WorldWideScience

Sample records for tissues small organisms

  1. Geo-PET: A novel generic organ-pet for small animal organs and tissues

    Science.gov (United States)

    Sensoy, Levent

    Reconstructed tomographic image resolution of small animal PET imaging systems is improving with advances in radiation detector development. However the trend towards higher resolution systems has come with an increase in price and system complexity. Recent developments in the area of solid-state photomultiplication devices like silicon photomultiplier arrays (SPMA) are creating opportunities for new high performance tools for PET scanner design. Imaging of excised small animal organs and tissues has been used as part of post-mortem studies in order to gain detailed, high-resolution anatomical information on sacrificed animals. However, this kind of ex-vivo specimen imaging has largely been limited to ultra-high resolution muCT. The inherent limitations to PET resolution have, to date, excluded PET imaging from these ex-vivo imaging studies. In this work, we leverage the diminishing physical size of current generation SPMA designs to create a very small, simple, and high-resolution prototype detector system targeting ex-vivo tomographic imaging of small animal organs and tissues. We investigate sensitivity, spatial resolution, and the reconstructed image quality of a prototype small animal PET scanner designed specifically for imaging of excised murine tissue and organs. We aim to demonstrate that a cost-effective silicon photomultiplier (SiPM) array based design with thin crystals (2 mm) to minimize depth of interaction errors might be able to achieve sub-millimeter resolution. We hypothesize that the substantial decrease in sensitivity associated with the thin crystals can be compensated for with increased solid angle detection, longer acquisitions, higher activity and wider acceptance energy windows (due to minimal scatter from excised organs). The constructed system has a functional field of view (FoV) of 40 mm diameter, which is adequate for most small animal specimen studies. We perform both analytical (3D-FBP) and iterative (ML-EM) methods in order to

  2. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].

    Science.gov (United States)

    Logvinovich, O S; Aksenova, G E

    2013-01-01

    Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  3. Tissue bioengineering and artificial organs.

    Science.gov (United States)

    Llames, Sara; García, Eva; Otero Hernández, Jesús; Meana, Alvaro

    2012-01-01

    The scarcity of organs and tissues for transplant and the need of immunosuppressive drugs to avoid rejection constitute two reasons that justify organ and tissue production in the laboratory. Tissue engineering based tissues (TE) could allow to regenerate the whole organ from a fragment or even to produce several organs from an organ donor for grafting purposes. TE is based in: (1) the ex vivo expansion of cells, (2) the seeding of these expanded cells in tridimensional structures that mimic physiological conditions and, (3) grafting the prototype. In order to graft big structures it is necessary that the organ or tissue produced "ex vivo" bears a vascular tree to ensure the nutrition of its deep layers. At present, no technology has been developed to provide this vascular tree to TE derived products. Thus, these tissues must be thin enough to acquire nutrients during the first days by diffusion from surrounding tissues. This fact constitutes nowadays the greatest limitation of technologies for organ development in the laboratory.In this chapter, all these problems and their possible solutions are commented. Also, the present status of TE techniques in the regeneration of different organ systems is reviewed.

  4. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    Science.gov (United States)

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  6. Aging changes in organs - tissue - cells

    Science.gov (United States)

    ... and structure to the skin and internal organs. Epithelial tissue provides a covering for deeper body layers. The ... such as the gastrointestinal system, are made of epithelial tissue. Muscle tissue includes three types of tissue: Striated ...

  7. Small bowel tissue engineering using small intestinal submucosa as a scaffold.

    Science.gov (United States)

    Chen, M K; Badylak, S F

    2001-08-01

    Small intestinal submucosa (SIS) is an extracellular matrix used in tissue engineering studies to create de novo abdominal wall, urinary bladder, tendons, blood vessels, and dura mater. The purpose of this study is to evaluate the feasibility of using SIS as a scaffold for small bowel regeneration in an in situ xenograft model. Twenty-three dogs had a partial defect created on the small bowel wall which was repaired with a SIS patch. Four dogs underwent small bowel resection with placement of an interposed tube of SIS. The animals were followed 2 weeks to 1 year. Three of the 23 dogs with SIS placed as a patch died shortly after surgery due to leakage from the site. The other 20 dogs survived up to time of elective necropsy with no evidence of intestinal dysfunction. At necropsy, the bowel circumference in the patched area had no stenosis. Histological evaluation showed the presence of a mucosal epithelial layer, varying amount of smooth muscle, sheets of collagen, and a serosal covering. Architecturally, the layers were not well organized in the submucosal region. An abundance of inflammatory cells was present in the early postoperative period but receded with time. All 4 dogs with a tubular segment of SIS interposed had significant problems. One had partial obstruction at 1 month, and 3 died in the early postoperative period due to leakage. This preliminary study suggests that SIS patches can be used for small bowel regeneration. Tubular segmental replacement is not feasible at this time. Copyright 2001 Academic Press.

  8. Estimate of the absorbed dose in the mouse organs and tissues after tritium administration

    International Nuclear Information System (INIS)

    Saito, Masahiro

    2000-01-01

    Chronic and accidental release of tritium from future fusion facilities may cause some extent of hazardous effect to the public health. Various experiments using small animals such as mice have been performed to mimic the dose accumulation due to tritium intake by the human body. An difficulty in such animal experiments using small animals is that it is rather difficult to administer tritium orally and estimate the dose to small organs or tissues. In the course of our study, a simple method to administer THO and T-labeled amino acids orally to the mouse was dictated and dose accumulation in various organs and tissues was determined. The tritium retention in the bone marrow was also determined using the micro-centrifuge method. Throughout our experiment, colony-bred DDY mice were used. The 8-10 week old male mice were orally and intraperitoneally administered THO water or T-amino acids mixture solution. For the purpose of oral administration, a 10 μl aliquot of T-containing saline solution was placed on the tongue of the mice using an automatic micropipette. At various times after tritium administration, the animals were sacrificed and the amount of tritium in various tissues and organs including bone marrow was examined. Dose accumulation pattern after THO intake and T-amino acids was compared between intraperitoneal injection and oral administration. The accumulated dose after oral administration of THO exhibited a tendency to be 10-20% higher than after intraperitoneal injection. The bone marrow dose after oral intake of THO was found to be lower than the doses to urine, blood, liver and testis. In contrast, the blood dose gave a conservative estimate for the dose to the other tissues and organs. (author)

  9. 3D Printing of Personalized Organs and Tissues

    Science.gov (United States)

    Ye, Kaiming

    2015-03-01

    Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.

  10. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  11. Identification and characterization of novel gut-associated lymphoid tissues in rat small intestine.

    Science.gov (United States)

    Hitotsumatsu, Osamu; Hamada, Hiromasa; Naganuma, Makoto; Inoue, Nagamu; Ishii, Hiromasa; Hibi, Toshifumi; Ishikawa, Hiromichi

    2005-10-01

    The crypt lamina propria of the mouse small intestine has been shown to harbor multiple tiny clusters filled with c-kit- and interleukin 7 receptor (IL-7R)-positive lympho-hemopoietic cells (cryptopatches; CPs). However, it has remained an open question whether similar lymphoid tissue are present in the gastrointesitinal tract in other animals. In the present study, we investigated whether the small intestine of rats harbored lymphoid tissues similar to mouse CPs. Immunohistochemical and flow cytometric analyses were carried out using various antibodies, including those to c-kit and IL-7R molecules. Lymphocyte-filled villi (LFVs), populated predominantly with c-kit- and IL-7 receptor (IL-7R)-positive cells and less with T cell receptor (TCR)-alphabeta T cells were found throughout the small intestine of young adult rats. Although LFVs were absent from fetal rat intestine, they were first detected at around 2 weeks after birth. Notably, in most LFVs that settled in the antimesenteric wall of the small intestine in young adult rats, immunoglobulin M-positive B cells were also detectable at the bottom of the LFVs. In aged rats, lymphocytes in some LFVs displayed a different phenotype, comprising a large B-cell area that included a germinal center. Thus, these clusters represent the first description of isolated lymphoid follicles (ILFs) in the rat small intestine. The present study provides the first evidence for c-kit- and IL-7R-positive lymphocyte clusters in the rat small intestine. Our data also indicating that LFVs and ILFs may constitute novel organized gut-associated lymphoid tissues in lamina propria of the rat small intestine.

  12. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    Science.gov (United States)

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-07

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.

  13. Trend Analysis of Organ and Tissue Donation for Transplantation.

    Science.gov (United States)

    Dos Santos, M J; Leal de Moraes, E; Santini Martins, M; Carlos de Almeida, E; Borges de Barros E Silva, L; Urias, V; Silvano Corrêa Pacheco Furtado, M C; Brito Nunes, Á; El Hage, S

    2018-03-01

    The goal of this study was to identify the tendency toward donations of tissue and organs from donors with brain death between 2001 and 2016 as registered by an organ procurement organization in São Paulo City. This quantitative, retrospective, exploratory study encompassed all Tissue and Organ Donation Terms signed between 2001 and 2016. A logistic regression model was applied to verify whether there was an upward or downward trend in donation. After statistical analysis, a significant change trend was identified in skin, bones, valve, vessel, heart, lung, and pancreas donations, indicating an increase in the donation rate through the years. The donation rate did not show changes over the years for donations of liver, kidneys, and corneas. The decision-making process regarding organ and tissue donation is restricted not only to the dilemma of whether to donate but another question then arises as well: which organs and tissues are to be donated? The discrepancy between the authorization for organ donation and the authorization for tissue donation, as well as the option for one or another organ and/or tissue, must be thoroughly examined because these factors directly affect the number of transplants and acquirements effectively accomplished. These factors may be related to explaining to one's relatives aspects of the surgery, body reassembling, and usage of such organs and/or tissues. They may also be related to the lack of knowledge concerning organ donation and the symbolism represented by the organ and/or tissue, among other factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  15. Tissue strands as "bioink" for scale-up organ printing.

    Science.gov (United States)

    Yu, Yin; Ozbolat, Ibrahim T

    2014-01-01

    Organ printing, takes tissue spheroids as building blocks together with additive manufacturing technique to engineer tissue or organ replacement parts. Although a wide array of cell aggregation techniques has been investigated, and gained noticeable success, the application of tissue spheroids for scale-up tissue fabrication is still worth investigation. In this paper, we introduce a new micro-fabrication technique to create tissue strands at the scale of 500-700μm as a "bioink" for future robotic tissue printing. Printable alginate micro-conduits are used as semi-permeable capsules for tissue strand fabrication. Mouse insulinoma beta TC3 cell tissue strands were formed upon 4 days post fabrication with reasonable mechanical strength, high cell viability close to 90%, and tissue specific markers expression. Fusion was readily observed between strands when placing them together as early as 24h. Also, tissue strands were deposited with human umbilical vein smooth muscle cells (HUVSMCs) vascular conduits together to fabricated miniature pancreatic tissue analog. Our study provided a novel technique using tissue strands as "bioink" for scale-up bioprinting of tissues or organs.

  16. A method for the determination of potassium concentration in organic tissue samples

    International Nuclear Information System (INIS)

    Maciel, A.C.A.

    1976-12-01

    An original method has been developed to detect small variations of potassium in several samples of organic tissue. These variations are relative to elements that are biologically representative, such as carbon, oxygen, and nitrogen. The samples are irradiated with a beam of protons from a Van de Graaff accelerator (4MV). Vacancies are created in the K-shell of potassium, and x-rays are emitted when these vacancies are filled with outer electrons. These X-rays and the protons elastically scattered by the nuclei of carbon, nitrogen and oxygen are detected and their energy spectra are analysed by computer programs especially elaborated for this purpose. A technique for routine preparation of samples in the laboratory was developed including the production of aluminum support layers, and the preparation of organic tissue samples with a low temperature microtome. The unique features of this method are that it does not destroy the tissue, permitting further analysis with the microscope, and the normalization of the amount of potassium using other elements (C,O,N) instead of the total mass of the sample. (Author) [pt

  17. Self-Organization and the Self-Assembling Process in Tissue Engineering

    Science.gov (United States)

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  18. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  19. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    Science.gov (United States)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Science.gov (United States)

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  1. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  2. Organic small molecule semiconducting chromophores for use in organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    2018-02-13

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  3. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  4. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2016-09-01

    Full Text Available Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  5. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  6. Heavy metals content in reproductive organs of small mammals inhabiting in condition of chronic chemical exposure

    International Nuclear Information System (INIS)

    Mukhacheva, S.V.; Davydova, Yu.A.

    2008-01-01

    In this research by example of bank vole the heavy metals concentrations (cadmium, copper and zinc) in reproductive organs of small mammals inhabiting in condition of environmental pollution with wastes from copper-smelting industry have been considered. The levels of radionuclides accumulation in testes, seminal vesicle and ovaries of voles with radionuclide concentration in others organs and tissues of animals have been compared.

  7. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    OpenAIRE

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especial...

  8. Tissue and organ regeneration in adults extension of the paradigm to several organs

    CERN Document Server

    Yannas, Ioannis V

    2015-01-01

    This textbook describes the basic principles of induced organ regeneration in skin and peripheral nerves and extends the original successful paradigm to other organs. A set of trans-organ rules is established and its use in regeneration of several organs is illustrated from the works of several independent investigators who worked with a variety of organs, such as the lung, the bladder, and the Achilles tendon, using collagen-based scaffolds somewhat similar to the original one. These critical medical treatments fill the clinical need that is not met by organ transplantation. New to this second edition: New information extending the paradigm of tissue regeneration from organ regeneration in skin and peripheral nerves to other organs Guidelines, known as trans-organ rules, are described for the first time for extending this unique medical treatment to organs of several medical specialties The work serves as a comprehensive text and reference for students and practitioners of tissue engineering  

  9. The necessity of strengthening the cooperation between tissue banks and organ transplant organizations at national, regional, and international levels.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2013-12-01

    The donation of tissues and organs increases significantly when tissue banks and organ transplant organizations work together in the procurement of organs and tissues at donor sources (hospitals, coroners system, organ procurement agencies, and funeral homes, among others). To achieve this important goal, national competent health authorities should considered the establishment of a mechanism that promote the widest possible cooperation between tissue banks and organ transplant organizations with hospitals, research medical institutions, universities, and other medical institutions and facilities. One of the issues that can facilitate this cooperation is the establishment of a coding and traceability system that could identify all tissues and organs used in transplant activities carried out in any country. The promotion of national, regional, and international cooperation between tissue banks and organ transplant organizations would enable the sharing of relevant information that could be important for medical practice and scientific studies carried out by many countries, particularly for those countries with a weak health care system.

  10. Ethical issues in organ and tissue transplantation.

    Science.gov (United States)

    Abouna, George M

    2003-12-01

    Clinical organ transplantation provides a way of giving the gift of life to patients with terminal failure of vital organs, which requires the participation of other fellow human beings and of society by donating organs from deceased or living individuals. The increasing incidence of vital organ failure and the inadequate supply of organs, especially from cadavers, has created a wide gap between organ supply and organ demand, which has resulted in very long waiting times to receive an organ as well as an increasing number of deaths while waiting. These events have raised many ethical, moral and societal issues regarding supply, the methods of organ allocation the use of living donors as volunteers including minors. It has also led to the practice of organ sale by entrepreneurs for financial gains in some parts the world through exploitation of the poor, for the benefit of the wealthy. The current advances in immunology and tissue engineering and the use of animal organs, xenotransplantation, while offering very promising solutions to many of these problems, also raise additional ethical and medical issues, which must be considered by the medical profession as well as society. This review deals with the ethical and moral issues generated by the current advances in organ transplantation, the problem of organ supply versus organ demand and the appropriate allocation of available organs. It deals with the risks and benefits of organ donation from living donors, the appropriate and acceptable methods to increase organ donation from the deceased through the adoption of the principle of 'presumed consent', the right methods of providing acceptable appreciation and compensation for the family of the deceased as well as volunteer and altruistic donors, and the duties and responsibilities of the medical profession and society to help fellow humans. The review also deals with the appropriate and ethically acceptable ways of utilizing the recent advances of stem cell

  11. 3D Bioprinting for Tissue and Organ Fabrication.

    Science.gov (United States)

    Zhang, Yu Shrike; Yue, Kan; Aleman, Julio; Moghaddam, Kamyar Mollazadeh; Bakht, Syeda Mahwish; Yang, Jingzhou; Jia, Weitao; Dell'Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2017-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.

  12. 3D Bioprinting for Tissue and Organ Fabrication

    Science.gov (United States)

    Zhang, Yu Shrike; Yang, Jingzhou; Jia, Weitao; Dell’Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development. PMID:27126775

  13. Adipose tissue as an endocrine organ.

    Science.gov (United States)

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    Science.gov (United States)

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Bioprinting scale-up tissue and organ constructs for transplantation.

    Science.gov (United States)

    Ozbolat, Ibrahim T

    2015-07-01

    Bioprinting is an emerging field that is having a revolutionary impact on the medical sciences. It offers great precision for the spatial placement of cells, proteins, genes, drugs, and biologically active particles to better guide tissue generation and formation. This emerging biotechnology appears to be promising for advancing tissue engineering toward functional tissue and organ fabrication for transplantation, drug testing, research investigations, and cancer or disease modeling, and has recently attracted growing interest worldwide among researchers and the general public. In this Opinion, I highlight possibilities for the bioprinting scale-up of functional tissue and organ constructs for transplantation and provide the reader with alternative approaches, their limitations, and promising directions for new research prospects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  17. Neutron organ dose and the influence of adipose tissue

    Science.gov (United States)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  18. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon

    Directory of Open Access Journals (Sweden)

    Manuela Buettner

    2016-09-01

    Full Text Available The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP in the small intestine and their colonic counterparts that develop in a programmed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT. In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP to large, mature isolated lymphoid follicles (ILF. Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi cells and the requirement for lymphotoxin beta (LTβ receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO. While so far it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.

  19. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon

    Science.gov (United States)

    Buettner, Manuela; Lochner, Matthias

    2016-01-01

    The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation. PMID

  20. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon.

    Science.gov (United States)

    Buettner, Manuela; Lochner, Matthias

    2016-01-01

    The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer's patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.

  1. Dietary intake and burden of lanthanide in main organs and tissues for Chinese man

    International Nuclear Information System (INIS)

    Zhu Hongda; Liu Qingfeng; Ouyang Li; Liu Husheng; Wang Naifen; Liu Yaqiong; Zhang Yongbao; Wang Ke; Chen Rusong

    2004-01-01

    Objective: To determine lanthanide concentrations in dietary foods and main organs or tissues for Chinese adult man and to estimate their daily intakes by ingestion and organ or tissue burdens. Methods: Ten kinds of organ or tissue samples collected in autopsy from 21 supplemental subjects of 4 areas with different dietary types in China who died suddenly, and had been healthy and normal before death. The concentrations of 11 lanthanide in foods and 14 lanthanide in these organ or tissue samples, including those collected from 31 subjects in the past, were analyzed by using ICP-MS or INAA technique as well as necessary QC measures. With uses of the local diet composition and relevant organ or tissue weights for Chinese Reference Man, their daily intakes and organ or tissue burdens were estimated. Results: The concentrations of 14 lanthanide in 12 categories of foods and 10 kinds of organ or tissue samples, their dietary daily intakes and organ or tissue burdens for Chinese adult men were obtained. Conclusion: Besides updating the relevant data of La, Ce and Eu in 5 kinds of organ or tissue and diet, this research obtained data on concentrations of other 11 lanthanide in Chinese foods and 10 kinds of organ or tissue, their daily intakes and burdens for the first time in China. The results provide more systematic bases for developing the parameters of Chinese Reference Man than before. This study provides also comparative data for different kinds of lanthanide, foods, organs or tissues and also the background values of Chinese soil

  2. A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms.

    Directory of Open Access Journals (Sweden)

    Matthias Rieckher

    Full Text Available We describe a customizable and cost-effective light sheet microscopy (LSM platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP, which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples.

  3. Ornithine decarboxylase activity in rat organs and tissues under artificial hypobiosis.

    Science.gov (United States)

    Aksyonova, G E; Logvinovich, O S; Fialkovskaya, L A; Afanasyev, V N; Ignat'ev, D A; Kolomiytseva, I K

    2010-09-01

    The influence of hypothermia-hypoxia-hypercapnia on ornithine decarboxylase (ODC, EC 4.1.1.17) activities in rat organs and tissues and also on the thymocyte distribution throughout the cell cycle stages was studied. The state of artificial hypobiosis in rats on decrease in the body temperature to 14.4-18.0°C during 3.0-3.5 h was accompanied by drops in the ODC activities in the neocortex and liver by 50-60% and in rapidly proliferating tissues (thymus, spleen, and small intestine mucosa) by 80% of the control value. In kidneys the ODC activity raised to 200% of the control level. Twenty-four hours after termination of the cooling and replacing the rats under the standard conditions, the ODC activities in the neocortex, liver, kidneys, spleen, and intestinal mucosa returned to the control values, but remained decreased in the thymus. Forty-eight hours later the ODC activities in the thymus and spleen exceeded the normal level. The distribution of thymocytes throughout the cell cycle stages did not change in rats in the state of hypothermia (hypobiosis); 24 and 48 h after termination of the cooling the fraction of thymocytes in the S stage was decreased and the fraction of the cells in the G(0)+G(1) stage was increased. The normal distribution of thymocytes throughout the cell cycle stages recovered in 72 h. Thus, in the thymus the diminution of the ODC activity preceded the suppression of the cell proliferation rate. The tissue-specific changes in the ODC activity are suggested to reflect adaptive changes in the functional and proliferative activities of organs and tissues during the development of hypobiosis under conditions of hypothermia-hypoxia-hypercapnia.

  4. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  5. The complementarity of the technical tools of tissue engineering and the concepts of artificial organs for the design of functional bioartificial tissues.

    Science.gov (United States)

    Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus

    2008-09-01

    Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.

  6. Levels of Cs-137 and pathological shifts in the organs and tissues of dead humans

    International Nuclear Information System (INIS)

    Lushnikov, E.F.; Koleganov, Yu.F.; Lantsov, S.I.; Mozhaev, V.K.; Solov'eva, L.P.; Fomin, S.D.

    1996-01-01

    Measurements of the levels of Cs-137, alpha- and beta-radionuclides in the organs and tissues of 30 subjects dead 6 years after the accident, assessment of the pathological shifts and relationships between these shifts and exposure was carried out at territories contaminated with radionuclides in the Bryansk and Kaluga districts, in the town of Obninsk, and in region of Russia free of radionuclides. Study of radioautographs did not show alpha- or beta-radionuclides in any of the dead subjects. Cs-137 was detected in small quantities in the organs of all cadavers (3 to 424 Bq/kg) irrespective of their residence. The extent of radioactivity varied for different organs and was unrelated to organ pathology. Moreover, Cs-137 was detected in the organs of dead newborns and two-month-old infants, whose patients lived at territories contaminated with radionuclides [ru

  7. SQIMSO: Quality Improvement for Small Software Organizations

    OpenAIRE

    Rabih Zeineddine; Nashat Mansour

    2005-01-01

    Software quality improvement process remains incomplete if it is not initiated and conducted through a wide improvement program that considers process quality improvement, product quality improvement and evolution of human resources. But, small software organizations are not capable of bearing the cost of establishing software process improvement programs. In this work, we propose a new software quality improvement model for small organizations, SQIMSO, based on three ...

  8. Space research on organs and tissues

    Science.gov (United States)

    Tischler, Marc E.; Morey-Holton, Emily

    1993-01-01

    Studies in space on various physiological systems have and will continue to provide valuable information on how they adapt to reduced gravitational conditions, and how living in a 1 g (gravity) environment has guided their development. Muscle and bone are the most notable tissues that respond to unweighting caused by lack of gravity. The function of specific muscles and bones relates directly to mechanical loading, so that removal of 'normal forces' in space, or in bedridden patients, causes dramatic loss of tissue mass. The cardiovascular system is also markedly affected by reduced gravity. Adaptation includes decreased blood flow to the lower extremities, thus decreasing the heart output requirement. Return to 1 g is associated with a period of reconditioning due to the deconditioning that occurs in space. Changes in the cardiovascular system are also related to responses of the kidney and certain endocrine (hormone-producing) organs. Changes in respiratory function may also occur, suggesting an effect on the lungs, though this adaptation is poorly understood. The neurovestibular system, including the brain and organs of the inner ear, must adapt to the disorientation caused by lack of gravity. Preliminary findings have been reported for liver. Additionally, endocrine organs responsible for release of hormones such as insulin, growth hormone, glucocorticoids, and thyroid hormone may respond to spaceflight.

  9. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  10. [Attitude towards organ and tissue donation in Europe : Prerequisite for osteochondral allograft treatment].

    Science.gov (United States)

    Schmidt, S; Schulte, A; Schwarz, S; Hofmann, N; Tietz, S; Boergel, M; Sixt, S U

    2017-11-01

    The biggest obstacle to overcome for routine treatment of various pathologies with fresh osteochondral allograft is the availability of tissue for transplantation. Large fresh osteochondral allografts are usually harvested from organ donors, but in contrast to organs, tissues can be procured after cardiac arrest. Medical staff as well the general public are much less aware of the possibilities and requirements of tissue donation compared to organ donation. This review aims to highlight the current situation of organ and tissue donation in Europe and to raise this much needed awareness. For this research, PubMed database was scanned using the terms "tissue/organ donation", "bone donation/transplantation", "cartilage transplantation/allografts" and "osteochrondral allografts". Relatives of potential donors are often not approached because physicians and nurses do not feel sufficiently prepared for this task and, thus, are reluctant to address this topic. Different options could alleviate the pressure medical staff is feeling. Furthermore, there are different factors influencing consent that can be addressed to increase donation rates. Currently, a lot of potential concerning musculoskeletal tissue grafts remains unused. Most importantly, families should be encouraged to speak about their potenzial will to donate and educational programs should be established to increase trust in organ and tissue donation and the allocation system and to increase knowledge about the importance of transplantation medicine. But joined efforts of different parts of the medical systems and different organizations involved in tissue transplantation should improve the situation for patients waiting for much needed transplants.

  11. An analysis of knowledge and attitudes of hospice staff towards organ and tissue donation.

    Science.gov (United States)

    Wale, J; Arthur, A; Faull, C

    2014-03-01

    Only a minority of hospice patients eligible to donate tissue and organs choose to do so. Hospice care staff play a key role in discussions about donation, but their willingness to engage in these discussions and their understanding of issues around tissue and organ donation is poorly understood. To (i) identify factors associated with the wish of hospice doctors, nurses and healthcare assistants to donate their own organs after death; (ii) survey the experience of discussing the subject with patients; (iii) determine staff members' knowledge of organ and tissue donation and (iv) identify factors associated with knowledge of organ and tissue donation. Cross-sectional questionnaire survey of hospice care staff. 76 of the 94 care staff of one large UK hospice completed and returned the questionnaire. Staff wishing to donate their organs after death (43/76 56.6%) were more likely to be doctors or nurses than healthcare assistants (p=0.011) and more likely to have discussed organ or tissue donation with their family (pdonation with patients had more years' experience (p=0.045) and had similarly discussed donation with their own family (p=0.039). Those with greater knowledge were more likely to have discussed organ or tissue donation with a patient (p=0.042). A reluctance to instigate discussions about organ and tissue donation may prevent palliative patients and their families being allowed the opportunity to donate. Suboptimal knowledge among hospice staff suggests the need for greater liaison between hospice staff, and the organ and tissue donation teams.

  12. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  13. Chapter 8. Ionisation radiation and human organism. Radioactivity of human tissues

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with ionisation radiation and human organism as well as with radioactivity of human tissues. Chapter consists of next parts: (1) Radiation stress of human organism; (2) Radioactivity of human tissues and the factors influencing radioactive contamination; (3) Possibilities of decreasing of radiation stress

  14. Impact of tissue surface properties on the desorption electrospray ionization imaging of organic acids in grapevine stem.

    Science.gov (United States)

    Dong, Yonghui; Guella, Graziano; Franceschi, Pietro

    2016-03-30

    Desorption electrospray ionization (DESI) imaging is a fast analytical technique used to assess spatially resolved biological processes over unmodified sample surfaces. Although DESI profiling experiments have demonstrated that the properties of the sample surface significantly affect the outcomes of DESI analyses, the potential implications of these phenomena in imaging applications have not yet been explored extensively. The distribution of endogenous and exogenous organic acids in pith and out pith region of grapevine stems was investigated by using DESI imaging, ion chromatography and direct infusion methods. Several common normalization strategies to account for the surface effect, including TIC normalization, addition of the internal standard in the spray solvent and deposition of the standard over the sample surface, were critically evaluated. DESI imaging results show that, in our case, the measured distributions of these small organic acids are not consistent with their 'true' localizations within the tissues. Furthermore, our results indicate that the common normalization strategies are not able to completely compensate for the observed surface effect. Variations in the tissue surface properties across the tissue sample can greatly affect the semi-quantitative detection of organic acids. Attention should be paid when interpreting DESI imaging results and an independent analytical validation step is important in untargeted DESI imaging investigations. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2015-06-01

    Full Text Available Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  16. Developments in undergraduate teaching of small-animal soft-tissue surgical skills at the University of Sydney.

    Science.gov (United States)

    Gopinath, Deepa; McGreevy, Paul D; Zuber, Richard M; Klupiec, Corinna; Baguley, John; Barrs, Vanessa R

    2012-01-01

    This article discusses recent developments in soft-tissue surgery teaching at the University of Sydney, Faculty of Veterinary Science. An integrated teaching program was developed for Bachelor of Veterinary Science (BVSc) students with the aim of providing them with optimal learning opportunities to meet "Day One" small-animal soft-tissue surgical competencies. Didactic lectures and tutorials were introduced earlier into the curriculum to prepare students for live-animal surgery practical. In addition to existing clinics, additional spay/neuter clinics were established in collaboration with animal welfare organizations to increase student exposure to live-animal surgery. A silicon-based, life-like canine ovariohysterectomy model was developed with the assistance of a model-making and special effects company. The model features elastic ovarian pedicles and suspensory ligaments, which can be stretched and broken like those of an actual dog. To monitor the volume and type of student surgical experience, an E-portfolio resource was established. This resource allows for the tracking of numbers of live, student-performed desexing surgeries and incorporates competency-based assessments and reflective tasks to be completed by students. Student feedback on the integrated surgical soft-tissue teaching program was assessed. Respondents were assessed in the fourth year of the degree and will have further opportunities to develop Day One small-animal soft-tissue surgical competencies in the fifth year. Ninety-four percent of respondents agreed or strongly agreed that they were motivated to participate in all aspects of the program, while 78% agreed or strongly agreed that they received an adequate opportunity to develop their skills and confidence in ovariohysterectomy or castration procedures through the fourth-year curriculum.

  17. Tissue distribution of 14C-diazepam and its metabolites in rats

    International Nuclear Information System (INIS)

    Igari, Y.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1982-01-01

    We have kinetically investigated the tissue distribution of 14 C-diazepam and described the appearance and disappearance of its metabolites (3-hydroxydiazepam, desmethyldiazepam, and oxazepam) following a single iv injection of 14 C-diazepam into rats. Significant amounts of oxazepam were detected in plasma and various tissues in the rat, contrary to previous reports. Concentration-time profiles of diazepam in the main disposing organs (liver, kidney, and lung) and the other organs (brain, heart, and small intestine) indicated that diazepam was distributed rapidly to these organs. Concentration-time profiles of diazepam in the main tissues for drug distribution (skin and adipose) indicated that diazepam was slowly distributed to these tissues, whereas that in muscle, which is also responsible for drug distribution, indicated that diazepam was less rapidly distributed to this tissue. Metabolites appeared in plasma and various tissues or organs immediately after iv injection of diazepam. Metabolites levels in plasma and various tissues or organs were significantly lower than that of diazepam except for liver and small intestine, where metabolites levels were higher compared to that of diazepam and metabolites exhibited a considerable persistence

  18. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    Science.gov (United States)

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  19. Sociocultural perspective on organ and tissue donation among reservation-dwelling American Indian adults.

    Science.gov (United States)

    Fahrenwald, Nancy L; Stabnow, Wendy

    2005-11-01

    To discover the sociocultural patterns that influence decisions about organ and tissue donation among American Indian (AI) adults. This qualitative ethnographic study used a social-ecological framework. A snowball sampling technique was used to recruit 21 Oglala Lakota Sioux participants (age >or= 19 years) living on the Pine Ridge Indian Reservation in South Dakota, USA. Face-to-face interviews were conducted using open-ended questions derived from the social-ecological perspective of Stokols (1992). Interviews were audiotaped and transcribed. Data were categorized into construct codes to identify concepts and to discover emerging themes. Personal and environmental themes regarding organ and tissue donation emerged. There were two personal themes: uncertain knowledge and the diabetes crisis. Participants knew very little about organ and tissue donation but there was a basic understanding of donor/recipient compatibility. The prevalence of diabetes in the community is contributing to a dire need for kidney donors. The diabetes crisis was acknowledged by every participant. There were three environmental themes: cultural transitions, healthcare system competence and outreach efforts. Traditional cultural beliefs such as entering the spirit world with an intact body were acknowledged. However, conversations reflected re-examination of traditional beliefs because of the need for kidney donors. The healthcare environmental context of organ and tissue donation emerged as a theme. Participants were not confident that the local health system was prepared to either address traditional beliefs about organ and tissue donation or implement a donation protocol. The final theme was the environmental context of outreach efforts. Participants desired relevant outreach targeted to the community and disseminated through local communication networks including the family, the media and tribal leaders. Sociocultural factors relevant to the personal and environmental context of the

  20. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

    Science.gov (United States)

    Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J

    2015-02-17

    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

  1. X-ray characterization of solid small molecule organic materials

    Science.gov (United States)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  2. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering.

    Directory of Open Access Journals (Sweden)

    Ana Celeste Oliveira

    Full Text Available Advances in the development of cornea substitutes by tissue engineering techniques have focused on the use of decellularized tissue scaffolds. In this work, we evaluated different chemical and physical decellularization methods on small intestine tissues to determine the most appropriate decellularization protocols for corneal applications. Our results revealed that the most efficient decellularization agents were the SDS and triton X-100 detergents, which were able to efficiently remove most cell nuclei and residual DNA. Histological and histochemical analyses revealed that collagen fibers were preserved upon decellularization with triton X-100, NaCl and sonication, whereas reticular fibers were properly preserved by decellularization with UV exposure. Extracellular matrix glycoproteins were preserved after decellularization with SDS, triton X-100 and sonication, whereas proteoglycans were not affected by any of the decellularization protocols. Tissue transparency was significantly higher than control non-decellularized tissues for all protocols, although the best light transmittance results were found in tissues decellularized with SDS and triton X-100. In conclusion, our results suggest that decellularized intestinal grafts could be used as biological scaffolds for cornea tissue engineering. Decellularization with triton X-100 was able to efficiently remove all cells from the tissues while preserving tissue structure and most fibrillar and non-fibrillar extracellular matrix components, suggesting that this specific decellularization agent could be safely used for efficient decellularization of SI tissues for cornea TE applications.

  3. Management of a Small Paracentral Corneal Perforation Using Iatrogenic Iris Incarceration and Tissue Adhesive

    Directory of Open Access Journals (Sweden)

    Akira Kobayashi

    2012-07-01

    Full Text Available Background: Surgical intervention for corneal perforation is indicated when the anterior chamber does not reform within a short period of time. Herein, we report the successful management of a small paracentral corneal perforation using autologous iris incarceration and tissue adhesive. Case: A 41-year-old man developed a small paracentral corneal perforation (0.5 mm in size in the right eye, while the treating physician attempted to remove the residual rust ring after removal of a piece of metallic foreign body. Observations: The eye was initially managed with a bandage soft contact lens to ameliorate the aqueous leakage; however, without success. Iatrogenic iris incarceration of the wound was first induced, followed by application of cyanoacrylate tissue adhesive to the perforated site. As a result, the anterior chamber was immediately reformed and maintained. Complete corneal epithelialization of the perforation was achieved in 2 months without visual compromises. Conclusions: Cyanoacrylate tissue adhesive with iatrogenic incarceration of the autologous iris was effective in treating this type of small corneal perforation. This technique is simple and potentially useful for small paracentral corneal perforations outside the visual axis and without good apposition.

  4. Leiomyosarcoma: A rare soft tissue cancer arising from multiple organs

    Directory of Open Access Journals (Sweden)

    Zorawar Singh

    2018-03-01

    Full Text Available Leiomyosarcoma (LMS, a smooth muscle connective tissue tumor, is a rare form of cancer which accounts for 5–10% of soft tissue sarcomas. This type of cancer is highly unpredictable. LMS is a resistant type of cancer and can remain in the dormant state for long time. It can recur in the later stages of life. LMS has been reported in different animals including humans. A wide literature search was done. The PubMed database was used to search for journal articles on the occurrence of LMS in different organs from 1950 to 2016. LMS has been reported to be associated with different organs, including esophagus, stomach, intestine, anus and uterus. In this article, an attempt has been made to review the studies based on occurrence of LMS with respect to the organs affected and frequency of publications. Finding the organ-associated occurrence of LMS may be useful in assessing the overall risk and formulating future cancer preventive strategies.

  5. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization.

    Directory of Open Access Journals (Sweden)

    Pascal Joly

    Full Text Available To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM. Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1 a simple geometric description predicts cellular organization during pore filling at the cell level and that 2 pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01 and reduced once the pores were closed (ρ = 0.26±0.04 indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.

  6. Small Bowel Follow-Through

    Science.gov (United States)

    ... Small bowel follow-through uses a form of real-time x-ray called fluoroscopy and a barium-based ... Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow ...

  7. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs

    Directory of Open Access Journals (Sweden)

    Lambert Georgina M

    2005-10-01

    Full Text Available Abstract Background Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value. Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. Results We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. Conclusion The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.

  8. Experience of nurses in the process of donation of organs and tissues for transplant.

    Science.gov (United States)

    de Moraes, Edvaldo Leal; dos Santos, Marcelo José; Merighi, Miriam Aparecida Barbosa; Massarollo, Maria Cristina Komatsu Braga

    2014-01-01

    to investigate the meaning of the action of nurses in the donation process to maintain the viability of organs and tissues for transplantation. this qualitative study with a social phenomenological approach was conducted through individual interviews with ten nurses of three Organ and Tissue Procurement Services of the city of São Paulo. the experience of the nurses in the donation process was represented by the categories: obstacles experienced in the donation process, and interventions performed. The meaning of the action to maintain the viability of organs and tissues for transplantation was described by the categories: to change paradigms, to humanize the donation process, to expand the donation, and to save lives. knowledge of the experience of the nurses in this process is important for healthcare professionals who work in different realities, indicating strategies to optimize the procurement of organs and tissues for transplantation.

  9. 4D printing of polymeric materials for tissue and organ regeneration.

