopy (SEM and atomic force microscopy (AFM. Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1805

  7. Current—voltage characteristics of lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composites

    International Nuclear Information System (INIS)

    De-An, Pan; Shen-Gen, Zhang; Jian-Jun, Tian; Li-Jie, Qiao; Jun-Sai, Sun; Volinsky, Alex A.

    2010-01-01

    Current–voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current–voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1 kHz and resonance (60.1 kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current–voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Electron density and temperature in NIO1 RF source operated in oxygen and argon

    Science.gov (United States)

    Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.; Serianni, G.; Zanini, M.

    2017-08-01

    The NIO1 experiment, built and operated at Consorzio RFX, hosts an RF negative ion source, from which it is possible to produce a beam of maximum 130 mA in H- ions, accelerated up to 60 kV. For the preliminary tests of the extraction system the source has been operated in oxygen, whose high electronegativity allows to reach useful levels of extracted beam current. The efficiency of negative ions extraction is strongly influenced by the electron density and temperature close to the Plasma Grid, i.e. the grid of the acceleration system which faces the source. To support the tests, these parameters have been measured by means of the Optical Emission Spectroscopy diagnostic. This technique has involved the use of an oxygen-argon mixture to produce the plasma in the source. The intensities of specific Ar I and Ar II lines have been measured along lines of sight close to the Plasma Grid, and have been interpreted with the ADAS package to get the desired information. This work will describe the diagnostic hardware, the analysis method and the measured values of electron density and temperature, as function of the main source parameters (RF power, pressure, bias voltage and magnetic filter field). The main results show that not only electron density but also electron temperature increase with RF power; both decrease with increasing magnetic filter field. Variations of source pressure and plasma grid bias voltage appear to affect only electron temperature and electron density, respectively.

  9. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Sun, Qiujuan; Wang, Qingsong; Zhao, Xuejuan; Sun, Jinhua; Lin, Zijing

    2015-01-01

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  10. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Science.gov (United States)

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-12-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  11. Complex temperature evolution of the electronic structure of CaFe2As2

    International Nuclear Information System (INIS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-01-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe 2 As 2 , which is a parent compound of high temperature superconductors—CaFe 2 As 2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe 2 As 2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature

  12. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  13. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results

  14. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  15. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    Science.gov (United States)

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  16. Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.

    Science.gov (United States)

    Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2015-09-01

    The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.

  17. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  18. Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth

    Science.gov (United States)

    Yilmaz, Huseyin

    2002-01-01

    Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of single

  19. Excess electron mobility in ethane. Density, temperature, and electric field effects

    International Nuclear Information System (INIS)

    Doeldissen, W.; Schmidt, W.F.; Bakale, G.

    1980-01-01

    The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule

  20. Oxide-cathode activation and surface temperature calculation of electron cooler

    International Nuclear Information System (INIS)

    Li Jie; Yang Xiaodong; Mao Lijun; Li Guohong; Yuan Youjin; Liu Zhanwen; Zhang Junhui; Yang Xiaotian; Ma Xiaoming; Yan Tailai

    2011-01-01

    The pollution on electron gun ceramic insulation of electron cooler restricted the operation of electron cooler at HIRFL-CSR main ring. To cool and accumulate ion beam well, the pollution was cleared and a new oxide-coated cathode was assembled. The processes of cathode replacement,vacuum chamber baking-out, and thermal decomposition of coating binders and alkaline earth metal carbonates, and cathode activation are presented. The electron gun perveance of 10.6 μA/V 1.5 was attained under the heating power of 60 W. The typical surface temperature of oxide-coated cathode that is calculated through grey-body radiation is 1 108 K which shows a comparable result to the experimental measurement 1 078 K. The perveance growth of electron gun during the electron cooler operation is also explained by partial activation of the cathode. (authors)

  1. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  2. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  3. Steps in growth of Nb-doped layered titanates with very high surface area suitable for water purification

    International Nuclear Information System (INIS)

    Milanović, Marija; Nikolić, Ljubica M.; Stijepović, Ivan; Kontos, Athanassios G.; Giannakopoulos, Konstantinos P.