    Science.gov (United States)

    Miao, Shida; Castro, Nathan; Nowicki, Margaret; Xia, Lang; Cui, Haitao; Zhou, Xuan; Zhu, Wei; Lee, Se-Jun; Sarkar, Kausik; Vozzi, Giovanni; Tabata, Yasuhiko; Fisher, John; Zhang, Lijie Grace

    2017-12-01

    Four dimensional (4D) printing is an emerging technology with great capacity for fabricating complex, stimuli-responsive 3D structures, providing great potential for tissue and organ engineering applications. Although the 4D concept was first highlighted in 2013, extensive research has rapidly developed, along with more-in-depth understanding and assertions regarding the definition of 4D. In this review, we begin by establishing the criteria of 4D printing, followed by an extensive summary of state-of-the-art technological advances in the field. Both transformation-preprogrammed 4D printing and 4D printing of shape memory polymers are intensively surveyed. Afterwards we will explore and discuss the applications of 4D printing in tissue and organ regeneration, such as developing synthetic tissues and implantable scaffolds, as well as future perspectives and conclusions.

  10. {sup 90}SR and {sup 137}CS distribution in organisms of wild small mammals (Chernobyl zone)

    Energy Technology Data Exchange (ETDEWEB)

    Goryanaya, J.U.; Bondarkov, M.; Gaschak, S.; Maksimenko, A.; Barchuk, R.; Martynenko, V.; Shulga, A. [Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, Slavutych (Ukraine)

    2004-07-01

    The distribution of {sup 90}Sr and {sup 137}Cs content in tissues of small rodent mammals has been studied in detail. It was determined that for a vole Microtus the largest ratio values of {sup 137}Cs concentration in organs to one in muscles are in skin (2.02{+-}0.45) and kidneys (1.57{+-}0.29), in other tissues they are much lower. The comparison of {sup 137}Cs specific concentration in tissues with their size (mass index) has shown that the major portion of the total radionuclide concentration in the animal body is in the bone and muscle tissues aggregate (44.1 {+-} 2.8%) and in skin (24.8 {+-} 2.5%). The total content of {sup 137}Cs in a gastrointestinal tract is about 20-25%, but nevertheless, it may be assumed that it is strongly dependent on the radioactivity of food. Preliminary data show that other species of genus Microtus can have another pattern of distribution. A more detailed research was conducted for the bank vole (Clethrionomys glareolus), {sup 90}Sr and {sup 137}Cs contents in tissues were calculated. {sup 137}Cs distribution corresponds with the tissues portion in the animal's body mass (% of total content): the most in muscles 38.3, gastrointestinal tract 21.3, skin 16.7; the least in eyes 0.23, spleen 0.33, heart 0.74. The comparison of the activity concentration in each tissue with the average concentration of {sup 137}Cs in the whole body presented more evident differences between the tissues. The highest radionuclide concentration is in skin (1.48), in a slightly less degree in spleen (1.22) and eyes (1.20). The {sup 90}Sr distribution in the vole body is uneven up to 83.4% of the overall content is in bone tissues, in muscle -6.8, gastrointestinal tract - 4.2, skin - 3.9, in other tissues - 0.2-0.5%. In comparison with {sup 90}Sr average activity in the body: skeleton -10.9, eyes -1.3, spleen -1.02, and their values are much higher than in other tissues and organs. (author)

  11. Small metal soft tissue foreign body extraction by using 3D CT guidance: A reliable method

    International Nuclear Information System (INIS)

    Tao, Kai; Xu, Sen; Liu, Xiao-yan; Liang, Jiu-long; Qiu, Tao; Tan, Jia-nan; Che, Jian-hua; Wang, Zi-hua

    2012-01-01

    Objective: To introduce a useful and accurate technique for the locating and removal of small metal foreign bodies in the soft tissues. Methods: Eight patients presented with suspected small metal foreign bodies retained in the soft tissues of various body districts. Under local anesthesia, 3–6 pieces of 5 ml syringe needles or 1 ml syringe needles were induced through three different planes around the entry point of the foreign bodies. Using these finders, the small metal FBs were confirmed under 3D CT guidance. Based on the CT findings, the soft tissues were dissected along the path of the closest needle and the FBs were easily found and removed according to the relation with the closest needle finder. Results: Eight metal foreign bodies (3 slices, 3 nails, 1 fish hook, 1 needlepoint) were successfully removed under 3D CT guidance in all patients. The procedures took between 35 min and 50 min and the operation times took between 15 min and 25 min. No complications arose after the treatment. Conclusion: 3D CT-guided technique is a good alternative for the removal of small metal foreign body retained in the soft tissues as it is relatively accurate, reliable, quick, carries a low risk of complications and can be a first-choice procedure for the extraction of small metal foreign body.

  12. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  13. Sensing of EGTA Mediated Barrier Tissue Disruption with an Organic Transistor

    Directory of Open Access Journals (Sweden)

    Scherrine Tria

    2013-01-01

    Full Text Available Barrier tissue protects the body against external factors by restricting the passage of molecules. The gastrointestinal epithelium is an example of barrier tissue with the primary purpose of allowing the passage of ions and nutrients, while restricting the passage of pathogens and toxins. It is well known that the loss of barrier function can be instigated by a decrease in extracellular calcium levels, leading to changes in protein conformation and an increase in paracellular transport. In this study, ethylene glycol-bis(beta-aminoethyl ether-N,N,N',N'-tetra acetic acid (EGTA, a calcium chelator, was used to disrupt the gastrointestinal epithelial barrier. The effect of EGTA on barrier tissue was monitored by a novel label-free method based on an organic electrochemical transistor (OECT integrated with living cells and validated against conventional methods for measuring barrier tissue integrity. We demonstrate that the OECT can detect breaches in barrier tissue upon exposure to EGTA with the same sensitivity as existing methods but with increased temporal resolution. Due to the potential of low cost processing techniques and the flexibility in design associated with organic electronics, the OECT has great potential for high-throughput, disposable sensing and diagnostics.

  14. Tissue engineering as a potential alternative or adjunct to surgical reconstruction in treating pelvic organ prolapse

    DEFF Research Database (Denmark)

    Boennelycke, M; Gräs, Søren; Lose, G

    2013-01-01

    Cell-based tissue engineering strategies could potentially provide attractive alternatives to surgical reconstruction of native tissue or the use of surgical implants in treating pelvic organ prolapse (POP).......Cell-based tissue engineering strategies could potentially provide attractive alternatives to surgical reconstruction of native tissue or the use of surgical implants in treating pelvic organ prolapse (POP)....

  15. Experience of nurses in the process of donation of organs and tissues for transplant

    Directory of Open Access Journals (Sweden)

    Edvaldo Leal de Moraes

    2014-04-01

    Full Text Available OBJECTIVE: to investigate the meaning of the action of nurses in the donation process to maintain the viability of organs and tissues for transplantation.METHOD: this qualitative study with a social phenomenological approach was conducted through individual interviews with ten nurses of three Organ and Tissue Procurement Services of the city of São Paulo.RESULTS: the experience of the nurses in the donation process was represented by the categories: obstacles experienced in the donation process, and interventions performed. The meaning of the action to maintain the viability of organs and tissues for transplantation was described by the categories: to change paradigms, to humanize the donation process, to expand the donation, and to save lives.FINAL CONSIDERATIONS: knowledge of the experience of the nurses in this process is important for healthcare professionals who work in different realities, indicating strategies to optimize the procurement of organs and tissues for transplantation.

  16. A rapid and quantitative method to determine the tritium content in DNA from small tissue sampes

    International Nuclear Information System (INIS)

    Kasche, V.; Zoellner, R.

    1979-01-01

    A rapid and quantitative two-step procedure to isolate double-strand DNA from small (10-100 mg) animal tissue samples is presented. The method is developed for investigations to evaluate the relative importance of organically bound tritium for the dose factors used to calculate dose commitments due to this nuclide. In the first step the proteins in the homogenized sample are hydrolysed, at a high pH (9.0) and ionic strength (1.5) to dissociate protein from DNA, using immobilized Proteinase K as a proteolytic enzyme. The DNA is then absorbed to hydroxylapatite and separated from impurities by step-wise elution with buffers of increasing ionic strength. More than 90% of the DNA in the samples could be isolated in double-strand form by this procedure. The method has been applied to determine pool-sizes and biological half-life times of tritium in DNA from various animal (mouse) tissues. It has also been shown to be suitable in other radiobiological studies where effects on DNA are investigated. (author)

  17. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  18. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  19. The promise of organ and tissue preservation to transform medicine.

    Science.gov (United States)

    Giwa, Sebastian; Lewis, Jedediah K; Alvarez, Luis; Langer, Robert; Roth, Alvin E; Church, George M; Markmann, James F; Sachs, David H; Chandraker, Anil; Wertheim, Jason A; Rothblatt, Martine; Boyden, Edward S; Eidbo, Elling; Lee, W P Andrew; Pomahac, Bohdan; Brandacher, Gerald; Weinstock, David M; Elliott, Gloria; Nelson, David; Acker, Jason P; Uygun, Korkut; Schmalz, Boris; Weegman, Brad P; Tocchio, Alessandro; Fahy, Greg M; Storey, Kenneth B; Rubinsky, Boris; Bischof, John; Elliott, Janet A W; Woodruff, Teresa K; Morris, G John; Demirci, Utkan; Brockbank, Kelvin G M; Woods, Erik J; Ben, Robert N; Baust, John G; Gao, Dayong; Fuller, Barry; Rabin, Yoed; Kravitz, David C; Taylor, Michael J; Toner, Mehmet

    2017-06-07

    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science.

  20. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Matsuzawa, T

    1975-06-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140 to 300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200 to 300 days postirradiation showed mucoid adenocarcinoma.

  1. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Matsuzawa, Taiju.

    1975-01-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140-300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200-300 days postirradiation showed mucoid adenocarcinoma. (author)

  2. Family perspectives on organ and tissue donation for transplantation: a principlist analysis.

    Science.gov (United States)

    Dos Santos, Marcelo José; Feito, Lydia

    2017-01-01

    The family interview context is permeated by numerous ethical issues which may generate conflicts and impact on organ donation process. This study aims to analyze the family interview process with a focus on principlist bioethics. This exploratory, descriptive study uses a qualitative approach. The speeches were collected using the following prompt: "Talk about the family interview for the donation of organs and tissues for transplantation, from the preparation for the interview to the decision of the family to donate or not." For the treatment of qualitative data, we chose the method of content analysis and categorical thematic analysis. The study involved 18 nurses who worked in three municipal organ procurement organizations in São Paulo, Brazil, and who conducted family interviews for organ donation. Ethical considerations: The data were collected after approval of the study by the Research Ethics Committee of the School of Nursing of the University of São Paulo. The results were classified into four categories and three subcategories. The categories are the principles adopted by principlist bioethics. The principles of autonomy, beneficence, non-maleficence, and justice permeate the family interview and reveal their importance in the organs and tissues donation process for transplantation. The analysis of family interviews for the donation of organs and tissues for transplantation with a focus on principlist bioethics indicates that the process involves many ethical considerations. The elucidation of these aspects contributes to the discussion, training, and improvement of professionals, whether nurses or not, who work in organ procurement organizations and can improve the curriculum of existing training programs for transplant coordinators who pursue ethics in donation and transplantation as their foundation.

  3. How to engage small retail businesses in workplace violence prevention: Perspectives from small businesses and influential organizations.

    Science.gov (United States)

    Bruening, Rebecca A; Strazza, Karen; Nocera, Maryalice; Peek-Asa, Corinne; Casteel, Carri

    2015-06-01

    Small retail businesses experience high robbery and violent crime rates leading to injury and death. Workplace violence prevention programs (WVPP) based on Crime Prevention Through Environmental Design reduce this risk, but low small business participation limits their effectiveness. Recent dissemination models of occupational safety and health information recommend collaborating with an intermediary organization to engage small businesses. Qualitative interviews with 70 small business operators and 32 representatives of organizations with small business influence were conducted to identify factors and recommendations for improving dissemination of a WVPP. Both study groups recommended promoting WVPPs through personal contacts but differed on other promotion methods and the type of influential groups to target. Small business operators indicated few connections to formal business networks. Dissemination of WVPPs to small businesses may require models inclusive of influential individuals (e.g., respected business owners) as intermediaries to reach small businesses with few formal connections. © 2015 Wiley Periodicals, Inc.

  4. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    Science.gov (United States)

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    Science.gov (United States)

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  6. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl.

    Science.gov (United States)

    Demircan, Turan; İlhan, Ayşe Elif; Aytürk, Nilüfer; Yıldırım, Berna; Öztürk, Gürkan; Keskin, İlknur

    2016-09-01

    Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson's trichrome, Alcian blue, Orcein and Weigart's staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  8. Radioisotopic method for the measurement of lipolysis in small samples of human adipose tissue

    International Nuclear Information System (INIS)

    Leibel, R.L.; Hirsch, J.; Berry, E.M.; Gruen, R.K.

    1984-01-01

    To facilitate the study of adrenoreceptor response in small needle biopsy samples of human subcutaneous adipose tissue, we developed a dual radioisotopic technique for measuring lipolysis rate. Aliquots (20-75 mg) of adipose tissue fragments were incubated in a buffered albumin medium containing [ 3 H]palmitate and [ 14 C]glucose, each of high specific activity. In neutral glycerides synthesized in this system, [ 14 C]glucose is incorporated exclusively into the glyceride-glycerol moiety and 3 H appears solely in the esterified fatty acid. Alpha-2 and beta-1 adrenoreceptor activation of tissue incubated in this system does not alter rates of 14 C-labeled glyceride accumulation, but does produce a respective increase or decrease in the specific activity of fatty acids esterified into newly synthesized glycerides. This alteration in esterified fatty acid specific activity is reflected in the ratio of 14 C: 3 H in newly synthesized triglycerides extracted from the incubated adipose tissue. There is a high correlation (r . 0.90) between the 14 C: 3 H ratio in triglycerides and the rate of lipolysis as reflected in glycerol release into the incubation medium. The degree of adrenoreceptor activation by various concentrations of lipolytic and anti-lipolytic substances can be assessed by comparing this ratio in stimulated tissue to that characterizing unstimulated tissue or the incubation medium. This technique permits the study of very small, unweighed tissue biopsy fragments, the only limitation on sensitivity being the specific activity of the medium glucose and palmitate. It is, therefore, useful for serial examinations of adipose tissue adrenoreceptor dose-response characteristics under a variety of clinical circumstances

  9. Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection.

    Science.gov (United States)

    Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N

    1998-10-01

    Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.

  10. Potential and Actual Neonatal Organ and Tissue Donation After Circulatory Determination of Death.

    Science.gov (United States)

    Stiers, Justin; Aguayo, Cecile; Siatta, Angela; Presson, Angela P; Perez, Richard; DiGeronimo, Robert

    2015-07-01

    The need for transplants continues to exceed organ and tissue donor availability. Although recent surgical advances have resulted in successful transplants using very small pediatric donors, including neonates, the actual practice of neonatal organ donation after circulatory determination of death (DCDD) remains uncommon. To describe the percentage of neonates potentially eligible for DCDD, including those who underwent successful donation, and reasons for ineligibility in those who did not in a single neonatal intensive care unit (NICU). We obtained data from the Children's Hospital Neonatal Database and Intermountain Donor Services (IDS) organ procurement records. The 136 deaths that occurred in the NICU of the Primary Children's Hospital, Salt Lake City, Utah, from January 1, 2010, through May 7, 2013, were reviewed retrospectively from January 12 through July 1, 2014, to determine potential eligibility for DCDD as determined by IDS minimum eligibility criteria (requirement of life-sustaining interventions and weight >2 kg). For patients who did not undergo DCDD, we reviewed records to determine the reasons for ineligibility. Potential eligibility for DCDD among neonates who died in the study NICU. Of 136 deaths in the NICU, 60 (44.1%) met criteria for DCDD; however, fewer than 10% were referred appropriately to the regional organ procurement organization for evaluation. Forty-five neonates (33.1%) ultimately died within 90 minutes of withdrawal of life-sustaining interventions and thus would have been eligible for organ donation based on warm ischemic time. The most common causes of death among the 60 potentially eligible neonatal donors were neonatal encephalopathy (n = 17) and multiple congenital anomalies (n = 14). Nonreferral or late referral by the medical team was the most frequent reason for donor ineligibility, including 49 neonates (36.0%). Overall, only 4 neonates (2.9%) underwent successful DCDD. Although almost half of all neonatal deaths

  11. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    Science.gov (United States)

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  12. The promise of organ and tissue preservation to transform medicine

    Science.gov (United States)

    Giwa, Sebastian; Lewis, Jedediah K; Alvarez, Luis; Langer, Robert; Roth, Alvin E; Church, George M; Markmann, James F; Sachs, David H; Chandraker, Anil; Wertheim, Jason A; Rothblatt, Martine; Boyden, Edward S; Eidbo, Elling; Lee, W P Andrew; Pomahac, Bohdan; Brandacher, Gerald; Weinstock, David M; Elliott, Gloria; Nelson, David; Acker, Jason P; Uygun, Korkut; Schmalz, Boris; Weegman, Brad P; Tocchio, Alessandro; Fahy, Greg M; Storey, Kenneth B; Rubinsky, Boris; Bischof, John; Elliott, Janet A W; Woodruff, Teresa K; Morris, G John; Demirci, Utkan; Brockbank, Kelvin G M; Woods, Erik J; Ben, Robert N; Baust, John G; Gao, Dayong; Fuller, Barry; Rabin, Yoed; Kravitz, David C; Taylor, Michael J; Toner, Mehmet

    2017-01-01

    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science. PMID:28591112

  13. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs

    NARCIS (Netherlands)

    Jonge, de N.; Kanters, F.M.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    2013-01-01

    Full understanding of strain-induced collagen organization in complex tissue geometries to create tissues with predefined collagen architecture has not been achieved. This is mainly due to our limited knowledge of collagen remodeling in developing tissues. Here we investigate strain-induced collagen

  14. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  15. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    Science.gov (United States)

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  16. Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment

    International Nuclear Information System (INIS)

    Talmage, S.S.; Walton, B.T.

    1990-08-01

    The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparative evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo[a]pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs

  17. Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA)); Walton, B.T. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparative evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo(a)pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs.

  18. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics

    DEFF Research Database (Denmark)

    Manohara, S. R.; Hanagodimath, S. M.; Gerward, Leif

    2011-01-01

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary......, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor...... of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Zeff. These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues...

  19. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  20. Small mammals as monitors of environmental contaminants

    International Nuclear Information System (INIS)

    Talmage, S.S.; Walton, B.T.

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants

  1. Leading Efforts to Increase Organ Donation Through Professionalization of Organ Procurement Organizations and Establishment of Organ and Tissue Donor Registries.

    Science.gov (United States)

    Vertanous, T; Czer, L S C; de Robertis, M; Kiankhooy, A; Kobashigawa, J; Esmailian, F; Trento, A

    2016-01-01

    The influence of new donor registrations through the California Organ and Tissue Donor Registry on the local OneLegacy Organ Procurement Organization (OPO) was examined during a 6-year period. Publicly available data from Donate Life America for California were examined for the 6 calendar years of 2009-2014. Performance data from OneLegacy for the same 6 years for organ donors and number of transplants were also examined. The donor designation rate (DDR) was defined as the rate at which new individuals joined the state donor registry as a percentage of all driver licenses and ID cards issued within a calendar year. The total donor designation (TDD) was defined as the sum of the new and existing people who were registered organ donors. Donor designation share (DDS) was the total number of designated donors as a percentage of all residents of the state who were ≥18 years old. The business practices and educational efforts of the OneLegacy OPO were examined as well. In California, from 2009 through 2014, the DDR was 25.5%-28%. When added to the existing donor registrations, the TDD and DDS increased each year from 2009 through 2014. With the current level of growth, it is projected that California will be able to reach a DDS of 50% by 2017. For the OneLegacy OPO, designated donors from the California Organ and Tissue Donor Registry made up 15% of the total donations in 2009, and 39% of the total donations in 2014, increasing by ∼5% each year since 2009. By increasing professionalization and transparency, and widening its educational and training efforts, OneLegacy was able to take advantage of an increasing percentage of donors who were designated donors and to increase the overall number of donors and organs transplanted, becoming one of the largest OPOs in the nation. This can be a model for OPOs in other donor service areas, and it may set the stage for the United States to serve as an example to the global community in the practice of organ donation. Copyright

  2. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi.

    Science.gov (United States)

    Takata, Nozomu; Sakakura, Eriko; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.

  3. Chromatin immunoprecipitation improvements for the processing of small frozen pieces of adipose tissue.

    Directory of Open Access Journals (Sweden)

    Daniel Castellano-Castillo

    Full Text Available Chromatin immunoprecipitation (ChIP has gained importance to identify links between the genome and the proteome. Adipose tissue has emerged as an active tissue, which secretes a wide range of molecules that have been related to metabolic and obesity-related disorders, such as diabetes, cardiovascular failure, metabolic syndrome, or cancer. In turn, epigenetics has raised the importance in discerning the possible relationship between metabolic disorders, lifestyle and environment. However, ChIP application in human adipose tissue is limited by several factors, such as sample size, frozen sample availability, high lipid content and cellular composition of the tissue. Here, we optimize the standard protocol of ChIP for small pieces of frozen human adipose tissue. In addition, we test ChIP for the histone mark H3K4m3, which is related to active promoters, and validate the performance of the ChIP by analyzing gene promoters for factors usually studied in adipose tissue using qPCR. Our improvements result in a higher performance in chromatin shearing and DNA recovery of adipocytes from the tissue, which may be useful for ChIP-qPCR or ChIP-seq analysis.

  4. Elimination of copper in tissues and organs of rainbow trout

    Directory of Open Access Journals (Sweden)

    Gaye Dogan

    2011-01-01

    Full Text Available Copper (Cu elimination was investigated in the tissue and organs of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792, after Cu-free diets exposure. In the current study, fish were fed to satiation on diets containing 0.022 (Group 1; Control, 0.043 (Group 2, 0.123 (Group 3, 0.424 (Group 4 g Cu*kg-1 diet for 60 days before elimination experiment. A total of 288 fish (mean weight 84.28±1.05 g were randomly transferred to 12 fibreglass tanks. The fish were fed the Cu-free diet twice daily, until apparent satiation, during 60 days. Subsequently, the experiment was established for a period of elimination, during which samples were taken at days 15, 30, 45 and 60. Cu concentration in the muscle, gill tissue, digestive system, liver and whole body of fish were determined after 60 days depuration. Cu concentrations in tissues of rainbow trout decreased during depuration period, and the order of Cu elimination in tissue and organs of rainbow trout was: digestive system (73.1 %, then gill (41.1 %, muscle (31.5 % and liver (17.2 % for group 2; digestive system (74.1%, then muscle (65.8%, gill (60.0% and liver (34.6% for group 3; and digestive system (85.8%, then muscle (80.8%, liver (50.5% and less/equal in gill (50.2% for group 4. In statistical analysis, both groups and time were significant factors (P less than 0.05 on elimination rate. Moreover, significant interaction between groups and time were identified on elimination rate. Digestive system showed the fastest elimination rates of Cu at all groups compared with other tissues.

  5. A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.

    Science.gov (United States)

    Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S

    2018-02-26

    In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff  = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose

  6. Whole body plastination, intra-organ heterogeneity, and tissue based diagnosis – a survey

    Directory of Open Access Journals (Sweden)

    Gunther von Hagens

    2018-04-01

    Full Text Available  Background: The corpse is the final structural relict of life. Its detailed analysis, the autopsy formed the basis and contributed significantly to our understanding of location, function and interaction of organs in man. Today, autopsies are performed rarely. They have been replaced by radiological in vivo visualization techniques and the analysis of organ excisions and biopsies. Which attributes do whole body preservations possess in this context? Techniques of Whole Body Analysis: In vivo imaging transfers the appearance of body organs and cellular structures in virtual images. The patient’s exposure to X-rays, fundamental particles (electrons, positrons, etc., strong magnetic fields (nuclear resonance, or ultra sounds release the corresponding signals. The obtained images are interpreted in search for local abnormalities such as cancer, acute and chronic infections, inborn errors, hypertrophy or atrophy. Autopsies require the removal and visual inspection of organs shortly after the victim’s death. In addition, tissue probes of suspicious lesions are fixed and microscopically analyzed. The search for gene or protein abnormalities are added dependent upon the clinical history and gross findings. The whole body plastination is performed in separated steps which include fixation, anatomical dissection, forced polymer impregnation, positioning and curing. Organs and other tissue structures can be taken out of the body and separately demonstrated, or aligned and fixed within the body. Additional tissue examinations are possible at this stage, which is followed by hardening and fixation of the still flexible body. Fixation is done with heat, light or gas.   Results and Interpretation: Tissue conservation is a prerequisite to analyze and investigate in diagnosis and forecast of disease occurrence and behaviour. In history, autopsies have opened the door to localize the position and to understand the functions of organs. Today, they have been

  7. Cross-Organizational Knowledge Sharing: Information Reuse in Small Organizations

    Science.gov (United States)

    White, Kevin Forsyth

    2010-01-01

    Despite the potential value of leveraging organizational memory and expertise, small organizations have been unable to capitalize on its promised value. Existing solutions have largely side-stepped the unique needs of these organizations, which are relegated to systems designed to take advantage of large pools of experts or to use Internet sources…

  8. Wavelet-based feature extraction applied to small-angle x-ray scattering patterns from breast tissue: a tool for differentiating between tissue types

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Evans, A; Rogers, K; Lewis, R

    2006-01-01

    This paper reports on the application of wavelet decomposition to small-angle x-ray scattering (SAXS) patterns from human breast tissue produced by a synchrotron source. The pixel intensities of SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet coefficients. Statistical analysis found significant differences between the wavelet coefficients describing the patterns produced by different tissue types. These differences were then correlated with position in the image and have been linked to the supra-molecular structural changes that occur in breast tissue in the presence of disease. Specifically, results indicate that there are significant differences between healthy and diseased tissues in the wavelet coefficients that describe the peaks produced by the axial d-spacing of collagen. These differences suggest that a useful classification tool could be based upon the spectral information within the axial peaks

  9. Children as donors: a national study to assess procurement of organs and tissues in pediatric intensive care units.

    Science.gov (United States)

    Siebelink, Marion J; Albers, Marcel J I J; Roodbol, Petrie F; Van de Wiel, Harry B M

    2012-12-01

    A shortage of size-matched organs and tissues is the key factor limiting transplantation in children. Empirical data on procurement from pediatric donors is sparse. This study investigated donor identification, parental consent, and effectuation rates, as well as adherence to the national protocol. A national retrospective cohort study was conducted in all eight Dutch pediatric intensive care units. Records of deceased children were analyzed by an independent donation officer. Seventy-four (11%) of 683 deceased children were found to be suitable for organ donation and 132 (19%) for tissue donation. Sixty-two (84%) potential organ donors had been correctly identified; the parental consent and effectuation rate was 42%. Sixty-three (48%) potential tissue donors had been correctly identified; the parental consent and effectuation rate was 27%. Correct identification increased with age (logistic regression, organs: P = .024; tissues: P = .011). Although an overall identification rate of 84% of potential organ donors may seem acceptable, the variation observed suggests room for improvement, as does the overall low rate of identification of pediatric tissue donors. Efforts to address the shortage of organs and tissues for transplantation in children should focus on identifying potential donors and on the reasons why parents do not consent. © 2012 The Authors. Transplant International © 2012 European Society for Organ Transplantation.

  10. Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization

    Science.gov (United States)

    Archambault-Wallenburg, Marika

    Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.

  11. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  12. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  13. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  14. Design & Implementation of IP-PBX for Small Business Organization

    OpenAIRE

    Mr. Sandeep R. Sonaskar; Dr. M. M. Khanapurkar

    2012-01-01

    Most of the small business organization uses old Electronics Private Branch Exchange (EPBX) System for the telephony communication. This EPBX is now could be replaced by Internet protocol telephony PBX called IP-PBX which uses Intranet as a backbone as each organization has pre installed local area network. The network architecture for the IPPBX system is easy to design

  15. Expression cartography of human tissues using self organizing maps

    Directory of Open Access Journals (Sweden)

    Löffler Markus

    2011-07-01

    Full Text Available Abstract Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs. SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues. SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues

  16. Fast and Simple Protocols for Mass Spectrometry-Based Proteomics of Small Fresh Frozen Uterine Tissue Sections

    NARCIS (Netherlands)

    Dapic, I.; Uwugiaren, N.; Jansen, P.J.; Corthals, G.L.

    2017-01-01

    Human tissues are an important link between organ-specific spatial molecular information, patient pathology, and patient treatment options. However, patient tissues are uniquely obtained by time and location, and limited in their availability and size. Currently, little knowledge exists about

  17. Experience of nurses in the process of donation of organs and tissues for transplant

    OpenAIRE

    Moraes,Edvaldo Leal de; Santos,Marcelo José dos; Merighi,Miriam Aparecida Barbosa; Massarollo,Maria Cristina Komatsu Braga

    2014-01-01

    OBJECTIVE: to investigate the meaning of the action of nurses in the donation process to maintain the viability of organs and tissues for transplantation.METHOD: this qualitative study with a social phenomenological approach was conducted through individual interviews with ten nurses of three Organ and Tissue Procurement Services of the city of São Paulo.RESULTS: the experience of the nurses in the donation process was represented by the categories: obstacles experienced in the donation proce...

  18. "Coaching the Camp Coach: Leadership Development for Small Organizations" Resource Review

    Directory of Open Access Journals (Sweden)

    Jason Hedrick

    2009-09-01

    Full Text Available Coaching is an important component of successful professional growth for leaders within any organization. However, organizations with limited resources may have challenges providing such coaching opportunities. This can be especially true for small business, non profit organizations and summer camps. “Coaching the Camp Coach; Leadership Development for Small Organizations” by Shelton, M. (2003 provides a framework, both in theory and practice, for camp leaders to improve interpersonal and intrapersonal skills through self evaluation. Accompanying the book is a CD-ROM that has multiple worksheets to be used in conjunction with the text.

  19. Clinical and biochemical manifestations of undifferentiated forms of connective tissue dysplasia in pregnant women with varicose veins of small pelvis

    Directory of Open Access Journals (Sweden)

    N.M. Shibelgut

    2010-03-01

    Full Text Available Research objective is to define the pathogenesis of varicous veins of small pelvis in women. at Ultrasonic investigation of venous system of small pelvis has been carried out in 290 pregnant women. It revealed 190 patients with varicose veins of small pelvis (VVSP. By means of V.M. Jakovleva's technique phenotypic menifestation of connective tissue dysplasia was determined in all pregnant women. Biochemical manifestations of connective tissue dysplasia were identified by sialic acid level in blood serum, daily excretion of glycosaminoglycans and oxyproline. High frequency of clinical and biochemical manifestations of undifferentiated forms of connective tissue dysplasia was revealed in pregnant women with VVSP. Patients with VVSP developed tooth and jaw, facial and locomotor damages. Patients with VVSP characterized by visceral undifferentiated forms of connective tissue dysplasia demonstrated by refraction involvement, ventral hernias, flat feet, varicous veins of lower extremities, hypermobile syndrome, mitral valve prolapse of different degree. Biochemical manifestations of undifferentiated forms of connective tissue dysplasia in pregnant women with VVSP were insignificant

  20. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Science.gov (United States)

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  1. Validation of a power-law noise model for simulating small-scale breast tissue

    International Nuclear Information System (INIS)

    Reiser, I; Edwards, A; Nishikawa, R M

    2013-01-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. (paper)

  2. Laser surgery for selected small animal soft-tissue conditions

    Science.gov (United States)

    Bartels, Kenneth E.

    1991-05-01

    With the acquisition of a Nd:YAG and a CO2 laser in the College of Veterinary Medicine at Oklahoma State University in 1989, over 100 small animal clinical cases have been managed with these modern modalities for surgical excision and tissue vaporization. Most procedures have been for oncologic problems, but inflammatory, infectious, or congenital conditions including vaporization of acral lick 'granulomas,' excision/vaporization of foreign body induced, infected draining tracts, and resection of elongated soft palates have been successfully accomplished. Laser excision or vaporization of both benign and malignant neoplasms have effectively been performed and include feline nasal squamous cell carcinoma, mast cell tumors, and rectal/anal neoplasms. Results to date have been excellent with animals exhibiting little postoperative pain, swelling, and inflammation. Investigations involving application of laser energy for tissue welding of esophageal lacerations and hepatitic interstitial hyperthermia for metastatic colorectal cancer have also shown potential. A review of cases with an emphasis on survival time and postoperative morbidity suggests that carefully planned laser surgical procedures in clinical veterinary practice done with standardized protocols and techniques offer an acceptable means of treating conditions that were previously considered extremely difficult or virtually impossible to perform.

  3. Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives.

    Science.gov (United States)

    Ravnic, Dino J; Leberfinger, Ashley N; Koduru, Srinivas V; Hospodiuk, Monika; Moncal, Kazim K; Datta, Pallab; Dey, Madhuri; Rizk, Elias; Ozbolat, Ibrahim T

    2017-07-01

    : Three-dimensional (3D) bioprinting is a revolutionary technology in building living tissues and organs with precise anatomic control and cellular composition. Despite the great progress in bioprinting research, there has yet to be any clinical translation due to current limitations in building human-scale constructs, which are vascularized and readily implantable. In this article, we review the current limitations and challenges in 3D bioprinting, including in situ techniques, which are one of several clinical translational models to facilitate the application of this technology from bench to bedside. A detailed discussion is made on the technical barriers in the fabrication of scalable constructs that are vascularized, autologous, functional, implantable, cost-effective, and ethically feasible. Clinical considerations for implantable bioprinted tissues are further expounded toward the correction of end-stage organ dysfunction and composite tissue deficits.

  4. Registration for deceased organ and tissue donation among Ontario immigrants: a population-based cross-sectional study.

    Science.gov (United States)

    Li, Alvin Ho-Ting; Lam, Ngan N; Dhanani, Sonny; Weir, Matthew; Prakash, Versha; Kim, Joseph; Knoll, Greg; Garg, Amit X

    2016-01-01

    Canada has low rates of deceased organ and tissue donation. Immigrants to Canada may differ in their registered support for deceased organ donation based on their country of origin. We used linked administrative databases in Ontario (about 11 million residents aged ≥ 16 yr) to study the proportion of immigrants and long-term residents registered for deceased organ and tissue donation as of October 2013. We used modified Poisson regression to identify and quantify predictors of donor registration. Compared with long-term residents ( n = 9 244 570), immigrants ( n = 1 947 646) were much less likely to register for deceased organ and tissue donation (11.9% v. 26.5%). Immigrants from the United States, Australia and New Zealand had the highest registration rate (40.0%), whereas immigrants with the lowest registration rates were from Eastern Europe and Central Asia (9.4%), East Asia and Pacific (8.4%) and sub-Saharan Africa (7.9%). The largest numbers of unregistered immigrants were from India ( n = 202 548), China ( n = 186 678) and the Philippines ( n = 125 686). Characteristics among the immigrant population associated with a higher likelihood of registration included economic immigrant status, living in a rural area (population speak English and French, and more years residing in Canada. Immigrants in Ontario were less likely to register for deceased organ and tissue donation than long-term residents. There is a need to better understand reasons for lower registration rates among Canadian immigrants and to create culture-sensitive materials to build support for deceased organ and tissue donation.

  5. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis

    OpenAIRE

    Papusheva, Ekaterina; Heisenberg, Carl-Philipp

    2010-01-01

    The Heisenberg laboratory reviews the spatial organization of signalling complexes at cell–matrix and cell–cell contact sites and its impact on cell integrity, cellular polarity and tissue morphogenesis.

  6. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    Science.gov (United States)

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  7. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization.

    Science.gov (United States)

    Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan

    2018-04-27

    Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles

    Science.gov (United States)

    Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo

    2018-03-01

    In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.

  9. Modelling organs, tissues, cells and devices using Matlab and Comsol multiphysics

    CERN Document Server

    Dokos, Socrates

    2017-01-01

    This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

  10. THE ORGANIZATION OF MANAGEMENT ACCOUNTING AT SMALL ENTERPRISES IN UKRAINE

    OpenAIRE

    Nadiya Khocha

    2017-01-01

    The purpose of the research is to study the organization of managerial accounting in Ukrainian small enterprises. Methodology. The survey of management accounting is conducted by an interview with the manager/ chief accountant/financial director of small enterprises, or by sending the questionnaires to these persons via the e-mail. The sample of study includes fifty-five small enterprises of the Lviv region in different types of activities and forms of ownership. Results. Analysis of theoreti...

  11. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?

    Science.gov (United States)

    Nigam, Sanjay K

    2013-12-01

    Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.

  12. Development of tissue bank

    Directory of Open Access Journals (Sweden)

    R P Narayan

    2012-01-01

    Full Text Available The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole.

  13. Small organic molecule based flow battery

    Science.gov (United States)

    Huskinson, Brian; Marshak, Michael; Aziz, Michael J.; Gordon, Roy G.; Betley, Theodore A.; Aspuru-Guzik, Alan; Er, Suleyman; Suh, Changwon

    2018-05-08

    The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.

  14. Profile of effective donors from organ and tissue procurement services

    Science.gov (United States)

    Rodrigues, Simey de Lima Lopes; Ferraz Neto, Jose Ben-Hur de Escobar; Sardinha, Luiz Antonio da Costa; Araujo, Sebastião; Zambelli, Helder Jose Lessa; Boin, Ilka de Fátima Santana Ferreira; Athayde, Maria Valeria de Omena; Montone, Eliete Bombarda Bachega; Panunto, Marcia Raquel

    2014-01-01

    Objective To characterize the profile of effective organ and tissue donors and to understand which organs and tissues were donated for transplantation. Methods This was a quantitative, descriptive, exploratory, retrospective study that analyzed clinical data from 305 donors between January 2006 to December 2010. The data were then analyzed using descriptive analyses, generating frequency tables, measures of position (mean, minimum and maximum) and measures of dispersion (standard deviation) for data that was social and clinical in nature. Results There was an overall predominance of white (72%) and male (55%) individuals between the ages of 41 and 60 years (44%). The primary cause of brain death was cerebrovascular accident (55%). In the patient history, 31% of the patients were classified as overweight, 27% as hypertensive and only 4.3% as having diabetes mellitus. Vasoactive drugs were used in 92.7% of the donors, and the main drug of choice was noradrenaline (81.6%). Hyperglycemia and hypernatremia were diagnosed in 78% and 71% of the donors, respectively. Conclusion Significant hemodynamic changes were found, and the results indicate that the use of vasoactive drugs was the main strategy used to control these changes. Furthermore, most donors presented with hyperglycemia and hypernatremia, which were frequently reported in association with brain death. The persistent nature of these findings suggests that the organ donors were inadequately maintained. PMID:24770685

  15. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering

    NARCIS (Netherlands)

    Stamatialis, Dimitrios; Papenburg, B.J.; Girones nogue, Miriam; Saiful, S.; Bettahalli Narasimha, M.S.; Schmitmeier, Stephanie; Wessling, Matthias

    2008-01-01

    This paper covers the main medical applications of artificial membranes. Specific attention is given to drug delivery systems, artificial organs and tissue engineering which seem to dominate the interest of the membrane community this period. In all cases, the materials, methods and the current

  16. Cause marketing for tissue and organ donation to increase public awareness

    International Nuclear Information System (INIS)

    Strong, M.; Neely, D.; Warnack, K.; Willits, M.; Yriondo, L.

    1999-01-01

    Today the science of marketing is being applied more and more to increase the rate of tissue and organ donation in the United States. To benefit from the proven tools and techniques of successful marketing in the for-profit world transplantation agencies across the country are turning to integrated marketing communications strategies and strategic partnerships to help achieve their goals.The methods used in cause marketing include: Establishing clear and measurable outcomes and goals; building a marketing plan and timeline to achieve the goals; gathering resources (funding, personnel, organizations, partnerships) to execute the plan, implementation, and measurement of outcomes. This session will review the Tissue and Organ Donation campaign implemented in the Northwest and will touch on the national awareness program developed by United Network for Organ Sharing (UNOS) in the United States. Segments of the Northwest's integrated campaign will include market segmentation strategies and targeted marketing, campaign development, public service advertising and public education campaigns. Media utilized include print, bus signs and billboards, broadcast (radio and TV), video and the internet. Strategies include public service advertising, paid advertising through sponsorships, direct mail, workshops and public speaking. The success of traditional product marketing can be achieved in cause marketing with a long-term, focused public education campaign. The potential benefit to the international community warrants exploration of similar strategies to overcome cultural resistance to life saving transplantation

  17. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  18. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  19. Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction.

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Yakubov

    Full Text Available Tissue transglutaminase (TG2 mediates protein crosslinking through generation of ε-(γ-glutamyl lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53 potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination.

  20. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  1. THE ORGANIZATION OF MANAGEMENT ACCOUNTING AT SMALL ENTERPRISES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Nadiya Khocha

    2017-09-01

    Full Text Available The purpose of the research is to study the organization of managerial accounting in Ukrainian small enterprises. Methodology. The survey of management accounting is conducted by an interview with the manager/ chief accountant/financial director of small enterprises, or by sending the questionnaires to these persons via the e-mail. The sample of study includes fifty-five small enterprises of the Lviv region in different types of activities and forms of ownership. Results. Analysis of theoretical base of Ukrainian scholars and the experience of management accounting in foreign small enterprises allowed distinguishing three main stages of the study. Summarizing the results of the survey, received on the base of the questionnaire of the first stage “Information for management decision-making”, we can conclude that the main source of information for the manager in making managerial decisions are the operational reports or their combination with financial assessment; the preparation of such information is made by chief accountant (outsourcer, who submits it to the chief manager daily, once per week or month. The indicators of financial reporting, analytical information, obtained on the base of management accounting methods, as well as non-financial indicators that characterize the economic activities of a small enterprise, are the basis for managers in managerial decision-making. The results of the second stage “Practice of conducting the management accounting” show that, in order to improve the financial position of small enterprises, their managers use information derived from the application of methods of operational and strategic management accounting. However, the level of their implementation is rather low since most small entities use only one of the methods of operational and strategic management accounting. It is defined that the number of management accounting methods used by small enterprises is higher if the founders are foreign

  2. DMPD: Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs andCTRPs. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17681884 Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs an...ng) (.svg) (.html) (.csml) Show Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs andC...TRPs. PubmedID 17681884 Title Adipose tissue as an immunological organ: Toll-like

  3. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Science.gov (United States)

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  4. Tertiary Intratumor Lymphoid Tissue in Colo-Rectal Cancer

    OpenAIRE

    Bergomas, Francesca; Grizzi, Fabio; Doni, Andrea; Pesce, Samantha; Laghi, Luigi; Allavena, Paola; Mantovani, Alberto; Marchesi, Federica

    2011-01-01

    Ectopic (or tertiary) lymphoid tissue develops at sites of inflammation or infection in non lymphoid organs and is associated with chronic inflammation. In colon mucosa, small lymphoid aggregates are already present in homeostatic conditions, as part of the gut-associated lymphoid tissue and play an essential role in the immune response to perturbations of the mucosal microenvironment. Despite the recognized role of inflammation in tumor progression, the presence and biological function of ly...

  5. Investigation of Annealing and Blend Concentration Effects of Organic Solar Cells Composed of Small Organic Dye and Fullerene Derivative

    Directory of Open Access Journals (Sweden)

    Yasser A. M. Ismail

    2011-01-01

    Full Text Available We have fabricated bulk heterojunction organic solar cells using coumarin 6 (C6 as a small organic dye, for light harvesting and electron donation, with fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM, acting as an electron acceptor, by spin-coating technique. We have investigated thermal annealing and blend concentration effects on light harvesting, photocurrent, and performance parameters of the solar cells. In this work, we introduced an experimental method by which someone can easily detect the variation in the contact between active layer and cathode due to thermal annealing after cathode deposition. We have showed, in this work, unusual behavior of solar cell composed of small organic molecules under the influence of thermal annealing at different conditions. This behavior seemed uncommon for polymer solar cells. We try from this work to understand device physics and to locate a relationship between production parameters and performance parameters of the solar cell based on small organic molecules.

  6. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Science.gov (United States)

    Ekvall, Mikael T; Bianco, Giuseppe; Linse, Sara; Linke, Heiner; Bäckman, Johan; Hansson, Lars-Anders

    2013-01-01

    Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale) organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D) tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  7. Legal Issues Related to Donation of Organs, Tissues and Cells of Human Origin

    Directory of Open Access Journals (Sweden)

    Gabriela Mironov

    2010-06-01

    Full Text Available Scientific developments, positive changes in attitude of the man and the new legal framework allow the donation of organs, tissues and cells of human origin. In this context it is necessary to clarifywhether the donation covered by the special law is, legally, one and the same as that covered by the Romanian Civil Code in force and qualified the successor’s right to accept or reject late withdrawals for transplantation. The right to life and physical integrity is personal patrimony; it is a subjective civil right that has no economic content and it cannot be measured in money. Consequently, the content of these rights can not be expressed in money, the property does not belong to their owner. Given the above view, "the right of disposal" to donation of organs, tissues and cells of human origin is an attribute of ownership, right to life and physical integrity, as a personal right that is an intimate attribute patrimonial related to the person’s right to dispose of his body as it wishes, within the law. Addressing these issues it is necessary to clarify the legal consequences of donating organs, tissues and cells of human origin, considering that medical activities are becoming more numerous.

  8. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  9. Certification of the methylmercury content in SRM 2977 mussel tissue (organic contaminants and trace elements) and SRM 1566b oyster tissue.

    Science.gov (United States)

    Tutschku, S; Schantz, M M; Horvat, M; Logar, M; Akagi, H; Emons, H; Levenson, M; Wise, S A

    2001-02-01

    The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 +/- 0.7 microg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 +/- 1.7 microg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).

  10. Assembly of cells and vesicles for organ engineering

    International Nuclear Information System (INIS)

    Taguchi, Tetsushi

    2011-01-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  11. High-resolution magnetic resonance imaging tracks changes in organ and tissue mass in obese and aging rats.

    Science.gov (United States)

    Tang, Haiying; Vasselli, Joseph R; Wu, Ed X; Boozer, Carol N; Gallagher, Dympna

    2002-03-01

    Magnetic resonance imaging (MRI) has the ability to discriminate between various soft tissues in vivo. Whole body, specific organ, total adipose tissue (TAT), intra-abdominal adipose tissue (IAAT), and skeletal muscle (SM) weights determined by MRI were compared with weights determined by dissection and chemical analysis in two studies with male Sprague-Dawley rats. A 4.2-T MRI machine acquired high-resolution, in vivo, longitudinal whole body images of rats as they developed obesity or aged. Weights of the whole body and specific tissues were determined using computer image analysis software, including semiautomatic segmentation algorithms for volume calculations. High correlations were found for body weight (r = 0.98), TAT (r = 0.99), and IAAT (r = 0.98) between MRI and dissection and chemical analyses. MRI estimated the weight of the brain, kidneys, and spleen with high accuracy (r > 0.9), but overestimated IAAT, SM, and liver volumes. No differences were detected in organ weights using MRI and dissection measurements. Longitudinal MRI measurements made during the development of obesity and aging accurately represented changes in organ and tissue mass.

  12. Artificial engineering of secondary lymphoid organs.

    Science.gov (United States)

    Tan, Jonathan K H; Watanabe, Takeshi

    2010-01-01

    Secondary lymphoid organs such as spleen and lymph nodes are highly organized immune structures essential for the initiation of immune responses. They display distinct B cell and T cell compartments associated with specific stromal follicular dendritic cells and fibroblastic reticular cells, respectively. Interweaved through the parenchyma is a conduit system that distributes small antigens and chemokines directly to B and T cell zones. While most structural aspects between lymph nodes and spleen are common, the entry of lymphocytes, antigen-presenting cells, and antigen into lymphoid tissues is regulated differently, reflecting the specialized functions of each organ in filtering either lymph or blood. The overall organization of lymphoid tissue is vital for effective antigen screening and recognition, and is a feature which artificially constructed lymphoid organoids endeavor to replicate. Synthesis of artificial lymphoid tissues is an emerging field that aims to provide therapeutic application for the treatment of severe infection, cancer, and age-related involution of secondary lymphoid tissues. The development of murine artificial lymphoid tissues has benefited greatly from an understanding of organogenesis of lymphoid organs, which has delineated cellular and molecular elements essential for the recruitment and organization of lymphocytes into lymphoid structures. Here, the field of artificial lymphoid tissue engineering is considered including elements of lymphoid structure and development relevant to organoid synthesis. (c) 2010 Elsevier Inc. All rights reserved.

  13. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C

    2014-08-22

    In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Balancing hope and despair at the end of life: The contribution of organ and tissue donation.

    Science.gov (United States)

    Walker, Wendy; Sque, Magi

    2016-04-01

    Concern for the grieving family can moderate the intentions of critical care staff to advocate deceased organ and tissue donation. Conversely, benevolent actions may provoke distress through missed opportunities to save or transform lives. This article provides insight into the perceived benefits of organ and tissue donation for grieving families who experienced end-of-life care in the intensive care unit. Data were collected via semistructured, face-to-face or telephone interviews with 43 participants from 31 donor families. Audio recordings were transcribed verbatim and subjected to qualitative content analysis. The study findings affirmed the importance of person-centered end-of-life care. Donor families shared examples of good-quality care and communication that contained the hallmarks of compassion, respect, dignity, and choice. We uncovered a trajectory of hope and despair in which the option of organ and tissue donation appeared to give meaning to the life and death of the deceased person and was comforting to some families in their bereavement. Our study findings underlined the significance of donation decision making for grieving families. Organ and tissue donation has the potential to balance hope and despair at the end of life when the wishes of the dying, deceased, and bereaved are fulfilled. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Uptake, retention and organ/tissue distribution of 137Cs by Japanese catfish (Silurus asotus Linnaeus)

    International Nuclear Information System (INIS)

    Malek, M.A.; Nakahara, M.; Nakamura, R.

    2004-01-01

    The work describes the uptake, retention/biological elimination and organ/tissue distribution of 137 Cs by freshwater Japanese catfish (Silurus asotus Linnaeus) under laboratory conditions. The fish were divided into three groups based on their size and age and reared in 137 Cs-spiked water. The concentration of 137 Cs in the whole body of the live fish was measured at regular intervals up to 60 days. A significant accumulation of 137 Cs was found, but a steady state condition was not achieved by the end of the experiment. The bioaccumulation factors at steady state and the required time to reach steady state were estimated to be 1.55 and 255 days, 1.76 and 180 days and 1.99 and 160 days for large, medium and small size fish, respectively. To determine the effective half-life of 137 Cs, the fish were transferred and reared in the non-contaminated host water. The concentration of the remaining 137 Cs in the whole body of the live fish was measured up to 66 days. The average effective half-life of 137 Cs in the fish species was found to be ∼142 days for fish of all sizes. The distribution of 137 Cs in different organs/tissues of the fish was determined. Accumulation of 137 Cs in muscle/flesh of the fish was found to be ∼75% of whole body accumulation. The uptake rate and the retention capability of juvenile fish were found to be higher and therefore, these were more susceptible to 137 Cs than adult and old fish, and could be an important source of 137 Cs in the human food chain

  16. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.

    Science.gov (United States)

    Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C

    2016-09-01

    To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, pabdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mikael T Ekvall

    Full Text Available Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  18. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    Science.gov (United States)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  19. Alpha-particle doses to human organs and tissues from internally-deposited 226Ra and 228Ra

    International Nuclear Information System (INIS)

    Keane, A.T.; Schlenker, R.A.

    1981-01-01

    Estimation of radiation doses to the soft tissues from internally-deposited 226 Ra and 228 Ra is relevant to an investigation of soft-tissue malignancies in radium-exposed persons being conducted at the Center for Human Radiobiology. Alpha-particle doses in a 50-year period following a single injection of 226 Ra or 228 Ra are presented for 31 soft tissues and organs of the adult human. The dose estimates were derived from the ICRP alkaline earth model fitted to data on retention of 226 Ra in soft tissues and bone, combined with reported ratios of 226 Ra to Ca in soft tissue and bone at natural levels and the distribution of Ca in the tissues of Reference Man (ICRP23). The median of the 31 organ and tissue doses from the α-particles of 226 Ra itself is 0.08 rad per injected μCi. An additional average dose of 0.01 rad per μCi 226 Ra daughter products produced in soft tissue or transferred from bone to soft tissue. Soft-tissue doses from α-particles of the 228 Ra decay series are about six times those from 226 Ra α-particles for equal injected activities of 228 Ra and 226 Ra, with the assumption that 228 Ra daughter products do not transfer from the organ in which they are produced. The 50-year dose to the red marrow of bone from α-particles originating in bone is 0.55 rad per μCi 226 Ra injected and 1.0 rad per μCi 228 Ra injected. For ingestion by dial painters of luminous compound containg 226 Ra or 228 Ra with a daughter-to-parent activity ratio of 0.5, the dose to the mucosal alyer of the lower large intestine from α-particles originating in the gut contents is about 0.1 rad per μCi systemic intake of 226 Ra or 228 Ra

  20. Combined Bisulfite Restriction Analysis for brain tissue identification.

    Science.gov (United States)

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  2. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    International Nuclear Information System (INIS)

    Diaz, Dolores; Ford, Kevin A.; Hartley, Dylan P.; Harstad, Eric B.; Cain, Gary R.; Achilles-Poon, Kirsten; Nguyen, Trung; Peng, Jing; Zheng, Zhong; Merchant, Mark; Sutherlin, Daniel P.; Gaudino, John J.; Kaus, Robert; Lewin-Koh, Sock C.; Choo, Edna F.; Liederer, Bianca M.; Dambach, Donna M.

    2013-01-01

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.

  3. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage

  4. Allelopathy of small everlasting (Antennaria microphylla) : Phytotoxicity to leafy spurge (Euphorbia esula) in tissue culture.

    Science.gov (United States)

    Hogan, M E; Manners, G D

    1990-03-01

    Media and media extracts from callus cultures of small everlasting (Antennaria microphylla) inhibited leafy spurge (Euphorbia esula L.) callus tissue and suspension culture growth (50 and 70% of control, respectively) and were phytotoxic in lettuce and leafy spurge root elongation bioassays (64 and 77% of control, respectively). Hydroquinone, a phytotoxic compound previously isolated from small everlasting, was also biosynthesized by callus and suspension cultures of this species. Exogenously supplied hydroquinone (0.5 mM) was toxic to leafy spurge suspension culture cells and was only partially biotransformed to its nontoxic water-soluble monoglucoside, arbutin, by these cells. This report confirms the chronic involvement of hydroquinone in the allelopathic interaction between small everlasting and leafy spurge.

  5. Associations of persistent organic pollutants in serum and adipose tissue with breast cancer prognostic markers

    Energy Technology Data Exchange (ETDEWEB)

    Arrebola, J.P., E-mail: jparrebola@ugr.es [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); Virgen de las Nieves University Hospital, Radiation Oncology Department, Oncology Unit, Granada (Spain); CIBER en Epidemiología y Salud Pública (CIBERESP) (Spain); Fernández-Rodríguez, M.; Artacho-Cordón, F. [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); University of Granada, Radiology and Physical Medicine Department (Spain); Garde, C. [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); Perez-Carrascosa, F.; Linares, I.; Tovar, I. [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); Virgen de las Nieves University Hospital, Radiation Oncology Department, Oncology Unit, Granada (Spain); González-Alzaga, B. [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); Escuela Andaluza de Salud Pública, Granada (Spain); Expósito, J. [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); Virgen de las Nieves University Hospital, Radiation Oncology Department, Oncology Unit, Granada (Spain); Torne, P. [Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospitales Universitarios de Granada (Spain); and others

    2016-10-01

    This study aimed to evaluate associations between exposure to a group of persistent organic pollutants, measured in both adipose tissue and serum samples from breast cancer patients, and a set of tumor prognostic markers. The study population comprised 103 breast cancer patients recruited in Granada, Southern Spain. Data for tumor prognostic markers were retrieved from hospital clinical records and socio-demographic information was gathered by questionnaire. Persistent organic pollutants were quantified by gas chromatography with electron capture detection. Exposure levels were categorized in quartiles, and associations were evaluated using unconditional logistic regression. Adipose tissue HCB concentrations were associated positively with ER and PR expression (p-trends = 0.044 and 0.005, respectively) and negatively with E-Cadherin and p53 expression (p-trends = 0.012 and 0.027, respectively). PCB-180 adipose tissue concentrations were positively associated with HER2 expression (p-trend = 0.036). Serum PCB-138 concentrations were positively associated with ER and PR expression (p-trends = 0.052 and 0.042, respectively). The risk of p53 expression was higher among women in the lowest quartile of serum PCB-138 concentrations, but no significant trend was observed (p-trend = 0.161). These findings indicate that human exposure to certain persistent organic pollutants might be related to breast cancer aggressiveness. We also highlight the influence on exposure assessment of the biological matrix selected, given that both serum and adipose tissue might yield relevant information on breast cancer prognosis. - Highlights: • The role of POP exposure on the pathogenesis breast cancer is still controversial. • POPs were analyzed in serum and adipose tissue from breast cancer patients. • POP concentrations were associated with breast cancer prognostic markers. • POPs in serum and adipose tissue of breast cancer patients may provide different clues.

  6. Associations of persistent organic pollutants in serum and adipose tissue with breast cancer prognostic markers

    International Nuclear Information System (INIS)

    Arrebola, J.P.; Fernández-Rodríguez, M.; Artacho-Cordón, F.; Garde, C.; Perez-Carrascosa, F.; Linares, I.; Tovar, I.; González-Alzaga, B.; Expósito, J.; Torne, P.

    2016-01-01

    This study aimed to evaluate associations between exposure to a group of persistent organic pollutants, measured in both adipose tissue and serum samples from breast cancer patients, and a set of tumor prognostic markers. The study population comprised 103 breast cancer patients recruited in Granada, Southern Spain. Data for tumor prognostic markers were retrieved from hospital clinical records and socio-demographic information was gathered by questionnaire. Persistent organic pollutants were quantified by gas chromatography with electron capture detection. Exposure levels were categorized in quartiles, and associations were evaluated using unconditional logistic regression. Adipose tissue HCB concentrations were associated positively with ER and PR expression (p-trends = 0.044 and 0.005, respectively) and negatively with E-Cadherin and p53 expression (p-trends = 0.012 and 0.027, respectively). PCB-180 adipose tissue concentrations were positively associated with HER2 expression (p-trend = 0.036). Serum PCB-138 concentrations were positively associated with ER and PR expression (p-trends = 0.052 and 0.042, respectively). The risk of p53 expression was higher among women in the lowest quartile of serum PCB-138 concentrations, but no significant trend was observed (p-trend = 0.161). These findings indicate that human exposure to certain persistent organic pollutants might be related to breast cancer aggressiveness. We also highlight the influence on exposure assessment of the biological matrix selected, given that both serum and adipose tissue might yield relevant information on breast cancer prognosis. - Highlights: • The role of POP exposure on the pathogenesis breast cancer is still controversial. • POPs were analyzed in serum and adipose tissue from breast cancer patients. • POP concentrations were associated with breast cancer prognostic markers. • POPs in serum and adipose tissue of breast cancer patients may provide different clues.

  7. Organization Context and Human Resource Management in the Small Firm

    NARCIS (Netherlands)

    J.M.P. de Kok (Jan); L.M. Uhlaner (Lorraine)

    2001-01-01

    textabstractThis paper examines the relationship between organization contextual variables and human resource management (HRM) practices in small firms. The proposed model is based on an integration of theoretical perspectives, including the resource-based approach, institutional theory, transaction

  8. A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Ratajczak, Janina; Suszynska, Malwina; Miller, Donald M; Kucia, Magda; Shin, Dong-Myung

    2017-01-06

    Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine. © 2017 American Heart Association, Inc.

  9. Certification of methylmercury content in two fresh-frozen reference materials: SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis)

    International Nuclear Information System (INIS)

    Davis, W.C.; Christopher, S.J.; Pugh, Rebecca S.; Donard, O.F.X.; Krupp, Eva A.; Point, David; Horvat, Milena; Gibicar, D.; Kljakovic-Gaspic, Z.; Porter, Barbara J.; Schantz, Michele M.

    2007-01-01

    This paper describes the development of two independent analytical methods for the extraction and quantification of methylmercury from marine biota. The procedures involve microwave extraction, followed by derivatization and either headspace solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS)-coated silica fiber or back-extraction into iso-octane. The identification and quantification of the extracted compounds is carried out by capillary gas chromatography/mass spectrometric (GC/MS) and inductively coupled plasma mass spectrometric (GC/ICP-MS) detection. Both methods were validated for the determination of methylmercury (MeHg) concentrations in a variety of biological standard reference materials (SRMs) including fresh-frozen tissue homogenates of SRM 1946 Lake Superior fish tissue and SRM 1974a organics in mussel tissue (Mytilus edulis) and then applied to the certification effort of SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis). While past certifications of methylmercury in tissue SRMs have been based on two independent methods from the National Institute of Standards and Technology (NIST) and participating laboratories, the methods described within provide improved protocols and will allow future certification efforts to be based on at least two independent analytical methods within NIST. (orig.)

  10. Certification of methylmercury content in two fresh-frozen reference materials: SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C.; Christopher, S.J.; Pugh, Rebecca S. [National Institute of Standards and Technology (NIST), Hollings Marine Laboratory, Analytical Chemistry Division, Charleston, SC (United States); Donard, O.F.X.; Krupp, Eva A. [LCABIE/CNRS Helioparc Pau-Pyrenees, Pau (France); Point, David [National Institute of Standards and Technology (NIST), Hollings Marine Laboratory, Analytical Chemistry Division, Charleston, SC (United States); LCABIE/CNRS Helioparc Pau-Pyrenees, Pau (France); Horvat, Milena; Gibicar, D. [Jozef Stefan Institute, Ljubljana (Slovenia); Kljakovic-Gaspic, Z. [Jozef Stefan Institute, Ljubljana (Slovenia); Institute for Medical Research and Occupational Health, Zagreb (Croatia); Porter, Barbara J.; Schantz, Michele M. [National Institute of Standards and Technology (NIST), Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-04-15

    This paper describes the development of two independent analytical methods for the extraction and quantification of methylmercury from marine biota. The procedures involve microwave extraction, followed by derivatization and either headspace solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS)-coated silica fiber or back-extraction into iso-octane. The identification and quantification of the extracted compounds is carried out by capillary gas chromatography/mass spectrometric (GC/MS) and inductively coupled plasma mass spectrometric (GC/ICP-MS) detection. Both methods were validated for the determination of methylmercury (MeHg) concentrations in a variety of biological standard reference materials (SRMs) including fresh-frozen tissue homogenates of SRM 1946 Lake Superior fish tissue and SRM 1974a organics in mussel tissue (Mytilus edulis) and then applied to the certification effort of SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis). While past certifications of methylmercury in tissue SRMs have been based on two independent methods from the National Institute of Standards and Technology (NIST) and participating laboratories, the methods described within provide improved protocols and will allow future certification efforts to be based on at least two independent analytical methods within NIST. (orig.)

  11. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  12. Personalized medicine for non-small-cell lung cancer: implications of recent advances in tissue acquisition for molecular and histologic testing.

    Science.gov (United States)

    Moreira, Andre L; Thornton, Raymond H

    2012-09-01

    In light of recent advances in individualized therapy for non-small-cell lung cancer (NSCLC), molecular and histologic profiling is essential for guiding therapeutic decisions. Results of these analyses may have implications for both response (eg, molecular testing for EGFR [epidermal growth factor receptor] mutations) and safety (eg, contraindications for squamous histology) in NSCLC. Most patients with NSCLC present with unresectable advanced disease; therefore, greater emphasis is being placed on minimally invasive tissue acquisition techniques, such as small biopsy and cytology specimens. Due to the need for increasing histologic and molecular information and increasingly smaller tissue sample sizes, efforts must be focused on optimizing tissue acquisition and the development of more sensitive molecular assays. Recent advances in tissue acquisition techniques and specimen preservation may help to address this challenge and lead to enhanced personalized treatment in NSCLC. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Evidence of the Association Between Psychology and Tissue and Organ Transplantation in Brazil.

    Science.gov (United States)

    Silva, J D A; Ariente, L C; Roza, B A; Mucci, S

    2016-09-01

    The addition of psychologists to organ transplant teams is still new in Brazil. In seeking the efficient performance of this professional, the knowledge of the scientific production and the development of research in the area is fundamental. In this sense, this study aims to survey the Brazilian scientific research that has investigated the psychologic aspects involved in tissue and organ transplantation. A literature narrative review was performed with the use of the "Transplante AND Psicologia" descriptors in the Biblioteca Virtual em Saúde and the CAPES Journal Portal. Fifty-three articles were found, of which 22 met the inclusion criteria: publications dating from 2000 to 2014 and the main topic of interest of the studies being quality of life, followed by organ donation. The instruments used most frequently were interviews developed by the researchers and the SF-36 Quality of Life Questionnaire. Recent Brazilian studies on the association between psychology and transplantation are still scarce, possibly because of the recent addition of psychologists to transplantation teams. Therefore, it is suggested that more scientific research is made in the area and that the objects of study are more varied, to ensure adequacy of the psychologist to meet the specific demands of organ and tissue transplantation process. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Metabolism of organically bound tritium

    International Nuclear Information System (INIS)

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables

  15. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    Science.gov (United States)

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  16. Measurement of phthalates in small samples of mammalian tissue

    International Nuclear Information System (INIS)

    Acott, P.D.; Murphy, M.G.; Ogborn, M.R.; Crocker, J.F.S.

    1987-01-01

    Di-(2-ethylhexyl)-phthalate (DEHP) is a phthalic acid ester that is used as a plasticizer in polyvinyl chloride products, many of which have widespread medical application. DEHP has been shown to be leached from products used for storage and delivery of blood transfusions during procedures such as plasmaphoresis, hemodialysis and open heart surgery. Results of studies in this laboratory have suggested that there is an association between the absorption and deposition of DEHP (and/or related chemicals) in the kidney and the acquired renal cystic disease (ACD) frequently seen in patients who have undergone prolonged dialysis treatment. In order to determine the relationship between the two, it has been necessary to establish a method for extracting and accurately quantitating minute amounts of these chemicals in small tissue samples. The authors have now established such a method using kidneys from normal rats and from a rat model for ACD

  17. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  18. Prognostic significance of tissue polypeptidespecific antigen (TPS) in patients with advanced non-small cell lung cancer

    NARCIS (Netherlands)

    A. van der Gaast (Ate); C.H.H. Schoenmakers (Christian); T.C. Kok (Tjebbe); B.G. Blijenberg (Bert); W.C.J. Hop (Wim); T.A.W. Splinter (Ted)

    1994-01-01

    textabstractIn this study, we evaluated the prognostic value of the tumour marker, tissue polypeptide-specific antigen (TPS), in 203 patients with non-small cell lung cancer (NSCLC), and related this to several other known prognostic factors. TPS was significantly correlated with lactate

  19. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  20. Mucosa-associated Lymphoid Tissue Lymphoma Presenting with Bowel Obstruction of the Duodenum and Small Bowels: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Guen Ho; Hong, Seong Sook; Kim, Jung Hoon; Chang, Yun Woo; Choi, Duek Lin; Hwang, Jung Hwa; Kwon, Kui Hyang [Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2010-01-15

    The occurrence of primary duodenal mucosa associated lymphoid tissue (MALT) lymphoma is extremely rare, and more so is the obstruction of the duodenum for the MALT lymphoma. We describe the small bowel follow through and CT findings in an uncommon case of MALT lymphoma presenting with bowel obstruction of the 2nd portion of the duodenum and small bowels.

  1. Mucosa-associated Lymphoid Tissue Lymphoma Presenting with Bowel Obstruction of the Duodenum and Small Bowels: A Case Report

    International Nuclear Information System (INIS)

    Ryu, Guen Ho; Hong, Seong Sook; Kim, Jung Hoon; Chang, Yun Woo; Choi, Duek Lin; Hwang, Jung Hwa; Kwon, Kui Hyang

    2010-01-01

    The occurrence of primary duodenal mucosa associated lymphoid tissue (MALT) lymphoma is extremely rare, and more so is the obstruction of the duodenum for the MALT lymphoma. We describe the small bowel follow through and CT findings in an uncommon case of MALT lymphoma presenting with bowel obstruction of the 2nd portion of the duodenum and small bowels

  2. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days.

    Science.gov (United States)

    Gui, Liqiong; Boyle, Michael J; Kamin, Yishai M; Huang, Angela H; Starcher, Barry C; Miller, Cheryl A; Vishnevetsky, Michael J; Niklason, Laura E

    2014-05-01

    Tissue-engineered small-diameter vascular grafts have been developed as a promising alternative to native veins or arteries for replacement therapy. However, there is still a crucial need to improve the current approaches to render the tissue-engineered blood vessels more favorable for clinical applications. A completely biological blood vessel (3-mm inner diameter) was constructed by culturing a 50:50 mixture of bovine smooth muscle cells (SMCs) with neonatal human dermal fibroblasts in fibrin gels. After 30 days of culture under pulsatile stretching, the engineered blood vessels demonstrated an average burst pressure of 913.3±150.1 mmHg (n=6), a suture retention (53.3±15.4 g) that is suitable for implantation, and a compliance (3.1%±2.5% per 100 mmHg) that is comparable to native vessels. These engineered grafts contained circumferentially aligned collagen fibers, microfibrils and elastic fibers, and differentiated SMCs, mimicking a native artery. These promising mechanical and biochemical properties were achieved in a very short culture time of 30 days, suggesting the potential of co-culturing SMCs with fibroblasts in fibrin gels to generate functional small-diameter vascular grafts for vascular reconstruction surgery.

  3. Present dose limits and their relation to radiosensitivity of different organs and tissues

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dose equivalent limits in relation to dose thresholds are considered for injury of various tissues and organs to evaluate the protection agains non-stochastic irradiation effects by the existing system of dose limitation for radiotherapeutic personnel. Data on tissue radiosensitivity in relation to non-stochastic effects, obtained from radiotherapeutic experience, are presented. Dose threshold values, derived for patients, with a correction in the direction of increase, may be applied to conditions of occupational exposure except for bone marrow, gonads and eye lens, where threshold doses are lower

  4. Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms

    Science.gov (United States)

    Cornaglia, Matteo; Krishnamani, Gopalan; Zhang, Jingwei; Mouchiroud, Laurent; Lehnert, Thomas; Auwerx, Johan; Gijs, Martin A. M.

    2018-01-01

    The nematode Caenorhabditis elegans is an important model organism for biomedical research and genetic studies relevant to human biology and disease. Such studies are often based on high-resolution imaging of dynamic biological processes in the worm body tissues, requiring well-immobilized and physiologically active animals in order to avoid movement-related artifacts and to obtain meaningful biological information. However, existing immobilization methods employ the application of either anesthetics or servere physical constraints, by using glue or specific microfluidic on-chip mechanical structures, which in some cases may strongly affect physiological processes of the animals. Here, we immobilize C. elegans nematodes by taking advantage of a biocompatible and temperature-responsive hydrogel-microbead matrix. Our gel-based immobilization technique does not require a specific chip design and enables fast and reversible immobilization, thereby allowing successive imaging of the same single worm or of small worm populations at all development stages for several days. We successfully demonstrated the applicability of this method in challenging worm imaging contexts, in particular by applying it for high-resolution confocal imaging of the mitochondrial morphology in worm body wall muscle cells and for the long-term quantification of number and size of specific protein aggregates in different C. elegans neurodegenerative disease models. Our approach was also suitable for immobilizing other small organisms, such as the larvae of the fruit fly Drosophila melanogaster and the unicellular parasite Trypanosoma brucei. We anticipate that this versatile technique will significantly simplify biological assay-based longitudinal studies and long-term observation of small model organisms. PMID:29509812

  5. Problems in the Deployment of Learning Networks In Small Organizations

    NARCIS (Netherlands)

    Shankle, Dean E.; Shankle, Jeremy P.

    2006-01-01

    Please, cite this publication as: Shankle, D.E., & Shankle, J.P. (2006). Problems in the Deployment of Learning Networks In Small Organizations. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia, Bulgaria:

  6. FAMILY CONSENT FOR ORGAN OR TISSUE REMOVAL FROM A DECEASED PERSON FOR TRANSPLANTATION PURPOSES IN THE REPUBLIC OF CROATIA

    Directory of Open Access Journals (Sweden)

    Tomislav Nedić

    2017-04-01

    Full Text Available The Republic of Croatia is a country with the system of presumed consent donation of organs and tissues after death, where the consent of the family, according to law, is not one of the conditions for organ or tissue removal for transplantation purposes. However, the consent is a condition required by the Codex of Medical Ethics and Deontology. The author primary proposes harmonization of the Codex with current legislation. Accordingly, this paper primarily analyses the typology of the Codex, ethical issues and ethical and positivist reasons to harmonize the Codex with current legislation. Furthermore, although the author in the first place considers that the Codex should be in line with legislation, he also considers the provision of family consent for organ and tissue removal itself flawed and poorly developed. In this regard, the author considers the comparative legislation and judgments of the European Court of Human Rights, analyses current provisions of the Codex in the part of the removal and transplantation of organs and tissues from deceased persons, states the facts that the Codex should contain so as to make the mechanism of family consent for organ and tissue removal and donation after death more effective. In fact, if the author’s original proposal for harmonization of the Codex with the current legislation is not accepted, a more detailed and precise elaboration of the mentioned current provisions of the Codex will be suggested. This will include exact definition of the family and relatives, exact deadlines and ways of informing the family, but also refining the concept of “ethical“ according to the Codex in part of the organ and tissue donation and removal from the deceased person.

  7. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...

  8. Macro-and micro-autoradiographic study in comparison with the incorporation of 35S-methionine by various tissue protein in organism

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Mei Shengping; Le Shangcheng

    1990-12-01

    The purpose of the study was to observe the incorporation level of 35 S-methionine by various tissue protein in organism. By the use of the macro-and micro-autoradiographic technique, the incorporation of 35 S-methionine by the tissues has been utilized as an index of various tissue protein synthesis. On this basis, the further experiments showed that tracer agent 35 S-methionine was dominantly incorporated in the immature cells of bone marrow and the tissue of liver, kidney and spleen. Its incorporation increased gradually with time. From the experimental results it can be concluded that a strong protein biosynthesis metabolism was produced in these tissues. While the tissues have important physiological function in organism, such as heart, lung and skeletal muscle, but the protein biosynthesis in those tissues was at a low level

  9. Small-angle X-ray scattering documents the growth of metal-organic frameworks

    NARCIS (Netherlands)

    Goesten, M.G.; Stavitski, I.; Juan-Alcañiz, J.; Martinez-Joaristi, A.; Petukhov, A.V.; Kapteijn, F.; Gascon, J.

    2013-01-01

    We present a combined in situ small- and wide-angle scattering (SAXS/WAXS) study on the crystallization of two topical metal-organic frameworks synthesized from similar metal and organic precursors: NH2-MIL-53(Al) and NH2-MIL-101(Al). A thorough analysis of SAXS data reveals the most important

  10. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine.

    Science.gov (United States)

    Lee, Hyunsu; Park, Jae-Hyung; Seo, Incheol; Park, Sun-Hyun; Kim, Shin

    2014-12-21

    Mapping of tissue structure at the cellular, circuit, and organ-wide scale is important for understanding physiological and biological functions. A bio-electrochemical technique known as CLARITY used for three-dimensional anatomical and phenotypical mapping within transparent intact tissues has been recently developed. This method provided a major advance in understanding the structure-function relationships in circuits of the nervous system and organs by using whole-body clearing. Thus, in the present study, we aimed to improve the original CLARITY procedure and developed specific CLARITY protocols for various intact organs. We determined the optimal conditions for reducing bubble formation, discoloration, and depositing of black particles on the surface of tissue, which allowed production of clearer organ images. We also determined the appropriate replacement cycles of clearing solution for each type of organ, and convincingly demonstrated that 250-280 mA is the ideal range of electrical current for tissue clearing. We then acquired each type of cleared organs including brain, pancreas, liver, lung, kidney, and intestine. Additionally, we determined the images of axon fibers of hippocampal region, the Purkinje layer of cerebellum, and vessels and cellular nuclei of pancreas. CLARITY is an innovative biochemical technology for the structural and molecular analysis of various types of tissue. We developed improved CLARITY methods for clearing of the brain, pancreas, lung, intestine, liver, and kidney, and identified the appropriate experimental conditions for clearing of each specific tissue type. These optimized methods will be useful for the application of CLARITY to various types of organs.