    2014-01-01

    Nb-doped layered titanates, as highly efficient adsorbents, have been synthesized by hydrothermal reaction for variable duration and at 150 °C in a highly alkaline solution with NbCl 5 as the Nb source. The results have shown the formation of nanosheets already after 1 h of hydrothermal processing, but morphology and phase composition change as the reaction proceeds. The prepared layered titanates have been structurally investigated via scanning and transmission electron microscopy, X-ray diffraction, as well as Raman and Fourier transform infrared spectroscopies. The steps of layered titanate growth have been followed and an intermediate layered anatase phase is identified. Thus optimized growth of mesoporous titanate materials with 10% Nb atomic content present very high specific surface area of 345.3 m 2  g −1 , and perform as very efficient adsorbents for wastewater treatment applications. - Highlights: • Nb-doped layered titanates have been prepared by a hydrothermal procedure. • Introduction of Nb to precursor lowers the rate of layered titanate formation. • Steps in growth of Nb-doped layered titanates are considered. • Nb-doped layered titanates show high/fast MB adsorption from concentrated solution

  4. Potentialities in electronics of new high critical temperature superconductors. Potentialites en electronique des nouveaux supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, P [Thomson-CSF, 75 - Paris (FR)

    1989-09-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed.

  5. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  6. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  7. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  8. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    Science.gov (United States)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  9. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  10. Shaping the solar wind electron temperature anisotropy by the interplay of core and suprathermal populations

    Science.gov (United States)

    Shaaban Hamd, S. M.; Lazar, M.; Poedts, S.; Pierrard, V.; Štverák

    2017-12-01

    We present the results of an advanced parametrization of the temperature anisotropy of electrons in the slow solar wind and the electromagnetic instabilities resulting from the interplay of their thermal core and suprathermal halo populations. A large set of observational data (from the Ulysses, Helios and Cluster missions) is used to parametrize these components and establish their correlations. Comparative analysis demonstrates for the first time a particular implication of the suprathermal electrons which are less dense but hotter than thermal electrons. The instabilities are significantly stimulated by the interplay of the core and halo populations, leading to lower thresholds which shape the observed limits of the temperature anisotropy for both the core and halo populations. This double agreement strongly suggests that the selfgenerated instabilities play the major role in constraining the electron anisotropy.

  11. Research on cw electron accelerators using room-temperature rf structures: Annual report

    International Nuclear Information System (INIS)

    1986-01-01

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits

  12. Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas

    International Nuclear Information System (INIS)

    Enriques, L.; Sand, F.

    1977-01-01

    Several diagnostics (soft X-ray, Thompson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(eo)/Tsub(eo) up to 17% and of Δnsub(eo)/nsub(eo) of a few % or less have been measured. (author)

  13. Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas

    International Nuclear Information System (INIS)

    1976-07-01

    Several diagnostics (soft X-ray, Thomson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(e0)/Tsub(e0) up to 17% and of Δnsub(e0)/nsub(e0) of a few % or less have been measured

  14. High temperature electrons exhausted from rf plasma sources along a magnetic nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira

    2017-08-01

    Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.

  15. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    Directory of Open Access Journals (Sweden)

    M. Usman Malik

    2018-05-01

    Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  16. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  17. Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp

    International Nuclear Information System (INIS)

    Shah, M.L.; Suri, B.M.; Gupta, G.P.

    2015-01-01

    The HCD (Hollow Cathode Discharge) lamps have been used as a source of free atoms of any metal, controllable by direct current in the lamp. The plasma parameters including neutral species temperature, atomic excitation temperature and electron number density in a see-through type, homemade uranium hollow cathode discharge lamp with neon as a buffer gas have been investigated using optical emission spectroscopic techniques. The neutral species temperature has been measured using the Doppler broadening of a neon atomic spectral line. The atomic excitation temperature has been measured using the Boltzmann plot method utilizing uranium atomic spectral lines. The electron number density has been determined from the Saha-Boltzmann equation utilizing uranium atomic and ionic spectral lines. To the best of our knowledge, all these three plasma parameters are simultaneously measured for the first time in a uranium hollow cathode discharge lamp

  18. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets

  19. Measurement of surface temperature profiles on liquid uranium metal during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Surface temperature distributions of liquid uranium in a water-cooled copper crucible during electron beam evaporation were measured. Evaporation surface was imaged by a lens through a band-path filter (650{+-}5 nm) and a double mirror system on a charge coupled device (CCD) camera. The video signals of the recorded image were connected to an image processor and converted to two-dimensional spectral radiance profiles. The surface temperatures were obtained from the spectral radiation intensity ratio of the evaporation surface and a freezing point of uranium and/or a reference light source using Planck`s law of radiation. The maximum temperature exceeded 3000 K and had saturation tendency with increasing electron beam input. The measured surface temperatures agreed with those estimated from deposition rates and data of saturated vapor pressure of uranium. (author)

  20. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo

  1. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Shwarze, G.E.; Wieserman, W.R.