  11. Phytoremediation of small organic contaminants using transgenic plants

    Science.gov (United States)

    James, C Andrew; Strand, Stuart E

    2010-01-01

    The efficacy of transgenic plants in the phytoremediation of small organic contaminants has been investigated. Two principal strategies have been pursued (1) the manipulation of phase I metabolic activity to enhance in planta degradation rates, or to impart novel metabolic activity, and (2) the enhanced secretion of reactive enzymes from roots leading to accelerated ex planta degradation of organic contaminants. A pair of dehalogenase genes from Xanthobacter autotrophicus was expressed in tobacco resulting in the dehalogenation of 1,2-dichloroethane, which was otherwise recalcitrant. A laccase gene from cotton was overexpressed in Arabidopsis thaliana resulting in increased secretory laccase activity and the enhanced resistance to trichlorophenol in soils. Although the results to date are promising, much of the work has been limited to laboratory settings; field demonstrations are needed. PMID:19342219

  12. Supporting Usability Engineering in Small Software Development Organizations

    DEFF Research Database (Denmark)

    Bornoe, Nis; Stage, Jan

    2013-01-01

    Despite an interest and use of different usability engineering methods small software development organizations find it challenging to implement usability engineering into the software development process. We present the results from a study about usability engineering in practice. Through a series...... of semistructured interviews we want to get an understanding of how usability is implemented into the organizations and how it’s practiced in reality. We found that the developers found it problematic to combine agile software development methods with classic usability engineering methods. A lack of solid usability...... engineering expertise and not least experience seems to be a main obstacle for a successful implementation of usability engineering into current software development practices. They are requesting methods and procedures that fit better with their current practices and strategies to implement usability...

  13. Transport of particles, drops, and small organisms in density stratified fluids

    Science.gov (United States)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  14. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Dong, Xiaorong; Kuehne, Martin; Fricke, Andreas; Kaestner, Lars; Lipp, Peter; Ruebe, Christian

    2008-01-01

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive γH2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating γH2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that γH2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for γH2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis

  15. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean

    International Nuclear Information System (INIS)

    Fromant, Aymeric; Carravieri, Alice; Bustamante, Paco; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Churlaud, Carine; Chastel, Olivier; Cherel, Yves

    2016-01-01

    ABSTRACT: Trace elements (n = 14) and persistent organic pollutants (POPs, n = 30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4′-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations. - Highlights: • Trace elements and POPs were measured in various tissues of 10 Antarctic prions. • Residue diversity was notable given the species' small size and low trophic position. • Cd, Se, BDE 183 and 209 showed noticeably high internal tissue concentrations. • Several POPs showed inter- and intra-tissue correlations, indicating co-exposure. • Blood was validated as a good bioindicator of internal tissue As and Hg levels.

  16. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Fromant, Aymeric [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France); Carravieri, Alice, E-mail: carravieri@cebc.cnrs.fr [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France); Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent [Université de Bordeaux, UMR 5805 EPOC (LPTC Research Group), Université Bordeaux, 351 Cours de la Libération, F 33405 Talence Cedex (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Chastel, Olivier; Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France)

    2016-02-15

    ABSTRACT: Trace elements (n = 14) and persistent organic pollutants (POPs, n = 30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4′-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations. - Highlights: • Trace elements and POPs were measured in various tissues of 10 Antarctic prions. • Residue diversity was notable given the species' small size and low trophic position. • Cd, Se, BDE 183 and 209 showed noticeably high internal tissue concentrations. • Several POPs showed inter- and intra-tissue correlations, indicating co-exposure. • Blood was validated as a good bioindicator of internal tissue As and Hg levels.

  17. Organ and tissue donation: what do high school students know?

    Directory of Open Access Journals (Sweden)

    Marcela Cristina de Lemos

    2007-09-01

    Full Text Available Objectives: To know the opinion of senior high school students in publicand private schools on the process of donating and transplanting organsand tissues, and their desire to be donors. Methods: A descriptive crosssectionalstudy, conducted from 2004 to 2005, on the opinion/knowledgeof senior high school students in public and private schools in the VilaMariana region of the city of São Paulo, on the process of organ and tissuedonation and transplantation. The convenience sample was made up of140 (81% students from two private schools and 167 (51% studentsfrom a public school. The project was approved by the Research EthicsCommittee of the UNIFESP. Results: Data showed that 163 (53.1%students believe that donation is by presumed consent and 147 (47.9%that consider that it occurs by informed consent. Of the public schoolstudents, 120 (71.9% believe that transplants are public and free ofcharge in Brazil versus 94 (67.1% of the students from private schools.Students know that donations may be made by living or dead donors(121 - 86.4% private schools versus 113 – 67.7% public school. Wehighlight that 22 (15.7% of the private school students and 16 (9.6%of those from the public school believe that the commerce of organs isallowed in Brazil. As to intentions of being a donor, 108 (77.1% of theprivate school students declared themselves organ and tissue donorsversus 106 (63.5% from the public school, and 63 (59.4% from thepublic versus 61 (56.5% from the private schools have already informedtheir families. Conclusion: There was no difference in knowledge andopinion among the students from the public and private schools as toaspects regarding donation and transplantation.

  18. Selection of reference genes for tissue/organ samples on day 3 fifth-instar larvae in silkworm, Bombyx mori.

    Science.gov (United States)

    Wang, Genhong; Chen, Yanfei; Zhang, Xiaoying; Bai, Bingchuan; Yan, Hao; Qin, Daoyuan; Xia, Qingyou

    2018-06-01

    The silkworm, Bombyx mori, is one of the world's most economically important insect. Surveying variations in gene expression among multiple tissue/organ samples will provide clues for gene function assignments and will be helpful for identifying genes related to economic traits or specific cellular processes. To ensure their accuracy, commonly used gene expression quantification methods require a set of stable reference genes for data normalization. In this study, 24 candidate reference genes were assessed in 10 tissue/organ samples of day 3 fifth-instar B. mori larvae using geNorm and NormFinder. The results revealed that, using the combination of the expression of BGIBMGA003186 and BGIBMGA008209 was the optimum choice for normalizing the expression data of the B. mori tissue/organ samples. The most stable gene, BGIBMGA003186, is recommended if just one reference gene is used. Moreover, the commonly used reference gene encoding cytoplasmic actin was the least appropriate reference gene of the samples investigated. The reliability of the selected reference genes was further confirmed by evaluating the expression profiles of two cathepsin genes. Our results may be useful for future studies involving the quantification of relative gene expression levels of different tissue/organ samples in B. mori. © 2018 Wiley Periodicals, Inc.

  19. Semiautomated analysis of small-animal PET data.

    Science.gov (United States)

    Kesner, Adam L; Dahlbom, Magnus; Huang, Sung-Cheng; Hsueh, Wei-Ann; Pio, Betty S; Czernin, Johannes; Kreissl, Michael; Wu, Hsiao-Ming; Silverman, Daniel H S

    2006-07-01

    The objective of the work reported here was to develop and test automated methods to calculate biodistribution of PET tracers using small-animal PET images. After developing software that uses visually distinguishable organs and other landmarks on a scan to semiautomatically coregister a digital mouse phantom with a small-animal PET scan, we elastically transformed the phantom to conform to those landmarks in 9 simulated scans and in 18 actual PET scans acquired of 9 mice. Tracer concentrations were automatically calculated in 22 regions of interest (ROIs) reflecting the whole body and 21 individual organs. To assess the accuracy of this approach, we compared the software-measured activities in the ROIs of simulated PET scans with the known activities, and we compared the software-measured activities in the ROIs of real PET scans both with manually established ROI activities in original scan data and with actual radioactivity content in immediately harvested tissues of imaged animals. PET/atlas coregistrations were successfully generated with minimal end-user input, allowing rapid quantification of 22 separate tissue ROIs. The simulated scan analysis found the method to be robust with respect to the overall size and shape of individual animal scans, with average activity values for all organs tested falling within the range of 98% +/- 3% of the organ activity measured in the unstretched phantom scan. Standardized uptake values (SUVs) measured from actual PET scans using this semiautomated method correlated reasonably well with radioactivity content measured in harvested organs (median r = 0.94) and compared favorably with conventional SUV correlations with harvested organ data (median r = 0.825). A semiautomated analytic approach involving coregistration of scan-derived images with atlas-type images can be used in small-animal whole-body radiotracer studies to estimate radioactivity concentrations in organs. This approach is rapid and less labor intensive than are

  20. Application of inductively coupled plasma mass spectrometry for multielement analysis in small sample amounts of thyroid tissue from Chernobyl area

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.; Boulyga, S.F.; Bazhanova, N.N.; Kanash, N.V.; Malenchenko, A.F.

    2000-01-01

    As a result of the Chernobyl nuclear power plant accident in 1986, thyroid pathologies occurred among children in some regions of belarus. Besides the irradiation of children's thyroids by radioactive iodine and caesium nuclides, toxic elements from fallout are a direct risk to health. Inductively coupled plasma quadrupole-based mass spectrometry (Icp-Ms) and instrumental neutron activation analysis (IAA) were used for multielement determination in small amounts (I-10 mg) of human thyroid tissue samples. The accuracy of the applied analytical technique for small biological sample amounts was checked using NIST standard reference material oyster tissue (SRM 1566 b). Almost all essential elements as well as a number of toxic elements such as Cd, Pb, Hg, U etc. Were determined in a multitude of human thyroid tissues by quadrupole-based Icp-Ms using micro nebulization. In general, the thyroid tissue affected by pathology is characterized by higher calcium content. Some other elements, among them Sr, Zn, Fe, Mn, V, As, Cr, Ni, Pb, U, Ba, Sb, were also Accumulated in such tissue. The results obtained will be used as initial material for further specific studies of the role of particular elements in thyroid pathology development

  1. Thermostatic tissue platform for intravital microscopy: 'the hanging drop' model.

    Science.gov (United States)

    Pavlovic, Dragan; Frieling, Helge; Lauer, Kai-Stephan; Bac, Vo Hoai; Richter, Joern; Wendt, Michael; Lehmann, Christian; Usichenko, Taras; Meissner, Konrad; Gruendling, Matthias

    2006-11-01

    Intravital microscopy imposes the particular problem of the combined control of the body temperature of the animal and the local temperature of the observed organ or tissues. We constructed and tested, in the rat ileum microcirculation preparation, a new organ-support platform. The platform consisted of an organ bath filled with physiological solution, and contained a suction tube, a superfusion tube, an intestine-support hand that was attached to a micromanipulator and a thermometer probe. To cover the intestine we used a cover glass plate with a plastic ring glued on its upper surface. After a routine procedure (anaesthesia, monitoring and surgery), the intestine segment (2-3 cm long) was gently exteriorized and placed on the 'hand' of the organ support. A small part of the intestine formed a small 'island' in the bath that was filled with physiological salt solution. The cover glass was secured in place. The physiological salt solution from the superfusion tube, which was pointed to the lower surface of the cover glass, formed a 'hanging drop'. The objective of the microscope was then immersed into distilled water that was formed by the cover glass plastic ring. The 'hanging drop' technique prevented any tissue quenching, ensured undisturbed microcirculation, provided for stable temperature and humidity, and permitted a clear visual field.

  2. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    Science.gov (United States)

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of tissue fixation and dehydration on tendon collagen nanostructure.

    Science.gov (United States)

    Turunen, Mikael J; Khayyeri, Hanifeh; Guizar-Sicairos, Manuel; Isaksson, Hanna

    2017-09-01

    Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The small leucine-rich proteoglycan, biglycan, is highly expressed in adipose tissue of Psammomys obesus and is associated with obesity and type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Bolton K

    2012-04-01

    Full Text Available Kristy Bolton1, David Segal1, Ken Walder1,21Metabolic Research Unit, School of Medicine, 2Institute for Technology, Research and Innovation, Deakin University, Waurn Ponds, Victoria, AustraliaAbstract: We have previously demonstrated that the small leucine-rich proteoglycan decorin may play a role in adipose tissue homeostasis and the pathophysiology of obesity. Biglycan is highly similar in structure to decorin, therefore we hypothesized it would have a similar expression profile and role to decorin in adipose tissue. Real time polymerase chain reaction was used to measure biglycan mRNA levels in adipose tissue from normal glucose tolerant and impaired glucose tolerant and type 2 diabetic (T2D Psammomys obesus. Biglycan mRNA was found to be highly expressed in adipose tissue, and gene expression was significantly higher in visceral compared to subcutaneous adipose tissue, with elevated levels in obese, T2D compared to lean normal glucose tolerant P. obesus (P < 0.04. Biglycan mRNA was predominantly expressed by stromal/vascular cells of fractionated adipose tissue (P = 0.023. Biglycan expression in adipose tissue, particularly in the obese state, was markedly upregulated. Collectively, our data suggest that the small leucine-rich proteoglycan family proteins biglycan and decorin may play a role in the development of obesity and T2D, possibly by facilitating expansion of adipose tissue mass.Keywords: biglycan, small leucine-rich proteoglycan, Psammomys obesus, adipose tissue, obesity, type 2 diabetes

  5. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Determination of 35S-aminoacyl-transfer ribonucleic acid specific radioactivity in small tissue samples

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ogunro, E.A.; Ferguson, A.G.; Lesch, M.

    1981-01-01

    Rate determination of protein synthesis utilizing tracer amino acid incorporation requires accurate assessment of the specific radioactivity of the labeled precursor aminoacyl-tRNA pool. Previously published methods presumably useful for the measurement of any aminoacyl-tRNA were unsuccessful when applied to [ 35 S]methionine, due to the unique chemical properties of this amino acid. Herein we describe modifications of these methods necessary for the measurement of 35 S-aminoacyl-tRNA specific radioactivity from small tissue samples incubated in the presence of [ 35 S]methionine. The use of [ 35 S]methionine of high specific radioactivity enables analysis of the methionyl-tRNA from less than 100 mg of tissue. Conditions for optimal recovery of 35 S-labeled dansyl-amino acid derivatives are presented and possible applications of this method are discussed

  7. Organic Optoelectronic Devices Employing Small Molecules

    Science.gov (United States)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt

  8. SMALL FARMERS FROM RURAL AREAS ATTITUDE ON ORGANIC FOOD

    Directory of Open Access Journals (Sweden)

    Ron#537;ca Mihai Ioan

    2012-07-01

    Full Text Available This paper is one of the few marketing research done in rural areas of attitudes towards green products. Even if the subject is generally treated at the international level, Romania has an important specific is to be taken into account in the European area. Size of agricultural holdings and their degree of technology do not have the desired agricultural economic efficiency of modern economies. But by applying marketing techniques and by approaching customer needs, the agricultural sector in Romania can develop in another direction no longer going through the business model of major West European farmers. We are referring here to transition to a agriculture on small areas, intensively exploited and ecology and a system of distributed in the markets with a big search for such products. But he must know how people in rural areas see these green products and how they are trained to understand the concepts of green marketing and marketing organic products. These issues have been dealt with in the first part of the work. The second part of this paper aims to describe the attitude of small agricultural producers towards organic products and the degree in which they are willing to go to such a production. Research is based on a survey an explorer in two rural areas of Romania one at the mountain and the other in lowlands and shows the degree of adaptation for small producers to new market requirements. Results have been contradictory. Some of them have confirmed the assumptions, namely the opening to such a grown for, and others have shown a much greater degree of the use of chemical compounds in agriculture than expected. Also the degree of taking the initiative in rural areas was an issue that came out at a level lower than expected. This is a worrying conclusion but worth being taken into account. This research gives the image concept in rural areas being the starting point for further research and strategies which to propose turning Romania into a

  9. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  10. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  11. Monte Carlo Method in the calculate of conversion coefficients for dose in children's organs and tissues subjected to dentistric radiography

    International Nuclear Information System (INIS)

    Loureiro, E.C.M.; Khoury, H.; Lima, F.R.A.

    1998-01-01

    The increasing utilization of oral X-rays, specially in youngsters and children, prompts the assessment of equivalent doses in their organs and tissues. With this purpose, Monte Carlo code was adopted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM,FOR developed by GSF Germany) and the adapted program (MCDRO,PAS). Good agreement between results obtained by both programs was observed. Applications to incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone marrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the langer the field area, the higher the doses in assessed organs and tissues

  12. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  13. Ageing combines CD4 T cell lymphopenia in secondary lymphoid organs and T cell accumulation in gut associated lymphoid tissue.

    Science.gov (United States)

    Martinet, Kim Zita; Bloquet, Stéphane; Bourgeois, Christine

    2014-01-01

    CD4 T cell lymphopenia is an important T cell defect associated to ageing. Higher susceptibility to infections, cancer, or autoimmune pathologies described in aged individuals is thought to partly rely on T cell lymphopenia. We hypothesize that such diverse effects may reflect anatomical heterogeneity of age related T cell lymphopenia. Indeed, no data are currently available on the impact of ageing on T cell pool recovered from gut associated lymphoid tissue (GALT), a crucial site of CD4 T cell accumulation. Primary, secondary and tertiary lymphoid organs of C57BL/6 animals were analysed at three intervals of ages: 2 to 6 months (young), 10 to 14 months (middle-aged) and 22 to 26 months (old). We confirmed that ageing preferentially impacted CD4 T cell compartment in secondary lymphoid organs. Importantly, a different picture emerged from gut associated mucosal sites: during ageing, CD4 T cell accumulation was progressively developing in colon and small intestine lamina propria and Peyer's patches. Similar trend was also observed in middle-aged SJL/B6 F1 mice. Interestingly, an inverse correlation was detected between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria of C57BL/6 mice whereas no increase in proliferation rate of GALT CD4 T cells was detected. In contrast to GALT, no CD4 T cell accumulation was detected in lungs and liver in middle-aged animals. Finally, the concomitant accumulation of CD4 T cell in GALT and depletion in secondary lymphoid organs during ageing was detected both in male and female animals. Our data thus demonstrate that T cell lymphopenia in secondary lymphoid organs currently associated to ageing is not sustained in gut or lung mucosa associated lymphoid tissues or non-lymphoid sites such as the liver. The inverse correlation between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria and the absence of overt proliferation in GALT suggest that marked CD4 T cell decay in secondary

  14. Rabbit tissue model (RTM) harvesting technique.

    Science.gov (United States)

    Medina, Marelyn

    2002-01-01

    A method for creating a tissue model using a female rabbit for laparoscopic simulation exercises is described. The specimen is called a Rabbit Tissue Model (RTM). Dissection techniques are described for transforming the rabbit carcass into a small, compact unit that can be used for multiple training sessions. Preservation is accomplished by using saline and refrigeration. Only the animal trunk is used, with the rest of the animal carcass being discarded. Practice exercises are provided for using the preserved organs. Basic surgical skills, such as dissection, suturing, and knot tying, can be practiced on this model. In addition, the RTM can be used with any pelvic trainer that permits placement of larger practice specimens within its confines.

  15. Concentrations of transuranic elements in critical organs and tissues of goats (CAPRA HIRCUS)

    International Nuclear Information System (INIS)

    Averin, V.S.; Vaskovtsova, V.A.; Kuhtsevich, A.B.; Tagai, S.A.; Tsarenok, A.A.; Buzdalkin, K.N.; Gvozdik, A.F.; Makarovets, I.V.; Nilova, E.K.

    2012-01-01

    Parameters of Am 241 and Pu 238, 239+240 transfer from the dietary soil-based component (mineral soil) to organs and tissues of goats during a grazing period of 80 and 160 days have been determined. The maximum specific activities of transuranic elements have been found in liver of goats. (authors)

  16. Substantial Differences between Organ and Muscle Specific Tracer Incorporation Rates in a Lactating Dairy Cow.

    Directory of Open Access Journals (Sweden)

    Nicholas A Burd

    Full Text Available We aimed to produce intrinsically L-[1-(13C]phenylalanine labeled milk and beef for subsequent use in human nutrition research. The collection of the various organ tissues after slaughter allowed for us to gain insight into the dynamics of tissue protein turnover in vivo in a lactating dairy cow. One lactating dairy cow received a constant infusion of L-[1-(13C]phenylalanine (450 µmol/min for 96 h. Plasma and milk were collected prior to, during, and after the stable isotope infusion. Twenty-four hours after cessation of the infusion the cow was slaughtered. The meat and samples of the various organ tissues (liver, heart, lung, udder, kidney, rumen, small intestine, and colon were collected and stored. Approximately 210 kg of intrinsically labeled beef (bone and fat free with an average L-[1-(13C]phenylalanine enrichment of 1.8±0.1 mole percent excess (MPE was obtained. The various organ tissues differed substantially in L-[1-(13C]phenylalanine enrichments in the tissue protein bound pool, the highest enrichment levels were achieved in the kidney (11.7 MPE and the lowest enrichment levels in the skeletal muscle tissue protein of the cow (between 1.5-2.4 MPE. The estimated protein synthesis rates of the various organ tissues should be regarded as underestimates, particularly for the organs with the higher turnover rates and high secretory activity, due to the lengthened (96 h measurement period necessary for the production of the intrinsically labeled beef. Our data demonstrates that there are relatively small differences in L-[1-(13C]phenylalanine enrichments between the various meat cuts, but substantial higher enrichment values are observed in the various organ tissues. We conclude that protein turnover rates of various organs are much higher when compared to skeletal muscle protein turnover rates in large lactating ruminants.

  17. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    Science.gov (United States)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  18. Analysis of very thin organic fibres by means of small spots electron spectroscopy for chemical analysis

    International Nuclear Information System (INIS)

    Daiser, S.M.; Cormia, R.D.; Scharpen, L.

    1985-01-01

    ESCA analysis of very thin organic fibres as small as a few micrometer diameter is now possible using the small spot X-ray capability of the SSX100 ESCA system. The sampling method involves suspending the material in the SSX100 chamber, and illuminating it with a monochromatized X-ray beam of 150-300 μm diameter. From the small spot ESCA spectra one can determine the chemical character of the organic layer and the thickness. (Author)

  19. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Directory of Open Access Journals (Sweden)

    Ashkan Maccabi

    Full Text Available Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E, long term shear modulus (η, and time constant (τ in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  20. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Science.gov (United States)

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  1. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    Science.gov (United States)

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ.

    Science.gov (United States)

    Desset, Sophie; Poulet, Axel; Tatout, Christophe

    2018-01-01

    Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.

  3. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Cho, Dong-Woo; Kim, Jong Young

    2012-01-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed. (paper)

  4. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    Science.gov (United States)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  5. Recent Advances in Understanding Pelvic-Floor Tissue of Women With and Without Pelvic Organ Prolapse: Considerations for Physical Therapists.

    Science.gov (United States)

    Saunders, Kimberly

    2017-04-01

    Pelvic organ prolapse is a fairly common condition that imposes significant symptoms, diminished quality of life, social burden, financial expense, and surgical risk on women. As evidence supporting the benefit of pelvic-floor muscle training in nonsurgical management of pelvic organ prolapse grows, physical therapists are becoming a provider of choice interacting with women affected by pelvic organ prolapse. This perspective article will review recent research on tissue characteristics of 3 key components of pelvic organ support: skeletal muscle, ligament, and vaginal wall. This information will be summarized as implications for physical therapists. An improved understanding of pelvic-floor tissue in women with and without pelvic organ prolapse will provide a more comprehensive appreciation of the interaction of multiple systems in the disorder. © 2017 American Physical Therapy Association.

  6. The Grand Challenges of Organ Banking: Proceedings from the first global summit on complex tissue cryopreservation.

    Science.gov (United States)

    Lewis, Jedediah K; Bischof, John C; Braslavsky, Ido; Brockbank, Kelvin G M; Fahy, Gregory M; Fuller, Barry J; Rabin, Yoed; Tocchio, Alessandro; Woods, Erik J; Wowk, Brian G; Acker, Jason P; Giwa, Sebastian

    2016-04-01

    The first Organ Banking Summit was convened from Feb. 27 - March 1, 2015 in Palo Alto, CA, with events at Stanford University, NASA Research Park, and Lawrence Berkeley National Labs. Experts at the summit outlined the potential public health impact of organ banking, discussed the major remaining scientific challenges that need to be overcome in order to bank organs, and identified key opportunities to accelerate progress toward this goal. Many areas of public health could be revolutionized by the banking of organs and other complex tissues, including transplantation, oncofertility, tissue engineering, trauma medicine and emergency preparedness, basic biomedical research and drug discovery - and even space travel. Key remaining scientific sub-challenges were discussed including ice nucleation and growth, cryoprotectant and osmotic toxicities, chilling injury, thermo-mechanical stress, the need for rapid and uniform rewarming, and ischemia/reperfusion injury. A variety of opportunities to overcome these challenge areas were discussed, i.e. preconditioning for enhanced stress tolerance, nanoparticle rewarming, cyroprotectant screening strategies, and the use of cryoprotectant cocktails including ice binding agents. Copyright © 2015.

  7. Small part ultrasound in childhood and adolescence

    Energy Technology Data Exchange (ETDEWEB)

    Wunsch, R., E-mail: R.Wunsch@kinderklinik-datteln.de [Department of Pediatric Radiology, Vestic Children' s Hospital Datteln, University of Witten/Herdecke, Dr.-Friedrich-Steiner-Strasse 5, D-45711 Datteln (Germany); Rohden, L. von, E-mail: l.vonrohden@gmx.de [Department of Pediatric Radiology, Otto-von-Guericke-University Magdeburg, Klinik f. Radiologie und Nuklearmedizin – Kinderradiologie, Leipziger Straße 44, D-39120 Magdeburg (Germany); Cleaveland, R. [Department of Pediatric Radiology, Vestic Children' s Hospital Datteln, University of Witten/Herdecke, Dr.-Friedrich-Steiner-Strasse 5, D-45711 Datteln (Germany); Aumann, V., E-mail: volker.aumann@med.ovgu.de [Department of Pediatric Haematology and Oncology, Otto-von-Guericke-University Magdeburg, Universitätskinderklinik (H 10), Pädiatrische Hämatologie und Onkologie, Leipziger Straße 44, D-39120 Magdeburg (Germany)

    2014-09-15

    Small-part sonography refers to the display of small, near-surface structures using high-frequency linear array transducers. Traditional applications for small part ultrasound imaging include visualization and differential diagnostic evaluation in unclear superficial bodily structures with solid, liquid and mixed texture, as well as similar structures in nearly superficial organs such as the thyroid glands and the testes. Furthermore indications in the head and neck regions are the assessment of the outer CSF spaces in infants, the sonography of the orbit, the sonography of the walls of the large neck vessels, the visualization of superficially situated lymph nodes and neoplasms. Clinical evidence concludes that sonography, having of all imaging modalities the highest spatial resolution in the millimeter- and micrometer range (100–1000 μm), can be considered the best suited technique for examining superficial pathological formations and near-surface organs. In addition, it delivers important information about characteristic, often pathognomonic tissue architecture in pathological processes.

  8. Small part ultrasound in childhood and adolescence

    International Nuclear Information System (INIS)

    Wunsch, R.; Rohden, L. von; Cleaveland, R.; Aumann, V.

    2014-01-01

    Small-part sonography refers to the display of small, near-surface structures using high-frequency linear array transducers. Traditional applications for small part ultrasound imaging include visualization and differential diagnostic evaluation in unclear superficial bodily structures with solid, liquid and mixed texture, as well as similar structures in nearly superficial organs such as the thyroid glands and the testes. Furthermore indications in the head and neck regions are the assessment of the outer CSF spaces in infants, the sonography of the orbit, the sonography of the walls of the large neck vessels, the visualization of superficially situated lymph nodes and neoplasms. Clinical evidence concludes that sonography, having of all imaging modalities the highest spatial resolution in the millimeter- and micrometer range (100–1000 μm), can be considered the best suited technique for examining superficial pathological formations and near-surface organs. In addition, it delivers important information about characteristic, often pathognomonic tissue architecture in pathological processes

  9. Hidden layers of human small RNAs

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Nakamura, Mari; Takahashi, Yukari

    2008-01-01

    small RNA have focused on miRNA and/or siRNA rather than on the exploration of additional classes of RNAs. RESULTS: Here, we explored human small RNAs by unbiased sequencing of RNAs with sizes of 19-40 nt. We provide substantial evidences for the existence of independent classes of small RNAs. Our data......BACKGROUND: Small RNA attracts increasing interest based on the discovery of RNA silencing and the rapid progress of our understanding of these phenomena. Although recent studies suggest the possible existence of yet undiscovered types of small RNAs in higher organisms, many studies to profile...... shows that well-characterized non-coding RNA, such as tRNA, snoRNA, and snRNA are cleaved at sites specific to the class of ncRNA. In particular, tRNA cleavage is regulated depending on tRNA type and tissue expression. We also found small RNAs mapped to genomic regions that are transcribed in both...

  10. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs.

    Science.gov (United States)

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Góralska, Marta; Macura, Barbara

    2011-01-01

    Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.

  12. Utilizing Content Marketing in Small and Medium-Sized Organizations

    OpenAIRE

    Parviainen, Ville

    2014-01-01

    The major objective of this study is to find out how and to what extent online content is currently utilized for marketing purposes among small and medium-sized organizations in Finland. Additionally, positive and negative future prospects concerning this type of content marketing were explored. The study is mainly qualitative by nature. The empirical part of this thesis was carried out between July 2013 and March 2014 and it consists of five semi-structured interviews with five professio...

  13. Small cell lung cancer presenting as dermatomyositis: mistaken for single connective tissue disease.

    Science.gov (United States)

    Chao, Guanqun; Fang, Lizheng; Lu, Chongrong; Chen, Zhouwen

    2012-06-01

    Dermatomyositis (DM) is well-known to be associated with several types of malignancy. This case emphasizes the importance of a thorough examination for an underlying cancer, in patients with the symptoms of dermatomyositis. We report the case of a 62-year-old Chinese man who presented with a two-month history of edema of face and neck, together with erythema of the eyelids diagnosed of small cell lung cancer. Initially, it was thought to be single connective tissue disease such as DM. This study highlights the importance of a thorough physical examination when visiting a patient.

  14. A Review of Three-Dimensional Printing in Tissue Engineering.

    Science.gov (United States)

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  15. Fungi from interior organs of free-living small mammals in Czechoslovakia and Yugoslavia.

    Science.gov (United States)

    Hubálek, Z; Rosický, B; Otcenásek, M

    1980-01-01

    A total of 308 fungi was isolated from interior organs (lungs, spleen, liver) of 529 small mammals belonging to 21 species, 7 families and 3 orders (Insectivora, Chiroptera, Rodentia), some of these being potentially pathogenic to vertebrates (e.g. Aspergillus flavus, A. fumigatus, Geotrichum candidum, Mucor pusillus, Rhizopus arrhizus). In one vole (Microtus arvalis) captured in South Moravia, adiaspiromycosis (Emmonsia crescens) was demonstrated. Comparison of mycoflora of hair and that of interior organs of wild small mammals revealed that out of the total number of isolates the following fungi were represented in a higher proportion from visceral organs than from the hair: Aspergillus (A. amstelodami, A. flavus, A. repens), Aureobasidium (A. pullulans), Candida, Cladosporium (C. herbarum), Cryptococcus, Fusarium, Gliocladium (G. deliquescens), Helminthosporium, Kloeckera, Mucor (M. fragilis, M. hiemalis, M. pusillus), Paecilomyces marquandii, Penicillium (P. purpurogenum), Phoma, Rhizopus arrhizus, Scopulariopsis (S. candida, S. koningii) and Torulopsis.

  16. Results from the organ and tissue transplant program in Nuevo Leon, Mexico, 1996 to 2001.

    Science.gov (United States)

    Carbajal, H; Cabriales, H

    2003-12-01

    Before 1996, solid organs from cadaveric donors (CD) did not account for more than 2% of all transplants. The need for more transplants led the state to undergo several legislative, societal, organizational, and infrastructure changes. A descriptive analysis of the evolution of the transplant program in the State of Nuevo León, Mexico, from 1996 to 2001. Trimester reports have been routinely performed since 1996 from the 14 institutions that are licensed to perform organ and tissue transplants in the State of Nuevo León, Mexico. All reports were concentrated and a descriptive analysis is presented herein. From 1996 until 2001, a total of 1457 organ and tissue (OT) transplants have been performed. At the end of this period, there was a 214% increase in the total number of transplants. By 2001, 73% of the program's total of 1457 OT transplants came from cadaveric donors. The state transplant program of Nuevo León has experienced a dramatic growth since 1996. The percent of organs transplanted from cadaveric donors is one of the highest in Mexico. There is still much work to be done at the state and national levels; better epidemiological studies and dialysis registries are needed as well as investment in transplant research.

  17. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng; Chen, Yin; Ma, Chun; Buttner, Ulrich; Leo, Karl; Wu, Tao

    2016-01-01

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  18. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng

    2016-12-13

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  19. From Prevention To Advance In Biomedicine: The Transfer Of Organs And Tissues

    Directory of Open Access Journals (Sweden)

    Gemma Flores-Pons

    2013-07-01

    Full Text Available Currently, within Western societies, we can see new practices that are at once reality and fiction as they unfold in the terrain of the possible, the imaginable and the optimum. In the present paper, we focus on the case of organ and tissues transfer to describe how those biomedical actants and practices involved are articulated, configuring it as an anticipatory process, namely as a constant movement attempting to bring mobile futures to the present. Drawing on an ethnographic study exploring the everyday activity of a Spanish transplant coordination team,, we begin by suggesting that donation gets inserted as an imperative in the increasingly individualized management of the citizens’ biological becomings. Secondly, we turn to how the articulation of the brain death diagnosis functions as an entity capable of creating coherence between the different temporalities produced in the organs and tissues transfer. Then, we show the optimization mechanisms that operate within the waiting lists materializing imagined futures. Finally, by way of describing the permanent latency in which the transplant coordination teams work, we give an account of how biomedicine is turning away from generating practices inserted in a logic of prevention to practices that obey a logic of preparation.

  20. Soft tissue organ masses of Beagles as a function of age

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Gillett, N.A.; Gerlach, R.F.

    1988-01-01

    Beagle dogs have been used for the past 30 yr for radio toxicological studies in several Department of Energy laboratories. Since the animals are maintained for their life span, it is important to recognize the potential importance of age-related changes in organ masses, particularly as they relate to dosimetry. To determine the extent and magnitude of soft-tissue organ mass changes relative to age and gender of Beagle dogs, groups of three male and three female dogs at ages 2.7, 6.0, 8.8, 11.7, and 14.0 yr were sacrificed. The resulting organ mass data were analyzed by linear regression both in terms of gross mass and mass normalized to whole-body mass. The results indicated that very little change in masses could be detected in this population over the age range studied, which includes the median life span of dogs In this colony. The rate of change of masses was shown to have an insignificant effect on the calculation of radiation dose, even over long time periods. (author)

  1. Soft tissue organ masses of Beagles as a function of age

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R A; Gillett, N A; Gerlach, R F

    1988-12-01

    Beagle dogs have been used for the past 30 yr for radio toxicological studies in several Department of Energy laboratories. Since the animals are maintained for their life span, it is important to recognize the potential importance of age-related changes in organ masses, particularly as they relate to dosimetry. To determine the extent and magnitude of soft-tissue organ mass changes relative to age and gender of Beagle dogs, groups of three male and three female dogs at ages 2.7, 6.0, 8.8, 11.7, and 14.0 yr were sacrificed. The resulting organ mass data were analyzed by linear regression both in terms of gross mass and mass normalized to whole-body mass. The results indicated that very little change in masses could be detected in this population over the age range studied, which includes the median life span of dogs In this colony. The rate of change of masses was shown to have an insignificant effect on the calculation of radiation dose, even over long time periods. (author)

  2. "Project ACTS": An Intervention to Increase Organ and Tissue Donation Intentions among African Americans

    Science.gov (United States)

    Arriola, Kimberly; Robinson, Dana H.; Thompson, Nancy J.; Perryman, Jennie P.

    2010-01-01

    This study sought to evaluate the effectiveness of "Project ACTS: About Choices in Transplantation and Sharing," which was developed to increase readiness for organ and tissue donation among African American adults. Nine churches (N = 425 participants) were randomly assigned to receive donation education materials currently available to consumers…

  3. Using of Synchrotron radiation for study of multielement composition of the small mammals diet and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bezel, V S [Institute of Plant and Animal Ecology Ural Branch of Russian Academy of Sciences, 8 Marta str., 202, 620144, Ekaterinburg (Russian Federation); Koutzenogii, K P [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Institutskaya str., 3, 630090 Novosibirsk (Russian Federation); Mukhacheva, S V [Institute of Plant and Animal Ecology Ural Branch of Russian Academy of Sciences, 8 Marta str., 202, 620144, Ekaterinburg (Russian Federation); Chankina, O V [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Institutskaya str., 3, 630090 Novosibirsk (Russian Federation); Savchenko, T I [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Institutskaya str., 3, 630090 Novosibirsk (Russian Federation)

    2007-05-21

    The Synchrotron radiation X-ray Fluorescence analysis (SRXRF) was used for estimation of 'geochemical selection' of elements by small mammals, which belong to different trophic groups and inhabit polluted and background areas (the Middle Ural). The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Cd, Pb in the diet and into hepar of a herbivorous (bank vole) and carnivorous (Laxmann's shrew) small mammals were compared. Herbivores play a particular role in chemical elements translocation between trophic levels, limiting element transition to consumers of the consequent levels. Whereas, insectivores concentrate most elements in their tissues under the same conditions.

  4. An automated robot arm system for small animal tissue biopsy under dual-image modality

    International Nuclear Information System (INIS)

    Huang, Y.H.; Wu, T.H.; Lin, M.H.; Yang, C.C.; Guo, W.Y.; Wang, Z.J.; Chen, C.L.; Lee, J.S.

    2006-01-01

    The ability to non-invasively monitor cell biology in vivo is one of the most important goals of molecular imaging. Imaging procedures could be inter-subject performed repeatedly at different investigating stages; thereby need not sacrifice small animals during the entire study period. Thus, the ultimate goal of this study was to design a stereotactic image-guided system for small animals and integrated it with an automatic robot arm for in vivo tissue biopsy analysis. The system was composed of three main parts, including one small animal stereotactic frame, one imaging-fusion software and an automatic robot arm system. The system has been thoroughly evaluated with three components; the robot position accuracy was 0.05±0.02 mm, the image registration accuracy was 0.37±0.18 mm and the system integration was satisfactorily within 1.20±0.39 mm of error. From these results, the system demonstrated sufficient accuracy to guide the micro-injector from the planned delivery routes into practice. The entire system accuracy was limited by the image fusion and orientation procedures, due to its nature of the blurred PET imaging obtained from the small objects. The primary improvement is to acquire as higher resolution as possible the fused imaging for localizing the targets in the future

  5. Optimum Organization of the Labor Market in a Small Open Economy

    DEFF Research Database (Denmark)

    Blomgren-Hansen, Niels

    2012-01-01

    In Denmark labor has been organized in independent but cooperating craft unions for more than a century. Within an extremely simple model of a small open economy facing imperfect competition, we analyze four different ways of organizing the labor market and show that the Danish model (partial...... centralization of the wage setting process) may be accounted for as the outcome of a two-stage Nash bargaining game, being robust in relation to changes in market conditions, and likely close to optimum from the point of view of society as a whole....