    1994-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets

  2. NIAC Phase 1 Final Study Report on Titan Aerial Daughtercraft

    Science.gov (United States)

    Matthies, Larry

    2017-01-01

    Saturns giant moon Titan has become one of the most fascinating bodies in the Solar System. Even though it is a billion miles from Earth, data from the Cassini mission reveals that Titan has a very diverse, Earth-like surface, with mountains, fluvial channels, lakes, evaporite basins, plains, dunes, and seas [Lopes 2010] (Figure 1). But unlike Earth, Titans surface likely is composed of organic chemistry products derived from complex atmospheric photochemistry [Lorenz 2008]. In addition, Titan has an active meteorological system with observed storms and precipitation-induced surface darkening suggesting a hydrocarbon cycle analogous to Earths water cycle [Turtle 2011].Titan is the richest laboratory in the solar system for studying prebiotic chemistry, which makes studying its chemistry from the surface and in the atmosphere one of the most important objectives in planetary science [Decadal 2011]. The diversity of surface features on Titan related to organic solids and liquids makes long-range mobility with surface access important [Decadal 2011]. This has not been possible to date, because mission concepts have had either no mobility (landers), no surface access (balloons and airplanes), or low maturity, high risk, and/or high development costs for this environment (e,g. large, self-sufficient, long-duration helicopters). Enabling in situ mobility could revolutionize Titan exploration, similarly to the way rovers revolutionized Mars exploration. Recent progress on several fronts has suggested that small-scale rotorcraft deployed as daughtercraft from a lander or balloon mothercraft may be an effective, affordable approach to expanding Titan surface access. This includes rapid progress on autonomous navigation capabilities of such aircraft for terrestrial applications and on miniaturization, driven by the consumer mobile electronics market, of high performance of sensors, processors, and other avionics components needed for such aircraft. Chemical analysis, for

  3. Ultra-violet recombination continuum electron temperature measurements in a non-equilibrium atmospheric argon plasma

    International Nuclear Information System (INIS)

    Gordon, M.H.; Kruger, C.H.

    1991-01-01

    Emission measurements of temperature and electron density have been made downstream of a 50 kW induction plasma torch at temperatures and electron densities ranging between 6000 K and 8500 K and 10 to the 20th and 10 to the 21st/cu cm, respectively. Absolute and relative atomic line intensities, and absolute recombination continuum in both the visible and the UV were separately interpreted in order to characterize a recombining atmospheric argon plasma. Continuum measurements made in the UV at 270 nm were used to directly determine the kinetic electron temperature, independent of a Boltzmann equilibrium, assuming only that the electron velocity distribution is Maxwellian. The data indicate that a nonequilibrium condition exists in which the bound-excited and free electrons are nearly in mutual equilibrium down to the 4P level for electron densities as low as 2 x 10 to the 20th/cu m but that both are overpopulated with respect to the ground state due to finite recombination rates. 13 refs

  4. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  5. Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    Garbarz-Glos B.

    2016-06-01

    Full Text Available The investigated ceramics were prepared by a solid-state reaction from simple oxides and carbonates with the use of a mixed oxide method (MOM. The morphology of BaTi0.96Si0.04O3 (BTSi04 ceramics was characterised by means of a scanning electron microscopy (SEM. It was found that Si+4 ion substitution supported the grain growth process in BT-based ceramics. The EDS results confirmed the high purity and expected quantitative composition of the synthesized material. The dielectric properties of the ceramics were also determined within the temperature range (ΔT=130-500K. It was found that the substitution of Si+4 ions had a significant influence on temperature behavior of the real (ε’ and imaginary (ε” parts of electric permittivity as well as the temperature dependence of a.c. conductivity. Temperature regions of PTCR effect (positive temperature coefficient of resistivity were determined for BTSi04 ceramics in the vicinity of structural phase transitions typical for barium titanate. No distinct maximum indicating a low-temperature structural transition to a rhombohedral phase in BTSi04 was found. The activation energy of conductivity was determined from the Arrhenius plots. It was found that substitution of Si ions in amount of 4wt.% caused almost 50% decrease in an activation energy value.