  6. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  7. Small Faith-Related Organizations as Partners in Local Social Service Networks

    Directory of Open Access Journals (Sweden)

    David Campbell

    2016-05-01

    Full Text Available Efforts to enlist small faith-related organizations as partners in public service delivery raise many questions. Using community social service networks as the unit of analysis, this paper asks one with broader relevance to nonprofit sector managers: What factors support and constrain effective integration of these organizations into a local service delivery network? The evidence and illustrations come from longitudinal case studies of five faith-related organizations who received their first government contract as part of a California faith-based initiative. By comparing the organizational development and network partnership trajectories of these organizations over more than a decade, the analysis identifies four key variables influencing partnership dynamics and outcomes: organizational niche within the local network; leadership connections and network legitimacy; faith-inspired commitments and persistence; and core organizational competencies and capacities. The evidence supports shifting the focus of faith-based initiatives to emphasize local planning and network development, taking into account how these four variables apply to specific organizations and their community context.

  8. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Directory of Open Access Journals (Sweden)

    David William Green

    2016-02-01

    Full Text Available The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a water-tight barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachement complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement.. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organising cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  9. A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials

    NARCIS (Netherlands)

    Babo, P.S.; Klymov, A.; Riet, J. te; Reis, R.L.; Jansen, J.A.; Gomes, M.E.; Walboomers, X.F.

    2016-01-01

    Micro- and nanotextured biomaterial surfaces have been widely studied for their capacity to drive the regeneration of organized tissues. Nanotopographical features in the shape of groove-ridge patterns aim at mimicking the extracellular matrix organization. However, to date, a wide array of groove

  10. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  11. Studies on the distribution of zinc radioisotope 65Zn in an organism of pig

    International Nuclear Information System (INIS)

    Nowosad, R.; Simoni, J.; Kubok-Gottlieb, L.

    1978-01-01

    The purpose of the studies was analysis of the distribution of radioactive 65 Zinc in an organism of pig and the degree of its bounding with protein fractions of certain parenchymatous organs. The animals were given intramuscularly the radioisotope of 65 Zn (20 uCi). After 48 hr since the injection the animals were slaughtered and selective organs and tissues were examined radiometrically. The results were presented as a percentage of the applied dose per 1.0 g of a sample x 10 2 . Taking into consideration the concentration of 65 Zn in the examined organs and tissues, they were divided into the following groups: I - (over 0.30%), parenchymatous organs, hypophyseal gland, suprarenal glands, II (0.20 - 0.30%) - uterus, lungs, small intestine, bile, III (0.10 - 0.20%) - salivary glands, tongue, stomach, colon, coecum, IV (0.01 - 0.1%) - the rest of the organs and tissues studied which activity differed to a small extent in comparison to the concentration of 65 Zn in blood after 48 hr since the application of the radioactive material. In various proteins and their fractions a degree of 65 Zn binding was insignificant in comparison to the content of Zn in a protein-free supernatant. (author)

  12. TISSUES 2.0: an integrative web resource on mammalian tissue expression.

    Science.gov (United States)

    Palasca, Oana; Santos, Alberto; Stolte, Christian; Gorodkin, Jan; Jensen, Lars Juhl

    2018-01-01

    Physiological and molecular similarities between organisms make it possible to translate findings from simpler experimental systems—model organisms—into more complex ones, such as human. This translation facilitates the understanding of biological processes under normal or disease conditions. Researchers aiming to identify the similarities and differences between organisms at the molecular level need resources collecting multi-organism tissue expression data. We have developed a database of gene–tissue associations in human, mouse, rat and pig by integrating multiple sources of evidence: transcriptomics covering all four species and proteomics (human only), manually curated and mined from the scientific literature. Through a scoring scheme, these associations are made comparable across all sources of evidence and across organisms. Furthermore, the scoring produces a confidence score assigned to each of the associations. The TISSUES database (version 2.0) is publicly accessible through a user-friendly web interface and as part of the STRING app for Cytoscape. In addition, we analyzed the agreement between datasets, across and within organisms, and identified that the agreement is mainly affected by the quality of the datasets rather than by the technologies used or organisms compared. http://tissues.jensenlab.org/

  13. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    Science.gov (United States)

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  14. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    Science.gov (United States)

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  15. Determination of /sup 35/S-aminoacyl-transfer ribonucleic acid specific radioactivity in small tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Samarel, A.M.; Ogunro, E.A.; Ferguson, A.G.; Lesch, M.

    1981-11-15

    Rate determination of protein synthesis utilizing tracer amino acid incorporation requires accurate assessment of the specific radioactivity of the labeled precursor aminoacyl-tRNA pool. Previously published methods presumably useful for the measurement of any aminoacyl-tRNA were unsuccessful when applied to (/sup 35/S)methionine, due to the unique chemical properties of this amino acid. Herein we describe modifications of these methods necessary for the measurement of /sup 35/S-aminoacyl-tRNA specific radioactivity from small tissue samples incubated in the presence of (/sup 35/S)methionine. The use of (/sup 35/S)methionine of high specific radioactivity enables analysis of the methionyl-tRNA from less than 100 mg of tissue. Conditions for optimal recovery of /sup 35/S-labeled dansyl-amino acid derivatives are presented and possible applications of this method are discussed.

  16. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  17. PCBs and PCDD/Fs distribution in tissues and organs of marine animals in Russian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Amirova, Z.; Kruglov, E.; Loshkina, E.; Khalilov, R. [Environmental Research and Protection Centre, Ufa (Russian Federation); Melnikov, S.; Vlasov, S. [Regional Centre Monitoring of the Arctic, St. Petersburg (Russian Federation)

    2004-09-15

    Studies of persistent organic pollutants (POPs) in the Russian Arctic were conducted recently by a Arctic Monitoring and Assessment Program (AMAP) project. This project developed new data on the POPs pollution levels in the environment and biosphere, including PCBs and PCDD/Fs, in arctic regions of Russia. Transboundary transport and biomagnification within food chains in arctic regions result in POPs accumulation in tissues of fish and marine animals. The aim of this study was to determine the concentration of indicator PCBs, co-planar PCBs and PCDD/Fs in different tissues and organs of seals, walruses and whales caught near the seashore of Chukotski Peninsula (settlement of Lavrenty), Russia, to determine the background level of arctic biota pollution and to study distribution of toxicants in organisms of marine animals. Sampling was made in the course of the 1{sup st} and the 2{sup nd} stages of the 4{sup th} phase of Raipon/AMAP/GEF project ''Persistent Toxic Substances (PTS), Food Security and Indigenous Peoples of the Russian North'' in 2002 by researchers of the Regional Center for Monitoring of the Arctic (RCMA), St. Petersburg, Russia.

  18. Factors influencing the results of tissue and organ donation: a survey from Cho Ray hospital Mortuary in Ho Chi Minh City, Vietnam

    International Nuclear Information System (INIS)

    Tran Cong Toai; Hoang Van Thuc; Nguyen Ngoc Son; Pham Anh Tuan; Yongyudh Vajaradul; Tran Bac Hai; Nguyen Giang Son; Hyunh Ngoc Linh

    1999-01-01

    The study was carried out on next-of-kins of the deceased one to identify factors affecting the final results of organ donation. Among 225 interviewers (67.1% men), 80 people (35.6%) would be willing to give consent for donation of their relative's tissue and organ. When faced with the beloved death, only 8 cases were procured in reality. The obstacles that limited the organ procurement are due to: consent with some conditions (26/80); not the right relative available to make consent (25/80); initial consent subsequently withdrawn (12/80); exclusion criteria by Tissue Bank (7/80) and interview too late (2/80). There were 62.2% of respondents heard about tissue and organ transplantation, but only 50.3% were aware of transplantation operations possible in Viet Nam. Awareness of transplantation and donation revealed the statistically significant association with the consent for organ donation. It is important that these all such factors need to be considered in their cultural, ethical, religious and legislative environment

  19. Impact of small variations in LDR for late-reacting tissue in gyn brachytherapy

    International Nuclear Information System (INIS)

    Bourel, Victor J.; Torre, Marcela de la; Rodriguez, Isabel

    1996-01-01

    Introduction: The linear-quadratic model shows that while a slight variation in the LDR Brachytherapy dose rate affects just a little the tumoral tissue ERD (Extrapolated Response Dose), the effect can be very strong in the late reacting tissues. The LDR Brachytherapy in cervix cancer is done with a dose rate in point A that range between 0.5 Gy/h and 0.7 Gy/h. This small range is a very heavy variable to find equivalent schemes. Material and Methods: Whith the LC10 program (based in the linear-quadratic model developed in our centre) a radiobiological analysis of the GYN Brachytherapy considering the dosimetric distribution of the most usual applicators is done. Different studies show that the critical rectal and bladder point doses in reference to point A ranges between 60% and 80%. Bearing this in mind, and the typical variables (tissue parameters, number of fractions, dose per fraction, total dose, etc.) the effect of the LDR dose rate variation in particularly analysed while calculating the equivalent HDR scheme. Result and discussion: When equivalent schemes are calculated in practise it is found that the HDR number of fractions depends highly on the LDR dose rate, that's why for one specific LDR scheme is necessary even to duplicate the HDR number of fractions to find the unique equivalent scheme when varying the dose rate from 0.5 Gy/h to 0.7 Gy/h. This also shows that the same LDR scheme using 0.5 Gy/h or 0.7 Gy/h is radiobiologically different (up to 20% in the late reacting tissue ERD). Conclusion: It is very important to report with great detail the LDR dose rate with which the gynaecological treatments have been performed because this variable is decisive to compare the results with other LDR or HDR schemes

  20. Evaluating Outsourcing Information Technology and Assurance Expertise by Small Non-Profit Organizations

    Science.gov (United States)

    Guinn, Fillmore

    2013-01-01

    Small non-profit organizations outsource at least one information technology or information assurance process. Outsourcing information technology and information assurance processes has increased every year. The study was to determine the key reasons behind the choice to outsource information technology and information assurance processes. Using…

  1. Relation between the location of elements in the periodic table and various organ-uptake rates.

    Science.gov (United States)

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1989-01-01

    Fifty four elements and 65 radioactive compounds were examined to determine the organ uptake rates for rats 3, 24 and 48 h after i.v. injection of these compounds. They were prepared as carrier free nuclides, or containing a small amount of stable nuclide. Generally speaking, behaviors of K, Rb, Cs and Tl in all the organs were very similar to one another, but they differed from that of Na. Bivalent hard acids were avidly taken up into bone; therefore, uptake rates in soft tissues were very small. Hard acids of tri-, quadri- and pentavalence which were taken up into the soft tissue organs decreased more slowly from these organs than other ions. Soft acids such as Hg2+ were bound very firmly to the component in the kidney. Anions (with few exceptions), GeCl4 and SbCl3 were rapidly excreted in urine, so that the uptake rates in organs were low.

  2. Heavy metal distribution in organic and siliceous marine sponge tissues measured by square wave anodic stripping voltammetry.

    Science.gov (United States)

    Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G

    2016-10-15

    May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment

    Directory of Open Access Journals (Sweden)

    Kvido Smitka

    2015-01-01

    Full Text Available Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as “adipokines” including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α, interleukin-6 (IL-6, resistin, pigment epithelium-derived factor (PEDF, and progranulin (PGRN which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  4. Integrity of the oral tissues in patients with solid-organ transplants.

    Science.gov (United States)

    Rojas, Gonzalo; Bravo, Loreto; Cordero, Karina; Sepúlveda, Luis; Elgueta, Leticia; Díaz, Juan Carlos; Urzúa, Blanca; Morales, Irene

    2012-01-01

    The relationship between the use of immunosuppressants in solid-organ transplant patients and oral tissue abnormalities has been recognized. The objective of this study was to determine the state of oral tissue integrity in renal, heart, and liver transplant patients who are on continuous medical and dental control. Forty patients of both sexes were clinically evaluated at the Clinical Hospital of the University of Chile to identify pathologies of oral mucosa, gingival enlargement (GE), decayed, missing, filled teeth (DMFT) index, and salivary flow. The average age of the transplant subjects was 49.4 years, and the age range was 19 to 69 years. Most subjects maintained a good level of oral hygiene, and the rate mean of DMFT was 14.7. The degree of involvement of the oral mucosa and GE was low (10%). Unlike other studies, the frequency of oral mucosal diseases and GE was low despite the fact that these patients were immunosuppressed. Care and continuous monitoring seem to be of vital importance in maintaining the oral health of transplant patients.

  5. Integrity of the Oral Tissues in Patients with Solid-Organ Transplants

    Directory of Open Access Journals (Sweden)

    Gonzalo Rojas

    2012-01-01

    Full Text Available The relationship between the use of immunosuppressants in solid-organ transplant patients and oral tissue abnormalities has been recognized. The objective of this study was to determine the state of oral tissue integrity in renal, heart, and liver transplant patients who are on continuous medical and dental control. Forty patients of both sexes were clinically evaluated at the Clinical Hospital of the University of Chile to identify pathologies of oral mucosa, gingival enlargement (GE, decayed, missing, filled teeth (DMFT index, and salivary flow. The average age of the transplant subjects was 49.4 years, and the age range was 19 to 69 years. Most subjects maintained a good level of oral hygiene, and the rate mean of DMFT was 14.7. The degree of involvement of the oral mucosa and GE was low (10%. Unlike other studies, the frequency of oral mucosal diseases and GE was low despite the fact that these patients were immunosuppressed. Care and continuous monitoring seem to be of vital importance in maintaining the oral health of transplant patients.

  6. Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.

    Science.gov (United States)

    He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo

    2013-01-01

    A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.

  7. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  8. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    International Nuclear Information System (INIS)

    Sharma, G. D.

    2011-01-01

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm 2 has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  9. Light incoupling in small molecule organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, Nikola; Meiss, Jan; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01069 Dresden (Germany); Gnehr, Wolf-Michael [Heliatek GmbH, Liebigstrasse 26, 01187 Dresden (Germany)

    2008-07-01

    Light incoupling is an essential topic for optimization of organic solar cells. In our group, we examine light incoupling of different kinds of transparent contacting materials as well as external dielectric coatings, using optical simulation of thin film systems and experimental methods. Thin films of small molecules are prepared by thermal evaporation in a multi-chamber UHV system. Complex refraction indices of various materials are calculated from reflection and transmission measurements of monolayers. For modelling of optical properties of thin film systems, we developed a numerical simulation program based on the transfer matrix method. The cell structures investigated consist of nanolayers of small molecules, using ZnPc/C60 as an acceptor-donor heterojunction. As contact materials, we compare the expensive standard material indium tin oxide (ITO) with more cost-efficient alternatives like thin Ag layers or spin-coated layers of the polymer PEDOT:PSS, and discuss the resulting cell properties. Additional dielectric layers of varying materials, like tris(8-hydroxy-quinolinate)-aluminum (Alq3) or N,N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), are deposited on top of the stack and their influence on cell efficiencies is investigated.

  10. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  11. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    Science.gov (United States)

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  12. Test of tissue-equivalent scintillation detector for dose measurement of megavoltage beams

    International Nuclear Information System (INIS)

    Geso, M.; Ackerly, T.; Clift, M.A.

    2000-01-01

    Full text: The measurement of depth doses and profiles for a stereotactic radiotherapy beam presents special problems associated with the small beam size compared to the dosimeter's active detection area. In this work a locally fabricated organic plastic scintillator detector has been used to measure the depth dose and profile of a stereotactic radiotherapy beam. The 6MV beam is 1.25 cm diameter at isocentre, typical of small field stereotactic radiosurgery. The detector is a water/tissue equivalent plastic scintillator that is accompanied by Cerenkov subtraction detector. In this particular application, a negligible amount of Cerenkov light was detected. A photodiode and an electronic circuit is used instead of a photomultiplier for signal amplification. Comparison with data using a diode detector and a small size ionization chamber, indicate that the organic plastic scintillator detector is a valid detector for stereotactic radiosurgery dosimetry. The tissue equivalence of the organic scintillator also holds the promise of accurate dosimetry in the build up region. Depth doses measured using our plastic scintillator agree to within about 1% with those obtained using commercially available silicon diodes. Beam profiles obtained using plastic scintillator presents correct field width to within 0.35 mm, however some artifacts are visible in the profiles. These artifacts are about 5% discrepancy which has been shown not to be a significant factor in stereotactic radiotherapy dosimetry. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  13. Evaluation of Specific Metabolic Rates of Major Organs and Tissues: Comparison Between Nonobese and Obese Women

    OpenAIRE

    Wang, ZiMian; Ying, Zhiliang; Bosy-Westphal, Anja; Zhang, Junyi; Heller, Martin; Later, Wiebke; Heymsfield, Steven B.; Müller, Manfred J.

    2011-01-01

    Elia (1992) identified the specific resting metabolic rates (Ki) of major organs and tissues in young adults with normal weight: 200 for liver, 240 for brain, 440 for heart and kidneys, 13 for skeletal muscle, 4.5 for adipose tissue and 12 for residual mass (all units in kcal/kg per day). The aim of the present study was to assess the applicability of Elia’s Ki values for obese adults. A sample of young women (n = 80) was divided into two groups, nonobese (BMI

  14. Organ Donation

    Science.gov (United States)

    Organ donation takes healthy organs and tissues from one person for transplantation into another. Experts say that the organs ... and bone marrow Cornea Most organ and tissue donations occur after the donor has died. But some ...

  15. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  16. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  17. The importance of the selection of the audiences and the organization of media events within public awareness strategies for tissue banks.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2008-12-01

    The main purpose of the International Atomic Energy Agency (IAEA) Public Awareness Strategies for Tissue Banks is to provide guidance on organizing and running awareness campaigns, in order to consolidate tissue banking activities. Within the IAEA Public Awareness Strategies for Tissue Banks, there are two important topics, which need to be singled out due to their importance for a successful public and professional awareness campaign. These are the selection of the audiences and the organization of media events within a Communication Strategy. The experience in the field of tissue banking in several countries has shown that interaction between the public, the professional health care staff, the media and the tissue bank personnel is essential if the activities of the banks are to be successful. It must be emphasized however, that any public and professional awareness strategy will not be successful, unless it is considered as part of an integrated system that is adopted by the concerned Government.

  18. Practical experience in post-mortem tissue donation in consideration of the European tissue law.

    Science.gov (United States)

    Karbe, Thomas; Braun, Christian; Wulff, Birgit; Schröder, Ann Sophie; Püschel, Klaus; Bratzke, Hansjürgen; Parzeller, Markus

    2010-03-01

    In consequence of the European guidelines of safety and quality standards for the donation, retrieval, storing and distribution of human tissues and cells the purpose of tissue transplantation was implemented into German legislation in May 2007. The law came into effect on August 1st 2007 considering of the European rules. The Institutes for Legal Medicine of the University of Frankfurt/Main and the University Medical Center Hamburg-Eppendorf developed a model for tissue retrieval. The Institute of Legal Medicine (I.f.R.) at the University Medical Center Hamburg cooperates with the German Institute of Cell and Tissue Replacement (Deutsches Institut für Zell--und Gewebeersatz DIZG). Potential post-mortem tissue donors (PMTD) among the deceased are selected by standardized sets of defined criteria. The procedure is guided by the intended exclusion criteria of the tissue regulation draft (German Transplant Law TPG GewV) in accordance with the European Guideline (2006/17/EC). Following the identification of the donor and subsequent removal of tissue, the retrieved samples were sent to the DIZG, a non-profit tissue bank according to the tissue regulation. Here the final processing into transplantable tissue grafts takes place, which then results in the allocation of tissue to hospitals in Germany and other European countries. The Center of Legal Medicine at the Johann Wolfgang Goethe-University Medical Center Frankfurt/Main cooperates since 2000 with Tutogen, a pharmaceutical company. Harvesting of musculoskeletal tissues follows corresponding regulations. To verify the outcome of PMTD at the I.f.R. Hamburg, two-statistic analysis over 12 and 4 months have been implemented. Our results have shown an increasing number of potential appropriate PMTD within the second inquiry interval but a relatively small and unvaryingly rate of successful post-mortem tissue retrievals similar to the first examination period. Thus, the aim of the model developed by the I.f.R. is to

  19. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  20. Classification of trace elements in tissues from organic and conventional French pig production.

    Science.gov (United States)

    Parinet, Julien; Royer, Eric; Saint-Hilaire, Mailie; Chafey, Claude; Noël, Laurent; Minvielle, Brice; Dervilly-Pinel, Gaud; Engel, Erwan; Guérin, Thierry

    2018-07-01

    This study assesses the impact of the farming system on the levels of copper, zinc, arsenic, cadmium, lead and mercury in pig tissues from three types of production (Organic (n = 28), Label Rouge (n = 12) and Conventional (n = 30)) randomly sampled in different slaughterhouses. All the concentrations were below regulatory limits. In muscles, Cu, Zn and As were measured at slightly higher levels in organic samples but no differences between organic and Label Rouge was observed. Livers from conventional and Label Rouge pig farms exhibited higher Zn and Cd contents than the organic ones, probably due to different practice in zinc or phytase supplementation of fattening diets. Principal component analysis indicated a correlation between Cu and As concentrations in liver and carcass weight, and between Zn and Cd liver levels and lean meat percentage. The linear discriminant analysis succeeded in predicting the farming process on the basis of the lean meat percentage and the liver Cd level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. West Nile Virus RNA in Tissues from Donor Associated with Transmission to Organ Transplant Recipients

    Centers for Disease Control (CDC) Podcasts

    2013-11-19

    William Hale reads an abridged version of the Emerging Infectious Diseases’ dispatch, West Nile Virus RNA in Tissues from Donor Associated with Transmission to Organ Transplant Recipients.  Created: 11/19/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/21/2013.

  2. Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    KAUST Repository

    Chou, Kang Wei; Khan, Hadayat Ullah; Niazi, Muhammad Rizwan; Yan, Buyi; Li, Ruipeng; Payne, Marcia M.; Anthony, John Edward; Smilgies, Detlef Matthias; Amassian, Aram

    2014-01-01

    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis

  3. Additive Manufacturing of Biomaterials, Tissues, and Organs.

    Science.gov (United States)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.

  4. Perspectives of small retailers in the organic market: Customer satisfaction and customer enthusiasm

    OpenAIRE

    Bolten, Jan; Kennerknecht, Raphael; Spiller, Achim

    2006-01-01

    Abstract. In this paper we discuss the impact of customer satisfaction and enthusiasm on the performance of small retailers in the organic food market. The analysis of customer satisfaction and shop data confirm essential economic effects. The study is based on 948 customer interviews and an analysis of management ratios of 12 organic food shops in Germany. The results show that customer satisfaction is a relevant key to sales performance. Regression analysis reveals that overall customer sat...

  5. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    Science.gov (United States)

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  6. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  8. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    International Nuclear Information System (INIS)

    Hintenlang, David E.

    2009-01-01

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ doses in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date

  9. A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications

    Directory of Open Access Journals (Sweden)

    Kan Wang

    2017-10-01

    Full Text Available Medical models, or “phantoms,” have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors for regenerated tissues and organs.

  10. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  11. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non

  12. Porous hybrid structures based on P(DLLA-co-TMC) and collagen for tissue engineering of small-diameter blood vessels

    NARCIS (Netherlands)

    Buttafoco, L.; Boks, Niels P.; Engbers-Buijtenhuijs, P.; Grijpma, Dirk W.; Poot, Andreas A.; Dijkstra, Pieter J.; Vermes, I.; Feijen, Jan

    2006-01-01

    Poly (D,L-lactide)-7co-(1,3-trimethylene carbonate) [P(DLLA-co-TMC)] (83 mol % DLLA) was used to produce matrices suitable for tissue engineering of small-diameter blood vessels. The copolymer was processed into tubular structures with a porosity of 98% by melt spinning and fiber winding, thus

  13. Small-world organization of self-similar modules in functional brain networks

    Science.gov (United States)

    Sigman, Mariano; Gallos, Lazaros; Makse, Hernan

    2012-02-01

    The modular organization of the brain implies the parallel nature of brain computations. These modules have to remain functionally independent, but at the same time they need to be sufficiently connected to guarantee the unitary nature of brain perception. Small-world architectures have been suggested as probable structures explaining this behavior. However, there is intrinsic tension between shortcuts generating small-worlds and the persistence of modularity. In this talk, we study correlations between the activity in different brain areas. We suggest that the functional brain network formed by the percolation of strong links is highly modular. Contrary to the common view, modules are self-similar and therefore are very far from being small-world. Incorporating the weak ties to the network converts it into a small-world preserving an underlying backbone of well-defined modules. Weak ties are shown to follow a pattern that maximizes information transfer with minimal wiring costs. This architecture is reminiscent of the concept of weak-ties strength in social networks and provides a natural solution to the puzzle of efficient infomration flow in the highly modular structure of the brain.

  14. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Steffen Hahnel

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM and bright-field microscopy (BF. We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP as well as for post-transcriptional regulation (SmAQP. CONCLUSIONS/SIGNIFICANCE: The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved

  15. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Connective Tissue Disorder-Associated Vasculitis.

    Science.gov (United States)

    Sharma, Aman; Dhooria, Aadhaar; Aggarwal, Ashish; Rathi, Manish; Chandran, Vinod

    2016-06-01

    Vasculitides secondary to connective tissue diseases are classified under the category of 'vasculitis associated with systemic disease' in the revised International Chapel Hill Consensus Conference (CHCC) nomenclature. These secondary vasculitides may affect any of the small, medium or large vessels and usually portend a poor prognosis. Any organ system can be involved and the presentation would vary depending upon that involvement. Treatment depends upon the type and severity of presentation. In this review, we describe secondary vasculitis associated with rheumatoid arthritis, systemic lupus erythematosus, sarcoidosis, relapsing polychondritis, systemic sclerosis, Sjogren's syndrome and idiopathic inflammatory myositis, focusing mainly on recent advances in the past 3 years.

  17. IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut.

    Science.gov (United States)

    Shikina, Takashi; Hiroi, Takachika; Iwatani, Kohichi; Jang, Myoung Ho; Fukuyama, Satoshi; Tamura, Manabu; Kubo, Takeshi; Ishikawa, Hiromichi; Kiyono, Hiroshi

    2004-05-15

    Secretory IgA plays a crucial role in the host immune response as a first line of defense. A recent demonstration of in situ IgA class switching in intestinal lamina propria provided an opportunity to reconsider the model for the homing of IgA-committed B cells characterized by distinctive trafficking patterns to effector sites. Those effector sites depend on the organized mucosa-associated lymphoid tissues as their site of induction. In this report we show the preferential presence of IgM(+)B220(+) and IgA(+)B220(+) cells belonging to pre- and post-IgA isotype class-switched cells in the organized mucosa-associated lymphoid tissues, such as nasopharynx-associated lymphoid tissues, isolated lymphoid follicles, and Peyer's patches, and the defect of those populations in the diffuse effector tissues, such as the nasal passage and intestinal lamina propria. Consistent with these findings, the expressions of a series of IgA isotype class switch recombination-related molecules, including activation-induced cytidine deaminase, Ialpha-C micro circle transcripts, and Ialpha-C micro circle transcripts, were selectively detected in these organized mucosa-associated lymphoid structures, but not in the diffuse mucosal effector sites. Taken together, these findings suggest that IgA isotype class switching occurs only in the organized mucosa-associated lymphoid organs (e.g., nasopharynx-associated lymphoid tissues, isolated lymphoid follicles, and Peyer's patches), but not in the diffuse effector tissues of the upper respiratory and gastrointestinal tracts.

  18. Vegetation patterns, runoff, sediment delivery and organic carbon output from a small catchment in SE Spain

    NARCIS (Netherlands)

    Cammeraat, E.

    2011-01-01

    Vegetation patterns, runoff, sediment delivery and organic carbon output from a small catchment in SE Spain Erik Cammeraat Spatial patterns of vegetation are strongly affecting the pathways and connectivity of water, sediments and associated organic matter, and this study aims at understanding the

  19. Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Li, Xue-song

    2017-01-01

    Highlights: • One-dimensional model of the Tesla turbine is improved and applied in ORC system. • Working fluid properties and system operating conditions impact efficiency. • The influence of turbine efficiency on ORC system performance is evaluated. • Potential of using Tesla turbine in ORC systems is estimated. - Abstract: Organic Rankine Cycle (ORC) system has been proven to be an effective method for the low grade energy utilization. In small scale applications, the Tesla turbine offers an attractive option for the organic expander if an efficient design can be achieved. The Tesla turbine is simple in structure and is easy to be manufactured. This paper improves the one-dimensional model for the Tesla turbine, which adopts a non-dimensional formulation that identifies the dimensionless parameters that dictates the performance features of the turbine. The model is used to predict the efficiency of a Tesla turbine that is applied in a small scale ORC system. The influence of the working fluid properties and the operating conditions on the turbine performance is evaluated. Thermodynamic analysis of the ORC system with different organic working fluids and under various operating conditions is conducted. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, the Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.

  20. Relevant Factors for Implementation of Operational-level IS/ICT Processes in Small IT Organizations

    Directory of Open Access Journals (Sweden)

    Jaroslav Kalina

    2010-10-01

    Full Text Available Having IS/ICT processes compliant according to well known standards like COBIT or ITIL is relatively popular especially among larger organizations (to which these standard are primarily aimed. This paper discusses how standardization of processes affects or is affected by a selected set of process characteristics and tries to provide general guidelines which should be considered prior to their implementation (standards. Special attention is paid to the specifics of small IS/ICT organizations since implementation of these frameworks (intended for rather larger organizations represents in this context more demanding endeavor.

  1. Tritium metabolism in rat tissues

    International Nuclear Information System (INIS)

    Takeda, H.

    1982-01-01

    As part of a series of studies designed to evaluate the relative radiotoxicity of various tritiated compounds, metabolism of tritium in rat tissues was studied after administration of tritiated water, leucine, thymidine, and glucose. The distribution and retention of tritium varied widely, depending on the chemical compound administered. Tritium introduced as tritiated water behaved essentially as body water and became uniformly distributed among the tissues. However, tritium administered as organic compounds resulted in relatively high incorporation into tissue constituents other than water, and its distribution differed among the various tissues. Moreover, the excretion rate of tritium from tissues was slower for tritiated organic compounds than for tritiated water. Administrationof tritiated organic compounds results in higher radiation doses to the tissues than does administration of tritiated water. Among the tritiated compounds examined, for equal radioactivity administered, leucine gave the highest radiation dose, followed in turn by thymidine, glucose, and water. (author)

  2. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    Science.gov (United States)

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the

  3. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis.

    Science.gov (United States)

    Donaldson, David S; Else, Kathryn J; Mabbott, Neil A

    2015-09-01

    Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal

  4. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    Science.gov (United States)

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  5. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  6. Registry of Hospital das Clínicas of the University of São Paulo Medical School: first official solid organ and tissue transplantation report - 2008

    Directory of Open Access Journals (Sweden)

    Estela Azeka

    2009-02-01

    Full Text Available OBJECTIVE: The aim of this study was to report a single center experience of organ and tissue transplantation INTRODUCTION: This is the first report of organ and tissue transplantation at the Hospital das Clínicas of the University of Sao Paulo Medical School. METHODS: We collected data from each type of organ transplantation from 2002 to 2007. The data collected were patient characteristics and actuarial survival Kaplan-Meier curves at 30 days, one year, and five years RESULTS: There were a total of 3,321 transplants at our institution and the 5-year survival curve ranged from 53% to 88%. CONCLUSION: This report shows that solid organ and tissue transplants are feasible within the institution and allow us to expect that the quality of transplantation will improve in the future.

  7. An Optimized Small Tissue Handling System for Immunohistochemistry and In Situ Hybridization.

    Directory of Open Access Journals (Sweden)

    Giovanni Anthony

    Full Text Available Recent development in 3D printing technology has opened an exciting possibility for manufacturing 3D devices on one's desktop. We used 3D modeling programs to design 3D models of a tissue-handling system and these models were "printed" in a stereolithography (SLA 3D printer to create precision histology devices that are particularly useful to handle multiple samples with small dimensions in parallel. Our system has been successfully tested for in situ hybridization of zebrafish embryos. Some of the notable features include: (1 A conveniently transferrable chamber with 6 mesh-bottomed wells, each of which can hold dozens of zebrafish embryos. This design allows up to 6 different samples to be treated per chamber. (2 Each chamber sits in a well of a standard 6-well tissue culture plate. Thus, up to 36 different samples can be processed in tandem using a single 6 well plate. (3 Precisely fitting lids prevent solution evaporation and condensation, even at high temperatures for an extended period of time: i.e., overnight riboprobe hybridization. (4 Flat bottom mesh maximizes the consistent treatment of individual tissue samples. (5 A magnet-based lifter was created to handle up to 6 chambers (= 36 samples in unison. (6 The largely transparent resin aids in convenient visual inspection both with eyes and using a stereomicroscope. (7 Surface engraved labeling enables an accurate tracking of different samples. (8 The dimension of wells and chambers minimizes the required amount of precious reagents. (9 Flexible parametric modeling enables an easy redesign of the 3D models to handle larger or more numerous samples. Precise dimensions of 3D models and demonstration of how we use our devices in whole mount in situ hybridization are presented. We also provide detailed information on the modeling software, 3D printing tips, as well as 3D files that can be used with any 3D printer.

  8. A fish-feeding laboratory bioassay to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms.

    Science.gov (United States)

    Marty, Micah J; Pawlik, Joseph R

    2015-01-11

    Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.

  9. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  10. Tertiary Intratumor Lymphoid Tissue in Colo-Rectal Cancer

    Directory of Open Access Journals (Sweden)

    Federica Marchesi

    2011-12-01

    Full Text Available Ectopic (or tertiary lymphoid tissue develops at sites of inflammation or infection in non lymphoid organs and is associated with chronic inflammation. In colon mucosa, small lymphoid aggregates are already present in homeostatic conditions, as part of the gut-associated lymphoid tissue and play an essential role in the immune response to perturbations of the mucosal microenvironment. Despite the recognized role of inflammation in tumor progression, the presence and biological function of lymphoid tissue in cancer has been poorly investigated. We identified aggregates of lymphocytes resembling tertiary lymphoid tissue in human colorectal cancer specimens; intratumor accumulations of lymphocytes display a high degree of compartmentalization, with B and T cells, mature dendritic cells and a network of CD21+ follicular dendritic cells (FDC. We analyzed the adaptation of colon lymphoid tissue in a murine model of colitis-associated cancer (AOM/DSS. B cell follicle formation increases in the context of the chronic inflammation associated to intestinal neoplasia, in this model. A network of lymphatic and haematic vessels surrounding B cell follicles is present and includes high endothelial venules (HEV. Future task is to determine whether lymphoid tissue contributes to the persistence of the tumor-associated inflammatory reaction, rather than represent a functional immune compartment, potentially participating to the anti tumor response.

  11. Tertiary Intratumor Lymphoid Tissue in Colo-Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bergomas, Francesca [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Grizzi, Fabio [Laboratory of Molecular Gastroenterology, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Doni, Andrea; Pesce, Samantha [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Laghi, Luigi [Laboratory of Molecular Gastroenterology, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Department of Gastroenterology, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Allavena, Paola [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Mantovani, Alberto [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy); Department of Translational Medicine, University of Milan, Milan 20089 (Italy); Marchesi, Federica, E-mail: federica.marchesi@humanitasresearch.it [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089 Rozzano, Milan (Italy)

    2011-12-28

    Ectopic (or tertiary) lymphoid tissue develops at sites of inflammation or infection in non lymphoid organs and is associated with chronic inflammation. In colon mucosa, small lymphoid aggregates are already present in homeostatic conditions, as part of the gut-associated lymphoid tissue and play an essential role in the immune response to perturbations of the mucosal microenvironment. Despite the recognized role of inflammation in tumor progression, the presence and biological function of lymphoid tissue in cancer has been poorly investigated. We identified aggregates of lymphocytes resembling tertiary lymphoid tissue in human colorectal cancer specimens; intratumor accumulations of lymphocytes display a high degree of compartmentalization, with B and T cells, mature dendritic cells and a network of CD21{sup +} follicular dendritic cells (FDC). We analyzed the adaptation of colon lymphoid tissue in a murine model of colitis-associated cancer (AOM/DSS). B cell follicle formation increases in the context of the chronic inflammation associated to intestinal neoplasia, in this model. A network of lymphatic and haematic vessels surrounding B cell follicles is present and includes high endothelial venules (HEV). Future task is to determine whether lymphoid tissue contributes to the persistence of the tumor-associated inflammatory reaction, rather than represent a functional immune compartment, potentially participating to the anti tumor response.

  12. Tertiary Intratumor Lymphoid Tissue in Colo-Rectal Cancer

    International Nuclear Information System (INIS)

    Bergomas, Francesca; Grizzi, Fabio; Doni, Andrea; Pesce, Samantha; Laghi, Luigi; Allavena, Paola; Mantovani, Alberto; Marchesi, Federica

    2011-01-01

    Ectopic (or tertiary) lymphoid tissue develops at sites of inflammation or infection in non lymphoid organs and is associated with chronic inflammation. In colon mucosa, small lymphoid aggregates are already present in homeostatic conditions, as part of the gut-associated lymphoid tissue and play an essential role in the immune response to perturbations of the mucosal microenvironment. Despite the recognized role of inflammation in tumor progression, the presence and biological function of lymphoid tissue in cancer has been poorly investigated. We identified aggregates of lymphocytes resembling tertiary lymphoid tissue in human colorectal cancer specimens; intratumor accumulations of lymphocytes display a high degree of compartmentalization, with B and T cells, mature dendritic cells and a network of CD21 + follicular dendritic cells (FDC). We analyzed the adaptation of colon lymphoid tissue in a murine model of colitis-associated cancer (AOM/DSS). B cell follicle formation increases in the context of the chronic inflammation associated to intestinal neoplasia, in this model. A network of lymphatic and haematic vessels surrounding B cell follicles is present and includes high endothelial venules (HEV). Future task is to determine whether lymphoid tissue contributes to the persistence of the tumor-associated inflammatory reaction, rather than represent a functional immune compartment, potentially participating to the anti tumor response

  13. Tissue engineering and microRNAs: future perspectives in regenerative medicine.

    Science.gov (United States)

    Gori, Manuele; Trombetta, Marcella; Santini, Daniele; Rainer, Alberto

    2015-01-01

    Tissue engineering is a growing area of biomedical research, holding great promise for a broad range of potential applications in the field of regenerative medicine. In recent decades, multiple tissue engineering strategies have been adopted to mimic and improve specific biological functions of tissues and organs, including biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems. MicroRNAs (miRNAs), noncoding small RNAs that negatively regulate the expression of downstream target mRNAs, are considered a novel class of molecular targets and therapeutics that may play an important role in tissue engineering. Herein, we highlight the latest achievements in regenerative medicine, focusing on the role of miRNAs as key modulators of gene expression, stem cell self-renewal, proliferation and differentiation, and eventually in driving cell fate decisions. Finally, we will discuss the contribution of miRNAs in regulating the rearrangement of the tissue microenvironment and angiogenesis, and the range of strategies for miRNA delivery into target cells and tissues. Manipulation of miRNAs is an alternative approach and an attractive strategy for controlling several aspects of tissue engineering, although some issues concerning their in vivo effects and optimal delivery methods still remain uncovered.

  14. Fatty acid composition of muscle and adipose tissues of organic and conventional Blanca Andaluza suckling kids

    Directory of Open Access Journals (Sweden)

    F. De la Vega

    2013-01-01

    Full Text Available Interest in the preservation of autochthonous breeds such as the Blanca Andaluza goat (meat breed, raised under grazing-based management, has recently increased among Spanish farmers. A study of the possibilities of transformation to organic production needs to analyze the quality of their products. The aim of this study was to evaluate the fatty acid (FA composition of muscle and adipose tissues of Blanca Andaluza goat kids under organic and conventional grazing–based management system. Twenty-four twin kids (12 males, 12 females were selected from each system. The FA profile was determined in the longissimus thoracis muscle, kidney and pelvic fat. The percentages of C17:0, C17:1, C20:1, C20:4 n-6, C22:2 and several n-3 FAs were higher in organic meat; C12:0, C18:1 trans-11, CLA and C20:5 n-3 were lower in organic meat. The fat depots from the conventional kids showed lower percentages of C12:0, C14:0, C15:0, C17:0, C17:1, C18:3 n-3 and atherogenicity index, and higher percentage of C18:0. In the pelvic fat, the conventional kids displayed lower percentages of C16:0, C18:2 n-6 cis, PUFA, n-3 and n-6 FAs, and greater percentages of C18:1 n-9 cis and MUFA. The conventional kids displayed a major n6:n3 ratio in the kidney fat. No gender differences were observed. Significant differences were found only in some FA percentages of muscle and adipose tissues of suckling kids raised in organic and conventional livestock production systems, and due to this reason conventional grazing–based management farms could easily be transformed into organic production.

  15. Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections

    Science.gov (United States)

    Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.

    2017-02-01

    Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically

  16. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-12-22

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  17. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  18. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.

    Science.gov (United States)

    Ji, Shen; Guvendiren, Murat

    2017-01-01

    There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a "bioink" to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions.

  19. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs

    Science.gov (United States)

    Ji, Shen; Guvendiren, Murat

    2017-01-01

    There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a “bioink” to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions. PMID:28424770

  20. Challenges and opportunities for tissue-engineering polarized epithelium.

    Science.gov (United States)

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  1. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals.

    Science.gov (United States)

    Susaki, Etsuo A; Ueda, Hiroki R

    2016-01-21

    Organism-level systems biology aims to identify, analyze, control and design cellular circuits in organisms. Many experimental and computational approaches have been developed over the years to allow us to conduct these studies. Some of the most powerful methods are based on using optical imaging in combination with fluorescent labeling, and for those one of the long-standing stumbling blocks has been tissue opacity. Recently, the solutions to this problem have started to emerge based on whole-body and whole-organ clearing techniques that employ innovative tissue-clearing chemistry. Here, we review these advancements and discuss how combining new clearing techniques with high-performing fluorescent proteins or small molecule tags, rapid volume imaging and efficient image informatics is resulting in comprehensive and quantitative organ-wide, single-cell resolution experimental data. These technologies are starting to yield information on connectivity and dynamics in cellular circuits at unprecedented resolution, and bring us closer to system-level understanding of physiology and diseases of complex mammalian systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of organic small-molecule hole injection materials on the performance of inverted organic solar cells

    Science.gov (United States)

    Li, Jie; Zheng, Yifan; Zheng, Ding; Yu, Junsheng

    2016-07-01

    In this study, the influence of small-molecule organic hole injection materials on the performance of organic solar cells (OSCs) as the hole transport layer (HTL) with an architecture of ITO/ZnO/P3HT:PC71BM/HTL/Ag has been investigated. A significant enhancement on the performance of OSCs from 1.06% to 2.63% is obtained by using N, N‧-bis(1-naphthalenyl)-N, N‧-bis-phenyl-(1, 1‧-biphenyl)-4, 4‧-diamine (NPB) HTL. Through the resistance simulation and space-charge limited current analysis, we found that NPB HTL cannot merely improve the hole mobility of the device but also form the Ohmic contact between the active layer and anode. Besides, when we apply mix HTL by depositing the NPB on the surface of molybdenum oxide, the power conversion efficiency of OSC are able to be further improved to 2.96%.

  3. Organic cacao chain for development: The case of the Talamanca small-farmers association

    NARCIS (Netherlands)

    Slingerland, M.A.; Díaz Gonzalez, E.

    2006-01-01

    In de Talamanca region in Costa Rica cocoa production was abandoned in the late 1970s when yields dropped to zero due to Monilia. In the early 1990s, the Talamanca Small-Farmers association (APPTA) gained success in promoting its revival. By creating contacts with buyers of organic cacao in the

  4. Critical Point in Self-Organized Tissue Growth

    Science.gov (United States)

    Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank

    2018-05-01

    We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.

  5. Perceptions of the gift relationship in organ and tissue donation: Views of intensivists and donor and recipient coordinators.

    Science.gov (United States)

    Shaw, Rhonda

    2010-02-01

    The international literature on organ donation and transplantation has drawn attention to the popularity of "gift of life" discourse among pro-donation advocates, transplantation specialists, and within organisations lobbying for improved donation rates to promote the benefits of organ donation among members of the general public. In Aotearoa/New Zealand, gift of life discourse is robust. Aside from attempts to elicit altruism by promoting tissue donation in the public domain, gift terminology separates the act of donation from that of commerce and the commodification of body tissues. In distancing donation from commodification and the potential to degrade and exploit human beings, it is assumed that gift discourse transmits the positive message that donation is a noble and morally worthy act. Recent sociological research has shown that assumptions of the gift as one-way and altruistic do not necessarily align with people's perceptions and experience of donating body tissues, and that the vocabulary used to describe these acts is often at variance with reality. This article draws on interview data with 15 critical care specialists (intensivists) and donor and recipient coordinators, examining their perceptions of the relevance of gift discourse and its applicability in the context of deceased donation in Aotearoa/New Zealand. The data indicate several problems with gift rhetoric to describe the situations health professionals encounter. In sum, gift terminology tends to downplay the sacrifice involved in tissue donation generally, as well as depoliticising the exchange relations of tissue transfer in contemporary consumer culture and in the global context. This raises questions about the underlying ethics of language choice and what, if anything, empirical accounts of tissue transfer can contribute to ethical debates. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts

    Directory of Open Access Journals (Sweden)

    Michele Carrabba

    2018-04-01

    Full Text Available Occlusive arterial disease, including coronary heart disease (CHD and peripheral arterial disease (PAD, is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid or self-assembled (cell-sheet, microtissue aggregation and bioprinting. Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.

  7. Organ printing: from bioprinter to organ biofabrication line.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2011-10-01

    Organ printing, or the layer by layer additive robotic biofabrication of functional three-dimensional tissue and organ constructs using self-assembling tissue spheroid building blocks, is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. It is increasingly obvious that similar well-established industries implement automated robotic systems on the path to commercial translation and economic success. The use of robotic bioprinters alone however is not sufficient for the development of large industrial scale organ biofabrication. The design and development of a fully integrated organ biofabrication line is imperative for the commercial translation of organ printing technology. This paper presents recent progress and challenges in the development of the essential components of an organ biofabrication line. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo.

    Science.gov (United States)

    Havens, Aaron M; Sun, Hongli; Shiozawa, Yusuke; Jung, Younghun; Wang, Jingcheng; Mishra, Anjali; Jiang, Yajuan; O'Neill, David W; Krebsbach, Paul H; Rodgerson, Denis O; Taichman, Russell S

    2014-04-01

    The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.

  9. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues.

    Science.gov (United States)

    Li, Ye Long; Dai, Xin Ren; Yue, Xun; Gao, Xin-Qi; Zhang, Xian Sheng

    2014-10-01

    Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell-cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.

  10. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears.

    Science.gov (United States)

    Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker

    2017-08-01

    The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.

  11. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    Science.gov (United States)

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  12. Autoradiographic demonstration of unscheduled DNA synthesis in oral tissues treated with chemical carcinogens in short-term organ culture

    International Nuclear Information System (INIS)

    Ide, F.; Umemura, S.; Ishikawa, T.; Takayama, S.

    1981-01-01

    A system in which oral tissues of inbred F344 adult rats and Syrian golden hamster embryos were used in combination with autoradiography was developed for measurement of unscheduled DNA synthesis (UDS). For this, oral mucosa, submandibular gland, tooth germ and mandible in short-term organ cultures were treated with 4-nitroquinoline l-oxide or N-methyl-N-nitrosourea plus (methyl- 3 H)thymidine. Significant numbers of silver grains, indicating UDS, were detected over the nuclei of cells of all these tissues except rat salivary gland after treatment with carcinogens. This autoradiographic method is suitable for detection of UDS in oral tissues in conditions mimicking those in vivo. Results obtained in this study indicated a potential use of this system for studies on the mechanism of carcinogenesis at a cellular level comparable to in vivo carcinogenesis studies on oral tissues. (author)

  13. Dosimetry of {sup 223}Ra-chloride: dose to normal organs and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Michael [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nosske, Dietmar [Federal Office for Radiation Protection (BfS), Department of Radiation and Health, Oberschleissheim (Germany)

    2013-02-15

    {sup 223}Ra-Chloride (also called Alpharadin {sup registered}) targets bone metastases with short range alpha particles. In recent years several clinical trials have been carried out showing, in particular, the safety and efficacy of palliation of painful bone metastases in patients with castration-resistant prostate cancer using {sup 223}Ra-chloride. The purpose of this work was to provide a comprehensive dosimetric calculation of organ doses after intravenous administration of {sup 223}Ra-chloride according to the present International Commission on Radiological Protection (ICRP) model for radium. Absorbed doses were calculated for 25 organs or tissues. Bone endosteum and red bone marrow show the highest dose coefficients followed by liver, colon and intestines. After a treatment schedule of six intravenous injections with 0.05 MBq/kg of {sup 223}Ra-chloride each, corresponding to 21 MBq for a 70 kg patient, the absorbed alpha dose to the bone endosteal cells is about 16 Gy and the corresponding absorbed dose to the red bone marrow is approximately 1.5 Gy. The comprehensive list of dose coefficients presented in this work will assist in comparing and evaluating organ doses from various therapy modalities used in nuclear medicine and will provide a base for further development of patient-specific dosimetry. (orig.)

  14. Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project

    Directory of Open Access Journals (Sweden)

    Heinz Ruth A

    2003-09-01

    Full Text Available Abstract Background Subtractive hybridization methods are valuable tools for identifying differentially regulated genes in a given tissue avoiding redundant sequencing of clones representing the same expressed genes, maximizing detection of low abundant transcripts and thus, affecting the efficiency and cost effectiveness of small scale cDNA sequencing projects aimed to the specific identification of useful genes for breeding purposes. The objective of this work is to evaluate alternative strategies to high-throughput sequencing projects for the identification of novel genes differentially expressed in sunflower as a source of organ-specific genetic markers that can be functionally associated to important traits. Results Differential organ-specific ESTs were generated from leaf, stem, root and flower bud at two developmental stages (R1 and R4. The use of different sources of RNA as tester and driver cDNA for the construction of differential libraries was evaluated as a tool for detection of rare or low abundant transcripts. Organ-specificity ranged from 75 to 100% of non-redundant sequences in the different cDNA libraries. Sequence redundancy varied according to the target and driver cDNA used in each case. The R4 flower cDNA library was the less redundant library with 62% of unique sequences. Out of a total of 919 sequences that were edited and annotated, 318 were non-redundant sequences. Comparison against sequences in public databases showed that 60% of non-redundant sequences showed significant similarity to known sequences. The number of predicted novel genes varied among the different cDNA libraries, ranging from 56% in the R4 flower to 16 % in the R1 flower bud library. Comparison with sunflower ESTs on public databases showed that 197 of non-redundant sequences (60% did not exhibit significant similarity to previously reported sunflower ESTs. This approach helped to successfully isolate a significant number of new reported sequences

  15. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    Science.gov (United States)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  16. Intestinal mucosa is a target tissue for pancreatic polypeptide

    International Nuclear Information System (INIS)

    Gilbert, W.R.; Kramer, J.L.; Frank, B.H.; Gingerich, R.L.

    1986-01-01

    Studies were carried out to identify mammalian tissues capable of specifically binding mammalian pancreatic polypeptide (PP). Bovine PP (bPP) radiolabeled with 125 I was purified by HPLC to yield [ 125 I]iodo-(Tyr-27) bPP. The label was injected into three pairs of fasted littermate dogs and allowed to circulate for 5 min. One of the dogs was a control which received an excess of unlabeled porcine PP to provide competition for receptor binding. Unbound bPP was removed by perfusion with Krebs-Ringer bicarbonate and the tissue fixed in situ with Karnovsky's fixative. Tissue samples from various organs were removed, weighed, and counted. The entire gastrointestinal tract demonstrated high levels of 125 I after injection of the labeled peptide. The duodenum, jejunum, ileum, and colon were the only tissues to exhibit specific binding of bPP. These tissues (mucosal and muscle layers) from experimental animals exhibited 31-76% higher binding than the corresponding tissues from the control animals. Sections of the gastrointestinal tract were scraped to separate the mucosal layer from the underlying muscle layer. The mucosal layer of the duodenum, jejunum, and ileum exhibited 145-162% increases in binding compared to the control animals. The muscle layer of these tissues demonstrated no significant increase. These findings demonstrate that mucosal layer of the small intestine is a target tissue for mammalian PP

  17. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    Plant tissue culture is a technique of culturing plant cells, tissues and organs on ... working methods (Box 2) and discovery of the need for B vita- mins and auxins for ... Kotte (Germany) reported some success with growing isolated root tips.

  18. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  19. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    Science.gov (United States)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  20. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  1. Translational research: cells, tissues and organisms

    International Nuclear Information System (INIS)

    Chang, P.Y.

    2003-01-01

    Exposure to the complex space radiation environment poses an important health hazard for astronauts in long-term space missions. The central theme of NASA's space radiation health research effort is to acquire scientific knowledge to understand the mechanisms of particle radiation effects in biological systems and to use this knowledge to set exposure limits and to design countermeasures that will protect the astronauts. During the past few decades, a rich body of data has been developed to characterize HZE-induced biological responses both in vitro and in vivo using ground-based accelerator facilities available in a number of facilities around the world. Although much is known about particle-radiation-induced DNA damage and cell killing in cultured cell lines, recent evidence suggest that numerous other factors, such as membrane effects, altered gene expression, bystander effects and specific cell-type dependent features also play critical roles in cellular responses. Dose- and particle-dependent studies are also available for multicellular tissues and animal model systems where emerging information demonstrates complex interactions between cells including intercellular communications, activation of proteins, alterations in the microenvironment, tissue-specificity, and genetic status and these contribute in determining the consequences of HZE radiation. Due to the lack of human data, risk estimates depend on the extrapolation of experimental results in animals and cultured cell systems to man. In this presentation, selected topics reviewing particle radiation effects in cells, tissues and animal will be used to illustrate the importance of translational research and some of the limitations of such approaches

  2. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  3. Structural Ordering of Semiconducting Polymers and Small-Molecules for Organic Electronics

    Science.gov (United States)

    O'Hara, Kathryn Allison

    Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve. Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel pi-stacks separated by the alkyl side-chains. Only two directions of transport are possible--along the conjugated backbone and in the pi-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or "bridging" polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered. High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures

  4. In-house coordination project for organ and tissue procurement: social responsibility and promising results.

    Science.gov (United States)

    Silva, Vanessa Silva E; Moura, Luciana Carvalho; Martins, Luciana Ribeiro; Santos, Roberta Cristina Cardoso Dos; Schirmer, Janine; Roza, Bartira de Aguiar

    2016-01-01

    to report the results of evaluation regarding changes in the number of potential donor referrals, actual donors, and conversion rates after the implementation of an in-house organ and tissue donation for transplantation coordination project. epidemiological study, both retrospective and transversal, was performed with organ donation data from the Secretariat of Health for the State and the in-house organ donation coordination project of a beneficent hospital. The data was compared using nonparametric statistical Mann-Whitney test, and the Student's t-test, considering a significance level of 5% (p <0.05). there were statistically significant differences (p < 0.05), before and after the implementation of the project on the number of potential donor notification/month (3.05 - 4.7 ), number of actual donor/month (0.78 to 1.60) and rate of conversion ( 24.7 to 34.8 %). The hospitals 1, 2, 7 and 8 had significant results in potential donor, actual donor or conversion rate. the presence of an in-house coordinator is promising and beneficial, the specialist is important to change the indicators of efficiency, which consequently reduces the waiting lists for organ transplants.

  5. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    Energy Technology Data Exchange (ETDEWEB)

    Valous, N. A.; Delgado, A.; Sun, D.-W., E-mail: dawen.sun@ucd.ie [School of Biosystems Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland); Drakakis, K. [Complex and Adaptive Systems Laboratory, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland)

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  6. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    International Nuclear Information System (INIS)

    Valous, N. A.; Delgado, A.; Sun, D.-W.; Drakakis, K.

    2014-01-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena

  7. Development on traceability based on changes of stable isotopes in animal tissues and organs

    International Nuclear Information System (INIS)

    Cai Xianfeng; Guo Boli; Wei Yimin; Sun Shumin; Wei Shuai

    2011-01-01

    Stable isotope analysis is a new method in food traceability, which can be used to trace animals' geographical origin and life history. This paper reviews the recent progress of researches on characteristics of stable isotopes and turnover time in different animal tissues and organs, as well as their influence caused by feed, drinking water, geographical origin, storing and processing. The aim of this paper is to provide theoretical reference for studies on the traceability of animal derived food and animals' life history. (authors)

  8. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  9. Children as donors : a national study to assess procurement of organs and tissues in pediatric intensive care units

    NARCIS (Netherlands)

    Siebelink, Marion J.; Albers, Marcel J. I. J.; Roodbol, Petrie F.; Van de Wiel, Harry B. M.

    2012-01-01

    A shortage of size-matched organs and tissues is the key factor limiting transplantation in children. Empirical data on procurement from pediatric donors is sparse. This study investigated donor identification, parental consent, and effectuation rates, as well as adherence to the national protocol.

  10. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    Science.gov (United States)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  11. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    Science.gov (United States)

    2017-12-11

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  12. Distribution of lymphocyte subsets in the small intestine lymphoid tissue of 1-month-old lambs.

    Science.gov (United States)

    Corpa, J M; Juste, R A; García Marín, J F; Reyes, L E; González, J; Pérez, V

    2001-04-01

    Distribution of lymphocyte subpopulations along the small intestine lymphoid tissue has been examined in 1-month-old lambs using flow cytometric and immunohistochemical techniques. Monoclonal antibodies against CD4, CD8, gamma delta, CD45R and B receptors have been employed in samples from continuous ileal Peyer's patch (IPP), discrete jejunal Peyer's patches (JPP), ileocaecal valve lymphoid tissue (ICVPP), mesenteric lymph node (MLN) and intra-epithelial (IEL) and lamina propria (LPL) lymphocytes. Histological studies were also done. Differences in the lymphocyte distribution have been observed between some of the regions examined, especially between IPP and JPP for most of the markers. A remarkable feature was the existence of morphological and lymphocyte distribution differences between ICVPP and IPP, locations that had been traditionally considered as similar. The antibody against CD45R receptor used in this study, that was supposed to mark B cells and some T cells, detected cell populations located in the dome of the follicles in all the samples, whereas the centre was negative. Lymphocytes positive to the B marker employed were located mainly in the centre, suggesting that both antibodies would mark B cells in different maturation status.

  13. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  14. Studies on the distribution of radioactivity in the organism during constant intravenous infusion of tracer amino acids and on the calculation of the rate of tissue protein synthesis in rats

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.; Wolf, E.

    1978-01-01

    Male wistar rats (100 p body weight) were infused into the tail vein with 14 C-leucine and 14 C-lysine simultaneously for 0.5; 1.0; 2.0; 3.0; 4.5; 6.0 and 7.0 hours. At the end of the infusion the specific radioactivity was determined of the free leucine and lysine in the blood plasma, liver, M. gastrocnemius, small intestine, and colon as well as of the protein-bound leucine and lysine. In all the tissues tested the specific radioactivity of the free amino acids attained a plateau during the 6-hour and 7-hour infusions. The rate constants for the increase were calculated for each organ tested. The two amino acids used are suitable for calculating the fractional rate of protein synthesis in tissues. The values of the fractional rate of protein synthesis calculated on the basis of the 6-hour and 7-hour infusions were: 54+-7.7%/day for the liver, 9.4+-1.2%/day for the muscles, 89+-12.2%/day for the small intestine, and 42+-5.9%/day for the colon. The simultaneous application of two tracer amino acids is recommendable for estimating the precursor pool of the protein synthesis and the more accurate calculation of the rate of protein synthesis. (author)

  15. Small Artery Elastin Distribution and Architecture-Focus on Three Dimensional Organization.

    Science.gov (United States)

    Hill, Michael A; Nourian, Zahra; Ho, I-Lin; Clifford, Philip S; Martinez-Lemus, Luis; Meininger, Gerald A

    2016-11-01

    The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions. © 2016 John Wiley & Sons Ltd.

  16. Succession after fire: variation in \\delta13C of organic tissues and respired CO2 in boreal forests

    Science.gov (United States)

    Fessenden, J. E.; Li, H.; Mack, M.; Schuur, T.; Warren, S.; Randerson, J. T.

    2001-12-01

    Isotope ratios of carbon dioxide and leaf organic matter were measured in 5 neighboring forests of varying ages: 7, 14, 45, 140, and 160 years. These forests are composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce 50 years after fire disturbance. Research on the carbon isotope ratios of leaf material and CO2 was conducted to look for influences from species composition, forest age, and time after most recent burn. Samples of organic \\delta13C in whole leaf tissue were collected from the dominant species of each forest. Concurrent aboveground NPP measurements allowed us to estimate total ecosystem \\delta13C by providing a method for weighting \\delta13C of individual species and plant tissues. \\delta13CO2 and [CO2] were measured on canopy CO2 to determine the isotopic ratio of ecosystem respiration. The atmospheric results indicated that the \\delta13C of ecosystem respiration changes with successional stage. Specifically, the aspen dominating forests showed 13C depleted values relative to the spruce dominated forests. Organic results showed more 13C-enriched values with increased forest age and vegetation functional type. Specifically, oldest trees within the coniferous species had the most 13C-enriched values in leaf tissues. These results suggest that increases in the disturbance regime of northern boreal forests will lead to a decrease in the \\delta13C of ecosystem carbon with consequences for the atmospheric \\delta13C budget.

  17. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  18. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  19. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    Science.gov (United States)

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  1. Application of polarization OCT in tissue engineering

    Science.gov (United States)

    Yang, Ying; Ahearne, Mark; Bagnaninchi, Pierre O.; Hu, Bin; Hampson, Karen; El Haj, Alicia J.

    2008-02-01

    For tissue engineering of load-bearing tissues, such as bone, tendon, cartilage, and cornea, it is critical to generate a highly organized extracellular matrix. The major component of the matrix in these tissues is collagen, which usually forms a highly hierarchical structure with increasing scale from fibril to fiber bundles. These bundles are ordered into a 3D network to withstand forces such as tensile, compressive or shear. To induce the formation of organized matrix and create a mimic body environment for tissue engineering, in particular, tendon tissue engineering, we have fabricated scaffolds with features to support the formation of uniaxially orientated collagen bundles. In addition, mechanical stimuli were applied to stimulate tissue formation and matrix organization. In parallel, we seek a nondestructive tool to monitor the changes within the constructs in response to these external stimulations. Polarizationsensitive optical coherence tomography (PSOCT) is a non-destructive technique that provides functional imaging, and possesses the ability to assess in depth the organization of tissue. In this way, an engineered tissue construct can be monitored on-line, and correlated with the application of different stimuli by PSOCT. We have constructed a PSOCT using a superluminescent diode (FWHM 52nm) in this study and produced two types of tendon constructs. The matrix structural evolution under different mechanical stimulation has been evaluated by the PSOCT. The results in this study demonstrate that PSOCT was a powerful tool enabling us to monitor non-destructively and real time the progressive changes in matrix organization and assess the impact of various stimuli on tissue orientation and growth.

  2. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  3. Do very small adipocytes in subcutaneous adipose tissue (a proposed risk factor for insulin insensitivity have a fetal origin?

    Directory of Open Access Journals (Sweden)

    Mette Olaf Nielsen

    2016-08-01

    Conclusions: The present study showed that greater preponderance of very small adipocytes, increased collagen infiltration and reduced subcutaneous lipid accumulation ability, as well as altered perirenal fat preferences for accumulation of C14:0 can have a fetal origin. Disturbance of normal (subcutaneous adipose tissue development may play a key role in linking fetal malnutrition to disease risk later in life.

  4. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  5. Effects of Tissue Culture and Mycorrhiza Applications in Organic Farming on Concentrations of Phytochemicals and Antioxidant Capacities in Ginger (Zingiber officinale Roscoe) Rhizomes and Leaves.

    Science.gov (United States)

    Min, Byungrok R; Marsh, Lurline E; Brathwaite, Keegan; Daramola, Adebola O

    2017-04-01

    Tissue culture and mycorrhiza applications can provide disease-free seedlings and enhanced nutrient absorption, respectively, for organic farming. Ginger (Zingiber officinale Roscoe) is rich in phytochemicals and has various health-protective potentials. This study was aimed at determining effects of tissue culture and mycorrhiza applications alone or in combinations in organic farming on phytochemical contents (total phenolics and flavonoids [TP and TF, respectively], gingerol and shogaol homologues, phenolic acids, and carotenoids) and antioxidant capacities (DPPH [2,2-diphenyl-1-picrylhydrazyl] radical scavenging, oxygen radical absorbance (ORAC), and iron-chelating capacities [ICC]) in solvent-extractable (Free) and cell-wall-matrix-bound (Bound) fractions of ginger rhizome and Free fraction of the leaves in comparison with non-organics. Concentrations of the phytochemicals and antioxidant capacities, except for carotenoids and ICC, were significantly higher in organic ginger rhizomes and leaves than in non-organics regardless of the fractions and treatments (P < 0.05). Mycorrhiza application in organic farming significantly increased levels of TP, TF, gingerols, and ORAC in the Free fraction of the rhizome (P < 0.05). Furthermore, the combined application of tissue culture and mycorrhiza significantly increased concentrations of TF and gingerols and ORAC in the Free fraction of the rhizome (P < 0.05), suggesting their synergistic effects. Considerable amounts of phenolics were found in the Bound fractions of the rhizomes. Six-gingerol, ferulic acid, and lutein were predominant ones among gingerols, phenolic acids, and carotenoids, respectively, in ginger rhizomes. The results suggest that organic farming with mycorrhiza and tissue culture applications can increase concentrations of phytochemicals and antioxidant capacities in ginger rhizomes and leaves and therefore improve their health-protective potentials. © 2017 Institute of Food Technologists®.

  6. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  7. A Revised Model for Dosimetry in the Human Small Intestine

    International Nuclear Information System (INIS)

    John Poston; Bhuiyan, Nasir U.; Redd, R. Alex; Neil Parham; Jennifer Watson

    2005-01-01

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents

  8. A Revised Model for Dosimetry in the Human Small Intestine

    Energy Technology Data Exchange (ETDEWEB)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  9. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  10. Evaluation of Two Enzyme-Linked Immunosorbent Assay Kits for Chikungunya Virus IgM Using Samples from Deceased Organ and Tissue Donors

    Science.gov (United States)

    Altrich, Michelle L.; Nowicki, Marek J.

    2016-01-01

    The identification of nearly 3,500 cases of chikungunya virus (CHIKV) infection in U.S. residents returning in 2014 and 2015 from areas in which it is endemic has raised concerns within the transplant community that, should recently infected individuals become organ and/or tissue donors, CHIKV would be transmitted to transplant recipients. Thus, tests designed to detect recent CHIKV infection among U.S. organ and tissue donors may become necessary in the future. Accordingly, we evaluated 2 enzyme-linked immunosorbent assays (ELISAs) for CHIKV IgM readily available in the United States using 1,000 deidentified serum or plasma specimens collected from donors between November 2014 and March 2015. The Euroimmun indirect ELISA identified 38 reactive specimens; however, all 38 were negative for CHIKV IgG and IgM in immunofluorescence assays (IFAs) conducted at a reference laboratory and, thus, were falsely reactive in the Euroimmun CHIKV IgM assay. The InBios IgM-capture ELISA identified 26 reactive samples, and one was still reactive (index ≥ 1.00) when retested using the InBios kit with a background subtraction modification to identify false reactivity. This reactive specimen was CHIKV IgM negative but IgG positive by IFAs at two reference laboratories; plaque reduction neutralization testing (PRNT) demonstrated CHIKV-specific reactivity. The IgG and PRNT findings strongly suggest that the InBios CHIKV IgM-reactive result represents true reactivity, even though the IgM IFA result was negative. If testing organ/tissue donors for CHIKV IgM becomes necessary, the limitations of the currently available CHIKV IgM ELISAs and options for their optimization must be understood to avoid organ/tissue wastage due to falsely reactive results. PMID:27535838

  11. Pullulan microcarriers for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Aydogdu, Hazal [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Keskin, Dilek [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Middle East Technical University, Department of Engineering Sciences, Ankara 06800 (Turkey); METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey); Baran, Erkan Turker, E-mail: erkanturkerbaran@gmail.com [METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey); Tezcaner, Aysen, E-mail: tezcaner@metu.edu.tr [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Middle East Technical University, Department of Engineering Sciences, Ankara 06800 (Turkey); METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey)

    2016-06-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. - Highlights: • Porous PULL microspheres were prepared as cell carrier for the first time. • Mineralization on the microspheres improved their mechanical properties. • Mineralization and SF coating enhanced cell proliferation on PULL microspheres.

  12. Pullulan microcarriers for bone tissue regeneration

    International Nuclear Information System (INIS)

    Aydogdu, Hazal; Keskin, Dilek; Baran, Erkan Turker; Tezcaner, Aysen

    2016-01-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. - Highlights: • Porous PULL microspheres were prepared as cell carrier for the first time. • Mineralization on the microspheres improved their mechanical properties. • Mineralization and SF coating enhanced cell proliferation on PULL microspheres.

  13. Tumor and normal tissue responses to fractioned non-uniform dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kaellman, P; Aegren, A; Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    The volume dependence of the radiation response of a tumor is straight forward to quantify because it depends primarily on the eradication of all its clonogenic cells. A tumor therefore has a parallel organization as any surviving clonogen in principle can repopulate the tumor. The difficulty with the response of the tumor is instead to know the density and sensitivity distribution of the most resistant clonogenic cells. The increase in the 50% tumor control dose and the decrease in the maximum normalized slope of the dose response relation, {gamma}, in presence of small compartments of resistant tumor cells have therefore been quantified to describe their influence on the dose response relation. Injury to normal tissue is a much more complex and gradual process. It depends on earlier effects induced long before depletion of the differentiated and clonogenic cells that in addition may have a complex structural and functional organization. The volume dependence of the dose response relation of normal tissues is therefore described here by the relative seriality, s, of the infrastructure of the organ. The model can also be generalized to describe the response of heterogeneous tissues to non uniform dose distributions. The new model is compared with clinical and experimental data on normal tissue response, and shows good agreement both with regard to the shape of dose response relation and the volume dependence of the isoeffect dose. The response of tumors and normal tissues are quantified for arbitrary dose fractionations using the linear quadratic cell survival parameters {alpha} and {beta}. The parameters of the dose response relation are derived both for a constant dose per fraction and a constant number of dose fractions, thus in the latter case accounting also for non uniform dose delivery. (author). 26 refs, 4 figs.

  14. Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation

    Directory of Open Access Journals (Sweden)

    Yotam E. Bar-Ephraim

    2017-10-01

    Full Text Available A substantial number of human and mouse group 3 innate lymphoid cells (ILC3s reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions. This was independent of expression of the natural cytotoxicity receptor NKp44. However, and in contrast to ILC3s from peripheral blood, lymphoid organ-residing ILC3s express activating cytokine receptors and have acquired the ability to be recruited into immune responses by inflammatory cytokines. This comprehensive cross-tissue dataset will allow for identification of functional changes in human lymphoid organ ILC3s associated with human disease.

  15. A simple calculation for the determination of organ or tissue dose from medical x-ray diagnosis for stomach and chest

    International Nuclear Information System (INIS)

    Nishizawa, Kanae

    1984-01-01

    A simple calculation method has been developed to determine the organ or tissue doses of patients for typical X-ray diagnoses. The absorbed doses related to radiation-induced stochastic effects were calculated based on the dosimetric parameters experimentally determined and technical parameters for X-ray diagnostic examinations. The present method is principally based on the TRA method for the beam therapy. The dosimetric parameters such as percentage depth-dose curves and isodose curves were measured with ionization chambers in the MixDP phantom. The distance from the incident surface of X-ray beams to the organ or tissue of interest was determined with a mathematical phantom, which was the modified version of the MIRD phantom for the average Japanese adult. The absorbed doses were determined with a simple table look-up method using a computer. The calculated doses were tabulated for various technical parameters of stomach and chest X-ray examinations. The present calculation was applied to the Rando woman phantom to compare with the phantom measurements. The calculated values agree with the experimental doses within 20% discrepancy. It was concluded that the present calculation method can determine organ or tissue doses very simply for various X-ray examinations and that it was valuable for the estimation of population doses and risks from X-ray diagnoses. (author)

  16. Compined preoperative diagnosis of stomach cancer involvement of the abdominal and retroperitoneal organs and tissues

    International Nuclear Information System (INIS)

    Fisher, M.E.; Gabuniya, R.I.; Kolesnikova, E.K.; Bal'ter, S.A.; Ostrovtsev, I.V.; Dolgushin, B.I.; Mazurov, S.T.; Mironova, G.T.

    1987-01-01

    An analysis of 136 cases of stomach cancer led to the determination of the role and place of gammatopography, echography, computerized X-ray tomography, angiography and laparoscopy in specified preoperative diagnosis of extraorganic spreading of primary tumors. The informative value and shortcomings of certain methods were shown. A high accuracy of the entire set of diagnostic procedures (94.8%) in the preoperative definition of stomach cancer involvement of the abdominal and retroperitoneal organs and tissues was emphasized

  17. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three

  18. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.

    Science.gov (United States)

    Hu, Jin-Jia; Chao, Wei-Chih; Lee, Pei-Yuan; Huang, Chih-Hao

    2012-09-01

    Based on a postulate that the microstructure of a scaffold can influence that of the resulting tissue and hence its mechanical behavior, we fabricated a small-diameter tubular scaffold (∼3 mm inner diameter) that has a microstructure similar to the arterial media using a scaffold membrane approach. Scaffold membranes that contain randomly oriented, moderately aligned, or highly aligned fibers were fabricated by collecting electrospun poly([epsilon]-caprolactone) fibers on a grounded rotating drum at three different drum rotation speeds (250, 1000, and 1500 rpm). Membranes of each type were wrapped around a small-diameter mandrel to form the tubular scaffolds. Particularly, the tubular scaffolds with three different off-axis fiber angles (30, 45, and 60 degree) were formed using membranes that contain aligned fibers. These scaffolds were subjected to biaxial mechanical testing to examine the effects of fiber directions as well as the distribution of fiber orientations on their mechanical properties. The circumferential elastic modulus of the tubular scaffold was closely related to the fiber directions; the larger the off-axis fiber angle the greater the circumferential elastic modulus. The distribution of fiber orientations, on the other hand, manifested itself in the mechanical behavior via the Poisson effect. Similar to cell sheet-based vascular tissue engineering, tubular cell-seeded constructs were prepared by wrapping cell-seeded scaffold membranes, alleviating the difficulty associated with cell seeding in electrospun scaffolds. Histology of the construct illustrated that cells were aligned to the fiber directions in the construct, demonstrating the potential to control the microstructure of tissue-engineered vascular grafts using the electrospun scaffold membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems.

    Science.gov (United States)

    Herranz, Mari Carmen; Navarro, Jose Antonio; Sommen, Evelien; Pallas, Vicente

    2015-02-22

    In plants, RNA silencing plays a fundamental role as defence mechanism against viruses. During last years deep-sequencing technology has allowed to analyze the sRNA profile of a large variety of virus-infected tissues. Nevertheless, the majority of these studies have been restricted to a unique tissue and no comparative analysis between phloem and source/sink tissues has been conducted. In the present work, we compared the sRNA populations of source, sink and conductive (phloem) tissues in two different plant virus pathosystems. We chose two cucurbit species infected with two viruses very different in genome organization and replication strategy; Melon necrotic spot virus (MNSV) and Prunus necrotic ringspot virus (PNRSV). Our findings showed, in both systems, an increase of the 21-nt total sRNAs together with a decrease of those with a size of 24-nt in all the infected tissues, except for the phloem where the ratio of 21/24-nt sRNA species remained constant. Comparing the vsRNAs, both PNRSV- and MNSV-infected plants share the same vsRNA size distribution in all the analyzed tissues. Similar accumulation levels of sense and antisense vsRNAs were observed in both systems except for roots that showed a prevalence of (+) vsRNAs in both pathosystems. Additionally, the presence of overrepresented discrete sites along the viral genome, hot spots, were identified and validated by stem-loop RT-PCR. Despite that in PNRSV-infected plants the presence of vsRNAs was scarce both viruses modulated the host sRNA profile. We compare for the first time the sRNA profile of four different tissues, including source, sink and conductive (phloem) tissues, in two plant-virus pathosystems. Our results indicate that antiviral silencing machinery in melon and cucumber acts mainly through DCL4. Upon infection, the total sRNA pattern in phloem remains unchanged in contrast to the rest of the analyzed tissues indicating a certain tissue-tropism to this polulation. Independently of the

  20. Method to reduce non-specific tissue heating of small animals in solenoid coils.

    Science.gov (United States)

    Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.

  1. Tissue Engineering: Toward a New Era of Medicine.

    Science.gov (United States)

    Shafiee, Ashkan; Atala, Anthony

    2017-01-14

    The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.

  2. Tissue Engineering: Current Strategies and Future Directions

    OpenAIRE

    Olson, Jennifer L.; Atala, Anthony; Yoo, James J.

    2011-01-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue eng...