  6. Amino acidis derived from Titan tholins

    Science.gov (United States)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  7. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: f02palij@gmail.co [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Iordanova, E.; Veldhuizen, E.M. van; Baede, L. [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Gamero, A.; Sola, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der, E-mail: j.j.a.m.v.d.Mullen@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)

    2010-03-15

    The axial profiles of the electron density n{sub e} and electron temperature T{sub e} of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10{sup 18} < n{sub e} < 8 x 10{sup 19} m{sup -3} and 1.1 < T{sub e} < 2.0 eV. Due to several improvements of the setup we could reduce the errors of n{sub e} and T{sub e} down to 8% and 3%, respectively. It is found that n{sub e} decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T{sub e} does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  8. Electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  9. Tracing Single Electrons in a Disordered Polymer Film at Room Temperature.

    Science.gov (United States)

    Wilma, Kevin; Issac, Abey; Chen, Zhijian; Würthner, Frank; Hildner, Richard; Köhler, Jürgen

    2016-04-21

    The transport of charges lies at the heart of essentially all modern (opto-) electronic devices. Although inorganic semiconductors built the basis for current technologies, organic materials have become increasingly important in recent years. However, organic matter is often highly disordered, which directly impacts the charge carrier dynamics. To understand and optimize device performance, detailed knowledge of the transport mechanisms of charge carriers in disordered matter is therefore of crucial importance. Here we report on the observation of the motion of single electrons within a disordered polymer film at room temperature, using single organic chromophores as probe molecules. The migration of a single electron gives rise to a varying electric field in its vicinity, which is registered via a shift of the emission spectra (Stark shift) of a chromophore. The spectral shifts allow us to determine the electron mobility and reveal for each nanoenvironment a distinct number of different possible electron-transfer pathways within the rugged energy landscape of the disordered polymer matrix.

  10. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.

    2012-01-01

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low κ values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-κ distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  11. Titan Montgolfiere Buoyancy Modulation System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Titan is ideally suited for balloon exploration due to its low gravity and dense atmosphere. Current NASA mission architectures baseline Montgolfiere balloon...

  12. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    Science.gov (United States)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  13. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  14. Titan's geoid and hydrology: implications for Titan's geological evolution

    Science.gov (United States)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  15. Titan from Cassini-Huygens

    CERN Document Server

    Brown, Robert H; Waite, J. Hunter

    2010-01-01

    This book reviews our current knowledge of Saturn's largest moon Titan featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses Titan’s origin and evolution, internal structure, surface geology, the atmosphere and ionosphere as well as magnetospheric interactions. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  16. Thermal stability of titanate nanotubes

    Czech Academy of Sciences Publication Activity Database

    Králová, Daniela; Kužel, R.; Kovářová, Jana; Dybal, Jiří; Šlouf, Miroslav

    2009-01-01

    Roč. 16, 2a (2009), s. 41-43 ISSN 1211-5894. [Struktura - Colloquium of Czech and Slovak Crystallographic Association. Hluboká nad Vltavou, 22.06.2009-25.06.2009] R&D Projects: GA ČR GA203/07/0717; GA AV ČR KAN200520704 Institutional research plan: CEZ:AV0Z40500505 Keywords : titanate nanotubes * thermal stability Subject RIV: CD - Macromolecular Chemistry

  17. Theory of Correlated Pairs of Electrons Oscillating in Resonant Quantum States to Reach the Critical Temperature in a Metal

    OpenAIRE

    Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo

    2017-01-01

    The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...

  18. A low temperature cryostat with a refrigerator for studying electron irradiation effects on solids

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Kitagawa, Michiharu; Yanai, Masayoshi

    1976-01-01

    A low temperature cryostat with a small cryogenic refrigerator is described which is convenient for studying irradiation effects of the energetic electrons on solids. It allows a sample to be kept about 12 K without irradiation and 15 K under the irradiation at a heating rate of 1.5 w. The sample temperature can be changed up to room temperature by adjusting the power of an attached heater and the pressure of a compressor for the refrigerator. The optical and electrical properties of the sample can be measured under and after irradiation. (auth.)

  19. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  20. Behaviour of solid phase ethyl cyanide in simulated conditions of Titan

    Science.gov (United States)

    Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.

    2018-01-01

    In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.