  3. An ESIPT-based two-photon fluorescent probe detection of hydrogen peroxide in live cells and tissues.

    Science.gov (United States)

    Zhou, Liyi; Peng, Yongbo; Wang, Qianqian; Lin, Qinlu

    2017-02-01

    A variety of diseases associated with human aging, which have a strong oxidative stress, but connecting age-related diseases and oxidative stress of the basic molecular mechanisms still insufficiently understood. Oxidative stress origins from the unregulated production of reactive oxygen species (ROS), and oxidative damaging to tissues and organs from subsequent oxidation-reduction chemistry by cellular mismanagement. In particular, H 2 O 2 is a major by-product of ROS in live organisms and a common marker for oxidative stress, and its dynamic equilibrium can have various physiological and pathological consequences. H 2 O 2 is a small molecule, but it is an essential oxygen metabolite in living systems and acts as an important compound in cellular signal transduction by reversible oxidation of proteins. To quantitatively detect of H 2 O 2 in biosystems, herein, we adopted a 2-(2'-hydroxyphenyl)-4(3H)-quinazolinone (HPQ), a small organic fluorophore known for its luminescence mechanism through excited-state intramolecular proton transfer (ESIPT). HPQ was employed as a precursor to develop a turn-on probe (HPQ-H) for bioimaging applications. After cleavaging the boronic ester moiety by H 2 O 2 , HPQ-H releases a HPQ fluorophore which shows a 45-fold fluorescence intensity enhancement with high sensitivity and selectivity over other reactive oxygen species (ROS), and a high resolution imaging and large tissue-imaging depth (70-170μm) in living cells and tissues images under two-photon excitation (720nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Organ and Tissue-specific Sucrose Transporters. Important Hubs in Gene and Metabolite Networks Regulating Carbon Use in Wood-forming Tissues of Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott A. [Univ. of Georgia, Athens, GA (United States); Tsai, Chung-Jui [Univ. of Georgia, Athens, GA (United States)

    2016-01-04

    The overall project objective was to probe the relationship between sucrose transporters and plant productivity in the biomass for biofuels woody perennial, Populus. At the time the proposal was written, sucrose transporters had already been investigated in many plant model systems, primarily with respect to the export of photosynthate sucrose from source leaves, and the uptake of sucrose in storage organs and seeds. Preliminary findings by the PI found that in Populus, sucrose transporter genes (SUTs) were well expressed in wood-forming tissues that comprise the feedstock for biofuels production. Because sucrose comprises by far the predominant form in which photosynthate is delivered from source organs to sink organs like roots and wood-forming tissues, SUTs control a gate that nominally at least could impact the allocation or partitioning of sucrose for potentially competing end uses like growth (stem biomass) and storage. In addition, water use might be conditioned by the way in which sucrose is distributed throughout the plant, and/or by the way in which sucrose is partitioned intracellularly. Several dozen transgenic lines were produced in year 1 of the project to perturb the expression ratio of multiple plasma membrane (PM) SUTs (intercellular trafficking), versus the single tonoplast membrane (TM) sucrose transporter that effectively regulates intracellular trafficking of sucrose. It was possible to obtain transgenic lines with dual SUT gene knockdown using the 35S promoter, but not the wood-specific TUA1 promoter. By the end of project year 2, a decision was made to work with the 35S plants while archiving the TUA1 plants. The PhD candidate charged with producing the transgenic lines abandoned the project during its second year, substantially contributing to the decision to operate with just the 35S lines. That student’s interests ranged more toward evolutionary topics, and a report on SUT gene evolution was published (Peng et al 2014).

  5. Radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1981-01-01

    This patent relates to the preparation and use of radiopharmaceutical chemical compounds comprising a radioactive isotope, other than an isotope of iodine, in chemical combination with at least one primary, secondary or tertiary amino group. The compounds have a lipophilicity sufficiently high at a pH of 7.6 to permit passage of the compound from the blood of a mammal into a target organ or tissue and sufficiently low at a pH of 6.6 to prevent rapid return of the compound from the target organ or tissue to the blood. The compounds have a percent protein binding of less than ninety percent. These compounds may be selectively deposited in at least one target tissue or organ of a mammal, the tissue or organ of which has a significantly different intracellular pH than the blood of the mammal, by introducing the compound of the invention into the bloodstream of the mammal. A plurality of selenide compounds containing Se-75 isotope are claimed in relation to the patent. (U.K.)

  6. Life and Death Decisions: Using School-Based Health Education to Facilitate Family Discussion about Organ and Tissue Donation

    Science.gov (United States)

    Waldrop, Deborah P.; Tamburlin, Judith A.; Thompson, Sanna J.; Simon, Mark

    2004-01-01

    Public education that encourages family discussions about organ and tissue donation can enhance understanding, facilitate a donor's wishes and increase the numbers of donations. Action research methods were used to explore the impact of a student-initiated family discussion about donation. Most discussions were positive; only 7% middle school and…

  7. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of

  8. How Small School Districts Can Organize to Afford Their Small Schools

    Science.gov (United States)

    Burton, Christine

    2010-01-01

    While the research continues to mount on the benefits of school downsizing and decentralizing efforts in urban areas, there exists a paradox for small school Administrators who continue to struggle against forces of consolidation. Small schools in rural and suburban districts have fought for their existence against the pressures of consolidation…

  9. Accumulation of polonium 210Po in tissues and organs of deer carvidae from Northern Poland.

    Science.gov (United States)

    Skwarzec, Bogdan; Prucnal, Malgorzata

    2007-01-01

    This study was undertaken to provide information on accumulation of polonium in tissues and organs of deer carvidae in order to assess the potential transport of this element via food-chain to game meat consumers. Livers, kidneys and muscles of large herbivorous animals belonging to three species: roe deer (Capreolus capreolus), red deer (Cervus elaphus) and fallow deer (Dama dama), collected in Northern Poland, were the subject of the present investigation. Activities of (210)Po were determined by means of alpha spectrometry along with relevant radiochemical procedures. The concentration of (210)Po in analyzed animals decreased in the order kidney > liver > muscle tissue. The average activity concentrations of (210)Po ranged between 0.02 +/- 0.01 Bq. kg(- 1) w.w. in muscles and 7.15 +/- 0.12 Bq. kg(- 1) w.w. in kidneys. Levels of polonium were not influenced by sampling location, sex, age and species of animals.

  10. Aspergillus: a rare primary organism in soft-tissue infections.

    Science.gov (United States)

    Johnson, M A; Lyle, G; Hanly, M; Yeh, K A

    1998-02-01

    Nonclostridial necrotizing soft-tissue infections are usually polymicrobial, with greater than 90 per cent involving beta-hemolytic streptococci or coagulase-positive staphylococci. The remaining 10 per cent are usually due to Gram-negative enteric pathogens. We describe the case of a 46-year-old woman with bilateral lower extremity fungal soft tissue infections. She underwent multiple surgical debridements of extensive gangrenous necrosis of the skin and subcutaneous fat associated with severe acute arteritis. Histopathological examination revealed Aspergillus niger as the sole initial pathogen. Despite aggressive surgical debridement, allografts, and intravenous amphotericin B, her condition clinically deteriorated and she ultimately died of overwhelming infection. Treatment for soft-tissue infections include surgical debridement and intravenous antibiotics. More specifically, Aspergillus can be treated with intravenous amphotericin B, 5-fluorocytosine, and rifampin. Despite these treatment modalities, necrotizing fascitis is associated with a 60 per cent mortality rate. Primary fungal pathogens should be included in the differential diagnosis of soft-tissue infections.

  11. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  12. Normal tissue complication probabilities correlated with late effects in the rectum after prostate conformal radiotherapy

    International Nuclear Information System (INIS)

    Dale, Einar; Olsen, Dag R.; Fossa, Sophie D.

    1999-01-01

    Purpose: Radiation therapy of deep-sited tumours will always result in normal tissue doses to some extent. The aim of this study was to calculate different risk estimates of late effects in the rectum for a group of cancer prostate patients treated with conformal radiation therapy (CRT) and correlate these estimates with the occurrences of late effects. Since the rectum is a hollow organ, several ways of generating dose-volume distributions over the organ are possible, and we wanted to investigate two of them. Methods and Materials: A mathematical model, known as the Lyman-Kutcher model, conventionally used to estimate normal tissue complication probabilities (NTCP) associated with radiation therapy, was applied to a material of 52 cancer prostate patients. The patients were treated with a four field box technique, with the rectum as organ at risk. Dose-volume histograms (DVH) were generated for the whole rectum (including the cavity) and of the rectum wall. One to two years after the treatment, the patients completed a questionnaire concerning bowel (rectum) related morbidity quantifying the extent of late effects. Results: A correlation analysis using Spearman's rank correlation coefficient, for NTCP values calculated from the DVHs and the patients' scores, gave correlation coefficients which were not statistically significant at the p max , of the whole rectum, correlated better to observed late toxicity than D max derived from histograms of the rectum wall. Correlation coefficients from 'high-dose' measures were larger than those calculated from the NTCP values. Accordingly, as the volume parameter of the Lyman-Kutcher model was reduced, raising the impact of small high-dose volumes on the NTCP values, the correlation between observed effects and NTCP values became significant at p < 0.01 level. Conclusions: 1) High-dose levels corresponding to small volume fractions of the cumulative dose-volume histograms were best correlated with the occurrences of late

  13. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    Science.gov (United States)

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  14. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  15. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus.

    Science.gov (United States)

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2016-06-01

    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Elastin density: Link between histological and biomechanical properties of vaginal tissue in women with pelvic organ prolapse?

    Science.gov (United States)

    de Landsheere, Laurent; Brieu, Mathias; Blacher, Silvia; Munaut, Carine; Nusgens, Betty; Rubod, Chrystèle; Noel, Agnès; Foidart, Jean-Michel; Nisolle, Michelle; Cosson, Michel

    2016-04-01

    The aim of the study was to correlate histological and biomechanical characteristics of the vaginal wall in women with pelvic organ prolapse (POP). Tissue samples were collected from the anterior [point Ba; POP Questionnaire (POP-Q)] and/or posterior (point Bp; POP-Q) vaginal wall of 15 women who underwent vaginal surgery for POP. Both histological and biomechanical assessments were performed from the same tissue samples in 14 of 15 patients. For histological assessment, the density of collagen and elastin fibers was determined by combining high-resolution virtual imaging and computer-assisted digital image analysis. For biomechanical testing, uniaxial tension tests were performed to evaluate vaginal tissue stiffness at low (C0) and high (C1) deformation rates. Biomechanical testing highlights the hyperelastic behavior of the vaginal wall. At low strains (C0), vaginal tissue appeared stiffer when elastin density was low. We found a statistically significant inverse relationship between C0 and the elastin/collagen ratio (p = 0.048) in the lamina propria. However, at large strain levels (C1), no clear relationship was observed between elastin density or elastin/collagen ratio and stiffness, likely reflecting the large dispersion of the mechanical behavior of the tissue samples. Histological and biomechanical properties of the vaginal wall vary from patient to patient. This study suggests that elastin density deserves consideration as a relevant factor of vaginal stiffness in women with POP.

  17. Bereaved donor families' experiences of organ and tissue donation, and perceived influences on their decision making.

    Science.gov (United States)

    Sque, Magi; Walker, Wendy; Long-Sutehall, Tracy; Morgan, Myfanwy; Randhawa, Gurch; Rodney, Amanda

    2018-06-01

    To elicit bereaved families' experiences of organ and tissue donation. A specific objective was to determine families' perceptions of how their experiences influenced donation decision-making. Retrospective, qualitative interviews were undertaken with 43 participants of 31 donor families to generate rich, informative data. Participant recruitment was via 10 National Health Service Trusts, representative of five regional organ donation services in the UK. Twelve families agreed to DBD, 18 agreed to DCD, 1 unknown. Participants' responses were contextualised using a temporal framework of 'The Past', which represented families' prior knowledge, experience, attitudes, beliefs, and intentions toward organ donation; 'The Present', which incorporated the moment in time when families experienced the potential for donation; and 'The Future', which corresponded to expectations and outcomes arising from the donation decision. Temporally interwoven experiences appeared to influence families' decisions to donate the organs of their deceased relative for transplantation. The influence of temporality on donation-decision making is worthy of consideration in the planning of future education, policy, practice, and research for improved rates of family consent to donation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Organ and tissue donation in a regional paediatric intensive care unit: evaluation of practice.

    Science.gov (United States)

    Carone, Laura; Alurkar, Shrirang; Kigozi, Phoebe; Vyas, Harish

    2018-05-01

    Approximately 2% of those on the organ transplant list in the UK are children. Early identification of donors and referral to organ donation teams (ODT) has proven to increase both the success rate of gaining consent and the number of organs actually retrieved. To evaluate the practice relating to organ donation for children receiving end-of-life care on a paediatric intensive care unit (PICU) measured against the National Guidelines. All children 0-18 who received their end-of-life care and died on the PICU. A retrospective cohort study of organ donation patterns including referral, approach, consent and donation. This involved a review of case notes on PICU between the years 2009 and 2014. One hundred five deaths were identified and 100 notes were examined and data analysed to ascertain if religion, age and length of stay on PICU impacted on practice. Eighty-six children met the early identification criteria for potential donors, 40 (46.5%) children were referred to the ODT and 33 (38.3%) families were approached regarding donation. Twenty-one (24.4%) families consented to donation. Seventeen donations took place with a total of 41 sets of organs/tissues retrieved. Despite the majority of children meeting early identification for potential donors, many were not being referred. All children on end-of-life care should be referred for potential organ donation. Organ donation needs to be seen as a priority for hospitals as a part of routine end-of-life care to help increase referral rates and give families the opportunity to donate. Many paediatric deaths are not referred for consideration of organ donation, despite guidelines stating that this process should be standard of care. Further optimization of referral rates may aid in increasing the number of organs available for donation. What is Known: • Shortage of organs continues to be a national problem. • NICE guidelines state that all patients who are on end-of-life care should have the option of organ donation

  19. Percentages of NKT cells in the tissues of patients with non-small cell lung cancer who underwent surgical treatment.

    Science.gov (United States)

    Pyszniak, Maria; Rybojad, Paweł; Pogoda, Katarzyna; Jabłonka, Andrzej; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek

    2014-03-01

    Natural killer T (NKT) cells are involved in the antitumor response by direct cytotoxicity and indirectly through activation of effector cells. Recent studies have shown a relationship between the number and function of NKT cells and clinical outcomes. NKT cells seem to represent a promising tool for immunotherapy of cancer. The aim of the study was to evaluate the distribution of NKT cells in peripheral blood, lymph nodes and tumor tissue of non-small cell lung cancer (NSCLC) patients, as well as development of the most efficient set of cytokines stimulating differentiation of NKT cells. We evaluated the percentage of iNKT+CD3+ cells in the tissues collected from patients with NSCLC. For the generation of NKT cells, we cultured cells isolated from the blood of 20 healthy donors and from the tissues of 4 NSCLC patients. Cells were stimulated with α-GalCer in combinations with cytokines. We noted significant differences in the percentages of NKT cells in the patients' tissues. The highest percentage of these cells was observed in the tumor tissue and the lowest in the lymph nodes. In vitro, in healthy donors all α-GalCer-cytokine combinations were effective in stimulation of NKT cells' proliferation. NKT cells' proliferation was the most efficiently stimulated by α-GalCer+IL-2+IL-7 and α-GalCer+IL-2+IFN-γ. Our results suggest that in the course of NSCLC, NKT cells migrate to the primary tumor and accumulate therein. All tested combinations of α-GalCer and cytokines were capable of generation of NKT cells in vitro.

  20. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM.

    Science.gov (United States)

    Mazo, Claudia; Alegre, Enrique; Trujillo, Maria

    2017-08-01

    Histological images have characteristics, such as texture, shape, colour and spatial structure, that permit the differentiation of each fundamental tissue and organ. Texture is one of the most discriminative features. The automatic classification of tissues and organs based on histology images is an open problem, due to the lack of automatic solutions when treating tissues without pathologies. In this paper, we demonstrate that it is possible to automatically classify cardiovascular tissues using texture information and Support Vector Machines (SVM). Additionally, we realised that it is feasible to recognise several cardiovascular organs following the same process. The texture of histological images was described using Local Binary Patterns (LBP), LBP Rotation Invariant (LBPri), Haralick features and different concatenations between them, representing in this way its content. Using a SVM with linear kernel, we selected the more appropriate descriptor that, for this problem, was a concatenation of LBP and LBPri. Due to the small number of the images available, we could not follow an approach based on deep learning, but we selected the classifier who yielded the higher performance by comparing SVM with Random Forest and Linear Discriminant Analysis. Once SVM was selected as the classifier with a higher area under the curve that represents both higher recall and precision, we tuned it evaluating different kernels, finding that a linear SVM allowed us to accurately separate four classes of tissues: (i) cardiac muscle of the heart, (ii) smooth muscle of the muscular artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation was conducted using 3000 blocks of 100 × 100 sized pixels, with 600 blocks per class and the classification was assessed using a 10-fold cross-validation. using LBP as the descriptor, concatenated with LBPri and a SVM with linear kernel, the main four classes of tissues were

  1. Should Society Encourage The Development Of 3D Printing Particularly 3D Bioprinting Of Tissues And Organs

    Directory of Open Access Journals (Sweden)

    Slaviana Pavlovich

    2015-08-01

    Full Text Available My aim is to discover moral and ethical sides of 3D printing which is a new technology and paradoxically a new phenomenon of the twenty-first century. Particularly 3D bioprinted organs and tissues is a controversial issue because this technological advancement may be viewed by society as a servant or it can even potentially become its master. For example in the health care system doctors may change their attitude to patients by using 3D bioprinted organs and tissues whenever it is needed also taking away responsibility from patients. Thus there can be great social and psychological consequences from 3D bioprinting in a long term. Furthermore Pete Basiliere an analyst in a worlds leading information technology research company suggests that 3D printing can also bring economic consequences resulting in the loss of at least 100 billion in intellectual property theft per year by 2018 globally. By analysing the economic psychological and social impact of the 3D printing technologies I want to research whether anyone is going be responsible for the 3D printing production and who is going to give a right to 3D bioprint.

  2. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  3. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  4. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. CALDoseX-a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology

    International Nuclear Information System (INIS)

    Kramer, R; Khoury, H J; Vieira, J W

    2008-01-01

    CALDose X is a software tool that provides the possibility of calculating incident air kerma (INAK) and entrance surface air kerma (ESAK), two important quantities used in x-ray diagnosis, based on the output of the x-ray equipment. Additionally, the software uses conversion coefficients (CCs) to assess the absorbed dose to organs and tissues of the human body, the effective dose as well as the patient's cancer risk for radiographic examinations. The CCs, ratios between organ or tissue absorbed doses and measurable quantities, have been calculated with the FAX06 and the MAX06 phantoms for 34 projections of 10 commonly performed x-ray examinations, for 40 combinations of tube potential and filtration ranging from 50 to 120 kVcp and from 2.0 to 5.0 mm aluminum, respectively, for various field positions, for 29 selected organs and tissues and simultaneously for the measurable quantities, INAK, ESAK and kerma area product (KAP). Based on the x-ray irradiation parameters defined by the user, CALDose X shows images of the phantom together with the position of the x-ray beam. By using true to nature voxel phantoms, CALDose X improves earlier software tools, which were mostly based on mathematical MIRD5-type phantoms, by using a less representative human anatomy.

  6. Effect of small-dose levosimendan on mortality rates and organ functions in Chinese elderly patients with sepsis

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xin Wang,1,* Shikui Li2,* 1Intensive Care Unit, 2Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Aim: As a primary cause of death not only in Western countries but also in the People’s Republic of China, sepsis is diagnosed as abnormal organ functions as a result of a disordered response to a severe infection. This study was designed to assess the effect of small-dose levosimendan without a loading dose on mortality rates and organ functions in Chinese elderly patients with sepsis.Methods: Following a prospective, randomized, and double-blinded design, 240 Chinese elderly patients with sepsis shock were admitted to the intensive care unit (ICU. All patients were randomly and evenly assigned into a levosimendan group (number of patients =120 and a control group (number of patients =120. The control group underwent standard care, and the levosimendan group was administered levosimendan in addition to standard care.Results: All participants, comprising 134 males (55.8% and 106 females (44.2%, were 70 (67–73 years old. Baseline characteristics, preexisting illnesses, initial infections, organ failures, and additional agents and therapies showed no significant difference between the two groups (P>0.05 for all. There were no significant differences in mortality rates at 28 days, at ICU discharge, and at hospital discharge between the two groups (P>0.05 for all. The number of days of ICU and hospital stay in the levosimendan group was significantly less than for those in the control group (P<0.05 for all. Mean daily total sequential organ failure assessment score and all organ scores except the cardiovascular scores showed no significant difference between the two groups (P>0.05 for all. Cardiovascular scores in the levosimendan group were significantly higher than those in the control group (P<0.05 for all.Conclusion: Small

  7. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after neu...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  8. Microscopic aspects of lymphoid organs in the guinea pig (Cavia porcellus

    Directory of Open Access Journals (Sweden)

    Fernanda Menezes de Oliveira e Silva

    2013-11-01

    Full Text Available Microscopy of lymphoid organs was studied in the guinea pig at different developmental stages – fetus, pup, and adult. Liver is a lobed organ, coated with a mesothelium, and it consists of sinusoids and cell plates in its parenchyma, named hepatocytes. Thymus is covered by a thin capsule of connective tissue which is protruded as septa into the entire organ. The parenchyma of each lobule is not clearly separated into a cortex and medulla. Hassall’s corpuscles are abundant. Lymph nodes are arranged into cortex and medulla. The cortex has germinal centers or lymphoid nodules, surrounded by diffuse lymphoid tissue. Spleen is divided into red and white pulp. Trabeculae of connective tissue are protruded into the spleen from the capsule; however, they are sparsely found around the red and white pulps. Germinal centers were found in the white pulp, where small and large lymphocytes and lymphoblasts can be found. Since the guinea pig is regarded as an important model for morphological studies due to its closeness to human beings, this article raises relevant information on the structural components of the lymphoid system in these animals, providing a new source of data to other knowledge fields.

  9. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification.

    Science.gov (United States)

    Harrison, R M

    2008-12-01

    The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.

  10. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues

    Directory of Open Access Journals (Sweden)

    Balcke Gerd Ulrich

    2012-11-01

    Full Text Available Abstract Background Phytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding. These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing. Results Here we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified. Conclusion The method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive tandem mass spectrometry instrumentation.

  11. On modeling complex interplay in small-scale self-organized socio-hydrological systems

    Science.gov (United States)

    Muneepeerakul, Rachata

    2017-04-01

    Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.

  12. Evaluating the Sustainability of a Small-Scale Low-Input Organic Vegetable Supply System in the United Kingdom

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Kulak, Michal; Smith, Laurence G.

    2014-01-01

    Resource use and environmental impacts of a small-scale low-input organic vegetable supply system in the United Kingdom were assessed by emergy accounting and Life Cycle Assessment (LCA). The system consisted of a farm with high crop diversity and a related box-scheme distribution system. We...... compared empirical data from this case system with two modeled organic food supply systems representing high-and low-yielding practices for organic vegetable production. Further, these systems were embedded in a supermarket distribution system and they provided the same amount of comparable vegetables...

  13. Histomorphometric Evaluation of the Small Coronary Arteries in Rats Exposed to Industrial Noise

    Directory of Open Access Journals (Sweden)

    Ana Lousinha

    2015-05-01

    Full Text Available Morphological changes induced by industrial noise (IN have been experimentally observed in several organs. Histological observations of the coronary arteries showed prominent perivascular tissue and fibrosis among IN-exposed rats. The effects on the small arteries are unknown. Objective: To evaluate the histomorphometric changes induced by IN on rat heart small arteries. Methods: Twenty Wistar rats exposed to IN during a maximum period of seven months and 20 age-matched controls were studied. Hearts were transversely sectioned from ventricular apex to atria and a mid-ventricular fragment was selected for analysis. The histological images were obtained with an optical microscope using 400× magnifications. A total of 634 arterial vessels (298 IN-exposed and 336 controls were selected. The mean lumen-to-vessel wall (L/W and mean vessel wall-to-perivascular tissue (W/P ratios were calculated using image J software. Results: There were no differences between exposed and control animals in their L/W ratios (p = 0.687 and time variations in this ratio were non-significant (p = 0.110. In contrast, exposed animals showed lower W/P ratios than control animals (p < 0.001, with significant time variations (p = 0.004. Conclusions: Industrial noise induced an increase in the perivascular tissue of rat small coronary arteries, with significant development of periarterial fibrosis.

  14. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Dentini, Mariella

    2017-01-01

    3D bioprinting is an emerging field that can be described as a robotic additive biofabrication technology that has the potential to build tissues or organs. In general, bioprinting uses a computer-controlled printing device to accurately deposit cells and biomaterials into precise architectures with the goal of creating on demand organized multicellular tissue structures and eventually intra-organ vascular networks. The latter, in turn, will promote the host integration of the engineered tissue/organ in situ once implanted. Existing biofabrication techniques still lay behind this goal. Here, we describe a novel microfluidic printing head-integrated within a custom 3D bioprinter-that allows for the deposition of multimaterial and/or multicellular within a single scaffold by extruding simultaneously different bioinks or by rapidly switching between one bioink and another. The designed bioprinting method effectively moves toward the direction of creating viable tissues and organs for implantation in clinic and research in lab environments.

  15. Interplay between efficiency and device architecture for small molecule organic solar cells.

    Science.gov (United States)

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  16. Staining plastic blocks with triiodide to image cells and soft tissues in backscattered electron SEM of skeletal and dental tissues

    Directory of Open Access Journals (Sweden)

    A Boyde

    2012-07-01

    Full Text Available Backscattered electron scanning electron microscopy (BSE SEM is an invaluable method for studying the histology of the hard, mineralised components of poly-methyl methacrylate (PMMA or other resin embedded skeletal and dental tissues. Intact tissues are studied in micro-milled or polished block faces with an electron-optical section thickness of the order of a half to one micron and with the area of the section as big as a whole – large or small – bone organ. However, BSE SEM does not give information concerning the distribution of uncalcified, ‘soft’, cellular and extracellular matrix components. This can be obtained by confocal microscopy of the same block and the two sorts of images merged but the blocks have to be studied in two microscope systems. The present work shows a new, simple and economic approach to visualising both components by using the triiodide ion in Lugol's iodine solution to stain the block surface prior to the application of any conductive coating – and the latter can be omitted if charging is suppressed by use of poor vacuum conditions in the SEM sample chamber. The method permits the use of archival tissue, and it will be valuable in studies of both normal growth and development and pathological changes in bones and joints, including osteoporosis and osteoarthritis, and tissue adaptation to implants.

  17. Environmental processes leading to the presence of organically bound plutonium in plant tissues consumed by animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.

    1979-01-01

    Using a proposed model for Pu behaviour to integrate current knowledge, information is presented on the chemical/biochemical processes governing the form of Pu in soils and plants and the relationship of these phenomena to gut absorption in animals. Regardless of the source term, Pu behaviour in the soil will be governed by the chemistry of Pu(IV), which predominates over Pu(VI) due to reductive reactions in the soil and at the plant root surface. The soil behaviour of Pu(IV) is governed by (1) hydrolysis, which results in insolubilization and sorption on solid phases, and (2) complexation with inorganic and organic ligands, which stabilize Pu(IV) against hydrolysis and increase solubility. These competing processes likely represent the rate-limiting step in the ingestion pathway because plants do not effectively discriminate against the soluble Pu(IV) ion. Following dissociation of soil Pu(IV) complexes at the outer root surface, Pu is transported across the plant root membrane as the Pu(IV) ion and translocated as Pu(IV) complexes with plant organic ligands. Redistribution of Pu occurs as the plant grows, with initial increases in stem tissues followed by accumulation in roots as the plant matures. The Pu concentration decreases up the plant and seeds contain the lowest Pu concentrations. The gastro-intestinal absorption of Pu requires the presence of soluble Pu forms and hydrolysis/complexation reactions in the gut likely govern solubility. The acidity of the gut is not sufficient to retard hydrolysis of Pu(IV). Therefore, the gastro-intestinal absorption of Pu organically bound in plant tissues is increased relative to Pu administered in hydrolysable solutions. (author)

  18. Graduates' Experiences of Work in Small Organizations in the UK and the Netherlands : Better than Expected

    NARCIS (Netherlands)

    Arnold, J.; Schalk, R.; Bosley, S.; van Overbeek, S.

    2002-01-01

    This project was designed to examine university graduates' expectations and experiences of employment in small organizations in the UK and the Netherlands. Specifically, three predictions were made on the basis of existing literature and tested using self-report questionnaire data gathered from 126

  19. Effects of pig genotype (Iberian v. Landrace × Large White) on nutrient digestibility, relative organ weight and small intestine structure at two stages of growth.

    Science.gov (United States)

    Barea, R; Nieto, R; Vitari, F; Domeneghini, C; Aguilera, J F

    2011-02-01

    Although the effects of pig genotype on total-tract apparent digestibility (TTAD) have been widely reported in the literature, there is controversial information on the digestive capacity of indigenous breeds compared with lean-type pigs. The strategy of this study was to test the effects of pig genotype and crude protein (CP) supply on performance, digestive utilization of nutrients, relative organ weight and morphometric analysis of the small intestine. Thirty-eight Iberian (IB) and Landrace × Large White (LD) pigs were used. Three pigs per genotype were slaughtered at approximately 15 kg BW. The remaining pigs were fed one of two diets differing in CP content (13% or 17% as fed) using a pair-fed procedure. Feeding level was restricted at 0.8 × ad libitum of IB pigs. Nutrient digestibility and nitrogen (N) balance trials were performed at 30 and 80 kg BW. Four pigs per dietary treatment and genotype were slaughtered at approximately 50 and 115 kg BW. The gastrointestinal tract and the rest of the visceral organs were weighed and samples of the small intestine were taken to carry out histological and histometrical studies. Daily gain and gain-to-feed ratio were higher in LD than in IB pigs during the fattening and growing-fattening periods (P LD pigs at 30 kg BW (P LD pigs at 30 and 80 kg BW (30% as mean value). The proportional weight of the small intestine was greater in LD than in IB pigs at 50 and 115 kg BW. Histometry showed that IB presented a lower muscle layer thickness than LD pigs in ileum, irrespective of the BW (P LD pigs showed approximately 10% higher ileal villi length and villi-to-crypt ratio than IB pigs at 115 kg BW. CP supply affected to a larger extent the small intestinal micro-anatomical structure of LD pigs at 50 kg BW. In conclusion, our results suggests that although the higher growth rate, NR and efficiency of NR observed in LD pigs might be associated with presumably more efficient structural aspects of the small intestine, the main

  20. Solution-processed white organic light-emitting devices based on small-molecule materials

    International Nuclear Information System (INIS)

    Wang Dongdong; Wu Zhaoxin; Zhang Xinwen; Wang Dawei; Hou Xun

    2010-01-01

    We investigated solution-processed films of 4,4'-bis(2,2-diphenylvinyl)-1,1'-bibenyl (DPVBi) and its blends with N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m 2 , a maximum luminance of 22500 cd/m 2 , and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.

  1. Distribution of heavy metals in internal organs and tissues of Korean molluscan shellfish and potential risk to human health.

    Science.gov (United States)

    Mok, Jong Soo; Kwon, Ji Young; Son, Kwang Tae; Choi, Woo Seok; Kim, Poong Ho; Lee, Tae Seek; Kim, Ji Hoe

    2015-09-01

    Molluscan shellfish (gastropods and bivalves) were collected from major fish markets on the Korean coast and analyzed for mercury by direct Hg analyzer and for other metals, such as cadmium, lead, chromium, silver, nickel, copper and zinc, using inductively coupled plasma mass spectrometry. Distribution of heavy metals in muscles, internal organs and whole tissues were determined and a potential risk assessment was conducted to evaluate their hazard for human consumption. Heavy metals were accumulated significantly higher (P hazardous metals (Cd, Pb, and Hg) in all internal-organ samples were above the regulatory limit of Korea and the mean level in whole tissue samples of the selected gastropod species, bay scallop and comb pen shell, exceeded the limit (except in a few cases). The sum of the estimated dietary intake of Cd, Pb and Hg for each part of all tested species accounted for 1.59-16.94, 0.02-0.36, and 0.07-0.16% respectively, of the provisional tolerable daily intake adopted by the Joint FAO/WHO Expert Committee on Food Additives. The hazard index for each part of gastropods and bivalves was below 1.0, however, the maximum HI for internal organs of all analysed species was quite high (0.71). These results suggest that consumption of flesh after removing the internal organs of some molluscan shellfish (all gastropod species, bay scallop and comb pen shell) is a suitable way for reducing Cd exposure.

  2. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    Science.gov (United States)

    Sanders, Lindsey Kennedy

    proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for expandable organ application, such as the bladder. Incorporation of chitosan expanded the utility of the bi-functional modified T1107 (TAS) adhesive to tissue wounds on highly vascularized organs (e.g., liver, kidney). Further, we demonstrated that the modified Tetronic adhesive is biocompatible and safe for treatment of small soft tissue wounds on rat's muscle using FDA requirements. The current findings helped our understanding of the material and mechanical properties of the modified Tetronic adhesive and ultimately progress the field of surgical adhesives and sealants by providing a tunable adhesive system for various internal soft tissue wound applications.

  3. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Moroni, Lorenzo; van Blitterswijk, Clemens; de Boer, Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to

  4. Results from a horizon scan on risks associated with transplantation of human organs, tissues and cells: from donor to patient.

    Science.gov (United States)

    Herberts, C A; Park, M V D Z; Pot, J W G A; de Vries, C G J C A

    2015-03-01

    The successful transplantation of human materials such as organs, tissues and cells into patients does not only depend on the benefits, but also on the mitigation of risks. To gain insight into recent publications on risks associated with the process of transferring human materials from donor to recipient we performed a horizon scan by reviewing scientific literature and news websites of 2011 on this subject. We found there is ample information on how extended donor criteria, such as donor age, affect the survival rates of organs or patients. Interestingly, gender mismatch does not appear to be a major risk factor in organ rejection. Data on risks of donor tumor transmission was very scarce; however, risk categories for various tumor types have been suggested. In order to avoid rejection, a lot of research is directed towards engineering tissues from a patient's own tissues and cells. Some but not all of these developments have reached the clinic. Developments in the field of stem cell therapy are rapid. However, many hurdles are yet to be overcome before these cells can be applied on a large scale in the clinic. The processes leading to genetic abnormalities in cells differentiated from stem cells need to be identified in order to avoid transplantation of aberrant cells. New insights have been obtained on storage and preservation of human materials, a critical step for success of their clinical use. Likewise, quality management systems have been shown to improve the quality and safety of human materials used for transplantation.

  5. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    Science.gov (United States)

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  6. Bioactive scaffolds for the controlled formation of complex skeletal tissues

    NARCIS (Netherlands)

    Hofmann, S.; Garcia-Fuentes, M.; Eberli, D.

    2011-01-01

    Tissue Engineering may offer new treatment alternatives for organ replacement or repair deteriorated organs. Among the clinical applications of Tissue Engineering are the production of artificial skin for burn patients, tissue engineered trachea, cartilage for knee-replacement procedures, urinary

  7. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs

    DEFF Research Database (Denmark)

    Pedde, R. Daniel; Mirani, Bahram; Navaei, Ali

    2017-01-01

    , outlines the use of common biomaterials and advanced hybrid scaffolds, and describes several design considerations including the structural, physical, biological, and economical parameters that are crucial for the fabrication of functional, complex, engineered tissues. Finally, the applications...... of these biofabrication strategies in neural, skin, connective, and muscle tissue engineering are explored.......The demand for organ transplantation and repair, coupled with a shortage of available donors, poses an urgent clinical need for the development of innovative treatment strategies for long-term repair and regeneration of injured or diseased tissues and organs. Bioengineering organs, by growing...

  8. Accumulation of Heavy Metals by Small Mammals the Background and Polluted Territories of the Urals

    Directory of Open Access Journals (Sweden)

    Kovalchuk L. A.

    2017-08-01

    Full Text Available Accumulation of heavy metals (Cu, Zn, Cd in hemopoietic-competent organs of ecologically contrast species of small mammals (Clethrionomys glareolus, Sorex araneus, Apodemus uralensis from natural populations of the Middle and South Urals were considered. The content of exogenous and essential trace elements in animal tissues (a liver, kidney, a spleen was determined by atomic absorption spectroscopy. It has been shown that bioaccumulation of heavy metals in organs of insectivores significantly differs from it of bank voles and wood mice. The smallest total content of heavy metals is shown in wood mice in technogenic territories of the Middle Urals. The submitted data demonstrate the competitive mechanism of the Cu, Zn, Cd. The increased concentrations of endogenous trace elements (copper, zinc in relation to a toxicant (cadmium, other things being equal, reduce cadmium accumulation level in the tissues Sorex araneus.

  9. Nanotechnological Strategies for Biofabrication of Human Organs

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Rezende

    2012-01-01

    Full Text Available Nanotechnology is a rapidly emerging technology dealing with so-called nanomaterials which at least in one dimension have size smaller than 100 nm. One of the most potentially promising applications of nanotechnology is in the area of tissue engineering, including biofabrication of 3D human tissues and organs. This paper focused on demonstrating how nanomaterials with nanolevel size can contribute to development of 3D human tissues and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are discussed in the context of their application for biofabricating 3D human tissues and organs. Several examples of novel tissue and organ biofabrication technologies based on using novel nanomaterials are presented and their recent limitations are analyzed. A robotic device for fabrication of compliant composite electrospun vascular graft is described. The concept of self-assembling magnetic tissue spheroids as an intermediate structure between nano- and macrolevel organization and building blocks for biofabrication of complex 3D human tissues and organs is introduced. The design of in vivo robotic bioprinter based on this concept and magnetic levitation of tissue spheroids labeled with magnetic nanoparticles is presented. The challenges and future prospects of applying nanomaterials and nanotechnological strategies in organ biofabrication are outlined.

  10. Modeling Physical Processes at the Nanoscale—Insight into Self-Organization of Small Systems (abstract)

    Science.gov (United States)

    Proykova, Ana

    2009-04-01

    Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.

  11. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    International Nuclear Information System (INIS)

    Constantin, F.; Ciubotaru, A.; Popa, D.

    1998-01-01

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H 2 O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors)

  12. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, F; Ciubotaru, A; Popa, D [Inspectorate of Public Health of Bucharest (Romania)

    1999-12-31

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H{sub 2}O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors) 2 tabs.

  13. Near-infrared imaging system for detecting small organic foreign substances in foods

    Science.gov (United States)

    Tashima, Hiroto; Genta, Tsuneaki; Ishii, Yuya; Ishiyama, Takeshi; Arai, Shinichi; Fukuda, Mitsuo

    2013-09-01

    Contamination of foodstuffs with foreign substances is a serious problem because it often has negative effects on consumer health. However, detection of small organic substances in foods can be difficult because they are undetectable with traditional inspection apparatus. In this work, we developed new equipment that can detect small organic contaminant substances in food at high speed using a near-infrared (NIR) imaging technique. The absorption spectra of various foods were measured, and the spectra showed low absorbance at wavelengths from 600 nm to 1150 nm. Based on the observable wavelength range of a CMOS camera, which has a high dynamic range, superluminescent diodes (SLDs) with a wavelength of 830 nm were selected as light sources. We arranged 40 SLDs on a flat panel and placed a diffusion panel over them. As a result, uniformly distributed light with an intensity of 0.26 mW/cm2 illuminated an area of 6.0 cm × 6.0 cm. Insects (3 mm wide) and hairs (0.1 mm in diameter) were embedded in stacked ham slices and in chocolate, with a total thickness of 5 mm in each case, and the transmission images were observed. Both insects and hairs were clearly observed as dark shadows with high contrast. We also compensated the images by using software developed in this study to eliminate low spatial frequency components in the images and improve the sharpness and contrast. As a result, the foreign substances were more clearly distinguished in the 5-mm-thick ham.

  14. Evaluation of the Procleix Ultrio Elite Assay and the Panther-System for Individual NAT Screening of Blood, Hematopoietic Stem Cell, Tissue and Organ Donors.

    Science.gov (United States)

    Heim, Albert

    2016-05-01

    The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors.

  15. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets

    Directory of Open Access Journals (Sweden)

    Daniel Steil

    2016-11-01

    Full Text Available Shiga toxin (Stx 2e of Stx-producing Escherichia coli (STEC is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer, the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I over moderate (category II to low content (category III. Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1 and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans.

  16. Certified Organic Agriculture as an Alternative Livelihood Strategy for Small-scale Farmers in China: A Case Study in Wanzai County, Jiangxi Province

    DEFF Research Database (Denmark)

    Qiao, Yuhui; Martin, Friederike; Cook, Seth

    2018-01-01

    (> 1 ha land), the proportion of income from farming was higher (56% in 2007 and 77% in 2014), leading to average farm incomes of USD16,108 in 2014. Among organic farmers, cooperatives members performed better economically than those not in cooperatives. Organic agriculture can ensure stable...... in 2007 and 2014 in Wanzai, Jiangxi Province China, where organic farming started in 2000. The results show that organic farming did contribute to higher farm incomes for small-scale farmers (... is measured on a per land unit or per household basis. The annual farmers household net income increased from 2007 to 2014, however, the farm income of small-scale farmers only makes up a minor part of total household income and its percentage becomes less and less over time. For medium-scale organic farmers...

  17. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  18. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  19. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L

    1991-01-01

    with elastin fibers. The organization shown in this study strongly supports the concept of interstitial cells of Cajal as important regulatory cells also in the human small intestine. The characteristic cytology and organization of interstitial cells of Cajal may provide a basis for future morphological......Previous morphological and electrophysiological studies have supported the hypothesis that interstitial cells of Cajal have important regulatory (pacemaker) functions in the gut. In the current study, interstitial cells of Cajal associated with Auerbach's plexus in human small intestine were...... studied. Freshly resected intestine was examined by light and electron microscopy. The interstitial cells of Cajal resembled modified smooth muscle cells. They had caveolae and dense bodies, an incomplete basal lamina, a very well-developed smooth endoplasmic reticulum, and abundant intermediate (10 nm...

  20. 222Rn alpha dose to organs other than lung

    International Nuclear Information System (INIS)

    Harley, N.H.; Robbins, E.S.

    1991-01-01

    The alpha dose to cells in tissues or organs other theft the lung has been calculated using the solubility coefficients for 222 Rn measured in human tissue. The annual alpha dose equivalent f rom 222 Rn and decay products in most tissues is a maximum of 30% of the annual average natural background dose equivalent (1 mSv) for external and internally deposited nuclides. The dose to the small population of lymphocytes located in or under the bronchial epithelium is a special case and their annual dose equivalent is essentially the same as that to basal cells in bronchial epithelium (200 mSv) for continuous exposure to 200 Bq M -3 . The significance of this dose is uncertain because the only excess cancer observed in follow up studies of underground miners with high 222 Rn exposure is bronchogenic carcinoma

  1. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  2. A comparison of small-field tissue phantom ratio data generation methods for an Elekta Agility 6 MV photon beam.

    Science.gov (United States)

    Richmond, Neil; Brackenridge, Robert

    2014-01-01

    Tissue-phantom ratios (TPRs) are a common dosimetric quantity used to describe the change in dose with depth in tissue. These can be challenging and time consuming to measure. The conversion of percentage depth dose (PDD) data using standard formulae is widely employed as an alternative method in generating TPR. However, the applicability of these formulae for small fields has been questioned in the literature. Functional representation has also been proposed for small-field TPR production. This article compares measured TPR data for small 6 MV photon fields against that generated by conversion of PDD using standard formulae to assess the efficacy of the conversion data. By functionally fitting the measured TPR data for square fields greater than 4cm in length, the TPR curves for smaller fields are generated and compared with measurements. TPRs and PDDs were measured in a water tank for a range of square field sizes. The PDDs were converted to TPRs using standard formulae. TPRs for fields of 4 × 4cm(2) and larger were used to create functional fits. The parameterization coefficients were used to construct extrapolated TPR curves for 1 × 1 cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields. The TPR data generated using standard formulae were in excellent agreement with direct TPR measurements. The TPR data for 1 × 1-cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields created by extrapolation of the larger field functional fits gave inaccurate initial results. The corresponding mean differences for the 3 fields were 4.0%, 2.0%, and 0.9%. Generation of TPR data using a standard PDD-conversion methodology has been shown to give good agreement with our directly measured data for small fields. However, extrapolation of TPR data using the functional fit to fields of 4 × 4cm(2) or larger resulted in generation of TPR curves that did not compare well with the measured data. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical

  3. Studies on the quantitative autoradiography. III. Quantitative comparison of a novel tissue-mold measurement technique "paste-mold method," to the semiquantitative whole body autoradiography (WBA), using the same animals.

    Science.gov (United States)

    Motoji, N; Hamai, Y; Niikura, Y; Shigematsu, A

    1995-01-01

    A novel preparation technique, so called "Paste Mold," was devised for organ and tissue distribution studies. This is the most powerful by joining with autoradioluminography (ARLG), which was established and validated recently in the working group of Forum '93 of Japanese Society for study of xenobiotics. A small piece (10-50 mg) of each organ or tissue was available for measuring its radioactive concentration and it was sampled from the remains of frozen carcass used for macroautoradiography (MARG). The solubilization of the frozen pieces was performed with mixing a suitable volume of gelatine and strong alkaline solution prior to mild heating kept at 40 degrees C for a few hours. After that, the tissue paste was molded in template pattern to form the small plates. The molded plates were contacted with Imaging plate (IP) for recording their radioactive concentration. The recorded IP was processed by BAS2000. The molded plate was formed in thickness of 200 microns, so called infinit thickness against soft beta rays, and therefore the resulting relative intensities, represented by (PSL-BG)/S values, indicated practically responsible ratio of the radioactive concentration in organs and tissues, without any calibulation for beta-self absorption coefficiency. On the other hand, the left half body of the frozen carcass was used for making whole body autoradiography (WBA) before the Paste-Mold preparation. Comparison was performed for difference in (PSL-BG)/S values of organs and tissues between frozen and dried sections. A good concordance in relative intensities, (PSL-BG)/S by the Paste-Mold preparation was given with those by the frozen sections rather than dried sections.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Castilla Bolaños, Maria Alejandra, E-mail: ma.castilla964@uniandes.edu.co; Buttigieg, Josef; Briceño Triana, Juan Carlos

    2017-03-01

    The fabricated small intestine submucosa (SIS) – hydroxyapatite (HAp) sponges can act as biomimetic scaffolds to be utilized in tissue engineering and regeneration. Here we developed SIS-HAp sponges and investigated their mechanical, physical and chemical characteristics using scanning electron microscopy, Fourier transformed infrared spectroscopy, uniaxial compression, porosity, and swelling testing techniques. The results demonstrated mechanical properties superior to comparable bone substitutes fabricated with similar methods. SIS-HAp scaffolds possess an interconnected macroporosity, similar to that of trabecular bone, hence presenting a novel biomaterial that may serve as a superior bone substitute and tissue scaffold. - Highlights: • Small intestine submucosa (SIS) – hydroxyapatite (HAp) scaffolds were developed. • SIS-HAp scaffolds possess a trabecular bone-like structure. • FTIR indicated a molecular interaction between the organic groups of SIS and HAp. • SIS-HAp sponges presented a superior Young modulus to comparable bone substitutes.

  5. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Castilla Bolaños, Maria Alejandra; Buttigieg, Josef; Briceño Triana, Juan Carlos

    2017-01-01

    The fabricated small intestine submucosa (SIS) – hydroxyapatite (HAp) sponges can act as biomimetic scaffolds to be utilized in tissue engineering and regeneration. Here we developed SIS-HAp sponges and investigated their mechanical, physical and chemical characteristics using scanning electron microscopy, Fourier transformed infrared spectroscopy, uniaxial compression, porosity, and swelling testing techniques. The results demonstrated mechanical properties superior to comparable bone substitutes fabricated with similar methods. SIS-HAp scaffolds possess an interconnected macroporosity, similar to that of trabecular bone, hence presenting a novel biomaterial that may serve as a superior bone substitute and tissue scaffold. - Highlights: • Small intestine submucosa (SIS) – hydroxyapatite (HAp) scaffolds were developed. • SIS-HAp scaffolds possess a trabecular bone-like structure. • FTIR indicated a molecular interaction between the organic groups of SIS and HAp. • SIS-HAp sponges presented a superior Young modulus to comparable bone substitutes.

  6. The mechanism of circulatory disturbances in the small intestinal wall and their role in the development of intestinal syndrome

    International Nuclear Information System (INIS)

    Kudryavtsev, V.D.; Sushkevich, L.N.

    1980-01-01

    The mechanism of vascular disorders in the wall of the small intestine, the possibility of correcting them and their significance in the development of the intestinal syndrome were analysed. The experiments in which Wistar rats were irradiated with 10 Gy yielded information on the blood flow in the small intestine, on the number of regenerating crypts, on the blood plasma volume and on arterial blood pressure. The data obtained justify to speak of an important influence of disturbances in general hemodynamics on the microcirculation in the entire organ. Reaction that fail to take place or paradoxic changes in the blood flow of tissue after injection of vasoactive substances also illustrate the significance of direct intestinal vascular damage for adversely affecting compensatory adaptation mechanisms. Markedly disturbed blood supply to the tissue and the resultant deterioration of tissue trophism at the level of an intestinal syndrome not only intensify radiogenic destructive processes in epitheliocytes, but also prevent to a certain extent the regeneration of mucous membrane of the small intestine. The possibility of achieving partial restoration of blood vessel speed in the small intestine of irradiated rats is shown if the loss of intravascular fluid is parenterally replaced with Ringer's or hemodilution solution. (author)

  7. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  8. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V., E-mail: donepudi_venkateswararao@rediffmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Swapna, Medasani, E-mail: medasanisw@gmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Cesareo, Roberto; Brunetti, Antonio [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Zhong, Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Akatsuka, Takao; Yuasa, Tetsuya [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata-992-8510 (Japan); Takeda, Tohoru [Allied Health Science, Kitasato University 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Gigante, Giovanni E. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)

    2010-09-15

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  9. Tissue architecture: the ultimate regulator of breast epithelial function

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Mian, Saira

    2003-10-20

    A problem in developmental biology that continues to take center stage is how higher organisms generate diverse tissues and organs given the same cellular genotype. In cell and tumor biology, the key question is not the production of form, but its preservation: how do tissues and organs maintain homeostasis, and how do cells within tissues lose or overcome these controls in cancer? Undoubtedly, mechanisms that maintain tissue specificity should share features with those employed to drive formation of the tissues. However, they are unlikely to be identical. At a simplistic level, developmental pathways may be thought of as a series of extremely rapid short-term events. Each new step depends on what came before, and the outcome is the organism itself at birth. All organs, with a few notable exceptions, such as the mammary gland and the brain, 'arrive' together and are complete when the organism is born. In mice and humans, these events occur in a mere 21 days and 9 months respectively. The stability of the differentiated state and the homeostasis of the organism, on the other hand, will last 40-110 times longer. How does the organism achieve this feat? How are tissues maintained? These questions also relate fundamentally to how tissues become malignant and, although not discussed here, to aging. While there is much literature on differentiation - loosely defined as the gain of a single or a series of functions - we know much less about the forces and the pathways that maintain organ morphology and function as a unit. This may be partly because it is difficult to study a tissue as a unit in vivo and there are few techniques that allow maintenance of organs in vitro long enough and in such a way as to make cell and molecular biology experiments possible. Techniques for culturing cells in three-dimensional gels (3D) as a surrogate for tissues, however, have been steadily improving and the method is now used by several laboratories. In this commentary we

  10. Hierarchical Design of Tissue Regenerative Constructs.

    Science.gov (United States)

    Rose, Jonas C; De Laporte, Laura

    2018-03-01

    The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue

    Science.gov (United States)

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-01-01

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular. PMID:24962015

  12. Donation FAQs (Bone and Tissue Allografts)

    Science.gov (United States)

    ... Biologics is affiliated with organ, eye and tissue procurement agencies throughout the U.S. They typically ... Visit DonateLife.net and learn how your gift of tissue can give bring new life to ...

  13. Random lasing in human tissues

    International Nuclear Information System (INIS)

    Polson, Randal C.; Vardeny, Z. Valy

    2004-01-01

    A random collection of scatterers in a gain medium can produce coherent laser emission lines dubbed 'random lasing'. We show that biological tissues, including human tissues, can support coherent random lasing when infiltrated with a concentrated laser dye solution. To extract a typical random resonator size within the tissue we average the power Fourier transform of random laser spectra collected from many excitation locations in the tissue; we verified this procedure by a computer simulation. Surprisingly, we found that malignant tissues show many more laser lines compared to healthy tissues taken from the same organ. Consequently, the obtained typical random resonator was found to be different for healthy and cancerous tissues, and this may lead to a technique for separating malignant from healthy tissues for diagnostic imaging

  14. An analysis of particle track effects on solid mammalian tissues

    International Nuclear Information System (INIS)

    Todd, P.

    1992-01-01

    The relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV μm -1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p 3 n, per track, where n is the number of cells per track based on tissue and organ geometry, and p 3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p 3 n is high. (author)

  15. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  16. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  17. The Application of Tissue Engineering Procedures to Repair the Larynx

    Science.gov (United States)

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  18. "Why throw away something useful?": Attitudes and opinions of people treated for bipolar disorder and their relatives on organ and tissue donation.

    Science.gov (United States)

    Padoan, Carolina S; Garcia, Lucas F; Rodrigues, Aline A; Patusco, Lucas M; Atz, Mariana V; Kapczinski, Flavio; Goldim, José R; Magalhães, Pedro V S

    2017-03-01

    In regard to mental illness, brain donation is essential for the biological investigation of central pathology. Nevertheless, little is known about the thoughts of people with mental disorders on tissue donation for research. Here, our objective was to understand the attitudes and opinions of people treated for bipolar disorder and their relatives regarding donation in general, and particularly donation for research. This is a qualitative study that used in-depth interviews to determine the thoughts of participants regarding tissue donation for research. Theoretical sampling was used as a recruitment method. Grounded theory was used as a framework for content analyses of the interviews. A semi-structured interview guide was applied with the topics: donation in general; donation for research; mental health and body organs; opinion regarding donation; feelings aroused by the topic. Although all participants were aware of organ donation for transplant, they were surprised that tissue could be donated for research. Nevertheless, once they understood the concept they were usually in favor of the idea. Although participants demonstrated a general lack of knowledge on donation for research, they were willing to learn more and viewed it as a good thing, with altruistic reasons often cited as a motive for donation. We speculate that bridging this knowledge gap may be a fundamental step towards a more ethical postmortem tissue donation process.

  19. Microscopic aspects of lymphoid organs in the guinea pig (Cavia porcellus

    Directory of Open Access Journals (Sweden)

    Fernanda Menezes de Oliveira e Silva

    2013-10-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2013v26n4p233 Microscopy of lymphoid organs was studied in the guinea pig at different developmental stages – fetus, pup, and adult. Liver is a lobed organ, coated with a mesothelium, and it consists of sinusoids and cell plates in its parenchyma, named hepatocytes. Thymus is covered by a thin capsule of connective tissue which is protruded as septa into the entire organ. The parenchyma of each lobule is not clearly separated into a cortex and medulla. Hassall’s corpuscles are abundant. Lymph nodes are arranged into cortex and medulla. The cortex has germinal centers or lymphoid nodules, surrounded by diffuse lymphoid tissue. Spleen is divided into red and white pulp. Trabeculae of connective tissue are protruded into the spleen from the capsule; however, they are sparsely found around the red and white pulps. Germinal centers were found in the white pulp, where small and large lymphocytes and lymphoblasts can be found. Since the guinea pig is regarded as an important model for morphological studies due to its closeness to human beings, this article raises relevant information on the structural components of the lymphoid system in these animals, providing a new source of data to other knowledge fields.

  20. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  1. Introduction to tissue engineering applications and challenges

    CERN Document Server

    Birla, Ravi

    2014-01-01

    Covering a progressive medical field, Tissue Engineering describes the innovative process of regenerating human cells to restore or establish normal function in defective organs. As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this textbook for a comprehensive understanding and preparation for the future of regenerative medicine. This book explains chemical stimulations, the bioengineering of specific organs, and treatment plans for chronic diseases. It is a must-read for tissue engineering students and practitioners.

  2. Tissue Sampling Guides for Porcine Biomedical Models.

    Science.gov (United States)

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. © The Author(s) 2016.

  3. Brief Communication: Tissue-engineered Microenvironment Systems for Modeling Human Vasculature

    Science.gov (United States)

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2015-01-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described

  4. Radioimmunoassay studies of intestinal calcium-binding protein in the pig. 2. The distribution of intestinal CaBP in pig tissues

    International Nuclear Information System (INIS)

    Arnold, B.M.; Kuttner, M.; Willis, D.M.; Hitchman, A.J.W.; Harrison, J.E.; Murray, T.M.

    1975-01-01

    Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP. (author)

  5. Radioimmunoassay studies of intestinal calcium-binding protein in the pig. II. The distribution of intestinal CaBP in pig tissues

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B M; Kuttner, M; Willis, D M; Hitchman, A J.W.; Harrison, J E; Murray, T M [Toronto Univ., Ontario (Canada). Dept. of Medicine

    1975-12-01

    Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP.

  6. Normal tissue complication probability (NTCP), the clinician,s perspective

    International Nuclear Information System (INIS)

    Yeoh, E.K.

    2011-01-01

    Full text: 3D radiation treatment planning has enabled dose distributions to be related to the volume of normal tissues irradiated. The dose volume histograms thus derived have been utilized to set NTCP dose constraints to facilitate optimization of treatment planning. However, it is not widely appreciated that a number of important variables other than DYH's which determine NTCP in the individual patient. These variables will be discussed under the headings of patient and treatment related as well as tumour related factors. Patient related factors include age, co-morbidities such as connective tissue disease and diabetes mellitus, previous tissue/organ damage, tissue architectural organization (parallel or serial), regional tissue/organ and individual tissue/organ radiosensitivities as well as the development of severe acute toxicity. Treatment related variables which need to be considered include dose per fraction (if not the conventional 1.8012.00 Gy/fraction, particularly for IMRT), number of fractions and total dose, dose rate (particularly if combined with brachytherapy) and concurrent chemotherapy or other biological dose modifiers. Tumour related factors which impact on NTCP include infiltration of normal tissue/organ usually at presentation leading to compromised function but also with recurrent disease after radiation therapy as well as variable tumour radiosensitivities between and within tumour types. Whilst evaluation of DYH data is a useful guide in the choice of treatment plan, the current state of knowledge requires the clinician to make an educated judgement based on a consideration of the other factors.

  7. Bone Tissue Donation: Tendency and Hurdles.

    Science.gov (United States)

    El Hage, S; Dos Santos, M J; de Moraes, E L; de Barros E Silva, L B

    2018-03-01

    The aim of this study was to identify the percentage of bone tissue donation in a brain death situation and the tendency of donation rate of this tissue in an organ procurement organization in the county of Sao Paulo from 2001 to 2016. It is a retrospective and quantitative study, based on the Organ and Tissue Donation Term of donors who died of brain death between 2001 and 2016. A logistic regression model was applied, and the odds of donation were identified throughout the years, regarding the odds ratio different from zero. Finally, it was measured the accuracy of the odds ratio through the confidence interval. The analysis has shown a significant change on the trend of bone donation (P 1, indicating that the donation rate has increased. However, the percentage of growth is still considered low. The study evidences a growth trend regarding the donation of bone tissue, but the percentage is still too low to adequately meet the demand of patients who need this modality of therapeutic intervention. It is believed that educational campaigns of donation are not emphasizing the donation of tissues for transplantation, which may be directly impacting their consent rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  9. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  10. Clinical aspects of toxoplasmosis in small animal

    Directory of Open Access Journals (Sweden)

    André Luiz Baptista Galvão

    2014-02-01

    Full Text Available Toxoplasmosis, a zoonosis of worldwide distribution, has importance in human and veterinary medicine. Animals can be direct or indirect source of infection to man, and this intermediate host, the disease may be responsible for encephalitis and deaths due to congenital form as coinfection in neonates and patients with acquired immunodeficiency syndrome. The man and animals can acquire the disease by eating undercooked meat or cures, infected with tissue cysts, as well as food and water contaminated with oocysts. Iatrogenic, such as, blood transfusion and organ transplantation are other less frequent routes of transmission. The causative agent of this disease is Toxoplasma gondii, a protozoan obligate intracellular coccidian. In small animals, the infection has been reported in several countries, promoting varied clinical manifestations and uncommon but severe and fatal, which is a challenge in the clinical diagnosis of small animals, especially when the nervous system involvement. Thus, constitute the purpose of this review address the participation of small animals in the spread of the disease, clinical aspects related to it, as well as discuss methods of diagnosis, therapeutic measures, prophylaxis and control of this disease.

  11. Evaluation of the Procleix Ultrio Elite Assay and the Panther-System for Individual NAT Screening of Blood, Hematopoietic Stem Cell, Tissue and Organ Donors

    Science.gov (United States)

    Heim, Albert

    2016-01-01

    Summary Background The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. Methods ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. Results Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. Conclusion The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors. PMID:27403089

  12. 38 CFR 1.485a - Eye, organ and tissue donation.

    Science.gov (United States)

    2010-07-01

    ... centers must verify annually in January of each calendar year with the Food and Drug Administration (FDA) that an eye bank or tissue bank has complied with the FDA registration requirements of 21 CFR part 1271 and that the registration status is active before permitting an eye bank or tissue bank to receive...

  13. Artificial organs versus regenerative medicine: is it true?

    Science.gov (United States)

    Nosé, Yukihiko; Okubo, Hisashi

    2003-09-01

    Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs

  14. Small soft tissue sarcomas do metastasize

    DEFF Research Database (Denmark)

    Styring, Emelie; Hartman, Linda; Nilbert, Mef

    2014-01-01

    had histologic high-grade tumors. RESULTS: None of the 48 patients with low-grade tumors developed metastases, whereas 24 of 181 patients with high-grade tumors (13 %) tumors did. Presence of either tumor necrosis or vascular invasion predicted development of metastases with a hazard ratio of 2.9 (95...... necrosis and vascular invasion were the major predictors of metastatic disease in this subset. Tumors with both these risk factors metastasized in 8 of 18 patients, which corresponds to a 12-fold increased risk of metastasis. These findings suggest that although small STS generally are linked to a good...... prognosis, necrosis and vascular invasion are features indicating biologically aggressive tumors for which treatment and surveillance should equal that for larger tumors....

  15. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    Science.gov (United States)

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  16. Beta particle dose rates to micro-organisms in soil

    International Nuclear Information System (INIS)

    Kabir, M.; Spiers, F.W.; Iinuma, Takeshi.

    1977-01-01

    Studies were made to estimate the beta-particle dose rates to micro-organisms of various sizes in soil. The small insects and organisms living in soil are constantly exposed to beta-radiation arising from naturally occuring radionuclides in soil as in this case no overlying tissue shields them. The technique of measuring beta-particle dose rate consisted of using of a thin plastic scintillator to measure the pulse height distribution as the beta particle traverses the scintillator. The integrated response was determined by the number and size of the photomultiplier pulses. From the data of soil analyses it was estimated that typically about 29% of the beta particles emitted per gm. of soil were contributed by the U/Ra series, 21% by the Th series and about 50% by potassium. By combining the individual spectra of these three radionuclides in the proportion found in a typical soil, a resultant spectrum was computed representing the energy distribution of the beta particles. The dose rate received by micro-organisms of different shape and size in soil was derived from the equilibrium dose rates combined with a 'Geometrical Factor' of the organisms. For small organisms, the dose rates did not vary between the spherical and cylindrical types, but in the case of larger organisms, the dose rates were found to be greater for the spherical types of the same diameter. (auth.)

  17. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing

    2010-01-01

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

  18. The risk of sudden death in sport in patients with signs of connective tissue dysplasia (literature review

    Directory of Open Access Journals (Sweden)

    Nekhanevych O.B.

    2013-03-01

    Full Text Available Literature review indicates that, despite the disclosure of a number of causes and mechanisms of sudden death in people performing physical activities, this issue remains relevant today. The main cause of sudden death in sport is pathological conditions and heart diseases. Par¬ticular risk group during follow-up over persons involved in physical activity are those with the presence of small anomalies; this may be a ma¬nifestation of connective tissue dysplasia. With all the variety of affected organs and systems in patients with connective tissue dysplasia, cardio¬vascular disorders are the leading pathology determining the quality and pro¬gnosis of life.

  19. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  20. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  1. Assessment of Abdominal Adipose Tissue and Organ Fat Content by Magnetic Resonance Imaging

    Science.gov (United States)

    Hu, Houchun H.; Nayak, Krishna S.; Goran, Michael I.

    2010-01-01

    As the prevalence of obesity continues to rise, rapid and accurate tools for assessing abdominal body and organ fat quantity and distribution are critically needed to assist researchers investigating therapeutic and preventive measures against obesity and its comorbidities. Magnetic resonance imaging (MRI) is the most promising modality to address such need. It is non-invasive, utilizes no ionizing radiation, provides unmatched 3D visualization, is repeatable, and is applicable to subject cohorts of all ages. This article is aimed to provide the reader with an overview of current and state-of-the-art techniques in MRI and associated image analysis methods for fat quantification. The principles underlying traditional approaches such as T1-weighted imaging and magnetic resonance spectroscopy as well as more modern chemical-shift imaging techniques are discussed and compared. The benefits of contiguous 3D acquisitions over 2D multi-slice approaches are highlighted. Typical post-processing procedures for extracting adipose tissue depot volumes and percent organ fat content from abdominal MRI data sets are explained. Furthermore, the advantages and disadvantages of each MRI approach with respect to imaging parameters, spatial resolution, subject motion, scan time, and appropriate fat quantitative endpoints are also provided. Practical considerations in implementing these methods are also presented. PMID:21348916

  2. Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: A discussion in the context of diagnostics and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. L. [School of Applied Sciences and Health Innovation Research Institute, RMIT University, Melbourne 3000 (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3001 (Australia) and Medical Physics, WBRC, Alfred Hospital, Melbourne 3000 (Australia)

    2012-09-15

    Purpose: There are a range of genetic and nongenetic factors influencing the elemental composition of different human tissues. The elemental composition of cancerous tissues frequently differs from healthy tissue of the same organ, particularly in high-Z trace element concentrations. For this reason, one could suggest that this may be exploited in diagnostics and perhaps even influence dosimetry. Methods: In this work, for the first time, effective atomic numbers are computed for common cancerous and healthy tissues using a robust, energy-dependent approach between 10 keV and 100 MeV. These are then quantitatively compared within the context of diagnostics and dosimetry. Results: Differences between effective atomic numbers of healthy and diseased tissues are found to be typically less than 10%. Fibrotic tissues and calcifications of the breast exhibit substantial (tens to hundreds of percent) differences to healthy tissue. Expectedly, differences are most pronounced in the photoelectric regime and consequently most relevant for kV imaging/therapy and radionuclides with prominent low-energy peaks. Cancerous tissue of the testes and stomach have lower effective atomic numbers than corresponding healthy tissues, while diseased tissues of the other organ sites typically have higher values. Conclusions: As dose calculation approaches improve in accuracy, there may be an argument for the explicit inclusion of pathologies. This is more the case for breast, penile, prostate, nasopharyngeal, and stomach cancer, less so for testicular and kidney cancer. The calculated data suggest dual-energy computed tomography could potentially improve lesion identification in the aforementioned organs (with the exception of testicular cancer), with most import in breast imaging. Ultimately, however, the differences are very small. It is likely that the assumption of a generic 'tissue ramp' in planning will be sufficient for the foreseeable future, and that the Z differences do

  3. Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: A discussion in the context of diagnostics and dosimetry

    International Nuclear Information System (INIS)

    Taylor, M. L.

    2012-01-01

    Purpose: There are a range of genetic and nongenetic factors influencing the elemental composition of different human tissues. The elemental composition of cancerous tissues frequently differs from healthy tissue of the same organ, particularly in high-Z trace element concentrations. For this reason, one could suggest that this may be exploited in diagnostics and perhaps even influence dosimetry. Methods: In this work, for the first time, effective atomic numbers are computed for common cancerous and healthy tissues using a robust, energy-dependent approach between 10 keV and 100 MeV. These are then quantitatively compared within the context of diagnostics and dosimetry. Results: Differences between effective atomic numbers of healthy and diseased tissues are found to be typically less than 10%. Fibrotic tissues and calcifications of the breast exhibit substantial (tens to hundreds of percent) differences to healthy tissue. Expectedly, differences are most pronounced in the photoelectric regime and consequently most relevant for kV imaging/therapy and radionuclides with prominent low-energy peaks. Cancerous tissue of the testes and stomach have lower effective atomic numbers than corresponding healthy tissues, while diseased tissues of the other organ sites typically have higher values. Conclusions: As dose calculation approaches improve in accuracy, there may be an argument for the explicit inclusion of pathologies. This is more the case for breast, penile, prostate, nasopharyngeal, and stomach cancer, less so for testicular and kidney cancer. The calculated data suggest dual-energy computed tomography could potentially improve lesion identification in the aforementioned organs (with the exception of testicular cancer), with most import in breast imaging. Ultimately, however, the differences are very small. It is likely that the assumption of a generic “tissue ramp” in planning will be sufficient for the foreseeable future, and that the Z differences do not

  4. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  5. High mobility high efficiency organic films based on pure organic materials

    Science.gov (United States)

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  6. Why are small software organisations different?

    OpenAIRE

    Richardson, Ita; Gresse von Wangenheim, Christiane

    2007-01-01

    peer-reviewed Small software organizations independently financed and organized companies with fewer than 50 employees are fundamental to many national economies' growth. In the US, Brazil, Canada, China, India, Finland, Ireland, Hungary, and many other countries, small companies represent up to 85 percent of all software organizations. However, to persist and grow, small software companies need efficient, effective software engineering solutions.

  7. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering.

    Science.gov (United States)

    Oberpenning, F; Meng, J; Yoo, J J; Atala, A

    1999-02-01

    Human organ replacement is limited by a donor shortage, problems with tissue compatibility, and rejection. Creation of an organ with autologous tissue would be advantageous. In this study, transplantable urinary bladder neo-organs were reproducibly created in vitro from urothelial and smooth muscle cells grown in culture from canine native bladder biopsies and seeded onto preformed bladder-shaped polymers. The native bladders were subsequently excised from canine donors and replaced with the tissue-engineered neo-organs. In functional evaluations for up to 11 months, the bladder neo-organs demonstrated a normal capacity to retain urine, normal elastic properties, and histologic architecture. This study demonstrates, for the first time, that successful reconstitution of an autonomous hollow organ is possible using tissue-engineering methods.

  8. On factors modifying reparative regeneration of epithelial tissue of small intestine in the presence of intestinal syndrome

    International Nuclear Information System (INIS)

    Kudryavtsev, V.D.

    1980-01-01

    In experiments on Wistar rats irradiated in dosages of 1000 and 1200 rad, the possibility of reparative regeneration of cryptae was demonstrated in the case when ''intestinal death'' was prevented by therapeutic means (kanamycin mixed with Ringer-Lock's solution). Shielding of part of the abdomen and extensive bone marrow region, and transplantation of homologous bone marrow elicit a stimulatory effect on postradiation recovery of small intestine epithelial tissue. When radiation dose increases up to 1400 rad reepithelization of the exposed region occurs only with the protection of 50-60% of the abdomen. The regenerating cryptae do not appear after irradiation of the whole body or whole abdomen though life expectancy of rats increases up to 6-7 days due to the therapeutic cure

  9. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro.

    Directory of Open Access Journals (Sweden)

    Deborah G Nguyen

    Full Text Available Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI. This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM. Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

  10. The synthesis and properties of linear A-π-D-π-A type organic small molecule containing diketopyrrolopyrrole terminal units

    Science.gov (United States)

    Zhang, Shanshan; Niu, Qingfen; Sun, Tao; Li, Yang; Li, Tianduo; Liu, Haixia

    2017-08-01

    A novel linear A-π-D-π-A-type organic small molecule Ph2(PDPP)2 consisting diketopyrrolopyrrole (DPP) as acceptor unit, biphenylene as donor unit and acetylene unit as π-linkage has been successfully designed and synthesized. Its corresponding thermal, photophysical and electrochemical properties as well as the photoinduced charge-separation process were investigated. Ph2(PDPP)2 exhibits high thermal stability and it can be soluble in common organic solvents such as chloroform and tetrahydrofuran. The photophysical properties show that DPP2Ph2 harvests sunlight over the entire visible spectrum range in the thin-film state (300-800 nm). DPP2Ph2 has lower band gaps and appropriate energy levels to satisfy the requirement of solution-processable organic solar cells. The efficient photoinduced charge separation process was clearly observed between DPP2Ph2 with PC61BM and the Ksv value was found to be as high as 2.13 × 104 M- 1. Therefore, these excellent properties demonstrate that the designed A-π-D-π-A-type small molecule Ph2(PDPP)2 is the prospective candidate as donor material for organic photovoltaic material.

  11. Taurine content of tissues of irradiated rats

    International Nuclear Information System (INIS)

    Akhalaya, M.Ya.; Bogatyrev, G.P.; Kudryashov, Yu.B.; Yartsev, E.I.

    1976-01-01

    The taurine content of tissues (liver, stomach, small intestine and spleen) of rats irradiated with doses of 700 and 450 rads has been studied. Phase changes have been found in the taurine content of radiosensitive tissues in the course of radiation injury development

  12. The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration.

    Science.gov (United States)

    Cherrett, Claire; Furutani-Seiki, Makoto; Bagby, Stefan

    2012-01-01

    The Hippo pathway is a conserved pathway that interconnects with several other pathways to regulate organ growth, tissue homoeostasis and regeneration, and stem cell self-renewal. This pathway is unique in its capacity to orchestrate multiple processes, from sensing to execution, necessary for organ expansion. Activation of the Hippo pathway core kinase cassette leads to cytoplasmic sequestration of the nuclear effectors YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), consequently disabling their transcriptional co-activation function. Components upstream of the core kinase cassette have not been well understood, especially in vertebrates, but are gradually being elucidated and include cell polarity and cell adhesion proteins.

  13. Innate Synchronous Oscillations in Freely-Organized Small Neuronal Circuits

    Science.gov (United States)

    Shein Idelson, Mark; Ben-Jacob, Eshel; Hanein, Yael

    2010-01-01

    Background Information processing in neuronal networks relies on the network's ability to generate temporal patterns of action potentials. Although the nature of neuronal network activity has been intensively investigated in the past several decades at the individual neuron level, the underlying principles of the collective network activity, such as the synchronization and coordination between neurons, are largely unknown. Here we focus on isolated neuronal clusters in culture and address the following simple, yet fundamental questions: What is the minimal number of cells needed to exhibit collective dynamics? What are the internal temporal characteristics of such dynamics and how do the temporal features of network activity alternate upon crossover from minimal networks to large networks? Methodology/Principal Findings We used network engineering techniques to induce self-organization of cultured networks into neuronal clusters of different sizes. We found that small clusters made of as few as 40 cells already exhibit spontaneous collective events characterized by innate synchronous network oscillations in the range of 25 to 100 Hz. The oscillation frequency of each network appeared to be independent of cluster size. The duration and rate of the network events scale with cluster size but converge to that of large uniform networks. Finally, the investigation of two coupled clusters revealed clear activity propagation with master/slave asymmetry. Conclusions/Significance The nature of the activity patterns observed in small networks, namely the consistent emergence of similar activity across networks of different size and morphology, suggests that neuronal clusters self-regulate their activity to sustain network bursts with internal oscillatory features. We therefore suggest that clusters of as few as tens of cells can serve as a minimal but sufficient functional network, capable of sustaining oscillatory activity. Interestingly, the frequencies of these

  14. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  15. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2013-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. Volume 5 is devoted to cells, tissues, and organs of the cardiovascular and ventilatory systems with an emphasis on mechanotransduction-based regulation of flow. The blood vessel wall is a living tissue that quickly reacts to loads applied on it by the flowing blood. In any segment of a blood vessel, the endothelial and smooth muscle cells can sense unusual time variations in small-magnitude wall shear stress and large-amplitude wall stretch generated by abnormal hemodynamic stresses. These cells respond with a short-time scale (from seconds to hours) to adapt the vessel caliber. Since such adaptive cell activities can be described using mathematical models, a key objective of this volume is to identify the mesoscopic agents and nanoscopic mediators required to derive adequate mathematical models...

  16. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  17. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  18. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    OpenAIRE

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technol...

  19. [Local impact of antiseptic medical textile on tissues of organism].

    Science.gov (United States)

    Nazarchuk, O A; Vernyhorods'kyĭ, S V; Paliĭ, V H; Nazarchuk, H H; Paliĭ, D V; Honchar, O O; Zadereĭ, N V

    2013-07-01

    Morphological investigation for studying of a local impact on the tissues, localized in the antiseptic textile implantation zone, was conducted. The textile was impregnated by composition of decametoxine with modified polysaccharides. Basing on the investigation result there was established the absence of a toxic impact of antiseptic medical textile on the macroorganism tissues, the regenerative processes course, the wounds epithelization, antioedematous and anti-inflammatory effects.

  20. Small gap semiconducting organic charge-transfer interfaces

    NARCIS (Netherlands)

    Nakano, M.; Alves, H.; Molinari, A.S.; Ono, S.; Minder, N.; Morpurgo, A.F.

    2010-01-01

    We investigated transport properties of organic heterointerfaces formed by single-crystals of two organic donor-acceptor molecules, tetramethyltetraselenafulvalene and 7,7,8,8-tetracyanoquinodimethane (TCNQ). Whereas the individual crystals have unmeasurably high resistance, the interface exhibits a